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Products of Generalized Stochastic Sarymsakov Matrices

Weiguo Xia, Ji Liu, Ming Cao, Karl H. Johansson, and Tamer Başar

Abstract— In the set of stochastic, indecomposable, aperiodic
(SIA) matrices, the class of stochastic Sarymsakov matrices
is the largest known subset (i) that is closed under matrix
multiplication and (ii) the infinitely long left-product of the
elements from a compact subset converges to a rank-one matrix.
In this paper, we show that a larger subset with these two prop-
erties can be derived by generalizing the standard definition for
Sarymsakov matrices. The generalization is achieved either by
introducing an “SIA index”, whose value is one for Sarymsakov
matrices, and then looking at those stochastic matrices with
larger SIA indices, or by considering matrices that are not
even SIA. Besides constructing a larger set, we give sufficient
conditions for generalized Sarymsakov matrices so that their
products converge to rank-one matrices. The new insight gained
through studying generalized Sarymsakov matrices and their
products has led to a new understanding of the existing results
on consensus algorithms and will be helpful for the design of
network coordination algorithms.

I. INTRODUCTION

Over the last decade, there has been considerable interest
in consensus problems [1]–[8] that are concerned with a
group of agents trying to agree on a specific value of
some variable. Similar research interest arose decades ago
in statistics [9]. While different aspects of consensus pro-
cesses, such as convergence rates [10], measurement delays
[11], stability [5], [12], and controllability [13], have been
investigated, and many variants of consensus problems, such
as average consensus [14], asynchronous consensus [11],
quantized consensus [15], and constrained consensus [16],
have been proposed, some fundamental issues of discrete-
time linear consensus processes still remain open.

A discrete-time linear consensus process can typically be
modeled by a linear recursion equation of the form

x(k + 1) = P (k)x(k), k ≥ 1, (1)

where x(k) = [x1(k), . . . , xn(k)]T ∈ IRn and each P (k) is
an n × n stochastic matrix. It is well known that reaching
a consensus for any initial state in this model is equivalent
to the product P (k) · · ·P (2)P (1) converging to a rank-one
matrix as k goes to infinity. In this context, one fundamental
issue is as follows. Given a set of n× n stochastic matrices
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P , what are the conditions on P such that for any infinite
sequence of matrices P (1), P (2), P (3), . . . from P , the se-
quence of left-products P (1), P (2)P (1), P (3)P (2)P (1), . . .
converges to a rank-one matrix? We will call P satisfying this
property a consensus set (the formal definition will be given
in the next section). The existing literature on characterizing
a consensus set can be traced back to at least the work
of Wolfowitz [17] in which stochastic, indecomposable,
aperiodic (SIA) matrices are introduced. Recently, it has been
shown in [18] that deciding whether P is a consensus set is
NP-hard; a combinatorial necessary and sufficient condition
for deciding a consensus set has also been provided there.
Even in the light of these classical and recent findings,
the following fundamental question remains: What is the
largest subset of the class of n×n stochastic matrices whose
compact subsets are all consensus sets? In [19], this question
is answered under the assumption that each stochastic matrix
has positive diagonal entries. For general stochastic matrices,
the question has remained open. This paper aims at dealing
with this challenging question by checking some well-known
classes of SIA matrices.

In the literature, the set of stochastic Sarymsakov matrices,
first introduced by Sarymsakov [20], is the largest known
subset of the class of stochastic matrices whose compact
subsets are all consensus sets; in particular, the set is
closed under matrix multiplication and the left-product of
the elements from its compact subset converges to a rank-
one matrix [21]. In this paper, we construct a larger set of
stochastic matrices whose compact subsets are all consensus
sets. We adopt the natural idea which is to generalize the
definition of stochastic Sarymsakov matrices so that the
original set of stochastic Sarymsakov matrices are contained.

In the paper, we introduce two ways to generalize the
definition and thus study two classes of generalized stochas-
tic Sarymsakov matrices. The first class makes use of the
concept of the SIA index (the formal definition will be
given in the next section). It is shown that the set of n× n
stochastic matrices with SIA index no larger than k is
closed under matrix multiplication only when k = 1, which
turns out to be the stochastic Sarymsakov class; this result
reveals why exploring a consensus set larger than the set
of stochastic Sarymsakov matrices is a challenging problem.
A set that consists of all stochastic Sarymsakov matrices
plus one specific SIA matrix and thus is slightly larger than
the stochastic Sarymsakov class is constructed, and we show
that it is closed under matrix multiplication. For the other
class of generalized Sarymsakov matrices, which contains
matrices that are not SIA, sufficient conditions are provided
for the convergence of the product of an infinite matrix
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sequence from this class to a rank-one matrix. A special
case in which all the generalized Sarymsakov matrices are
doubly stochastic is also discussed.

