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Preeclampsia As Modulator of Offspring Health1

Violeta Stojanovska,2 Sicco A. Scherjon, and Torsten Plösch

Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen,
The Netherlands

ABSTRACT

A balanced intrauterine homeostasis during pregnancy is
crucial for optimal growth and development of the fetus. The
intrauterine environment is extremely vulnerable to multisystem
pregnancy disorders such as preeclampsia, which can be
triggered by various pathophysiological factors, such as angio-
genic imbalance, immune responses, and inflammation. The
fetus adapts to these conditions by a mechanism known as
developmental programming that can lead to increased risk of
chronic noncommunicable diseases in later life. This is shown in
a substantial number of epidemiological studies that associate
preeclampsia with increased onset of cardiovascular and
metabolic diseases in the later life of the offspring. Furthermore,
animal models based predominantly on one of the pathophys-
iological mechanism of preeclampsia, for example, angiogenic
imbalance, immune response, or inflammation, do address the
susceptibility of the preeclamptic offspring to increased mater-
nal blood pressure and disrupted metabolic homeostasis.
Accordingly, we extensively reviewed the latest research on
the role of preeclampsia on the offspring’s metabolism and
cardiovascular phenotype. We conclude that future research on
the pathophysiological changes during preeclampsia and meth-
ods to intervene in the harsh intrauterine environment will be
essential for effective therapies.

early development, epigenetics, metabolism, preeclampsia

INTRODUCTION

The global prevalence of chronic cardiometabolic noncom-
municable diseases (NCDs) diseases such as hypertension,
cardiovascular disease, diabetes mellitus type 2, and metabolic
syndrome has markedly increased during the past decades [1].
A number of genes and behavioral changes have been
identified as initiators and mediators of these complex
cardiometabolic diseases [2–4]. However, the increasing
prevalence of NCDs cannot be accounted for by only these

determinants. Biological factors already present during early
development can lead to immediate cardiometabolic fetal
responses that might have long-term effects.

The developmental origins of health and disease, or the
Barker hypothesis, attempts to explain the high incidence of
chronic NCDs by unfavorable in utero conditions. Depending
on the severity of the insult during specific critical windows of
fetal development, permanent tissue adjustments can occur,
leading to long-term changes in organ function [5]. During
pregnancy, the key regulatory organ of the intrauterine
environment is the placenta, which serves as a metabolic,
immune, and endocrine organ. It enables and regulates
transport of gasses, nutrients, hormones, immunoglobulins,
and waste products between the mother and the fetus in order
to maintain a favorable developmental homeostasis [6]. Hostile
environmental factors present during early life, when rapid
growth and differentiation is expected, can have a powerful
impact on physiological health for a lifetime.

Preeclampsia is a pregnancy-associated syndrome, charac-
terized by hypertension and proteinuria, affecting 2%–8% of
the population worldwide [7]. It remains a major obstetric
problem due to the high prevalence of maternal and fetal
mortality and morbidity. Although the etiology is puzzling,
several pathophysiological mechanisms combined have proven
to be involved at least in the clinical course of preeclampsia.
Antiangiogenic imbalance, excessive inflammation, hypoxia,
and/or autoantibodies targeting the renin-angiotensin system
make up the harsh intrauterine environment during preeclamp-
sia [8, 9]. All these factors may interact with the genome of the
mother and the fetus in terms of gene expression modulation,
ultimately affecting the expressed phenotype.

In this review, first we address epidemiological and human
studies that show a contribution of preeclampsia to cardiome-
tabolic alterations in the offspring. Further, we focus on animal
studies in this research area, approaching three different
mechanistic scenarios of preeclampsia. Finally, we discuss
possible mechanisms that may explain relevance of preeclamp-
sia in developmental programming of metabolic and cardio-
vascular diseases in the offspring.

