

 University of Groningen

Efficient Computation of Greyscale Path Openings
Schubert, Herman; van de Gronde, Jasper J.; Roerdink, Johannes

Published in:
Mathematical Morphology - Theory and Applications

DOI:
10.1515/mathm-2016-0010

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Schubert, H., van de Gronde, J. J., & Roerdink, J. B. T. M. (2016). Efficient Computation of Greyscale Path
Openings. Mathematical Morphology - Theory and Applications, 1(1), 189-202. DOI: 10.1515/mathm-2016-
0010

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

http://dx.doi.org/10.1515/mathm-2016-0010
https://www.rug.nl/research/portal/en/publications/efficient-computation-of-greyscale-path-openings(ef31c632-a437-4674-a613-c1133ff22b3a).html

© 2016 Herman Schubert et al., published by De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Math. Morphol. Theory Appl. 2016; 1:189–202

Research Article Open Access

Herman Schubert*, Jasper J. van de Gronde*, and Jos B. T. M. Roerdink

E�cient Computation of Greyscale Path
Openings
DOI 10.1515/mathm-2016-0010
Received June 30, 2015; accepted February 9, 2016

Abstract: Path openings are morphological operators that are used to preserve long, thin, and curved struc-
tures in images. They have the ability to adapt to local image structures, which allows them to detect lines that
are not perfectly straight. They are applicable in extracting cracks, roads, and similar structures. Although
path openings are very e�cient to implement for binary images, the greyscale case is more problematic. This
study provides an analysis of the main existing greyscale algorithm, and shows that although its time com-
plexity can be quadratic in the number of pixels, this is optimal in terms of the output (if the full opening
transform is created). Also, it is shown that under many circumstances the worst-case running time is much
less than quadratic. Finally, a new algorithm is provided, which has the same time complexity, but is simpler,
faster in practice and more amenable to parallelization

Keywords: path openings, algebraic morphological operators, attributes, stack opening, time complexity

1 Introduction
It is often useful to be able to extract long, but not necessarily thick, structures, for example: guide-wires in X-
ray �uoroscopy [3], roads in remote sensing images [18], and cracks for non-destructive testing [13]. A possible
way to do this is to apply openings using �xed line structuring elements [14]. However, these openings can be
inadequate if the features of interest are not perfectly straight, and they can be fairly expensive if needed for
multiple directions. Path openings [8] solve these issues by looking for paths in a small number of purpose-
made directed acyclic graphs (DAGs) (see Fig. 1), or (more recently) a single directed graph (not necessarily
acyclic) [5].

Path openings were originally introduced by Heijmans et al. [8], along with an algorithm for the binary
case that is roughly linear in the number of pixels. Unfortunately, the proposed algorithm does not transfer
immediately to the greyscale case. To compute the opening in the greyscale case, we would have to perform
the binary opening for every unique grey level, which becomes highly ine�cient for imageswith a large num-
ber of grey levels. Talbot and Appleton [17] improved on this by only looking at the di�erences between ad-
jacent threshold levels, which can greatly reduce the amount of work needed. Unfortunately, despite several
(additional) optimizations, the Talbot algorithm can take minutes when processing large images on modern
desktop machines, raising the question whether it is possible to do better. Morard et al. [16] propose using
1D “path” openings on a carefully selected subset of possible paths – whose selection was recently improved
upon by Asplund [2] – to speed up path openings, but this only gives an approximation of the full path open-
ing.

Despite some educated guesses [1, 4, 17] (of the expected time complexity), the time complexity of the
algorithm developed by Talbot and Appleton (Talbot’s algorithm for short) was never rigorously analysed.
Here we show that the opening transform (the most general output of the algorithm) has a space complexity

*Corresponding Author: Herman Schubert, Jasper J. van de Gronde: University of Groningen, E-mail:
h.robert.schubert@gmail.com, j.j.van.de.gronde@rug.nl
Jos B. T. M. Roerdink: University of Groningen, E-mail: j.b.t.m.roerdink@rug.nl

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

190 | Herman Schubert, Jasper J. van de Gronde, and Jos B. T. M. Roerdink

Figure 1: Illustration of the com-
monly used DAGs for path open-
ings.

Figure 2: A set X ⊆ Ω (black points on the left) and its path opening with k = 7 (black
points on the right). Points only contained in paths of length 6 or less have been dis-
carded (also see Fig. 3). The underlying adjacency graph is light grey, with black arrows
highlighting the edges that are part of paths.

in O(min(d, |L|) |Ω|), and that the time complexity of Talbot’s algorithm is restricted purely by the size of the
opening transform. Here d is the depth of the graph (typically the width/height of the image), L the set of
grey levels in the image, and Ω the image domain. This implies the time complexity could be quadratic in
the worst case, but only in the unlikely event that both the depth d and the number of grey levels |L| can
be considered of the same order as the number of pixels |Ω|. We also introduce a new algorithm with the
same time complexity as Talbot’s algorithm, but which is simpler, faster in practice, and more amenable to
parallelization. We demonstrate a considerable (additional) speedup when using a parallel implementation.
Finally, it should be noted that our results are not limited to 2D images: in all our derivations and algorithms
we simply assume the input is a weighted (sparse) directed acyclic graph.

This is an extended version of our earlier paper [7]. This paper has the following improvements over the
preliminary version: i) a more extensive empirical evaluation, including data on the runtime of the dimen-
sionally independent path opening [11], ii) an extended discussion regarding the implementation of the stack
opening, overcomingpossiblememory issues and iii) a continueddiscussionon theprospects for (even) faster
algorithms. We have also described the presented algorithms in more detail.

2 De�nitions
Path openings are constructed on directed acyclic graphs (DAGs). DAGs can be de�ned using a binary relation
‘ 7→’. When x 7→ y (x adjacent to y) it means that there is an edge from x to y. We can also de�ne the set of
successors and predecessors for each pixel from the adjacency relationship.

