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SUMMARY

Chemotaxis, or directional movement toward extra-
cellular chemical gradients, is an important property
of cells that is mediated through G-protein-coupled
receptors (GPCRs). Although many chemotaxis
pathways downstream of Gbg have been identified,
few Ga effectors are known. Ga effectors are of
particular importance because they allow the cell to
distinguish signals downstream of distinct chemoat-
tractant GPCRs. Here we identify GflB, a Ga2 binding
partner that directly couples the Dictyostelium cyclic
AMP GPCR to Rap1. GflB localizes to the leading
edge and functions as a Ga-stimulated, Rap1-spe-
cific guanine nucleotide exchange factor required
to balance Ras and Rap signaling. The kinetics of
GflB translocation are fine-tuned by GSK-3 phos-
phorylation. Cells lacking GflB display impaired
Rap1/Ras signaling and actin and myosin dynamics,
resulting in defective chemotaxis. Our observations
demonstrate that GflB is an essential upstream regu-
lator of chemoattractant-mediated cell polarity and
cytoskeletal reorganization functioning to directly
link Ga activation to monomeric G-protein signaling.

INTRODUCTION

Chemotaxis, or directional movement toward an extracellular

chemical gradient, is fundamentally important for processes as

diverse as innate immunity, food foraging, and organogenesis

(Artemenko et al., 2014). During the last decade, important

progress has been made by elucidating a complex network

of interconnecting signaling pathways controlling amoeboid

cell chemotaxis, mainly through the use of Dictyostelium and

mammalian neutrophils as experimental systems (Artemenko

et al., 2014; Nichols et al., 2015). Activation of G-protein-coupled

receptor (GPCR)-linked heterotrimeric G protein by guanosine

diphosphate/triphosphate (GDP/GTP) exchange in the Ga sub-

unit results in the dissociation into Ga-GTP and a Gbg subunit,
458 Developmental Cell 37, 458–472, June 6, 2016 ª 2016 Elsevier In
and the activation of the Rho/Rac and Ras families of monomeric

G proteins (Faix andWeber, 2013; Jin, 2013; Kortholt et al., 2013;

Sasaki and Firtel, 2009). Positive and negative feedback and

feedforward loops lead to the intracellular amplification of the

extracellular chemoattractant gradient that includes the prefer-

ential localization of activated Rac, Ras, and Rap1 at the leading

edge, which results in major changes in the cytoskeleton with

actin polymerization at the leading edge and actin-myosin fila-

ment assembly at the rear and sides of the cell (Artemenko

et al., 2014).

Many chemotaxis pathways that are directly regulated by Gbg

have been identified, including: human phosphatidylinositol 3-ki-

nase g (PI3Kg; phosphatidylinositol (3,4,5)-trisphosphate [PIP3]

production) (Stephens et al., 2008); Dictyostelium ElmoE, which,

with Dock proteins, activates RacB (Yan et al., 2012); Dock2,

which activates Rac1 and Rac2 (Kunisaki et al., 2006); and phos-

pholipase Cb, which hydrolyzes phosphatidylinositol (4,5)-bi-

sphosphate (PIP2) to DAG and inositol trisphosphate (Tang

et al., 2011). However, we are only beginning to understand

whether Ga-GDP/GTP exchange mediates downstream sig-

naling mainly through the release of Gbg and/or whether distinct

signaling pathways are regulated through different Ga subunits.

Recently, some mammalian Ga effectors important for chemo-

taxis were identified, including Dock180, a Rac activator highly

homologous to Dock2 (Li et al., 2013), the scaffolding protein

mInsc (Kamakura et al., 2013), and Homer3, a Gai2-binding pro-

tein that spatially helps organizes actin assembly (Wu et al.,

2015).

Using a combination of proteomic approaches in Dictyoste-

lium (Kataria et al., 2013; Kölsch et al., 2013), we identify GflB

as a Ga2-GTP interacting protein and GSK-3 substrate that is

required for efficient directional sensing and cell movement dur-

ing chemotaxis. Our findings indicate that GflB is a Ga-stimu-

lated, Rap1-specific guanine nucleotide exchange factor (GEF)

that plays a central role for the balance between Ras and Rap

signaling at the leading edge of chemotaxing cells.

RESULTS AND DISCUSSION

GflB Plays a Role in Ga2-Mediated Chemotaxis
We identified Dictyostelium GflB (GEF-like protein B), with six

unique and specific peptides that were not present in control
c.
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Figure 1. GflB Is a Ga2-Specific Effector Important for Chemotaxis

(A) Domain topology and schematic representation of GflB and its truncated versions used in this study. The GSK-3 phosphorylation site (197 and 201 amino

acids) is indicated with an asterisk.

(B) Physical association of full-length GflB and Ga(s). Glutathione Sepharose beads coated with GST and GST-Ga1, 2, 4, 5, 8, and 9 were incubated with GFP-

GflB cell lysate. GFP and GST tags were detected by western blotting as described in Experimental Procedures. A representative western blot of three inde-

pendent experiments is shown.

(C) GflB binds to Ga2 in vivo. Lysates of GFP-GflB/GST-Ga2, or GFP-GflB/GST co-expressed gflB� cells were subjected to GSH beads in the presence of either

100 mMGpp(NH)p or 100 mMGDP. Bound proteins were resolved by stained SDS-PAGE and visualized by Coomassie blue (left panel) or western blot (right panel)

with anti-GST and anti-GFP antibodies. Representative images of three independent experiments are shown.

(D) GflB binds preferentially to GTP-bound Ga2 using GFP-GflB as bait. GFP-GflB was bound to GFP antibody pre-coupled protein A magnetic beads, followed

by the incubation of GST-Ga2 cell lysate in the presence of either 100 mMGpp(NH)p or 100 mMGDP. Proteins were detected by western blot with anti-GST and

anti-GFP antibodies. A representative western blot of three independent experiments is shown.

(legend continued on next page)
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samples (pulled down with glutathione S-transferase [GST] pro-

tein), in a proteomic analysis of potential Ga2 binding partners

(Kataria et al., 2013) and independently as a potential GSK-3

substrate through a comparison of the phosphoproteome of

wild-type and gskA� (GSK-3) null cells (Kölsch et al., 2013). Inter-

estingly, GflB contains both a putative Rho GTPase-activating

protein (RhoGAP) domain (663–813 amino acids) and a putative

Ras guanine nucleotide exchange factor (RasGEF) domain (855–

1,256 amino acids) (Figure 1A).