EVIDENCE FROM HUMAN STUDIES:
OFFSPRING STATUS AFTER PREECLAMPSIA

Birth weight screening is still an important assessment of
optimal in utero nutrition and development. During preeclamp-
sia, 13%–60% of the pregnancies are complicated by decreased
birth weight depending on the region, maternal age, and the
severity of the disease [10, 11]. Therefore, preeclampsia is one
of the leading factors of fetal growth restriction [12, 13]. Low
birth weight per se is already an established risk factor for
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cardiovascular and metabolic diseases in later life, although the
causal mechanisms are still speculative [14, 15].

Preeclampsia is characterized by new-onset hypertension
during pregnancy (�140/90 mmHg) along with proteinuria.
However, little is known about neonatal blood pressure after
this complication of pregnancy. An early report indicated that
term neonates from preeclamptic mothers have a transient
hypertension [16]. A more recent study showed that premature
neonates from preeclamptic mothers, compared to controls,
have early neonatal hypotension [17]. As indicated, blood
pressure levels are also altered in these children, which appears
to be associated with the gestational age. Furthermore,
observation of blood pressure in school-age children previously
exposed to preeclampsia showed higher systolic and diastolic
blood pressure already at 8 yr of age [18–23]. Additionally, it
was reported that these children have smaller hearts, increased
heart rate, and features of cardiac diastolic dysfunction [24] as
well as an increased risk of congenital heart defects, namely
septal defects [25, 26]. However, in a cohort study, a 65-yr
follow-up of preeclamptic offspring did not show an increased
risk of coronary heart disease, but increased stroke incidence
was reported [27].

Evaluation of endothelial functionality with noninvasive
assessment can provide considerable insight into blood
pressure risk stratification. School-age children previously
exposed to preeclampsia showed increased vascular stiffness in
the pulmonary and peripheral vascular system [24, 28].
Moreover, intact endothelial morphology is a potent vascular
tone regulator. Analysis of endothelial cord cells showed a
decreased number of endothelial colony-forming cells in
contrast to increased senescent progenitor cells [29, 30]. This
is indicative for at least advanced endothelial cord cell aging in
the preeclamptic neonates.

The body mass index (BMI), plasma glucose, and lipid
concentrations serve as strong indicators of optimal metabolic
functioning and, when increased, are risk factors for
cardiovascular and metabolic diseases. Preeclampsia shares
many features with the metabolic syndrome, including
increased maternal concentrations of proinflammatory cyto-
kines, insulin, leptin, triglycerides, free fatty acid, and low-
density cholesterol, usually in absence of diabetes [31].
Children from preeclamptic mothers show an increased risk of
hospitalizations for endocrine and metabolic diseases in the
first 5 yr of life [32]. In adolescence, premature-born
preeclamptic males have an increased BMI in comparison to
premature males born from normotensive pregnancies [33].
Cord blood samples from preeclamptic children show altered
lipid profiles and increased tumor necrosis factor alpha (TNF-
a) when studied for metabolic and inflammatory parameters
[31, 34, 35], but in adolescence, these changes in glucose and
lipid profiles are not prominent anymore [19, 21]. These
effects may be influenced to some extent by maternal
metabolic blood parameters and placental insufficiency.
However, in school-age children previously exposed to
preeclampsia, the metabolic phenotype shows changes only
after subclustering of this group. The quantitative insulin
sensitivity check index (QUICKI) serves as a predictive
marker for diabetes onset based on fasting plasma glucose and
insulin levels, and low values correspond to increased insulin
resistance. Subdivision of groups based on QUICKI did show
increased leptin and triglycerides levels in preeclampsia-
exposed children that had independently low QUICKI values
[36]. This suggests that insulin resistance independently,
superimposed on earlier preeclampsia exposure, can serve as
a strong predictor of the metabolic syndrome. These clinical
observations reflect a transiently affected neonatal metabo-

lism, which is not continuous through adolescence, but
possibly can lead to increased susceptibility to the metabolic
syndrome after a second environmental stressor, such as a
metabolic stress.