De�nition 1. Let Ω be the set of foreground pixels and let (Ω, 7→) form a DAG. We de�ne the set of successors
of a set X ∈ P(Ω) as

δ(X) = {y ∈ Ω | x 7→ y for some x ∈ X}. (1)

The set of predecessors can similarly be de�ned as

δ̂(X) = {y ∈ Ω | y 7→ x for some x ∈ X}. (2)

De�nition 2. Let a = (a1, a2, ..., ak) be a k-tuple of pixels, then a is called a path of length k i� ai 7→ ai+1 for
all i ∈ [1, k − 1].

The set of elements in a path a is denoted by σ(a). We can now de�ne the concept of a path opening.

De�nition 3. Let Πk be the set of all paths of length k, and let X be the foreground image. Then the path opening
is de�ned by

αk(X) =
⋃
{σ(a) | a ∈ Πk and σ(a) ⊆ X}. (3)

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

E�cient Greyscale Path Openings | 191

The path opening αk gives the union of all sets of elements in k-tuple paths contained in X (see Fig. 2). It
can be established that it is indeed an opening, i.e., it is increasing, anti-extensive and idempotent [8]. It is
important to note that the �nal result is typically the union of the path openings for a set of di�erent DAGs.
However, this is immaterial to our discussion, so we will not stress this point further (a typical set of DAGs
used is illustrated in Fig. 1).

The path opening can also be de�ned in an alternative manner. To this end, de�ne the opening transform
λX : Ω → N as the mapping that gives the maximum length of all paths restricted to X that visit a given pixel
in Ω (so λX(x) = 0 for any x ̸∈ X). HereN denotes the set of all non-negative integers. Using λX we then create
the following de�nition of a path opening:

αk(X) = {x ∈ X | λX(x) ≥ k}. (4)

This simply preserves those pixels satisfying the path length criterion. Since only path lengths are important
in thepathopening,we can e�ciently compute apathopeningwithout keeping track of thepaths themselves,
as shown below.

In the greyscale case, we conceptually apply the binary algorithm to every upper level set. This can be
expressed using the greyscale opening transform λf : Ω × R → N, which returns the maximum path length
for a certain position and threshold in a greyscale image f : Ω → R.

3 Sizing up the opening transform
The time complexity of an algorithm is always bounded from below by the space complexity of its output.
After all, it has to have the time to construct this output. The algorithms for path openings that we discuss
here (and that have been discussed, to our knowledge, in the literature) all output the full opening transform,
or are all capable of outputting the opening transform (without this a�ecting their time complexity). In fact,
we will see that their time complexities can be given solely in terms of the size of the opening transform.
Theorem 1 and Corollary 1 give bounds for the size of the opening transform, and by extension for the time
complexities of the presented algorithms.

Suppose we have a greyscale image f : Ω → R and the associated opening transform λf : Ω ×R → N. How
much data is necessary to represent this opening transform? If we just look at a certain position x, then the
mapping λf (x) : R → N given by l 7→ λf (x, l) can be seen to be weakly decreasing. That is, as the threshold
level goes up, the maximum path length must go down (because the upper level sets become smaller). This
means λf (x) can be represented using any set Λf (x) ∈ P(R × N) of pairs of grey levels and their associated
maximum path lengths, such that

λf (x, l) = sup{λ | (l′, λ) ∈ Λf (x) and l′ ≥ l}. (5)

When the set over which a supremum is computed is empty, the result is taken to be zero (there is no path at
this position and threshold level). It should be clear that if Λf (x) and Λ′f (x) are two sets satisfying Eq. (5) (so
both give rise to the correct λf (x)), then Λf (x) ∩ Λ′f (x) must also satisfy Eq. (5). In fact, it can be shown that
this is true for the intersection of any number of sets that satisfy Eq. (5). We can thus speak of the smallest set
of pairs of grey levels and maximum path lengths that satis�es Eq. (5), and in the remainder we will assume
that Λf (x) is in fact this smallest set of pairs. This means that it cannot contain two pairs with the same grey
level or maximum path length. With a �nite number of pixels |Ω|, we can now bound the space needed to
represent the opening transform.

Theorem 1. If L is the set of grey levels in f : Ω → R and d is the maximum path length in the DAG given by ‘7→’
on Ω, then the total number of pairs in Λf : Ω → P(R × N) is bounded from below by |Ω| and from above by the
class O(min(d, |L|) |Ω|). Both bounds can be reached.

Proof. The lower bound follows from the fact that for each position x the path length at threshold f (x) is
greater than zero, implying that Λf (x) always contains at least one pair. For the upper boundwe simply prove

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

192 | Herman Schubert, Jasper J. van de Gronde, and Jos B. T. M. Roerdink

that the number of pairs in Λf (x) is less than or equal to min(d, |L|) for all x ∈ Ω; the statement then follows
by multiplying this bound by |Ω|. That |Λf (x)| is less than or equal to the number of grey levels follows from
the fact that we cannot have two pairs in Λf (x) with the same grey level. Similarly, we cannot have more than
d pairs in Λf (x), since we cannot have more than d distinct positive integer path lengths less than or equal to
d (zero path lengths would not occur explicitly in Λf (x)).

To see that the lower bound can be reached, just consider a constant image. There is then exactly one
pair in Λf (x) for all x ∈ Ω. To prove that the upper bound can be reached, consider an image that consists
of a sequence of rows with strictly increasing grey levels (but constant within each row), with edges (only)
between adjacent rows (see Fig. 1). In this case the pixels on the �rst row have one pair in Λf (x), the pixels on
the second row two pairs, and so on, for a total numbers of pairs in Θ(d |Ω|). If the grey levels stay constant
after |L| ≤ d rows, the total number of pairs is in Θ(min(d, |L|) |Ω|).