To confirm GflB binding to and specificity for Ga2, we ex-

pressed GFP-tagged GflB full-length protein in Dictyostelium

and performed pull-down experiments with recombinant, puri-

fied GST-fused Ga proteins. Figure 1B illustrates that GFP-

GflB binds to GST-Ga2 but not to the other tested Dictyostelium

Ga proteins, including Ga4, which controls chemotaxis down-

stream of the Dictyostelium folate chemoattractant GPCR

(Hadwiger et al., 1994), nor to free GST, suggesting that GflB

interacts specifically with Ga2 (Figure 1B). To address binding

in vivo and determine the nucleotide specificity, we co-ex-

pressed GFP-GflB and GST-Ga2 in Dictyostelium cells and per-

formed pull-down experiments in the presence of GDP or

GppNHp (Figure 1C). Importantly, western blots show that

GFP-GflB preferentially binds to active GST-Ga2 (GppNHp

bound) compared with inactive (GDP-bound) GST-Ga2. Pull-

downs with GFP-GflB as bait consistently revealed much

stronger binding to GppNHp-loaded GST-Ga2 compared with

GDP-loaded Ga2 (Figure 1D). To investigate which GflB domain

interacts with Ga2, we generated truncated constructs that

either contain the N-terminal fragment (GFP-GflBP1) or the

GflB GAP and GEF domains (GflBP2) (Figure 1A). Immunopre-

cipitation analyses showed that active GST-Ga2 (GppNHp

bound) preferentially binds to GFP-GflBP1, while we observed

no detectable binding of GFP-GflBP2 to active or inactive

GST-Ga2 (Figures 1E and 1F).

Dictyostelium Ga2 binds to the high-affinity cyclic AMP

(cAMP) receptor (cAR1) and is responsible for almost all

cAMP-mediated responses (Kumagai et al., 1989). To charac-

terize the function of GflB in vivo, we generated a gflB-null (gflB�)
strain by homologous recombination. Consistent with the spe-

cific interaction of GflB with Ga2, GflB does not play a major

role during vegetative growth: gflB� cells do not show any defect

in cell growth, macropinocytosis, Rac activation, or folate

chemotaxis (Figures S1A–S1C). Interestingly, cells expressing

GflBP2 show multiple patches of active Rac and severely

reduced growth, and become multi-nucleated (Figures S1A–

S1C, see also below). Next we quantified the ability of wild-

type and gflB� cells to chemotax to cAMP using a micropipette
(E) Ga2 binds to the N terminus of GflB. Lysates of gflB� cells expressing GF

incubated with GST-Ga2-bound GSH beads in the presence of Gpp(NH)p. Pull-

representative western blot of three independent experiments is shown.

(F) GFP-GflBP1 binds preferentially to GTP-bound Ga2. GFP-GflBP1 cell lysate

incubated with either 100 mMGpp(NH)p, 100 mMGDP, or 10mMEDTA. Pull-down

blot of three independent experiments is shown.

(G) ‘‘Spider’’ plots of wild-type (AX3) and gflB�, gflB�/GFP-GflB, gflB�/GFP-Gfl

(indicated by the asterisks) containing 10 mMof the chemoattractant cAMP. Track

generated using individual cells from five independent experiments. A total elapse

the x and y positions of the centroid of the cells, which were computed over the

See also Figures S1 and S2.
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assay (Meili et al., 1999). gflB� cells show only slightly reduced

cAR1 expression compared with wild-type cells, indicating that

they are sufficiently developed to respond to cAMP (Figure S1D).

Whereas wild-type cells chemotax efficiently up a gradient of

cAMP, gflB� cells exhibit considerable chemotaxis defects,

including poorer directionality, more directional changes, and

slower speed compared with wild-type cells (Table 1 and Fig-

ure 1G). Overexpression of GFP-tagged GflB complements the

gflB� cells’ chemotaxis defects (Table 1; Figure 1G; Movies

S1, S2, and S3). As expected from the chemotaxis defects, gflB�

cells exhibit severe developmental defects (Figure S1E). While

wild-type cells form streams and aggregate between 5 and

8 hr after plating on non-nutrient agar plates, gflB� cells form de-

layed, smaller aggregates that mostly do not form fruiting bodies

(Figure S1E). In contrast, overexpressing GFP-tagged GflB in

gflB� results in slightly faster development compared with

wild-type cells.

GflB Is a Ga2-Dependent Rap1-Specific GEF
Oneof the first downstream responsesof heterotrimericG-protein

signaling is the activation of small G proteins (Kae et al., 2004;Kor-

tholt and van Haastert, 2008; Sasaki and Firtel, 2006) that rapidly

switch between an inactive (GDP-bound) and active (GTP-bound)

state with only the GTP-bound form being able to bind to down-

stream effectors (Bourne et al., 1991). For small G proteins, the

switch between the GTP-bound active and GDP-bound inactive

states is controlled by GEFs and GAPs, which stimulate the low

intrinsicGTPaseactivity of theGproteins (TraheyandMcCormick,

1987). GflB contains both a putative RhoGAP domain and a puta-

tive RasGEF domain (Figure 1A). However, the RhoGAP domain

sequence contains notable changes in the catalytic domain (Fig-

ure S2A) compared with known GAPs, including a substitution of

the invariant Arg required for GAP activity (Zhang et al., 1999).

Weshowthatalthough theGflBGAPdomain isable tobindseveral

Racproteins, thisbinding isnucleotide independent (FiguresS2B–

S2D). These findings strongly suggest thatGflB, like humanOCRL

and Dictyostelium Dd5P4 (Loovers et al., 2007), contains an inac-

tive RhoGAP domain.

To address the function of the GflB RasGEF domain, we

generated a construct containing an inactivating mutation in

the RasGEF domain (GFP-GflBP2T1180E) (Vanoni et al., 1999).

gflB� cells overexpressing GFP-GflBP2T1180E have similar

reduced directionality compared with gflB� cells (Table 1 and

Figure 1G), demonstrating an essential role for an active RasGEF

domain in GflB signaling.

The Dictyostelium Ras GTPase subfamily comprises 11 Ras,

three Rap, and one Rheb-related protein (Weeks et al., 2005).
P-GflB (full length), GFP-GflBP2 (380–1,601), and GFP-GflBP1 (1–480) were

down eluates were immunoblotted with anti-GST and anti-GFP antibodies. A

was incubated with GST-Ga2 bound glutathione Sepharose beads were pre-

eluates were immunoblotted with anti-GFP antibody. A representative western

BP2, and gflB�/GFP-GflBP2T1180E cells migrating toward the tip of a needle

s of individual cells (n = 19) are shown as lines for all strains. These tracks were

time of 15min (150 frames; each framewas pictured every 6 s) was used to plot

150 frames using DIAS.