INTRAUTERINE ADVERSE ENVIRONMENT DURING
PREECLAMPSIA AND OFFSPRING OUTCOME:
ANIMAL STUDIES

Animal models of preeclampsia can provide a unique
possibility for understanding the causal relationship and the
molecular networks of preeclampsia-induced offspring pathol-
ogy. Unfortunately, there is currently no perfect animal model
of preeclampsia due to the complex and poorly understood
pathophysiology of this disease (see Table 1 for an overview).
Most of the presented models are based only on one
pathophysiological feature, failing to reproduce the whole
spectrum of preeclampsia characteristics. It is important to
unravel whether all these experimental pathophysiological
changes, which appear during preeclampsia, contribute to
partial or complete cardiovascular and metabolic changes in the
offspring. The use of several animal models of preeclampsia
could help to distinguish the independent and/or dependent
contribution of each of these factors to the developmental
programming of offspring health. Below, we will discuss the
animal studies that involve offspring follow-up after induction
of major pathophysiological conditions of preeclampsia,
excluding the genetic or surgically induced animal models of
preeclampsia.

Angiogenic Disparity

Angiogenic dysbalance is a well-known feature of pre-
eclampsia. The antiangiogenic factors soluble fms-like tyrosine
kinase-1 (sFlt-1) and soluble endoglin (sEng) are increased in
preeclamptic patients, after the 30th week of pregnancy [37].
Both sFlt-1 and sEng promote vascular dysfunction and
capillary permeability, liver dysfunction, and neurological
abnormalities via antagonization of proangiogenic factors such
as VEGF and PlGF or TGFb signaling [38–40].

Adenoviral overexpression of sFlt-1 mimics the clinical
course of preeclampsia in rodents [38]. Fetuses in this model
show restricted growth that can be maintained until adulthood
or can show catch-up growth until the age of 6 mo (Table 1)
[41, 42]. Solely, sFlt-1 exposure during pregnancy imposes
sex-specific glucose and/or insulin responses (to a glucose
bolus) in the offspring, suggesting sex-specific differences in
developmental programming of glucose metabolism. In
addition, hypertension was observed only in the male offspring
[41–43]. Sex-specific offspring outcomes are poorly under-
stood, but one possible reason can be sexually dimorphic
adaptations of the placenta [44].

When another environmental stressor, such as maternal
obesity, is introduced during sFlt-1-induced preeclampsia, the
offspring’s birth weight is not compromised. On the contrary,
several biochemical parameters such as blood glucose,
cholesterol, triglycerides, and leptin are increased in combina-
tion with increased fat tissue depositions and aberrant carotid
vascular reactivity in both sexes [43, 45]. This may indicate
that a single antiangiogenic intrauterine insult can influence
sexual dimorphic changes in placenta by priming the males
towards hypertensive phenotype, but this is not sufficient for
profound metabolic alterations without additional trigger
factors.

Unfortunately, the effects of increased sEng on offspring
health are still largely unknown. In vivo studies in mice have
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shown that direct administration of sEng increases the vascular
resistance and subsequently the blood pressure [46]. In patients
with diabetes and hypertension, sEng is positively correlated
with the basal glucose levels, suggesting a potential role in
glucose metabolism [47]. In accordance with previous findings
and the known synergistic effect of sEng and sFlt-1 on
preeclampsia outcome, we can speculate on the effects on
offspring health in a similar or superimposed manner.

Angiotensin II Type I Receptor Antibodies

Angiotensin II type I receptor autoantibodies (AT1 AA) are
found in 70%–95% of women diagnosed with preeclampsia,
compared to 30% of healthy controls. A higher antibody titer is
proportionally correlated to the severity of the disease [48, 49].
In addition, AT1 AA display an agonistic effect on the AT1
receptor, promoting vasoconstriction and aldosterone secretion,
in a manner similar to angiotensin II [50–52].

Passive immunization with AT1 AA in rodents is associated
with the development of proteinuria and hypertension at the
end of pregnancy [53, 54]. The fetuses show growth restriction
and remodeling in several organs, such as the liver, heart, and
kidney. At the histopathological level, glomerular loss,
myocardial apoptosis, and immature cell liver infiltration are
observed in the offspring, suggesting an adaptive decline in
fetal growth and organogenesis, possibly due to maternal-fetal
transfer of AT1 AA. Irani et al. [53] reported unaffected

functionality of these transported antibodies, and successful
activation of fetal AT1 receptors may contribute to systemic
vasoconstriction and hypoxia that can predispose the offspring
to organ maladaptation.