The above result shows that even on images with high bit depths, the size of the path opening transform will
typically not be quadratic in the number of pixels, as d tends be O(|Ω|1/D), with D the dimension of the image
domain. On the other hand, for low bit depths the size will be linear in the number of pixels (albeit with a
potentially high constant). Still, the resulting space complexity can be worse than linear. One optimization
that hasbeenapplied in the literature is to consider all path lengths abovea certain threshold tobe equivalent.
If we know the path length threshold we will be interested in, or at least some upper bound t, then we can
de�ne λtf (x, l) = min(λf (x, l), t) and the associated Λt. Crucially, Λt would contain at most one pair with a
path length greater than or equal to t (as it is known that the path length will be even greater for lower grey
levels).

Corollary 1. If L is the set of grey levels in f , d is the maximum path length in the DAG given by ‘ 7→’ on Ω,
and t > 0 is the maximum path length threshold, then the total number of pairs in Λtf : Ω → P(R × N) is in
O(min(t, d, |L|) |Ω|).

Proof. This follows from Theorem 1, except that we can now also constrain the number of positive path
lengths by t: at most t − 1 positive path lengths less than t and at most one path length greater than or equal
to t.

If we were to allow non-integer path lengths we get a bound in O(|L| |Ω|), but a lot of work on path openings
does use integer path lengths.

4 Algorithms
In this section we present three algorithms: the traditional binary algorithm, Talbot’s algorithm, and our new
stack-based algorithm.

4.1 Binary images

Heijmans et al. [8] give an algorithm which e�ciently computes binary path openings. The idea is to do two
sequential scans on the binary image, computing the largest path length up to each pixel in opposite direc-
tions, and then combining these results to compute λ. In the �rst scan we traverse all the rows (or columns,
or diagonals) of the image from top to bottom. Let λ+ : Ω → R be the map which gives the maximum path
length for each pixel x ∈ X based only on its predecessors, and analogously let λ− : Ω → R be the map which
gives the maximum path length based only on its successors. To compute these maps we use the following
relations [8] (only for x ∈ X, for other pixels the λ’s are set to zero):

λ+(x) = max
y∈X|y 7→x

λ+(y) + 1, λ−(x) = max
y∈X|x 7→y

λ−(y) + 1. (6)

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

E�cient Greyscale Path Openings | 193

1

2 2

3

4 4

5

6

7

1

2

6

1

1

7

6 6

5

4 4

3

2

1

1

5

1

6

3

7

7 7

7

7 7

7

7

7

1

6

6

6

3

Figure 3: Computation of λ in the example shown in Fig. 2. From left to right: the forward scan pass λ+, the backward scan pass
λ−, the calculated length per pixel λ.

Algorithm 1: Talbot’s algorithm, adapted to compute the opening transform.
Input : The input image f .
Output: The opening transform Λf .

1 Initialize λ+ and λ− to the largest possible path length.
2 Initialize Λf to have a stack at each position x, containing a pair (∞, λ+(x) + λ−(x) − 1).
3 Sort grey levels L, and partition the pixels into �at zones.

4 for l ∈ L in ascending order do
5 B ← ∅
6 Use Algorithm 2 to update λ+ and λ−, and maintain the bag B of a�ected pixels.

// The result reflects the removal of all pixels at the current grey level.
7 for b ∈ B do

// λ+ and/or λ− have been decreased as a consequence of removing pixels at
the current grey level.

8 pop (l′, λ) from Λf (b)
9 push (l, λ) onto Λf (b)

10 λ ← λ+(b) + λ−(b) − 1
11 if λ > 0 then
12 push (∞, λ) onto Λf (b)

It was shown by Heijmans et al. [8] that by combining λ+(x) and λ−(x), we can recover the maximum path
length using the following relation (for x ∈ X):

λ(x) = λ+(x) + λ−(x) − 1. (7)

This notion is intuitive, as λ+(x) holds the maximum path length of all paths ending in x, and λ−(x) holds
the maximum path length of all paths starting in x, so by combining them we recover the maximum path
length through x. We subtract one from the sum of the two partial path lengths to avoid counting pixel x
twice. Figure 3 shows an example of the computation of λ.

The above can be easily turned into an actual algorithm by topologically sorting [9] the DAG and then
applying Eq. (6) in (reverse) topological order. This way the λ+ and λ− only need to be set once for each pixel.

4.2 Talbot’s algorithm

If we apply the algorithm described in the previous section to all upper level sets of an image f : Ω → R,
then we can �nd the path opening (transform) by combining all those results. However, this could be quite
expensive. Luckily, as described by Talbot and Appleton [17], the algorithm described above can be modi�ed
to only update λ+ and λ− based on the changes resulting from going from one grey level to the next, as in
Algorithm 1. Although presented somewhat di�erently from the original, we will call the resulting algorithm

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

194 | Herman Schubert, Jasper J. van de Gronde, and Jos B. T. M. Roerdink

Algorithm 2: Update of λ+.
Input : λ+ for the current grey level, and a bag B of pixels.
Output: λ+ for the next grey level, and the bag B, augmented with all a�ected pixels.

1 Initialize the priority queue Q with all pixels at the current grey level.
// Priorities compatible with the topological order of the DAG.

2 while Q not empty do
3 remove smallest pixel x from Q
4 λ ← 0
5 if f (x) above current grey level then
6 λ ← maxy∈X|y 7→x λ+(y) + 1
7 if λ < λ+(x) then
8 insert x in B
9 λ+(x) ← λ

10 push successors of y onto Q

“Talbot’s algorithm”. Instead of computing the entire opening transform, it can also directly compute the
opening (but this does not a�ect the time complexity).

Theorem 2. Assume each position has O(1) predecessors/successors (the DAG induced by ‘ 7→’ is sparse), and
that the priority queue in Algorithm 2 allows insertion and removal in O(log(|Q|)). Talbot’s algorithm then has a
time complexity of O(|Λf | log(|Λf |)), where |Λf | is taken to mean the total number of pairs needed to represent
Λf and f : Ω → R is the input image.