Table 1. DIAS Analysis of Representative Developed Cells Performing Chemotaxis to 1 mM cAMP

Cell Strains Directionality Speed (mm/min) Direction Change Roundness (%)

AX3 0.60 ± 0.13 7.65 ± 1.44 42.29 ± 9.29 39.38 ± 3.77

gflB� 0.20 ± 0.06** 4.02 ± 0.49* 65.40 ± 4.56** 47.50 ± 8.20

gflB�/GFP-GflB 0.74 ± 0.05 8.42 ± 1.15 29.65 ± 5.82* 47.15 ± 4.08*

gflB�/GFP-GflBP2 0.67 ± 0.11 11.26 ± 2.26** 37.58 ± 10.49 48.14 ± 7.62*

gflB�/GFP-GflBP2T1180E 0.39 ± 0.18** 7.35 ± 2.38 55.20 ± 9.68** 48.48 ± 11.09*

Data represent analysis performed with 12 different cells from five independent experiments ± SD, for each strain. Speed refers to the speed of the

cell’s centroid movement along the total path; directionality indicates migration straightness; direction change refers to the number and frequency

of turns; and roundness indicates cell polarity. *p < 0.05, **p < 0.01, Student’s t test. The chemotaxis defects shown result in severe developmental

defects. See also Figure S1.
Thus far, five Ras proteins (RasB, RasC, RasD, RasG, and RasS)

and one Rap (Rap1) have been characterized to some extent,

and they all appear to have important roles in cell physiology

(Kortholt and vanHaastert, 2008). Although one cannot presently

predict the specificity of putative RasGEFs based on sequence,

the in vitro specificity of GEFs can be directly examined using a

nucleotide exchange assay (Figure 2A). Purified GST-tagged

Rap1 and RasG were loaded with [3H]GDP and an excess of

cold GDP was then added, and the nucleotide exchange was

measured as the decay in radioactivity associated with the G

protein. Addition of recombinant GST-GflB-GEF (644–1,282

amino acids) to [3H]GDP-labeled Rap1 results in a rapid

decrease in bound [3H]GDP, indicating an acceleration of the

intrinsic low nucleotide exchange activity of Rap1 (Figure 2A).

However, GflB-GEF is unable to stimulate the nucleotide ex-

change of functional [3H]GDP-labeled RasG (Figure 2A) (Kortholt

et al., 2006), suggesting that GflB may have specificity for Rap1

in vitro. Consistent with this conclusion, immunoprecipitation ex-

periments reveal that GflB-GEF binds to nucleotide free Rap1,

whereas we detected no binding to nucleotide-free RasB,

RasC, RasD, RasG, or RasS (Figure S2E).

Although GflBP2 efficiently binds Rap1, we detected little

binding of full-length GflB to Rap1 (Figure 2B). As the N termi-

nus of GflB interacts with active Ga2, we performed pull-down

experiments with full-length GflB in the presence or absence

of active Ga2. GST-tagged GflB was expressed in Dictyoste-

lium cells and used as bait in a lysate of Dictyostelium

cells expressing GFP-Rap1. Figure 2B shows that GflB binds

efficiently to GFP-Rap1 only in the presence of active Ga2.

These data suggest that binding of active Ga2 releases an

auto-inhibition of the N terminus, thereby allowing GflB to

bind Rap1, and that GflB is thus a Ga2-GTP stimulated,

Rap1-specific GEF.

gflB– Cells Exhibit Decreased Rap1 and Increased Ras
Activation
Figure S3A shows that N-terminal GFP-fused Rap1 and RasG

are localized mainly at the cell membrane of both wild-type

and gflB� cells. To monitor spatial activation of the protein,

rather than its localization, we quantified cAMP-stimulated

Rap1 activation in cell lysates using pull-down assays with

GST-RalGDS and imaged them in vivo using the RalGDS-GFP

reporter (Matsubara et al., 1999). As previously reported (Jeon

et al., 2007a), we found that wild-type cells exhibit a low basal

level of Rap1-GTP that rises rapidly in response to global chemo-
attractant stimulation with a peak at �5 s and then returns

quickly to basal levels (Figures 2C and 2D). Currently it is not

known how cAMP-mediated Rap activation is regulated, since

the two identified Rap1-specific GEFs, GbpD and GEFQ, are

mainly important for Rap-mediated adhesion in vegetative cells

and cytoskeletal rearrangement at the poles of dividing cells

(Kortholt et al., 2006; Plak et al., 2014). In contrast, and consis-

tent with GflB being a Ga2-mediated Rap1 GEF, gflB� cells

exhibit severely impaired Rap1 activation in response to cAMP

(Figures 2C and 2D).

We next quantitated Ras activation in wild-type and gflB� cells

using pull-down assays with GST-Raf1-RBD or GST-Byr2 as

bait, and Ras activation was imaged in vivo with a Raf1-RBD-

GFP marker as described previously (Kortholt et al., 2011).

GST-Raf1-RBD preferentially binds RasG and RasB, while

GST-Byr2 binds strongest to RasC (Kae et al., 2004; Zhang

et al., 2008). Wild-type cells exhibit a low basal level of Ras-

GTP, which rises rapidly in response to global chemoattractant

stimulation with a peak at �5 s and then returns quickly to basal

levels (Figures 2E and 2F). The highly sensitive pull-down assays

showed that gflB� cells have high basal levels of active Ras

in vitro and, both in vitro and in vivo, have an elevated and

extended cAMP-mediated Ras response compared with that in

wild-type cells.

In a cAMP gradient, wild-type cells are polarized, and

both RalGDS-GFP and Raf1-RBD-GFP rapidly accumulate

at the side of the cell facing the gradient (Figures 2D and 2F, right

panels). We calculated the ratio of fluorescence at the cell

cortex in the up-gradient half of the cell to that in the down-

gradient half of the cell (Figure S3B; Kortholt et al., 2011). Wild-

type cells show 7.28 ± 2.79-fold (n = 8) and 8.73 ± 0.75-fold

(n = 8) more Rap1 and Ras activation, respectively, at the front

half compared with the back half of the cell. gflB� cells have a

less polarized Ras (2.98 ± 0.54, n = 8, p < 0.0001) and Rap1

(4.00 ± 1.31, n = 8, p < 0.05) response compared with wild-

type cells (Figure S3B). In steep gradients of cAMP, the initial

wide bell-shaped curve of membrane-bound Raf1-RBD-GFP

becomes very narrow (7.53 ± 0.55 mm), with very steep flanks.

In contrast, this confinement is absent in gflB� cells, resulting

in a much broader Ras crescent (12.46 ± 1.44 mm, n = 8, p <

0.0001) compared with that in wild-type cells, indicating an

inability to effectively polarize in a chemoattractant gradient.

Confinement of Ras signaling depends on cytoskeleton rear-

rangement (Kortholt et al., 2013), a process that is coordinated

by Rap1 (Jeon et al., 2007a).
Developmental Cell 37, 458–472, June 6, 2016 461



Our findings suggest that GflB is involved in the regulation of

the balance between Ras and Rap signaling at the leading

edge of chemotaxing cells.

GflB Is Required for Proper Regulation of Chemotaxis
Pathways
Both Ras and Rap1 are upstream regulators of the PI3K and

TORC2 pathways that play critical roles in directional sensing,

cytoskeletal reorganization, and cell movement (Arthur et al.,

2004; Bolourani et al., 2006; Charest et al., 2010; Funamoto

et al., 2002; Lee et al., 2005; Mun and Jeon, 2012; Plak et al.,

2013; Sasaki and Firtel, 2006; Sasaki et al., 2004; Takeda

et al., 2007).

We analyzed the kinetics of PI3K activation, which is an

effector of RasG and Rap1 (Funamoto et al., 2002; Kortholt

et al., 2010), using the PIP3 reporter PHCRAC-GFP (Insall et al.,

1994). In wild-type cells, PHCRAC-GFP is predominantly cytosolic

in unstimulated cells and rapidly localizes to the plasma mem-

brane in response to uniform cAMP stimulation and to the lead-

ing edge in chemotaxing cells (Figure 3A). gflB� cells exhibit an

extended plasma membrane localization of PHCRAC-GFP in

response to cAMP stimulation compared with wild-type cells.