The rest of the paper is organized as follows. Preliminaries
are introduced in Section II. Section III introduces the SIA
index and discusses the properties of the set of stochastic
matrices with SIA index no larger than k, k ≥ 1. In Section
IV, sufficient conditions are provided for the convergence
of the product of an infinite sequence of matrices from a
class of generalized stochastic Sarymsakov matrices, and the
results are applied to the class of doubly stochastic matrices.
Section V concludes the paper. Proofs of some assertions in
this paper are omitted due to length limit and can be found
in an expanded version of the paper [22].

II. PRELIMINARIES

We first introduce some basic definitions. Let n be a
positive integer. A square matrix P = {pij}n×n is said to
be stochastic if pij ≥ 0 for all i, j ∈ {1, . . . , n} = N , and∑n
j=1 pij = 1 for all i = 1, . . . , n. Consider a stochastic

matrix P . For a set A ⊆ N , the set of one-stage consequent
indices [23] of A is defined by

FP (A) = {j : pij > 0 for some i ∈ A}

and we call FP the consequent function of P . For a singleton
{i}, we write FP (i) instead of FP ({i}) for simplicity. A
matrix P is indecomposable and aperiodic, and thus called
an SIA matrix, if limm→∞ Pm = 1cT , where 1 is the n-
dimensional all-one column vector, and c = [c1, . . . , cn]T is
some column vector satisfying ci ≥ 0 and

∑n
i=1 ci = 1. P

is said to belong to the Sarymsakov class or equivalently P
is a Sarymsakov matrix if for any two disjoint nonempty sets
A, Ã ⊆ N , either

FP (A) ∩ FP (Ã) 6= ∅, (2)

or

FP (A)∩FP (Ã) = ∅ and |FP (A)∪FP (Ã)| > |A∪Ã|, (3)

where |A| denotes the cardinality of A. We say that P is a
scrambling matrix if for any pair of distinct indices i, j ∈ N ,
FP (i)∩FP (j) 6= ∅, which is equivalent to requiring that there
always exists an index k ∈ N such that both pik and pjk are
positive.

From the definitions, it should be obvious that a scram-
bling matrix belongs to the Sarymsakov class. It has been
proved in [23] that any product of n − 1 matrices from the
Sarymsakov class is scrambling. Since a stochastic scram-
bling matrix is SIA [24], any stochastic Sarymsakov matrix
must be an SIA matrix.

Definition 1: (Consensus set) Let P be a set of n × n
stochastic matrices. P is a consensus set if for each sequence
of matrices P (1), P (2), P (3), . . . from P , P (k) · · ·P (1)
converges to a rank-one matrix 1cT as k →∞, where ci ≥ 0
and

∑n
i=1 ci = 1.

Deciding whether a set is a consensus set or not is critical
in establishing the convergence of the state of system (1)
to a common value. Necessary and sufficient conditions for

P being a consensus set have been established [17], [18],
[24]–[26].

Theorem 1: [26] Let P be a compact set of n × n
stochastic matrices. The following conditions are equivalent:

1) P is a consensus set.
2) For each integer k ≥ 1 and any P (i) ∈ P, 1 ≤ i ≤ k,

the matrix P (k) · · ·P (1) is SIA.
3) There is an integer ν ≥ 1 such that for each k ≥ ν and

any P (i) ∈ P, 1 ≤ i ≤ k, the matrix P (k) · · ·P (1) is
scrambling.

4) There is an integer µ ≥ 1 such that for each k ≥ µ and
any P (i) ∈ P, 1 ≤ i ≤ k, the matrix P (k) · · ·P (1)
has a column with only positive elements.

5) There is an integer α ≥ 1 such that for each k ≥ α and
any P (i) ∈ P, 1 ≤ i ≤ k, the matrix P (k) · · ·P (1)
belongs to the Sarymsakov class.

For a compact set P to be a consensus set, it is necessary
that every matrix in P is SIA in view of item (2) in
Theorem 1. If a set of SIA matrices is closed under matrix
multiplication, then one can easily conclude from item (2)
that its compact subsets are all consensus sets. However, it is
well known that the product of two SIA matrices may not be
SIA. The stochastic Sarymsakov class is the largest known
set of stochastic matrices, which is closed under matrix
multiplication. Whether there exists a larger class of SIA
matrices, which contains the Sarymsakov class as a proper
subset and is closed under matrix multiplication, remains
unknown. We will explore this by taking a closer look at the
definition of the Sarymsakov class and study the properties
of classes of generalized Sarymsakov matrices that contain
the Sarymsakov class as a subset.

III. SIA INDEX

The key notion in the definition of the Sarymsakov class
is the set of one-stage consequent indices. We next introduce
the notion of the set of k-stage consequent indices and
utilize this to define a larger matrix set, which contains the
Sarymsakov class.