Proof. Disregarding the time needed to sort the grey levels, it can be seen that asymptotically the running
time is determined by the work done in Algorithm 2 (the amount of work done by the rest of the algorithm is
dominated by the amount of work done in the update steps).

The crucial observation is now that Λf (x) has a pair with the current grey level if and only if x is processed
whenupdating λ+ and/or λ− andwhile doing so, the condition on Line 7 is true (or the analogous condition for
λ−). Each time this happens O(1) elements are pushed onto Q (due to the sparse graph assumption), so if we
look at all applications of Algorithm 2, the total number of queue pushes and (thus) executions of the while
loopmust be in Θ(|Ω|+ |Λf |) = Θ(|Λf |). Assuming a priority queuewith O(log(|Q|)) insertion and removal, the
total amount of work done is then in O(|Λf | log(|Λf |)). Finally, we conclude that sorting all grey levels requires
at most O(|Ω| log(|Ω|)) time, so it does not alter the time complexity.

The assumption that the DAG is sparse is fairly benign, as all existing use cases (to our knowledge) satisfy this
assumption. That the priority queue allows O(log(|Q|)) insertion and removal is also fairly standard. In some
cases (like the typical DAGs used on images), it is even possible to get constant-time insertion and removal, by
grouping pixels into “rows” based on their depth in the DAG.We conjecture that in general it may be possible
to get (amortized) constant-time insertion and removal by using specialized data structures. In combination
with linear time sorting of all (integer) grey levels, this would put the time complexity of Talbot’s algorithm
in Θ(|Λf |).

It should be noted that some tweaks to Talbot’s algorithm can further reduce the time complexity by
essentially restricting the opening transform as in Corollary 1, as well as ignoring pixels whose path length
dropped below a certain threshold. It is currently not entirely clear how this a�ects the time complexity of
the algorithm. Also, although Luengo Hendriks [11] presented a modi�cation of Talbot’s algorithm that is di-
mensionality independent, it does not necessarily process the pixels in optimal order, leading us to start from
Talbot’s algorithm instead (note that our presentation of Talbot’s algorithm is also dimensionality indepen-
dent). Similarly, if we look at Talbot’s code, it loops over all rows/columns in each update step, while our
code only visits those rows/columns where it has to do some work. We do not expect these implementation
di�erences to make a huge di�erence in performance, but it should be understood that due to these di�er-

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

E�cient Greyscale Path Openings | 195

Algorithm 3: Computation of Λ+.
Input : The input image f .
Output: The partial opening transform Λ+.

1 for x in Ω in topological order do
2 Λtemp+ ← merge({Λ+(y) | y 7→ x}) // See Algorithm 4.
3 λtemp+ ← max({0} ∪ {λ | (l′, λ) ∈ Λtemp+ and l′ ≥ f (x)}) + 1
4 Λ+(x) ← {(l, λ + 1) | (l, λ) ∈ Λtemp+ and l < f (x)} ∪ {(f (x), λtemp+)}

Algorithm 4:Merge two stacks from the same direction.
input : Partial transforms ΛA and ΛB.
output: The merged partial transform ΛC.

1 ΛC ← Empty opening transform
2 λ ← λfront ← 0

// Iterate over ΛA ∪ ΛB in decreasing order of grey level.
// If two pairs have the same grey level, order by decreasing path length as well.

3 for (l, κ) ∈ ΛA ∪ ΛB do
4 λ ← max(λfront , κ)

// Only add to the current transform if the length is not redundant.
5 if λ > λfront then
6 push (l, λ) onto the front of ΛC
7 λfront ← λ

8 return ΛC

ences actual implementations might have slightly di�erent time complexities from the algorithm presented
here.

4.3 Stack-based path openings

Talbot’s algorithm is essentially optimal in terms of its time complexity, but a truly optimal implementation
(without the logarithmic factor) can be quite complex, and the algorithm has a fairly randommemory access
pattern, which is undesirable inmostmodern computer architectures. In this sectionwe present an algorithm
that su�ers from none of these problems, based on the 1D algorithm presented by Morard et al. [15].

The basic idea is to use the traditional binary algorithm, but instead of having the scalar λ+(x) and λ−(x),
we use sets Λ+(x) and Λ−(x), represented by non-redundant ordered (ascending by grey level) lists of pairs of
grey levels and path lengths. The 1D algorithm only needs to push and pop elements, so can use a traditional
stack. Our algorithm does the same, but also needs to merge lists. We will still refer to the lists as stacks
though. Algorithm 3 details the algorithm needed to compute Λ+. Λ− is computed in much the same way in a
secondpass over the data, and since all the lists are already sorted,merging Λ+ and Λ− to get the �nal opening
transform can be done easily and e�ciently. Note that the merge procedures should leave their output sorted
and without any redundant pairs. This can be accomplished using a technique similar to the one used in
merge sort (see Algorithm 4 for example).

Theorem 3. Assume each position has O(1) predecessors/successors (the DAG induced by ‘ 7→’ is sparse), the
stack-based path opening then has a time complexity in Θ(|Λf |), where f : Ω → R is the input image.

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

196 | Herman Schubert, Jasper J. van de Gronde, and Jos B. T. M. Roerdink

Proof. First of all topological sorting can be done in O(|Ω|) [9], so will not be a bottleneck. Similarly, merging
the two partial path opening transforms into the �nal answer just requires iterating over the partial trans-
forms (once), so also does not add anything to the time complexity. It remains to examine the time spent in
Algorithm 3.