Zhang et al. [54] did long-term follow-up on offspring
derived from dams actively immunized against AT1 receptor
antigen. Middle-age checkup at 10 mo of age showed elevated
fasting insulin levels and an increased homeostasis model
assessment index, suggesting the development of insulin
resistance (Table 1). This was expected, especially because
AT1 receptors are involved in insulin signaling of beta cells
[55]. An additional 2 mo feeding with a high sugar diet of these
adult offspring leads to even more pronounced metabolic
alterations such as increased triglycerides, decreased high-
density cholesterol, impaired glucose tolerance, and enlarged
visceral fat depositions [54]. All these alterations are
contributors to the progression of the metabolic syndrome.
Surprisingly, blood pressure was normal in these animals,
although they had been exposed to the AT1 antibodies in utero
and in the weaning period via the maternal milk. One possible
interpretation is that intrarenal angiotensin II, contrary to
plasma angiotensin II, may be positively involved in blood
pressure regulation. Another important comment is that
vascular endothelium has relatively large regeneration capac-
ities, and if there is no constant provocation with AT1
antibodies, no endothelial-related rise in blood pressure will
occur.

TABLE 1. Spectrum of cardiometabolic alterations in offspring from pre-eclamptic mothers (animal models).a

Model Species/strain Offspring outcome Offspring age Reference

sFlt-1 overexpression CD-1 mice Catch up growth 24 wk [42]
IPGTT variations

sFlt-1 overexpression CD-1 mice Hypertension in males 9 wk [41]
Low BW in comparison to

controls
sFlt-1 overexpression CD-1 mice Hypertension in male offspring 24 wk [45]

Metabolic changes:
hypercholesterolemia,
hyperleptinemia in females, and
hypertriglyceridemia in males

Second impact: prepregnancy obesity þ Second impact: more
detrimental effect on weight
gain and metabolic effects

Prepregnancy obesity and sFlt-1 overexpression CD-1 mice Fasting glucose increased in males 12 wk [43]
Altered vascular responsiveness in

both sexes
AT1 AA immunization Wistar rats Insulin resistance 40 wk [54]

Second impact: high sugar diet 20% sucrose þ Second impact: altered lipid
and glucose profile without
hypertension

AT1 AA passive immunization Wistar rats Myocardial remodelling 3 wk [143]
AT1 AA passive immunization C67Bl/6J mice Abnormal kidney and liver

development
GD 18 [53]

LPS injections Sprague Dawley rats Increased BW and fat deposits,
hyperleptinemia, hypertension
(no major sex-specific effects)

24 wk [60]

LPS injections Sprague Dawley rats Hypertension 25 wk [61]
Proteinuria
Decreased glomeruli

LPS injections Sprague Dawley rats Hypertension 32 wk [62]
Left ventricle hypertrophy

LPS injections CD-1 mice Decreased body weight 35 wk [64]
Impaired spermatogenesis

LPS injections þ HF diet during pregnancy until 3
mo of age

Sprague Dawley rats Hypertension 12 wk [65]
Insulin resistance

LPS injections ICR mice Metabolic phenotype altered only
due to the HF diet

No data [66]
Second impact: HF diet

a IPGTT, intraperitoneal glucose tolerance test; BW, body weight; AT1 AA, angiotensin II type I receptor autoantibodies; LPS, lipopolysaccharide; HF, high
fat; GD, gestational day.
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In sum, AT1 antibody exposure does not affect the fetal
blood pressure but can have detrimental effects on organ
formation and insulin resistance, which can be potentiated with
an unhealthy diet. Nevertheless, more studies are needed in
order to elucidate the underlying mechanisms of AT1 AA-
induced fetal metabolic programming.