Furthermore, these cells exhibit a high, uniformly distributed

PHCRAC-GFP over the entire cell periphery prior to stimulation

and also during chemotaxis as well as in vegetative cells, sug-

gesting a high, uniform basal PI3K activity, consistent with

elevated an elevated basal RasG activity (Figure 3A). Consistent

with these observations, we find that cAMP-stimulated PI3K

cortical localization is extended in gflB� cells compared with

that in wild-type cells, and is found along the entire cortex

already prior to stimulation and also during chemotaxis rather

than localized at the leading edge (Figure S4A). These results

agree with the lack of apparent polarization in developed gflB�

cells, as described above.

Akt/PKB and the related enzyme PKBR1 play key roles in

regulating leading edge function during chemotaxis (Meili et al.,

1999, 2000; Kamimura et al., 2008). Akt/PKB and PKBR1 are

activated at the plasma membrane by two phosphorylations,

as are mammalian Akt/PKBs (Sarbassov et al., 2005): their acti-

vation loops (ALs) are phosphorylated by the two PDK1 isoforms

(Kamimura et al., 2008; Liao et al., 2010), whereas TORC2, an

effector of RasC, phosphorylates the conserved hydrophobic

motif (HM) (Cai and Devreotes, 2011; Charest et al., 2010; Kami-

mura et al., 2008; Lee et al., 2005). Chemoattractant-mediated

plasma membrane localization of Akt/PKB is mediated through

the binding of its PH domain to the PI3K product PIP3 (Meili

et al., 1999; Funamoto et al., 2002) while PKBR1 is constitutively

localized on the plasma membrane through an N-terminal myris-

toyl group (Meili et al., 2000; Lee et al., 2005; Kamimura et al.,

2008). In cAMP-responsive wild-type cells, the AL and HMphos-

phorylation of Akt/PKB and PKBR1 peak at �10 s after chemo-

attractant stimulation, consistent with the peak of kinase activity

(Figures 3B and 3C) (Meili et al., 2000; Lee et al., 2005; Kamimura

et al., 2008). In gflB� cells, the AL phosphorylation is elevated

and extended for Akt/PKB and PKBR1, and the phosphorylation

of the HM is also elevated and extended (Figures 3B and 3C).

Consistent with these findings, several substrates of Akt/PKB

have extended phosphorylation in response to cAMP stimulation

in gflB� cells (Figure S4B). These observations are consistent
462 Developmental Cell 37, 458–472, June 6, 2016
with elevated basal RasG and RasC activities and elevated

and extended cAMP-stimulated activity.

GflB Regulates cAMP-Induced Myosin II Assembly and
Actin Polymerization
Spatially localized activation of Rap1 and Ras induces F-actin

polymerization at the leading edge of chemotaxing cells through

the Rac, PI3K, and TORC2 pathways described above (Arte-

menko et al., 2014; Jin, 2013). At the same time, active Rap1 in-

hibits myosin assembly at the leading edge through activation of

its effector Phg2, while low levels of active Rap1 at the side and

back of the cell allow myosin formation (Jeon et al., 2007a,

2007b). Thus, the balance in the temporal and spatial regulation

of Ras and Rap1 activation is essential to control both actin and

myosin rearrangements during chemotaxis (Artemenko et al.,

2014). Consistent with the increased RasG response, we find

that F-actin polymerization is elevated in gflB� cells compared

with that in wild-type cells, whereas myosin II (MyoII) assembly

is dramatically reduced compared with that in wild-type cells

(Figures 4A–4C). Overexpression of GFP-GflB or GflBP2 com-

plements these gflB� cell phenotypes (Figures 4A–4C). Further-

more, in wild-type cells the F-actin reporter Lifeact-GFP is found

at a low level along the cell cortex in unstimulated cells, predom-

inantly at small protrusions, and is transiently localized along the

whole cell cortex in response to uniform cAMP stimulation (Fig-

ure 4D). In chemotaxing wild-type cells, the reporter is enriched

at the leading edge while gflB� cells exhibit a higher basal and

more uniformly distributed level of Lifeact-GFP at the cortex

before and after cAMP stimulation, consistent with the elevated

F-actin in gflB� cells. In addition, the basal and cortically local-

ized levels of MyoII are dramatically decreased in gflB� cells

compared with those in wild-type cells (Figure 4E). As expected,

GFP-MyoII is enriched at the rear and sides of themigrating wild-

type cells but is not detectable at the cortex in gflB� cells (Fig-

ure 4F). Together, our findings demonstrate that GflB has an

important role in regulating Ras- and Rap1-mediated F-actin

and myosin dynamics at the leading edge of chemotaxing cells.

The N Terminus Functions to Regulate Both GflB-GEF
Activity and Its Localization
To further understand the activation mechanism of GflB, we

analyzed the function and localization of full-length, truncated,

and mutated versions of GflB. In developed, randomly moving

cells, GflB is mainly in the cytoplasm except for a few patches

of increased fluorescence observed at the cell boundary at the

sites of protrusions (Figure 5A). During chemotaxis, GflB local-

izes at the leading edge of cells (Figure 5A), whereas in response

to uniform (global) cAMP stimulation, GFP-GflB rapidly and tran-

siently translocates to the cortex (Figure 5A). The kinetics of the

GflB translocation are more accurately monitored by computa-

tional analysis of fluorescence intensity depletion in the cyto-

plasm (Figure 5B). The translocation of GFP-GflB starts immedi-

ately upon cAMP stimulation, peaks at�8 s, and returns to basal

levels by �18 s. Because GflB localization seems to be thicker

than that defined by plasma membrane as observed with Raf1-

RBD-GFP or PHCRAC-GFP (Figure 5A), and GflB regulates

actin-myosin dynamics, we investigated a role for the cell cortex

in regulation. In cells incubated with the actin-polymerization in-

hibitor latrunculin A (LatA), GflB does not translocate to the cell



Figure 2. GflB Is a Ga2-Dependent Rap1-Specific GEF
(A) Rap1 and RasG [3H]GDP release with (red line) and without (blue line) GflB-GEF in the presence of an excess of GDP. Data are mean and SD of at least three

independent experiments; significantly different from control without GflB-GEF at *p < 0.05 (Student’s t test).

(legend continued on next page)
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boundary on uniform cAMP stimulation (Figure 5B), suggesting

that localization depends on a functional cytoskeleton. Previous

reports have shown that cytoskeleton-associated GAP proteins

are important for the regulation of Rap1 activity (Jeon et al.,

2007a). Consistent with these results, we find that addition of

LatA to starved cells results in a strong uniform Rap1 response

that does not increase further upon addition of cAMP (Fig-

ure S4D). In contrast, LatA does not induce a uniform Rap1

response in gflB� cells, suggesting that GflB is required for cyto-

skeletal regulation of Rap1 activation. Furthermore, addition of

LatA to gflB� cells completely restores the prolonged cAMP-

mediated Ras response in gflB-null cells, while it does not affect

the amplitude or kinetics of the Ras response in wild-type cells

(Figure S4E). These data show that the observed Ras phenotype

of gflB� cells depends on a functional cytoskeleton and that

GflB, consistent with our biochemical data (Figure S2E), indi-

rectly regulates Ras activity.