Algorithm 3 visits each pixel exactly once. For each pixel it �rst merges the partial transforms (stacks)
from its predecessors (successors if computing Λ−), then it computes λtemp+ = λ+(x, f (x)), and �nally it makes
sure f (x) is the highest grey level in the new stack, while updating path lengths for grey levels below f (x).
Since the number of stacks beingmerged in Line 2 is in O(1), we can assume themerge procedure to take time
linear in its input. Since each stack is involved in O(1) merges, the total time taken up by all merges (in both
passes) is in O(|Λ+| + |Λ−|). Lines 3 and 4 can be implemented together with an overall time complexity in
Θ(|Λ±(x)|). Summarizing, the total amount of work done by Algorithm 3 (in both passes, one for Λ+ and one
for Λ−) is in Θ(|Λ+| + |Λ−|).

Wenownote that |Λf | ≤ |Λ+|+|Λ−| ≤ 2 |Λf |. The lower bound follows from the fact that (byde�nition) every
pair in Λf must correspond to a pair in Λ+ or Λ−. The upper bound can be derived similarly, by considering
that every pair in Λ+ and Λ−must correspond to a pair in Λf . In particular, because of themonotonicity of the
(partial) path opening transforms we cannot have a pair in Λ+ “cancel out” a pair at the same grey level in
Λ−. We can now conclude that the time complexity of the stack-based path opening is indeed in Θ(|Λf |).

The optimization referred to in Corollary 1 can be applied to the stack-based algorithm very easily, preserving
the output sensitivity of the algorithm. The other optimization applied by Talbot and Appleton [17] seems to
be harder to apply to the stack-based algorithm though. The problem is that this optimization discards any
points whose total path length drops below the desired threshold, and in the stack-based algorithm we only
have access to the total path length (for any grey level) after all computations have been done. For now it
is not clear how this e�ects the time complexity of the algorithm. In terms of the space complexity, Talbot’s
algorithm is the clear winner though, as the stack-based algorithm always has to build at least part of the
opening transform.

The stack-based algorithmwill process an image row by row (instead of “row” one can also read column,
or diagonal), andwithin each row the results only depend on the previous row. This allows us to compute the
values within a single row in parallel. This kind of parallelization is somewhat limited by needing a synchro-
nization point after each row, but as the next section demonstrates, it still allows for a very decent speedup
using a small number of cores. Applying this technique to Talbot’s algorithm would be possible, but would
be complicated by not knowing beforehand what pixels need to be processed in each row. Also, this would
involve (even) more synchronization, as Talbot’s algorithm uses multiple (simpler) passes rather than one
pass (per direction).

It would of course also be possible to compute Λ+ and Λ− independently, as well as to process each of
the directions independently. The latter scheme applies equally well to either algorithm and is not evaluated
here. Processing the two directions independently on the other hand is easier with the stack-based algorithm,
unless Talbot’s algorithm is modi�ed to only output Λ+ (or Λ−).

5 Results
To assess the performance of the path openings, we created an application in C++ which implements all of
the previously discussed algorithms. In particular, we implemented the Talbot opening as discussed in Sec-
tion 4.2, and the newly introduced stack opening as discussed in Section 4.3. Althoughwe use our own imple-
mentation of Talbot’s algorithm, it was veri�ed that our implementation has similar or better performance.
We performed two experiments: 1) examining the performance of the full opening transforms on 8-bit and 32-
bit images as a function of the image size, and 2) comparing the performance of regular path openings using
di�erent implementations. For the �rst experimentwehaveused our own implementation of both algorithms,
as the implementations of the authors do not output full opening transforms. For the second experiment we
also use the implementations of the original authors, including the dimensionally-independent version of

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

E�cient Greyscale Path Openings | 197

a b

Figure 4: A 200 mega-pixel map of London. This image which was used for our benchmarks for Fig. 6a. (a) The full map of Lon-
don, and (b) zooming in on part of the map.

a b

Figure 5: Two sample images of an aerial photo database from [19]. These images as well as others from the same database are
used for our benchmarks for Fig. 7.

Talbot’s algorithm introduced by Luengo Hendriks [11], as well as our own implementations. In the �rst ex-
periment we use themap of London listed in Fig. 4, but for the second experiment we use a database of aerial
images as shown in Fig. 5.

Although all the algorithms are applicable to arbitrary DAGs, we decided to implement the algorithms
using the graphs illustrated in Fig. 1. Note that in the interest of simplicity, we only used the horizontal and
vertical graphs for the �rst experiment (where we compute opening transforms), while Talbot originally in-
cluded the diagonal ones as well. This decision does not a�ect the above analysis in any way (since it holds
for arbitrary sparse DAGs). In the second experiment we both show results for the horizontal and vertical
graphs as well as the diagonal ones. Where applicable, the diagonal graphs were disabled in both Talbot’s
and Luengo Hendriks’ implementation.

The algorithms were tested for their performance on an Intel® Xeon® E5-2630 with 16 logical cores and
64 GB of memory (note that this is a di�erent setup than in our previous paper [7]).

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

198 | Herman Schubert, Jasper J. van de Gronde, and Jos B. T. M. Roerdink

0 1 2 3 4 5 6
Mpixels

0

2

4

6

8

10

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Running times (8-bit)

Talbot (ours)
Stack
Stack (12 threads)

a

0.0 0.5 1.0 1.5 2.0
Mpixels

0

50

100

150

200

250

300

350

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Running times (32-bit)

Talbot (ours)
Stack
Stack 12 threads

b

Figure 6: Running times of the Talbot algorithm, and the stack-based opening (both generating the full opening transform). (a)
On a set of 8-bit images, and (b) on an arti�cial 32-bit image representing a gradient. Code available at http://bit.ly/1BTC2Je.

5.1 Opening Transforms

The tests in this section measure the performance of the complete opening transform. Both 8-bit images and
32-bit images were assessed. In the 8-bit case we use random crops of the map of London (see Fig. 4). In the
32-bit case we created a gradient image where all the pixel values are strictly increasing from top to bottom
and left to right. This allows us to see the worst-case behaviour of the algorithms and con�rm our bound.
The di�erent sized images were generated by randomly cropping an image using di�erent scales. This di�ers
from our approach in our previous paper [7], where we used bilinear scaling. We believe that this approach
is better, as thinner curvilinear structures are preserved at lower scales, which tend to get removed when
bilinear scaling is used.

