

University of Groningen

No pain no gain

Harbers, Marten

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Harbers, M. (2016). No pain no gain: Exploration and validation of experimental pain models in human healthy volunteers for applications in drug development and implications of quantitative sensory testing in neuropathic pain patients [Groningen]: Rijksuniversiteit Groningen

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

NO PAIN NO GAIN

EXPLORATION AND VALIDATION OF EXPERIMENTAL PAIN MODELS IN HUMAN HEALTHY VOLUNTEERS FOR APPLICATIONS IN DRUG DEVELOPMENT AND IMPLICATIONS OF QUANTITATIVE SENSORY TESTING IN NEUROPATHIC PAIN PATIENTS

MARTEN HARBERS

Paranymphs

Job Dekker Frank Harbers

The research work for this thesis was performed within the framework of Dutch Top Institute Pharma project T5-108. Partners in this project include MSD, PRA Health Sciences, University of Groningen and the UMCG.

Printing of this thesis was financially supported by the University of Groningen and PRA Health Sciences.

Graphic design Peter Boersma - www.hehallo.nl

Printed by Wöhrmann Print Service

ISBN printed version: 978-90-367-8954-7 ISBN digital version: 978-90-367-8953-0

No Pain No Gain

Exploration and validation of experimental pain models in human healthy volunteers for applications in drug development and implications of quantitative sensory testing in neuropathic pain patients

Proefschrift

ter verkrijging van de graad van doctor aan de Rijksuniversiteit Groningen op gezag van de rector magnificus prof. dr. E. Sterken en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op maandag 20 juni 2016 om 12:45 uur

door

Marten Harbers

geboren op 22 augustus 1979 te Groningen

Promotor

Prof. dr. J.A. den Boer

Copromotores

Dr. W. Timmerman Dr. R. Kortekaas

Beoordelingscommissie

Prof. dr. J.M.A. van Gerven Prof. dr. G.J. Groen Prof. dr. C.P. van Wilgen

TABLE OF CONTENTS

1	General Introduction	12
1.1	Pain: both value and burden	13
1.2	Alarm Bells and Gates	14
1.3	A modern view	16
1.4	A brief neuro-anatomy of pain	17
1.5	Acute nociceptive pain	19
1.5.1	Treatment of acute pain	20
1.6	Chronic pain	20
1.6.1	Neuropathic pain	20
1.6.2	Quantitative Sensory Testing in neuropathic pain patients	22
1.6.3	Treatment of neuaropathic pain	23
1.7	Experimental pain models	24
1.7.1	Models for Nociceptive pain	25
1.7.2	Models for neuropathic pain	26
1.8	DrugDevelopment: the need for novel analgesics	27
1.9	Thesis outline	29

-	Test vetest velicities at three sessions ever a two week period	
2	lest-retest reliability at three sessions over a two week period	
	for Quantitative Sensory Testing and subjective pain ratings in	
	healthy volunteers on three different body locations	40
2.1	Introduction	42
2.2	Method	43
2.2.1	Subjects	43
2.2.2	Study design	43
2.2.3	Experimental procedures	44
2.2.3.1	Heat Detection Threshold (HDT)	44
2.2.3.2	Heat Pain Threshold (HPT)	45
2.2.3.3	Cold Detection Threshold (CDT)	45
2.2.3.4	Cold Pain Threshold (CPT)	45
2.2.3.5	Mechanical Detection Threshold (MDT)	45
2.2.3.6	Mechanical Pain Threshold (MPT)	46
2.2.3.7	Wind Up Ratio (WUR)	46
2.2.3.8	Continuous Heat Pain (CHP)	46

2.2.3.9	Continuous Cold Pain (CCP)	46
2.2.3.10	Cold Pressor Pain (CPP)	46
2.2.4	Data analyses	46
2.3	Results	47
2.3.1	Crohnbach's alpha for test-retest reliability	49
2.3.2	Pair-wise comparison of locations	51
2.4	Discussion	52
2.4.1	Test-retest reliability QST	52
2.4.2	Thermal versus mechanical stimulation	53
2.4.3	Test-retest reliability for tonic pain ratings	53
2.4.4	Body location	54
2.5	Conclusion	55

3	Evaluating multimodal experimental pain measurements in	
	acute pain trials for opioid efficacy	58
3.1	Introduction	60
3.2	Method	61
3.2.1	Subjects	61
3.2.2	Study design	61
3.2.3	Experimental procedures.	62
3.2.3.1	Heat Detection Threshold (HDT)	62
3.2.3.2	Heat Pain Threshold (HPT)	62
3.2.3.3	Cold Detection Threshold (CDT)	63
3.2.3.4	Cold Pain Threshold (CPT)	63
3.2.3.5	Mechanical Detection Threshold (MDT)	63
3.2.3.6	Mechanical Pain Threshold (MPT)	63
3.2.3.7	Pressure Pain Threshold (PPT)	64
3.2.3.8	Continuous Heat Pain (CHP)	64
3.2.3.9	Continuous Cold Pain (CCP)	64
3.2.3.10	Cold Pressor Pain (CPP)	64
3.2.4	Safety monitoring	64
3.2.5	Data analysis	64
3.3	Results	65
3.3.1	Tolerability and side-effects	65
3.3.2	Detection thresholds	65
3.3.3	Pain thresholds	66