Inflammatory Milieu

Mild inflammation is generally considered a normal feature
of pregnancy, whereas more exaggerated systemic inflamma-
tory responses are characteristic of preeclampsia [9]. In
accordance, proinflammatory cytokine concentrations are
increased (TNFa, IL-6, Il-1b) in preeclamptic patients [56–
58]. The association between inflammation and preeclampsia
served as the basis for an experimental animal model of
preeclampsia by low-dose intravenous infusion of bacterial
endotoxin [59]. Nowadays, most of the developmental studies
that involve exposure to lipopolysaccharide (LPS) during
pregnancy are focused on the immunological consequences
without concentrating on the possible preeclamptic symptoms
in the dam.

Midgestational LPS exposure is characterized by a large
range of cardiovascular events such as increased blood
pressure, aortal vascular impairment, left ventricular hyper-
trophy, diastolic dysfunction, and myocardial apoptosis in
adult offspring, without specific sex differences [60–64].
This implies striking endothelial and cardiac sensitivity of the
fetus for inflammation that is maintained until adulthood,
programing the offspring’s health toward cardiovascular
functional decline. This, in part, can be explained by
upregulation of the NF-kB signaling pathway, an increase
of reactive oxygen species (ROS), and downregulation of the
renal dopaminergic system leading to hypertension and
vascular instability [64].

Combined effects of LPS and high-fat diet exposure during
pregnancy have differential effects on offspring’s glucose and
lipid metabolism (Table 1). It was shown that midgestation
exposure to LPS and high-fat feeding until 3 mo of age can
lead to impaired liver function and insulin resistance [65]. On
the contrary, exposure to LPS in late gestation with additional
high-fat diet stress after the lactation period did not result in an
impaired metabolic phenotype in the offspring [66]. This
suggests that timing of LPS exposure is crucial for fetal
metabolic programming and in part can be explained by
changes in maturational properties of the placenta, which in the
last term of pregnancy are fully developed, possibly resulting
in placental impermeability for the intermediate metabolic
effectors of LPS [67]. Another important observation is that
LPS and high-fat diet combined have a beneficial effect on
blood pressure and the inflammatory response in the offspring,
but not on the insulin resistance progression and liver
dysfunction. Midgestation exposure to LPS seems to attenuate
the offspring sensitivity to high-fat diet-induced inflammation
[65]. In contrast, an aberrant inflammatory response on its own
is not sufficient for a systemic breakdown in the regulation of
insulin resistance.

Altogether, the data indicate that the developmental
programming of offspring health via preeclampsia is caused
by a two-hit combination of, first, systemic immunomodulatory
and antiangiogenic signals during mid to late gestation and,
second, a later host susceptibility marked by unhealthy lifestyle
(e.g., a Western diet). These animal data have important
translational consequences because the first hit is needed to
affect the offspring’s development, and the presence of the
second hit explains why only a minority of human fetuses

exposed to preeclampsia develop detrimental cardiovascular
and metabolic diseases later.

UNDERLYING MECHANISMS OF DEVELOPMENTAL
PROGRAMMING

In order to interpret the developmental programming of
cardiometabolic health via preeclampsia, we underline below
the conserved mechanisms of chronic disease development,
their interaction with the preeclamptic environment, and their
effects on embryonic growth and epigenetic status (Fig. 1).
Understanding the specific mechanisms by which preeclampsia
impacts offspring welfare is crucial for developing appropriate
strategies to improve the negative effects of the harsh
intrauterine environment.

PLACENTAL PERMEABILITY: THE INITIATOR

The placental blood barrier serves as a protector and nutrient
sensor between the mother and the child. In preeclampsia,
placental morphology is perturbed showing superficial tropho-
blast invasion and insufficient remodeling of spiral arteries in
the myometrium [68, 69]. Thus, with this defective placenta-
tion, two separate factors can influence its permeability: the
placental composition and the exchange surface area.