Both benchmarks use average curves of ten trials (which consist of di�erent cropped images), and the er-
ror bars correspond to theminima andmaxima at each scale. The running times of the stack-based algorithm
and Talbot’s algorithm are shown in Fig. 6.

On the graphs listed here, both the stack opening and the Talbot opening have a time complexity of
O(min(d, |L|) |Ω|), where |L| ≤ 256, so we expect (roughly) linear behaviour. This is con�rmed by Fig. 6a.
Figure 6b, however, shows superlinear behaviour. This is expected, as the number of grey values is no longer
the limiting factor. Since d is equal to the width or the height of the image, the time complexity should be
in O(n√n) (with n the number of pixels |Ω|). The function f (n) = c n√n was �tted to the 32-bit results using
least squares, where c is the �tted parameter. We indeed see roughly n√n behaviour in the results.

Both in the single-threaded case and in the multi-threaded case, the stack-based path opening outper-
forms (our implementation of) Talbot’s algorithm, by a factor of roughly 2 (or 12 using twelve threads). This
is likely because of the data locality of the algorithm, as the algorithm processes the image more or less se-
quentially, rather than having to reprocess certain sections repeatedly.

5.2 Openings

For comparing regular openings, we used Talbot’s original implementation [17] as well as our own, Luengo
Hendriks’ dimensionally independent version [11], and our stack-based implementation. For Figs. 7a and 7b
the diagonal paths were disabled to compare the implementations. For the result of Fig. 7c the diagonal
graphs as well as the horizontal and vertical graphs are included, and the implementations of the original
authors were left unchanged. Note that our implementation of Talbot’s algorithm does not support the di-
agonal graphs and is therefore not included in this result. The openings were tested on a set of 30 images

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

http://bit.ly/1BTC2Je

E�cient Greyscale Path Openings | 199

0 200 400 600 800 1000 1200 1400 1600
Threshold

0

5

10

15

20

25

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Running times (8-bit, varying t)

Talbot (org.)
Talbot (ours)
Stack (12 threads)
Luengo

a

0 1 2 3 4 5 6
Mpixels

0

10

20

30

40

50

60

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Running times (8-bit)

Talbot (org.)
Talbot (ours)
Stack (12 threads)
Luengo

b

0 1 2 3 4 5 6
Mpixels

0

10

20

30

40

50

60

70

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Running times (8-bit)

Talbot (org.)
Stack (12 threads)
Luengo

c

Figure 7: Running times of various path opening algorithms (all applying a regular opening). (a) Varying the threshold on 2 M-
pixel 8-bit images on vertical and horizontal graphs; (b) varying the size by using di�erent sized crops of Fig. 5 with t = ∞
on horizontal and vertical graphs, and (c) the same as Fig. 7b but then on the diagonal graphs as well as the horizontal and
vertical graphs. Code available at http://bit.ly/1BTC2Je.

from a database of Aerial photographs taken from [19]. Instead of taking the raw images, these images were
processed by computing its gradient magnitude using the classical Sobel operator, followed by an opening
with a disk-shaped structural element. This process highlights curvilinear structures which can henceforth
be �ltered by path openings. Similar procedures have been used as a preprocessing step for path openings in
other works as well [4, 6, 11].

In Fig. 7a we show the behaviour of the implementations when we vary the opening threshold t. In all
implementations, lower thresholds give better performance (as expected). This is related to the various op-
timizations which are used in the implementations. In all implementations of Talbot’s algorithm (including
ours), path lengths lower than the threshold are no longer processed in the upper level sets. Additionally, all
path lengths above a certain threshold are considered to be equivalent. In the stack opening we can only do
the second optimization, as we have no information on the complete path lengths when traversing the partial
opening transforms. Thus, it makes sense that the stack opening is not as sensitive to changing the opening
threshold. On this set of images, the stack opening is the fastest, followed by our Talbot implementation. In
practice we noticed that Luengo-Hendriks’s algorithm appears to be very fast at low threshold levels (t < 30),
but is slower than our Talbot implementation when higher threshold levels are used.

We also varied the image size, as is shown in Figs. 7b and 7c. Just as in Fig. 6a we use di�erent sized ran-
dom crops to create multiple scales of the aerial images. All methods show roughly linear behaviour. This is
also truewhen diagonal graphs are used. This should be no surprise, as the diagonal graphs have amaximum
length of w + h − 1, where w and h are respectively the width and the height of an image. Therefore the time
complexity does not change when diagonal graphs are used instead of vertical or horizontal graphs. Substi-
tuting d with w + h −1 in Theorem 1 gives us O(min(max(w, h), |L|) |Ω|), where |L| ≤ 256, which shows linear
behaviour at higher scales. In practice, including the diagonal graphs means that roughly twice to four times
the amount of work is needed depending on the implementation of the graph traversal method. Interestingly,
the ordering of Talbot’s algorithm and Luengo-Hendriks’s algorithm seems to be swapped when the diagonal
graphs are used. This is likely due to the di�erent approaches of traversing the graph in the diagonal case.
We note that that Luengo-Hendriks’ algorithm shows the most variance. We suspect this is related to the fact
that it does not process the updates in topological order, making it far more sensitive to image content.