Interestingly, the constitutively active GflBP2 fragment (see

above) is already localized at the cortex before stimulation, and

we detect no further increase of fluorescence after global stimula-

tion with cAMP (Figure 5B). Similarly, in unstimulated cells the N

terminus of GflB (GflBP1) also localizes to the cell boundary; how-

ever, the localization ofGflBP1doesnot change in thepresence of

LatA, suggesting that GflBP1 is bound to the membrane rather

than the cytoskeleton (Figure 5C). The binding of GflBP1 to the

membranemost likely involves interactionwith lipids (Figure S5A).

Together, these results suggest that translocation of GflB is

initiated by binding of activated Ga2 to the GflB N terminus, re-

sulting in exposure of a lipid binding site in GflB, resulting in a

more stable binding to the plasma membrane at the sites of acti-

vated Ga2. This interaction then allows the binding of a now

active GflBP2 to the cell cortex via interaction with Rap1 and/

or other sites on the cortex. At the same time, RapGAPs accu-

mulate at the cortex at the back of the cell (Jeon et al., 2007b).

This spatial separation of GEFs and GAPs subsequently leads

to Rap activation in a large area at the front of the cell.

GSK-3 Phosphorylation Modulates GflB Localization
A comparative bioinformatics screening of a total cell phospho-

proteomic analysis (tandem mass spectrometry array) of devel-

oped wild-type and GSK-3-null (gskA�) cells in response to
(B) Interaction between GflB and Rap1. GSH beads coated with GST-GflB were in

constitutively active Ga2. Immunoprecipitation was performed using an anti-GFP

shown.

(C) The activation level of endogenous Rap1 in response to cAMP was assayed u

1 mM cAMP for the indicated times and analyzed by immunoblot assay using an an

Error bars represent average data for at least four independent experiments. For q

the different time points in wild-type and gflB� cells were plotted relative to Rap

(D) Live images of RalGDS-GFP expressing AX3 and gflB� cells in buffer, 4–6 s a

cAMP. The relative cytoplasm fluorescence intensity of RalGDS-GFP is shown i

periments. *p < 0.05 (Student’s t test). Scale bar represents 5 mm.

(E) The endogenous Ras activation was measured by GST-Byr2-RBD and GST

indicated duration, and the amount of Ras protein bound to GST-RBD was determ

the quantification of blots of at least three independent experiments indicating the

relative to time point 5 s (peak of activation) in wild-type cells. *p < 0.05 (Studen

(F) In vivo live images using the Raf1-RBD-GFP reporter. Representative image

cAMP, and gradient stimulation with 10 mM cAMP are shown in the left panel. Tim

are shown in the right panel. Data represent mean (n = 10) ± SEM of three indep

See also Figures S2 and S3.
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cAMP stimulation shows that GflB is not phosphorylated at a po-

tential GSK-3 site in gskA� cells (Figure S5B). GflB is simulta-

neously phosphorylated at Ser197 (putative GSK-3 site) and

Thr201 (putative priming site) before (0 s, basal), at 10 s (the

time of maximum activation of many leading edge pathways),

and at 60 s (adaptation) after cAMP stimulation in wild-type,

but no phosphorylation at these sites is observed in gskA� cells

(Figure S5B). Indeed, we identified the same phosphorylation

sites in a previous proteomics screening in wild-type cells (Char-

est et al., 2010). In addition, peptides containing phospho-Ser197

(but not phospho-Thr201) are only identified at 60 s after cAMP

stimulation, suggesting that GSK-3 might regulate GflB adapta-

tion rather than its activation in response to the chemoattractant.

Our study detects other phosphorylations on GflB in gskA� cells,

suggesting that the lack of phosphorylation at the potential GSK-

3 site is probably due to the absence of GSK-3 rather than GflB

not being detected. We verified that GflB is a direct target of

GSK-3 by examining the ability of immunoprecipitated T7-GflB

expressed in gskA� cells to be phosphorylated in an in vitro ki-

nase assay by recombinant human GSK-3b (Figure 5D). Wild-

type GflB and GflB carrying Ala substitutions at Ser197 and

Thr201 (GflBS197A/T201A) show similar low phosphorylation during

the first 4 min, suggesting that GSK-3b can phosphorylate addi-

tional sites in vitro. However, at later time points GflBS197A/T201A

is less phosphorylated than the wild-type protein, suggesting

that Ser197 and Thr201 are the major sites of GSK-3b phosphory-

lation in vitro. We observed smaller differences in the phosphor-

ylation of GflB and GflBS197A/T201A for incubation times longer

than 10 min (Figure S5C). The in vitro kinase assay observations,

together with the phosphoproteomics findings, identified a GSK-

3 phosphorylation site in GflB, suggesting that GflB is a direct

in vivo target for GSK-3, which is known to regulate MyoII func-

tion (Kölsch et al., 2013).

We examined the function of GflB phosphorylation by GSK-3

by expressing GFP-GflB in gskA� cells. In response to uniform

cAMP concentration, the cortical translocation of GFP-GflB

peaks more rapidly, and the level of accumulation is more

elevated and extended than that of GFP-GflB in wild-type cells

(Figure 5E, left panel). To determine whether phosphorylation

of the identified GSK-3 site in GflB mediates this response,

we expressed the non-phosphorylatable (GFP-GflBS197A/T201A)
cubated with GFP-Rap1 EDTA-added cell lysate in the presence or absence of

antibody. A representative western blot of three independent experiments is

sing GST-RalGDS pull-down assays. AX3 and gflB� cells were stimulated with

tibody against Rap1. The quantification of the blots is shown in the right panel.

uantification, the starting point of wild-type cells was set as 1.0 and the data for

1-GTP levels at this starting point. *p < 0.05 (Student’s t test).

fter uniform stimulation with 1 mM cAMP and gradient stimulation with 10 mM

n the right panel, representing mean (n = 12) ± SEM of three independent ex-

-Raf1-RBD pull-down assays. Cells were stimulated with 1 mM cAMP for the

ined by western blotting with an anti-pan-Ras antibody. The right panel shows

relative activation of Ras in response to cAMP. All Ras activation time points are

t’s t test).

s of Raf1-RBD-GFP expressing cells in buffer, uniform stimulation with 1 mM

e course of Raf1-RBD-GFP translocation from the cytoplasm to the membrane

endent experiments. Scale bar represents 5 mm.



Figure 3. GflB Is Required for the Proper Regulation of the Chemotaxis Pathways

(A) Representative live images of translocation kinetics of a PIP3 reporter PHCRAC-GFP in AX3 and gflB� cells, upon uniform (1 mM) and gradient (100 mM) cAMP

stimulation. Scale bar represents 5 mm. The right panel shows quantification of the relative membrane fluorescence intensity of uniformly cAMP-stimulated

PHCRAC-GFP. Data representmean (n = 15) ± SD of relative fluorescence intensity ofmembrane-localized PHCRAC-GFP comparedwith unstimulated AX3 cells (t =

0) as a function of time after cAMP stimulation. **p < 0.01, Student’s t test.