3.3.4	Continuous pain Ratings	67
3.3.5	Period and order effects	68
3.4	Discussion	69
3.4.1	Sensory perception thresholds	69
3.4.2	Pain thresholds	69
3.4.3	Continuous pain stimulation	70
3.4.4	Period effects	71
3.4.5	Reduced placebo analgesia	71
3.4.6	Conclusions	72

4	Bilateral sensory abnormalities in patients with unilateral	
	neuropathic pain; a Quantitative Sensory Testing (QST) study	76
4.1	Introduction	78
4.2	Methods	79
4.2.1	Description of healthy controls	79
4.2.2	Description of the patient cohort	79
4.2.3	Quantitative sensory testing (QST)	80
4.2.4	Data analysis and statistics	80
4.2.4.1	Normalizatoin of QST data	80
4.2.4.2	Proportion of patients with sensory abnormalities at the	
	affected side	81
4.2.4.3	Proportion of patients with sensory abnormalities at the	
	contralateral side	81
4.2.4.4	Proportion of patients with sensory abnormalities for the same	
	QST parameter at the affected and contralateral side	82
4.2.4.5	Correlation between background pain and sensory abnormalities	82
4.2.4.6	Correlation between numbers of sensory abnormalities at the	
	affected and contralateral side	82
4.3	Results	82
4.3.1	QST observations in healthy controls	82
4.3.1.1	Sensory function in healthy controls	82
4.3.2	Demographics of patients	83
4.3.3	QST observations in patients	83
4.3.3.1	Sensory function in patients	84
4.3.3.2	Sensory changes at patients affected side	86
4.3.3.3	Sensory changes at the patient's contralateral side	88

4.3.3.4	Example of magnitude of somatosensory abnormalities	89
4.3.3.5	Sensory changes at the contralateral side in relation to sensory	
	changes at the affected side	90
4.3.4	Correlation between background pain and QST parameters	91
4.3.5	Correlation between numbers of sensory abnormalities at the	
	affected and contralateral side	91
4.4	Discussion	92
4.4.1	Somatosensory function in healthy controls	92
4.4.2	Sensory signs at the affected, painful side of neuropathic pain patients	93
4.4.3	Contralateral sensory signs in	
	neuropathic pain patients	93
4.4.4	Correlation between sensory changes at affected and contralateral side	94

5	Revisiting the Topical Capsaicin Model for Neuropathic Pain:	
	Integrating Secondary Hyperalgesia, Allodynia and Continuous	
	Pain in Healthy Volunteers	100
5.1	Introduction	102
5.2	Method	103
5.2.1	Subjects	103
5.2.2	Experimental procedures	103
5.2.2.1	Thermal stimulation	103
5.2.2.2	Capsaicin application	103
5.2.2.3	Assessment of continuous pain and unpleasantness	104
5.2.2.4	Assessment of secondary hyperalgesia and allodynia	104
5.2.3	Experimental Design	104
5.2.3.1	Part I: model selection	104
5.2.3.2	Part II: model validation	105
5.2.4	Statistical analysis	106
5.3	Results	107
5.3.1	Part I: Model selection	107
5.3.2	Part II: Model validation	108
5.3.2.1	Tolerability	108
5.3.2.2	Continuous pain intensity & unpleasantness	108
5.3.2.3	Secondary Hyperalgesia	109
5.3.2.4	Allodynia	110
5.4	Discussion	111

5.4.1	Part I: Model selection	111
5.4.2	Part II: Model validation: comparing the HCW and HCS model	112
5.4.2.1	Secondary hyperalgesia	112
5.4.2.2	Continuous pain	112
5.4.2.3	Allodynia	113
5.4.3	Gender difference	114
5.4.4	Method of measuring secondary hyperalgesia/allodynia	114
5.4.5	Model limitations	115
5.4.6	Conclusion	115

6	Pharmacological Validation of the Heat Capsaicin Warmth		
	model for neuropathic pain: a Double-Blind Placebo-Controlled		
	Three-way Cross-over Design with Gabapentin and Remifentanil	120	
6.1	Introduction	122	
6.2	Method	124	
6.2.1	Subjects	124	
6.2.2	Experimental procedures	125	
6.2.2.1	Screening	125	
6.2.2.2	Thermal stimulation	125	
6.2.2.3	Capsaicin application	125	
6.2.2.4	Assessment of continuous pain	125	
6.2.2.5	Assessment of secondary hyperalgesia and allodynia	125	
6.2.2.6	Mechanical Detection Threshold (MDT)	126	
6.2.2.7	Mechanical Pain Threshold (MPT)	126	
6.2.3	Pharmacological study design	127	
6.2.4	The HCW model design	127	
6.2.5	Safety monitoring	128	
6.2.6	Statistical analysis	128	
6.3	Results	129	
6.3.1	Tolerability and side-effects	129	
6.3.2	Continuous pain	130	
6.3.3	Allodynia	130	
6.3.3.3	Midline measurement	130	
6.3.3.2	Area measurement	131	
6.3.4	Secondary hyperalgesia	132	
6.3.4.1	Midline measurement	132	

6.3.4.2	Area measurement	132
6.3.5	Period effects	132
6.4	Discussion	133
6.4.1	Effect of gabapentin	134
6.4.2	Effect of remifentanil	136
6.4.3	Period effects of the HCW model	137
6.4.4	Midline vs. Surface Area	138
6.4.5	Conclusion	138

7	Summary and conclusions	144

Dankwoord	151
-----------	-----

NO GAIN