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

http://bit.ly/1BTC2Je

200 | Herman Schubert, Jasper J. van de Gronde, and Jos B. T. M. Roerdink

6 Discussion

6.1 Extension to 3D and overcoming memory bottlenecks

Recently, path openings on voxel volumes have gained some momentum (see [12] and [4]). Voxel volumes
typically take up to 10003 voxels, and thus also require signi�cantly more memory than common 2D images.
Here we discuss some mitigation strategies to prevent memory bottlenecks. First, we would like to note that
in the 3D case the opening transform takes up less space per pixel than in the 2D case. Let d be the depth,
width and height of a volume image and n = d3 the number of voxels. Then the opening transform takes at
most O(min(d, |L|) |Ω|) = O(min(n1/3, |L|)) n) memory. In the 2D case we take the approach to compute each
direction in parallel. In the 3D case storing the opening transform for 13 directions (in case of 26-connectivity)
might be prohibitively expensive on some systems. Thus it is better to perform the stack opening only one
direction at a time, and merge the consecutive partial opening transforms using Algorithm 4. In this case we
only have to store 2 partial transforms when processing all directions. This can be simpli�ed even further,
one does not need to compute Λ+ and Λ− independently. In one pass we can compute Λ+, and in the reverse
pass Λ+ can be reused to compute the full opening transform Λ± in-place. The result is that – assuming the
width, height, anddepth of the volumeare similar in size – the stack opening requires onlyO(min(n1/3, |L|) n)
memory, independent of the number of directions.

6.2 Better bounds

The reader might wonder whether it is possible to give better bounds than the ones above. Well, it is possible
to provide examples for which the path opening actually does require the amount of space suggested by
our bounds. On the other hand, we would expect a typical image to require much less storage, so there is
de�nitely some room for making the above bounds more precise. Also, it is de�nitely not beyond the realm of
possibility that there exists amore e�cient representation of the opening transform as awhole. And although
we have had no success so far, we still suspect it may be possible to �nd one. In addition, perhaps knowing
the threshold beforehand allows for an algorithm for path openingswhose time complexity does not depend
on the size of the opening transform.

So why do we believe that it might be possible to represent the opening transform in less space than we
currently require, while still needing only (roughly) linear time to �nd an arbitrary opening from the opening
transform? A �rst clue is that neither of the current n-D algorithms gracefully degrade to the linear 1D algo-
rithm [15]. That is, the algorithms discussed here have a time complexity in O(n2) on 1D sequences of length
n. The 1D algorithm only takes linear time because there is only a single stack, and we only need to access
it from the top (if we wish to compute the opening transform, we can use functional data structures to avoid
needless copying, while still preserving all versions of the stack). In our generalized stack-based algorithm,
however, we need to merge stacks, causing a (potentially) massive slowdown. Still, if we are able to speed up
the merges (or show that we need less of them), this could provide an enormous speed boost (and also lower
the memory requirements).

More speculatively, it might be possible to show that we only need to consider a limited number of paths
– or a subset of the original edges – to compute the exact path opening, similar to the approximate parsimo-
nious path openings [2, 16]. One reason that this approachmight prove to be interesting is that if one considers
a (1D) gradient, this is essentially a worst-case scenario for the methods discussed here, while from the point
of view of the number of paths one needs to traverse, it is optimal (just one path). So far we have not been able
to �nd a useful bound on the number of paths needed in general though. Instead of paths, it could be equally
useful to consider (directed/rooted) trees contained in the original image, as, at least for computing Λ±, these
also avoid the need for merging stacks (provided the leaves and root are positioned such that Algorithm 3
encounters the root �rst and the leaves last).

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

E�cient Greyscale Path Openings | 201

7 Conclusion
We have shown that the space complexity of the path opening transform is in O(min(d, |L|) |Ω|), with d the
depth of the graph being processed, L the set of grey levels in the image, and Ω the image domain. We also
showed that although there might be room for re�nement, it is possible to construct graphs that reach this
bound. Next we analysed the time complexity of a paraphrased version of the algorithm proposed by Talbot
and Appleton [17], and found that it is (depending on the exact implementation) optimally output-sensitive,
assuming the full opening transform is output. Finally, we presented a new algorithm that is easier to imple-
ment (at least in optimal fashion), is still optimally output-sensitive, allows for easier parallelization, and is
signi�cantly faster in practice. We presented results demonstrating our new algorithm outperforming other
algorithms in opening transforms and regular openings. We also experimentally demonstrated that for high
bit-depth images the performance of the algorithms can indeed scale superlinearly.

In future work it would be interesting to take a further look at various optimizations that one can apply if
only part of the opening transform (or indeed just the actual opening) is needed. It would also be interesting
to see whether the opening transform can be storedmore e�ciently than we propose here, and if so, whether
this can actually lead to faster algorithms. We also wonder whether it would not be possible to �nd an al-
gorithm for the path opening whose time complexity does not depend on the size of the opening transform.
Additionally, it would be interesting to try adapting the stack-based algorithm to robust [4] and incomplete
[8] path openings, or other schemes for making path openings more robust to noise. Di�erent schemes for
parallelization could also be explored (for example by dividing the grey levels, rather than pixels, among
di�erent processors), as well as e�cient GPU implementations as has been explored in the 1D case [10].

References
[1] Appleton B., Talbot H. E�cient Path Openings and Closings. In C. Ronse, L. Najman, E. Decencière, editors, Mathematical

Morphology: 40 Years On, volume 30 of Computational Imaging and Vision, pages 33–42. Springer Netherlands, 2005.
10.1007/1-4020-3443-1_4

[2] Asplund T. Improved Path Opening by Preselection of Paths. Master’s thesis, Uppsala Universitet, 2015
[3] Bismuth V., Vaillant R., Talbot H., Najman L. Curvilinear Structure Enhancement with the Polygonal Path Image - Application

to Guide-Wire Segmentation in X-Ray Fluoroscopy. In N. Ayache, H. Delingette, P. Golland, K. Mori, editors, Med. Image
Comput. Comput. Assist. Interv., volume 7511 of LNCS, pages 9–16. Springer Berlin Heidelberg, 2012. 10.1007/978-3-642-
33418-4_2

[4] Cokelaer F., Talbot H., Chanussot J. E�cient Robust d-Dimensional Path Operators. IEEE J. Sel. Top. Signal. Process., 2012.
6(7), 830–839. 10.1109/jstsp.2012.2213578