(B and C) Phosphorylation of the activation loop (AL) (B) and hydrophobic motif (HM) (C) of PKB and PKBR1 in AX3, gflB�, and gflB� cells expressing GFP-GflB in

response to 1 mM cAMP. The right panels show the quantification of AL (B) and HM (C) phosphorylation of PKB and PKBR1 normalized to the peak value of AX3

(t = 10 s), representing mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, Student’s t test.

See also Figure S4.
and the phosphomimetic form of GflB (GFP-GflBS197D/T201D) in

wild-type and gflB� cells. The cortical translocation of GFP-

GflBS197D/T201D in gflB� cells is similar to that of wild-type GFP-

GflB expressed in gflB� cells (Figure 5E, right panel). In contrast,

we found that GFP-GflBS197A/T201A peaks more rapidly and the

peak is slightly elevated and more extended than in wild-type

GFP-GflB, similar to, but not as extreme as, our observations

when GFP-GflB is expressed in gskA� cells (Figure 5E, right

panel). We made similar observations for GFP-GflBS197A/T201A

expressed in wild-type cells (Figure 5E). Together, these findings

suggest that phosphorylation of the N terminus of GflB by GSK-3

results in less, delayed, and shorter GflB recruitment to the cor-
tex. Thus, GSK3 phosphorylation is not essential for activation

but helps modulate the extent and timing of the translocation.

Model for the Function of GflB
We demonstrate that GflB binds to and is activated by Ga2-GTP

and directly links the cAMP receptor to Rap1 activation at the

leading edge and, thus, one of the most receptor-proximal reg-

ulators of chemotaxis in this system. GflB is required for proper

cell polarization, integration of Rap1 and Ras pathways, and

the spatiotemporal regulation of the F-actin/myosin cytoskeleton

(Figure 6A). GflB is a Rap1 GEF that is stimulated by direct

binding to Ga. Interestingly, GflB appears to be specific to the
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Figure 4. GflB Regulates Myosin II Assembly and Actin Polymerization

(A and B) 1 mM cAMP induced F-actin polymerization (A) and MyoII assembly (B) in AX3, gflB�, and gflB� cells expressing GFP-GflB and GFP-GflBP2.

(C) Quantification of relative F-actin and MyoII from at least three independent experiments, representing the mean ± SD normalized to unstimulated AX3 at

time 0. *p < 0.05, Student’s t test.

(legend continued on next page)
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cAMP chemotaxis receptor pathway (involved in aggregation

and development). GflB binds to Ga2 and not Ga4, which cou-

ples to the folate GPCR used as a food-foraging receptor.

The activation of GflB through a specific Ga, but not the sole

Gbg subunit, provides a mechanism for Dictyostelium cells to

respond differently to distinct chemoattractants.

Binding of active Ga-GTP to the N terminus of GflB initiates

recruitment of GflB to the leading edge and releases the auto-in-

hibition (Figure 6B), allowing the GEF domain to bind and stimu-

late the exchange activity of Rap1. In an extracellular gradient,

GflB strongly localizes at the leading edge, while the activation

of Ga2 is only proportional to the steepness of the gradient (Ja-

netopoulos et al., 2001; Ueda et al., 2001). It is therefore unlikely

that only binding of Ga2 to the N terminus is responsible for the

accumulation of GflB to the leading edge. Furthermore, the

constitutively active GflBP2 fragment and the N terminus of

GflB are exclusively localized at the cortex and cell membrane,

respectively. Together, these data suggest that the leading

edge localization of GflB is initiated by Ga-mediated lipid binding

of the N-terminal domain of GflB, followed by localization to the

cell cortex via binding of GflBP2 domain. Subsequently, active

GflB regulates cytoskeletal reorganization, resulting in recruit-

ment of additional GflB to the cortex. Interestingly, F-actin also

regulates PI3K localization at the leading edge via a similar pos-

itive feedback loop mechanism (Funamoto et al., 2002). So far,

we have been unable to determine whether the inactive RhoGAP

domain or the RasGEF domain is responsible for binding to the

cell cortex. However, it is tempting to speculate that, by analogy

to human OCRL (Mehta et al., 2014), binding to Rac protein via

the catalytic inactive RhoGAP domain plays an important role

in this process. The extent and timing of the GflB translocation

to the cortex and leading edge is further fine-tuned by the phos-

phorylation state of the N terminus of GflB by GSK-3; non-phos-

phorylatable GFP-GflB protein translocation exhibits a more

rapid translocation upon cAMP stimulation, consistent with

constitutive inhibitory phosphorylation by GSK-3. Furthermore,

our proteomic observations suggest that the Ser197 GSK-3 site

of GflB shows increased phosphorylation at 60 s after cAMP

stimulation, which might suggest that GSK-3 regulates GflB

inactivation rather than activation in response to cAMP at the

leading edge. The exact mechanism by which phosphorylation

of the N terminus of GflB attenuates localization remains to be

determined but might involve allosteric regulation of exposure

of the lipid binding and/or RhoGAP domain.

Although human Rap1 was initially identified as a suppressor

of Ras signaling, recent studies in various model systems have

revealed several downstream pathways that are activated by

both Rap1 and Ras or are activated by Rap1 independent of

Ras (Frische and Zwartkruis, 2010; Kitayama et al., 1989; Kor-

tholt et al., 2010; Mishra et al., 2005; Schwamborn and Püschel,
(D) Translocation kinetics of the F-actin reporter Lifeact-GFP in AX3 and gflB� ce

bar represents 5 mm. Quantitation of the relative fluorescence intensity of membra

AX3 cells as 1.0. Data represent mean (n = 29) ± SD of cells from three independ

(E) Live imaging of GFP-MyoII expressed in AX3 and gflB� cells in response to 1 m

points are shown. Scale bar represents 5 mm. Quantitation of the relative fluores

taking the starting point in AX3 cells as 1.0. Data represent mean (n = 26) ± SD o

(F) Live imaging of translocation of GFP-MyoII expressed in AX3 and gflB� cells up

source. Scale bar represents 5 mm.
2004). Furthermore, studies in both mammals and Dictyostelium

have also shown that Ras and Rap1 activation are strongly inter-

connected (Bolourani et al., 2008; Lee et al., 2011). Importantly,

not only the individual levels of, but also the balance between,

Ras and Rap1 activation are important for many processes (Ye

and Carew, 2010; Ye et al., 2008) (Figure 6B). GflB is key for

the balance between Ras and Rap1 activation at the leading

edge of chemotaxing Dictyostelium cells. GflB functions as a

Rap-specific GEFwhose activation is mediated by direct binding

of Ga2-GTP. The exact mechanism by which GflB regulates Ras

activation is not completely understood but requires a functional

cytoskeleton. Therefore, cells lacking gflB have impaired spatial

and temporal Rap1 and Ras activation, which together results in

uncoordinated and/or extended activation of the downstream

pathways and impaired coordination of cytoskeletal rearrange-

ments (Figure 6A). Rap1 act as a global regulator of a large num-

ber of processes crucial for Dictyostelium, including actin,

myosin and microtubule filament formation, adhesion, and pro-

trusion formation (Jeon et al., 2007b; Kortholt et al., 2006,

2010; Plak et al., 2013) (Figure 6B). During chemotaxis, Rap1

activation is restricted to a broad patch at the leading edge,

whereby activation of the Rap-effector Phg2 it inhibits myosin

filament formation. The spatial activation of Rap1 thus allows

myosin filament formation only at the sites with lowest Rap1 ac-

tivity (the back and sides of the cell) (Jeon et al., 2007a, 2007b).