Several factors influence placental composition, including
an intact syncytiotrophoblast layer and cellular junctional
assembly. The syncytiotrophoblast, a continuous membrane
layer of the placenta, serves as a checkpoint for placental
transport [70–72]. During preeclampsia, this layer is highly
apoptotic [73], suggesting a dysfunctional adaptation of the
placenta to increased fetal nutrient demand or an effect of the
increased proinflammatory cytokines during preeclampsia.
Consistent with this idea, tight junctions integral membrane
proteins, important for paracellular transport of water and

FIG. 1. The impact of preeclampsia on offspring/adult health. Schematic
diagram of how possible pre-eclamptic scenarios are shaping the
intrauterine environment, influencing the placental structure (initiator),
and imposing unfavorable signaling network (mediators) in the offspring.
The latter can program several aspects of the metabolic and cardiovascular
system, mainly via organ remodeling and epigenetic modulation of gene
expression (effectors).
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nutrients, are extremely susceptible to TGFb and IL-1b
destruction, which can be reversed in vitro by specific cytokine
inhibitors [74, 75]. Given that discontinuous placental
membranes are accompanied with increased porosity, it is
probable that loss of syncytiotrophoblast integrity underlines
the defective nutrient transport of preeclamptic placenta.

An altered placental surface area in preeclampsia has been
reported along with decreased placental weight, changes in the
shape, and increased thickness, probably due to compensatory
mechanisms [76]. The growth of the placenta was reported to
be compromised only on the minor axis and corresponded to
the severity of the preeclampsia. This axis is speculated to
coincide with mediolateral development of the fetus, suggest-
ing that this area is not spared during preeclampsia. In
accordance, fetal length is less compromised in offspring in
comparison with a severely affected abdominal circumference
[34, 77].

A central question is whether these structural changes in the
preeclamptic placenta are determinants for the transport of
pathological signaling molecules to the fetus. It is known that
inflammatory cytokines and AT1 AA can cross the placenta,
but no data on the transfer of antiangiogenic molecules to the
fetus is available [53, 78]. These molecules can act as potent
signaling modifiers of glucose and lipid metabolism, but a
definitive description of their mechanisms of action is lacking.
Currently, we rely solely on animal data, for example, being
challenged with an inflammatory cytokine such as TNFa
induces insulin receptor downregulation in the liver that
promotes the development of liver insulin resistance [79, 80].
An IL-6 challenge in rodents showed increased mobilization of
acyl-CoA, a metabolic active form of fatty acid, in the skeletal
muscles that has been strongly associated with lipid accumu-
lation in muscles and peripheral insulin resistance [79–81].
AT1 AA exposure has detrimental effects on function of the
liver, by NF-kB and NADPH oxidase dependent release of
ROS [82, 83]. Ubiquitous exposure to sFlt-1 leads to
hypovascularization in several organs, including pancreas and
adipose tissue, that in turn can affect the beta cell mass and
energy expenditure of the adipose tissue [84, 85]. In addition,
prolonged exposure to sFlt-1 is involved in the development of
diastolic dysfunction and heart failure [86]. Taken together,
increased exposure of the fetal organism to these molecules
may have a detrimental effect on proper metabolic and
cardiovascular functioning.

ROS: THE MEDIATORS

Multiple lines of evidence suggests that oxidative damage is
one of the underlying mechanisms of many chronic diseases
such as type 2 diabetes, obesity, hypertension, atherosclerosis,
and metabolic syndrome [87, 88]. Oxidative stress occurs as
soon as the production and consumption of ROS are
imbalanced.

During preeclampsia, inflammatory cytokines and AT1 AA
promote increased ROS production by up to 40% when
compared to control placentas [89–92]. Whether oxidative
distress is a cause or consequence of placental dysfunction and/
or fetal nutrient demand is a matter of ongoing debate, and
most studies simply describe an association of ROS overflow
with metabolic consequences rather than mechanistic connec-
tions.