[5] van de Gronde J.J., Lysenko M., Roerdink J.B.T.M. Path-Based Mathematical Morphology on Tensor Fields. In I. Hotz,
T. Schultz, editors, Visualization and Processing of Higher Order Descriptors for Multi-Valued Data, Math. Vis., pages 109–
127. Springer International Publishing, 2015. 10.1007/978-3-319-15090-1_6

[6] vandeGronde J.J., O�ringaA.R., Roerdink J.B.T.M. E�cient and robust pathopeningsusing the scale-invariant rankoperator.
Journal of Mathematical Imaging and Vision, 2016. Accepted

[7] van de Gronde J.J., Schubert H.R., Roerdink J.B.T.M. Fast Computation of Greyscale Path Openings. In J.A. Benediktsson,
J. Chanussot, L. Najman, H. Talbot, editors, Mathematical Morphology and Its Applications to Signal and Image Processing,
volume 9082 of LNCS, pages 621–632. Springer International Publishing, 2015. 10.1007/978-3-319-18720-4_52

[8] HeijmansH., BuckleyM., TalbotH. PathOpenings andClosings. J.Math. ImagingVis., 2005. 22(2), 107–119. 10.1007/s10851-
005-4885-3

[9] Kahn A.B. Topological Sorting of Large Networks. Commun. ACM, 1962. 5(11), 558–562. 10.1145/368996.369025
[10] Karas P., Morard V., Bartovskỳ J., Grandpierre T., Dokládalová E., Matula P., Dokládal P. Gpu implementation of linear mor-

phological openings with arbitrary angle. Journal of Real-Time Image Processing, 2015. 10(1), 27–41
[11] Luengo Hendriks C.L. Constrained and dimensionality-independent path openings. IEEE Trans. Image Process., 2010. 19(6),

1587–1595. 10.1109/tip.2010.2044959
[12] Merveille O., Talbot H., Najman L., Passat N. Ranking Orientation Responses of Path Operators: Motivations, Choices and

Algorithmics. In J.A. Benediktsson, J. Chanussot, L. Najman, H. Talbot, editors, Mathematical Morphology and Its Appli-
cations to Signal and Image Processing, volume 9082 of LNCS, pages 633–644. Springer International Publishing, 2015.
10.1007/978-3-319-18720-4_53

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

http://dx.doi.org/10.1007/1-4020-3443-1_4
http://dx.doi.org/10.1007/978-3-642-33418-4_2
http://dx.doi.org/10.1007/978-3-642-33418-4_2
http://dx.doi.org/10.1109/jstsp.2012.2213578
http://dx.doi.org/10.1007/978-3-319-15090-1_6
http://dx.doi.org/10.1007/978-3-319-18720-4_52
http://dx.doi.org/10.1007/s10851-005-4885-3
http://dx.doi.org/10.1007/s10851-005-4885-3
http://dx.doi.org/10.1145/368996.369025
http://dx.doi.org/10.1109/tip.2010.2044959
http://dx.doi.org/10.1007/978-3-319-18720-4_53

202 | Herman Schubert, Jasper J. van de Gronde, and Jos B. T. M. Roerdink

[13] MorardV., Decencière E., Dokládal P. Geodesic Attributes Thinnings and Thickenings. In P. Soille,M. Pesaresi, G.K.Ouzounis,
editors, Mathematical Morphology and Its Applications to Image and Signal Processing, volume 6671 of LNCS, pages 200–
211. Springer Berlin Heidelberg, 2011. 10.1007/978-3-642-21569-8_18

[14] Morard V., Dokládal P., Decencière E. Linear openings in arbitrary orientation in O(1) per pixel. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011 pages 1457–1460. 10.1109/icassp.2011.5946767

[15] Morard V., Dokládal P., Decencière E. One-Dimensional Openings, Granulometries and Component Trees in O(1) Per Pixel.
IEEE J. Sel. Top. Signal. Process., 2012. 6(7), 840–848. 10.1109/jstsp.2012.2201694

[16] Morard V., Dokládal P., Decencière E. Parsimonious Path Openings and Closings. IEEE Trans. Image Process., 2014. 23(4),
1543–1555. 10.1109/tip.2014.2303647

[17] Talbot H., Appleton B. E�cient complete and incomplete path openings and closings. Image Vis. Comput., 2007. 25(4),
416–425. 10.1016/j.imavis.2006.07.021

[18] Valero S., Chanussot J., Benediktsson J.A., Talbot H., Waske B. Advanced directional mathematical morphology for the
detection of the road network in very high resolution remote sensing images. Pattern Recognit. Lett., 2010. 31(10), 1120–
1127. 10.1016/j.patrec.2009.12.018

[19] Yuan J., Gleason S.S., Cheriyadat A.M. Systematic benchmarking of aerial image segmentation. Geoscience and Remote
Sensing Letters, IEEE, 2013. 10(6), 1527–1531

Brought to you by | University of Groningen
Authenticated

Download Date | 9/28/17 9:08 AM

http://dx.doi.org/10.1007/978-3-642-21569-8_18
http://dx.doi.org/10.1109/icassp.2011.5946767
http://dx.doi.org/10.1109/jstsp.2012.2201694
http://dx.doi.org/10.1109/tip.2014.2303647
http://dx.doi.org/10.1016/j.imavis.2006.07.021
http://dx.doi.org/10.1016/j.patrec.2009.12.018

	1 Introduction
	2 Definitions
	3 Sizing up the opening transform
	4 Algorithms
	4.1 Binary images
	4.2 Talbot's algorithm
	4.3 Stack-based path openings

	5 Results
	5.1 Opening Transforms
	5.2 Openings

	6 Discussion
	6.1 Extension to 3D and overcoming memory bottlenecks
	6.2 Better bounds

	7 Conclusion