Ras, which is activated in a narrow patch at the leading edge,

and Rap both stimulate actin filament formation at the front of

the cell and thereby facilitate directional movement (Figure 6C).

Together, our findings indicate that GflB provides a direct link

from Ga activation to localized monomeric G-protein signaling

and localized cytoskeletal rearrangement, and is therefore

important for Dictyostelium development and chemotaxis.
EXPERIMENTAL PROCEDURES

Cell Culture

All GflB mutants were derived from the axenic Dictyostelium discoideum

AX3 strain, designated here as wild-type. Dictyostelium cells were maintained

in HL5-C medium including glucose either on plastic Petri dishes

or shaking suspension at 150 rpm at 21�C to a density of no more than 2 3

106 cells/ml. For selection, the respective antibiotics were added at a concen-

tration of 10 mg/ml. For acquisition of developmentally competent cells

capable of responding to cAMP as a chemoattractant, log-phase vegetative

cells were harvested by low-speed centrifugation (300 3 g for 3 min), washed

twice, and resuspended at a density of 53 106 cells/ml with 12mMNa/K phos-

phate buffer (PB), and pulsed with 7.5 mM cAMP solution for 5.5 hr at 6-min

intervals. Subsequently, cells were collected and suspended in PB buffer.

The density of cells grown in suspension was determined every 12 hr over a

7-day period, and the doubling times were obtained from growth rates that

occurred during log-phase growth. Formeasurement of the rate of macropino-

cytosis, cells were shaken in 8 ml of HL5 medium at a density of 106 cells/ml.

20 mg of fluorescein isothiocyanate-dextran was added and 500-ml samples
lls in response to uniform (1 mM) and gradient (10 mM) cAMP stimulation. Scale

ne-localized GFP-Lifeact is shown in the right panel, taking the starting point in

ent experiments. **p < 0.01, Student’s t test.

M uniform cAMP. Images captured at 1-s intervals and frames at selected time

cence intensity of membrane-localized GFP-MyoII is shown in the right panel,

f cells from three independent experiments. *p < 0.05, Student’s t test.

on gradient cAMP (10 mM) stimulation. Asterisks indicate the place of the cAMP
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Figure 5. Regulation of GflB by N Terminus

and GSK-3

(A) Live imaging of GFP-GflB expressed in gflB�

cells with (bottom) or without (top) 5 mM LatA

treatment upon uniform (1 mM) and gradient (10 mM)

cAMP stimulation. The relative cytosolic fluores-

cence intensity of GFP-GflB is shown in the right

panel. Data represent mean (n = 21) ± SEM. *p <

0.05, Student’s t test. Scale bar represents 5 mm.

(B and C) Live imaging of LatA treated (bottom) and

untreated (top) gflB� cells expressing GFP-GflBP1

and GFP-GflBP2 upon uniform 1 mM cAMP stimu-

lation. Scale bars represent 5 mm. Translocation

kinetics of GFP-GflBP1 and GFP-GflBP2 are

shown in the right panels, representing mean (n =

10) ± SEM.

(D) In vitro GSK-3 kinase assay. Phosphorylation of

T7-GflB and T7-GflB2A (carrying two Ala mutations

in the GSK-3 phosphorylation site) in the presence

of [g-32P]ATP and human recombinant GSK-3b

was examined for the indicated time points.

Quantification is shown in the right panel, repre-

senting mean ± SD from three independent ex-

periments. *p < 0.05, Student’s t test.

(E) 1 mM cAMP-stimulated translocation kinetics

of GFP-GflB expressed in AX3 and gskA� cells

(left panel), and GFP-GflB expressed in gflB�,
GFP-GflBS197A/T201A expressed in AX3 and gflB�

cells, and GFP-GflBS197D/T201D expressed in

gflB� cells (right panel). Data represent mean

(n = 15) ± SD of relative fluorescence intensity of

membrane-localized protein taken the starting

point as 1.0. *p < 0.05, **p < 0.01, Student’s

t test.

See also Figure S4.
were taken at t = 0, 15, 30, 45, 60, 120, and 180 min. Samples were pelleted,

washed once in PB, and resuspended in lysis buffer (50 mM KCl, 10 mM Tris

[pH 8.3], 2.5 mMMgCl2, 0.45% Triton X-100, 0.45% Tween 20). Fluorescence

was measured using a fluorimeter (470 nm excitation, 515 nm emission).

Plasmid and Protein Preparation

The GFP-PI3K, PHCRAC-GFP, GFP-Lifeact, GFP-MyoII, Raf1-RBD-GFP,

and RalGDS-GFP cellular markers were reported previously (Kortholt
468 Developmental Cell 37, 458–472, June 6, 2016
et al., 2011; Plak et al., 2014; Sasaki et al.,

2004). The indicated GflB overexpressing and

knockout constructs were generated (Supple-

mental Experimental Procedures) and subse-

quently transformed into Dictyostelium cells by

electroporation. Three independent, clonally iso-

lated gflB� strains were used for the subsequent

analysis. GflB-GEF (amino acids 644–1,282),

Rap1, and RasG were expressed from a

pGEX4T1 plasmid containing an N-terminal

GST (GE Healthcare) in Rosetta2 (DE3) Escheri-

chia coli (Novagen). Protein expression was

induced with 0.1 mM isopropyl 1-thio-b-D-gal-

actopyranoside at room temperature for 16 hr.

Bacterial cell pellets were resuspended in buffer

containing 50 mM Tris (pH 7.5), 50 mM NaCl,

5 mM MgCl2, and 1 mM phenylmethylsulfonyl

fluoride, supplemented with 1 mg/ml crushed

protease inhibitor tablets (Roche), and lysed by

sonication. Proteins were isolated by GSH affin-

ity as described previously (Kortholt et al., 2006).

The purified proteins were analyzed by SDS-
PAGE, and the concentration was determined by Bradford’s method

(Bio-Rad).

Co-immunoprecipitation Experiments and Phospholipid Binding

Assay

Co-immunoprecipitation assays are described in detail in Supplemental

Experimental Procedures and were performed as described previously (Kata-

ria et al., 2013; Kortholt et al., 2012). Lipid dot-blot assays were done using PIP



Figure 6. Model for the Activation Mecha-

nism and Function of GflB

(A) Overview of the spatial and temporal cAMP-

mediated responses of the indicated markers in

AX3 and gflB� cells.

(B) Cartoon depicting the activation cycle of GflB.