Normal fetal development is dependent on tightly controlled
oxidative stress exposure for optimal cellular signaling,
differentiation, and proliferation [93]. However, during pre-
eclampsia the functionality of the placenta is reduced and the
antioxidant capacity is diminished, suggesting increased

oxidative stress transfer to the fetus. Cord blood analyzed
from preeclamptic mothers showed either decreased antioxi-
dant activity [94] or increased oxidative stress markers [95–
98], but not for all [99], suggesting a possibility of lipid
peroxidation and protein inactivation in the fetus [100]. Several
tissues are extremely susceptible to oxidative damage,
including beta cells and vascular endothelium mainly due to
low cytoprotective mechanisms [101, 102]. Furthermore,
treatment of hypoxic dams with antioxidants during gestation
ameliorates the vascular dysfunction in the offspring, indicat-
ing that antioxidant treatment may indeed be an interventional
treatment [103]. On the contrary, clinical trials that involved
routine antioxidant supplementation during pregnancy contra-
dict the idea of preventive effect towards preeclampsia [104,
105]. Another trial that included only high-risk preeclampsia
patients reported protective effect of antioxidant vitamins in
combination with L-arginine [106], suggesting that exclusive
antioxidant treatment is not sufficient to combat preeclampsia.

LEPTIN SIGNALING AS MEDIATOR

Leptin is a satiety hormone, and acting via JAK2/STAT3
and PI3K-Akt signaling pathways, leptin has a major impact on
energy homeostasis, body composition, and appetite in early
fetal and later adult life [107]. Moreover, leptin expression is
responsive to the intrauterine and fetal environment, showing
overexpression in monochorionic twin placenta only on the
side of the growth restricted fetus [108]. The extent to which
leptin signaling is implicated in overall fetal metabolism is
unknown, but there is evidence that it stimulates fatty acid
oxidation in muscles, increases the glucose turnover in brain,
heart, and brown adipose tissue, and inhibits global lipid
accumulation [109]. By contrast, reduction of leptin concen-
trations and the state of leptin resistance share similar effects on
metabolism, promoting hyperinsulinemia and hyperglycemia.
During preeclampsia, maternal leptin concentrations show a 2-
fold increase in comparison to control subjects, irrespective of
the BMI [110–114], which is usually combined with
hyperinsulinemia, altered lipid profile, and decreased 2-
methoxyestradiol, which serves as an important vasoprotector
and vasodilator [115, 116]. There is a dichotomy, therefore,
between the protective metabolic effects of leptin and
apparently deleterious effects of hyperleptinemia on maternal
health. In part, this can be explained by a development of leptin
resistance, mainly due to inactivation of STAT3 intracellular
activity that is also decreased in preeclamptic pregnancies
[117].

Fetal cord leptin concentrations are increased [110, 118] in
preeclamptic pregnancies, possibly due to increased nutrient
demand of the fetus and/or increased placental permeability
and consequent leptin flow to the fetus. Hyperleptinemia in
utero can alter the adrenal responsiveness [56, 119] in the fetus
and together with increased inflammatory markers can develop
a defense mechanism of leptin resistance, which ultimately can
lead to deleterious effects on cardiovascular and metabolic
health.

CELLULAR ADAPTATIONS AS EFFECTORS

Optimal organ functioning is dependent on the quantity,
morphology, and functionality of relevant cell types due to
appropriate differentiation of pluripotent embryonic stem cells.
Although the mechanisms of embryonic cell fate decisions are
obscure, the presence of low energy levels and prominent
signaling networks are strongly correlated with disturbed
metabolic stem cell fate [120–122]. Importantly, all these
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adverse conditions are also present in utero during preeclamp-
sia.

Moreover, several reports showed changes in the number of
nephrons, beta cells, and/or cardiomyocytes in offspring
exposed to a harsh intrauterine environment [123–126]. A
decreased number of nephrons contributes to low rates of renal
ultrafiltration that affects blood circulating volume, which
ultimately can lead to increased blood pressure [126].
Decreased beta-cell mass adaptation due to early life stressors,
such as undernutrition and placental insufficiency, possibly can
have an influence on later disease development, for example,
diabetes mellitus [127]. Initial heart size has an influence on the
end diastolic volume and serves as a predictive index for
myocardial disease [24].

These (mal)adaptive changes are observed mainly in organs
constructed from long-lived postmitotic cells [123, 128].
Because these cells are not—or rarely—dividing cells, their
development during intrauterine life is extremely important in
order to prepare them for long-term functionality. Tightly
controlled processes regulate cell number while their function-
ing is dependent on specific signaling molecules and energy
sources. During preeclampsia, the increased concentration of
inflammatory markers and improper vascular signaling mole-
cules might perturb these regulatory processes essential in
organ formation [129]. Combined with poor nutrient supply via
the placenta, this can lead to detrimental effects on offspring
health.