The N terminus keeps GflB in an inactive state in the

cytoplasm. Chemoattractant stimulation induces

the disassociation of the heterotrimeric G protein to

the Ga-GTP and Gbg subunits. Binding of active

Ga-GTP to the N terminus of GflB releases the

auto-inhibition and initiates recruitment of GflB to

the leading edge, which is followed by localization

to the cell cortex via binding of the GflBP2 part.

Release of auto-inhibition allows theGEF domain to

bind and stimulate the exchange activity of Rap1,

which induces major rearrangement of the cyto-

skeleton and subsequently in the recruitment of

additional GflB to the leading edge. GSK-3 phos-

phorylation at amino acids 197 and 201 (red high-

lighted P) regulates the extent and timing of GflB to

the leading edge.

(C) Schematic of the GflB-mediated signaling

pathways. Ga2-mediated GflB activation is key for

the balance between Ras and Rap1 activation at

the leading edge of chemotaxing Dictyostelium

cells. Activated Rap promotes myosin disassembly

at the leading edge through various downstream

pathways. At the same time lower levels of active

Rap1 at the side and back of the cell allow myosin

assembly, thereby establishing forces for the

contraction of the cell’s posterior. Ras and Rap

both stimulate actin filament formation at the

front of the cell and thereby facilitate directional

movement.
strips (Echelon Biosciences) according to the manufacturer’s instructions. In

brief, 1 3 108 GFP-GflBP1-expressing cells were resuspended in 1 ml of lysis

buffer. The PIP strips were pre-blockedwith Tris-buffered saline and Tween 20

(TBST) containing 3% fatty acid free BSA (Sigma-Aldrich) for 1 hr at room tem-

perature and subsequently incubated with 5 ml of TBST containing 50 ng of

protein of the cleared GFP-GflBP1 lysate. Proteins were visualized by western

blotting using an anti-GFP antibody (Santa-Cruz Biotechnology, 1:2,000 dilu-

tions in blocking buffer) or anti-GST antibody.

In Vitro Guanine Nucleotide Exchange Assay

3 mMpurified GST-Rap1 or GST-RasG was incubated overnight at 4�C in assay

buffer containing 40-fold 3H-labeled GDP (0.925 MBq/assay, PerkinElmer). The

exchange activity was measured at room temperature with and without 6 mM

GflB-GEF protein. The reaction was started by addition of 200-fold excess unla-

beled GDP, and samples were taken at the indicated points. Samples were

spotted on nitrocellulose filters (BA 85, Millipore), washed with 20 ml of ice-

cold assay buffer, and dried before scintillation counting (PerkinElmer).

Ras and Rap1 Activation Assays

Rap1 and Ras activation was quantified in cell lysates using the previously

described GST-RalGDS (Jeon et al., 2007b) and GST-RBD (Kae et al., 2007)
Develop
pull-down assays, respectively. In brief, pre-

cleared Dictyostelium cell lysates (see above)

were mixed with 100 mg of recombinant purified

GST-RBD or GST-RBD (RalGDS) (Kortholt et al.,

2006). The samples were incubated with GSH

beads for 1 hr at 4�C and subsequently washed

three times with lysis buffer. Bound proteins were

eluted by boiling in 13 SDS buffer and resolved

on SDS-PAGE gels. Ras and Rap1 proteins were
visualized by western blotting with the anti-Pan Ras (Pierce, Thermo Fisher

Scientific) and anti-Rap1 antibodies. Image analysis was carried out using Im-

ageJ software (NIH). All assays were repeated at least three times.

Development, Chemotaxis, and Live Imaging

Cells were harvested from plates at a log-phase density, washed, and sus-

pended at a density of 3 3 107 cells/ml in PB buffer to monitor the develop-

ment of Dictyostelium. Serial dilutions of 30-ml drops were placed on PB non-

nutrition agar plates and development was monitored for 24 hr at room

temperature using a stereoscopic zoom microscope (SMZ-U, Nikon).

Chemotaxis of Dictyostelium cells toward cAMP was analyzed as described

previously (Sasaki et al., 2004) and quantified by DIAS (dynamic image anal-

ysis system) software (Wessels et al., 1998). Chemotaxis toward 1 mM folate

with a pipette-tip opening of 3 mm and a pressure of 2 hPa (Femtojet), was

measured as previously described (Kataria et al., 2013). Live confocal images

were recorded using a Zeiss LSM 510 Metanlo confocal laser scanning mi-

croscope equipped with a Zeiss plan-apochromatic 633 numerical aperture

1.4 objective. The quantification of fluorescence intensity was done as

described previously (Kortholt et al., 2011). Experiments were repeated inde-

pendently at least three times, always assaying wild-type cells as a control for

comparison in each experiment.
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In Vitro PKB/PKBR1 Phosphorylation Assay

Phosphorylation immunoblot assays of PKB and PKBR1 were performed as

described previously (Meili et al., 1999). In brief, samples of unstimulated

and stimulated (1 mM cAMP) developed cells were taken at the indicated

time points, lysed, run on SDS-PAGE gels, and transferred to nitrocellulose

membranes. Phosphorylation of Akt/PKB and PKBR1 at the HMwas detected

using a-phospho-p70S6 kinase antibody (Cell Signaling Technology), and

phosphorylation at the AL was detected using a-phosphoprotein kinase C

(pan) antibody (Cell Signaling) (Kamimura et al., 2008). Western blots were

quantified using ImageJ. Experiments were repeated independently at least

three times, always assaying wild-type cells as a control for comparison in

each experiment.

F-Actin Polymerization and MyoII Assembly

Developmentally competent cells were stimulated with 1 mM cAMP, samples

were taken at the indicated time points, and cytoskeletal proteins were iso-

lated as described previously (Steimle et al., 2001). The samples were sepa-

rated on SDS-PAGE and stained with Coomassie blue. Protein amounts

were quantified using ImageJ.

In Vitro GSK-3 Kinase Assay

Extracts from gskA� (GSK-3 null) cells expressing T7-GflB or T7-GflBS197A/T201A

were mixed and immunoprecipitated with T7-tag antibody agarose beads

(Novagen). The immune complexes were washed three times with cold

lysis buffer and twice with cold kinase buffer (5 mM MOPS [pH 7.2], 2.5 mM

b-glycerophosphate, 1 mM EGTA, 0.4 mM EDTA, 4 mM MgCl2, 0.05 mM

DTT, 40 ng/ml BSA) and then incubated with 30 ng of human recombinant

GSK-3b (Cell Signaling). The kinase reactions were performed for up to

30 min at room temperature in the presence of radioactively labeled [g-32P]

ATP (250 mM, 2 mCi/ml). The reactions were terminated by the addition of 23

SDS sample buffer. Samples were boiled and loaded on SDS-PAGE gels. The

results were visualized by exposing to HyBlotCL autoradiography film (Denville

Scientific).
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Note Added in Proof

During the final revision of our manuscript, Senoo et al. identified GflB as a

RacE binding protein with a role in chemotaxis. These findings are now

published:

Senoo, H., Cai, H., Wang, Y., Sesaki, H., and Lijima, M. (2016). The novel

RacE binding protein GflB sharpens Ras activity at the leading edge of

migrating cells. Mol. Biol. Cell., in press. Published online March 23, 2016.
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