EPIGENETIC CHANGES AS EFFECTORS

Exposure to different environmental stimuli, especially
during critical windows of development, results in the
formation of adaptive epigenetic marks as part of the adaptive
stress response [5]. The epigenetic marking system includes
changes in DNA methylation, histone modifications, and
noncoding RNA (ncRNA) expression. Usually, they are
established early in development and act as regulators of
developmental, tissue, and sex-specific gene expression [130–
133].

DNA methylation is a unique form of gene regulation
because it involves direct covalent modification within the
genome and can provide long-term stability in a heritable
transgenerational way [134]. Methylation of important regula-
tory sites, for example, gene promoters or enhancers, is mostly
connected to gene repression, resulting in gene expression
downregulation [135].

DNA methylation analysis of cord blood cells is a valuable
target for studying the early epigenetic consequences of
preeclampsia on the fetus. Several studies analyzed DNA
methylation of genes involved in fetal growth and development
that are also highly sensitive to environmental perturbations.
Hypomethylation has been observed in the promoter region of
the 11b-hydroxysteroid dehydrogenase type 2 (HSD11B2) in
cord blood samples from neonates exposed to preeclampsia
[136]. Decreased methylation was also reported for insulin-like
growth factor 2 (IGF2) in the differentially methylated regions,
important for gene regulation of imprinted genes [137]. By
contrast, in preeclamptic placentas, HSD11B2 and IGF2 gene
expression levels are decreased [138, 139]. Therefore, there is a
discrepancy between the reported hypomethylated status and
the observed downregulated activity of these genes in other
studies. It is tempting to speculate that this is a compensatory
change in methylation to ensure favorable offspring function-
ing, but on the other side, it can be an atypical decrease in gene
expression that can lead to metabolic maladaptation.

A recent study used a genomewide methylation analysis in
which neonatal cord blood DNA from mothers diagnosed with
early onset preeclampsia showed promoter hypo- or hyper-
methylation for different subsets of genes. Prominent DNA
modifications were primarily discovered in genes involved in
lipid metabolism and inflammation, pointing out that early
epigenetic disruptions can be seen in preeclamptic children
[140]. Altogether, these findings support an effect of
preeclampsia on the methylation status of the neonates cord
blood, but it is unclear whether this is a protective or
maladaptive effect. Although this does not prove any causal
relationship with long-term health effects, it can be used as an
initial proof of principle for conduction of new cohort studies.

To our knowledge, there are no data concerning histone
modifications and/or ncRNAs in offspring from preeclamptic
mothers. Communication between DNA methylation and
chromatin modifiers or promoter regions of ncRNAs has been
established [141, 142], and abnormal methylation either solely
or via other epigenetic marks can be an important mediator of
fetal metabolism. It is becoming clear that these molecules are
implicated in several diseases, and successful unclosing of their
role in developmental programming can lead to possible
biological biomarkers or targets for therapy.

CONCLUDING REMARKS

Taking into consideration the great amount of evidence, it is
reasonable to suggest that preeclampsia constrains the
cardiometabolic health of the offspring. Still, it remains
difficult to estimate the degree of involvement of preeclampsia
into the cardiovascular and metabolic health programming of
the offspring. The major obstacle is the presence of multiple
pathophysiological pathways implicated in the development
and the clinical course of preeclampsia that may influence each
other or act independently all at once or in series. Depending
on which mechanism is dominantly involved, and which
secondary environmental stressors are present, different aspects
of the metabolism and the cardiovascular system can be
affected. The role of the placenta as a central initiator of long-
term preeclamptic consequences in the offspring is just the
beginning of what needs to be explored (Fig. 1). However,
understanding of all mechanisms by which preeclampsia alters
fetal growth and development and later on programs it toward
chronic disorders is crucial for identification of individuals at
risk and for development of future clinical interventions or
prevention strategies.
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