For a stochastic matrix P and a set A ⊆ N , let F kP (A) be
the set of k-stage consequent indices of A, which is defined
by

F 1
P (A) = FP (A) and F kP (A) = FP (F k−1P (A)), k ≥ 2.

Definition 2: A stochastic matrix P is said to belong to
the class S if for any two disjoint nonempty subsets A, Ã ⊆
N , there exists an integer k ≥ 1 such that either

F kP (A) ∩ F kP (Ã) 6= ∅, (4)

or

F kP (A)∩F kP (Ã) = ∅ and |F kP (A)∪F kP (Ã)| > |A∪Ã|. (5)
It is easy to see that the Sarymsakov class is a subset of

S since k is 1 in the definition of the Sarymsakov class.
An important property of the consequent function FP given
below will be useful.

Lemma 1: [21] Let P and Q be n × n nonnegative
matrices. Then, FPQ(A) = FQ(FP (A)) for all subsets
A ⊆ N .
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A direct consequence of Lemma 1 is that FPk(A) =
F kP (A) for any stochastic matrix P , any integer k ≥ 1 and
any subset A ⊆ N .

The following theorem establishes the relationship be-
tween the matrices in S and SIA matrices.

Theorem 2: [26] A stochastic matrix P is in S if and
only if P is SIA.

From Theorem 4.4 in [27], we know the following result.
Theorem 3: [27] A stochastic matrix P is SIA if and only

if for every pair of indices i and j, there exists an integer k,
k ≤ n(n− 1)/2, such that F kP (i) ∩ F kP (j) 6= ∅.

Theorem 3 implies that the index k in (4) and (5) can be
bounded by some integer.

Lemma 2: A stochastic matrix P is SIA if and only if for
any pair of disjoint nonempty sets A, Ã ⊆ N , there exists
an index k, k ≤ n(n−1)/2, such that F kP (A)∩F kP (Ã) 6= ∅.

Example 1: Let

P =

 1
3

1
3

1
3

1 0 0
0 1 0

 . (6)

P is a stochastic matrix. Consider two disjoint nonempty
sets A = {2}, Ã = {3}. One knows that FP (A) = {1}
and FP (Ã) = {2}, implying that FP (A) ∩ FP (Ã) 6= ∅
and |FP (A) ∪ FP (Ã)| = |A ∪ Ã|. Therefore, P is not
a Sarymsakov matrix. However, the fact that F 2

P (A) =
{1, 2, 3} and F 2

P (Ã) = {2} shows that F 2
P (A)∩F 2

P (Ã) 6= ∅.
This means (4) holds for k = 2.

For every other pair of disjoint nonempty sets A, Ã ⊆ N ,
it can be verified that FP (A) ∩ FP (Ã) 6= ∅. One has that
though P is not a Sarymsakov matrix, P is an SIA matrix
from Lemma 2. 2

From the above example and Lemma 2, one knows that
the class of SIA matrices may contain a large number of
matrices that do not belong to the Sarymsakov class. Starting
from the Sarymsakov class, where k = 1 in (4) and (5),
we relax the constraint on the value of the index k in (4)
and (5), i.e., allowing for k ≤ 2, k ≤ 3, . . . , and obtain a
larger set containing the Sarymsakov class. We formalize the
idea below and study whether the derived set is closed under
matrix multiplication or not.

Consider a fixed integer n. Denote all the unordered pairs
of disjoint nonempty sets ofN as (A1, Ã1), . . . , (Am, Ãm),
where m is a finite number.

Definition 3: Let P ∈ IRn×n be an SIA matrix. For each
pair of disjoint nonempty sets Ai, Ãi ⊆ N , i = 1, . . . ,m,
let si be the smallest integer such that either (4) or (5) holds.
The SIA index s of P is s = max{s1, s2, . . . , sm}.

From Lemma 2, we know that for an SIA matrix P , its
SIA index s is upper bounded by n(n−1)/2. Assume that the
largest value of the SIA indices of all the n×n SIA matrices
is l, which depends on the order n. We define several subsets
of the class of SIA matrices. For 1 ≤ k ≤ l, let

Vk = {P ∈ IRn×n|P is SIA and its SIA index is k} (7)

and

Sk = ∪kr=1Vr. (8)

Obviously S1 ⊂ S2 ⊂ · · · ⊂ Sl and S1 = V1 is the class
of stochastic Sarymsakov matrices. One can easily check that
when n = 2, all SIA matrices are scrambling matrices and
hence belong to the Sarymsakov class. When n ≥ 3, the set
Vn−1 is nonempty. To see this, consider an n×n stochastic
matrix

P =


1
n

1
n · · · 1

n
1
n

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .
For an index i ∈ N , i 6= n, it is easy to check that
Fn−1P (i) = N . Hence, for any two nonempty disjoint sets
A, Ã ∈ N , it must be true that Fn−1P (A) ∩ Fn−1P (Ã) 6= ∅,
proving that P is an SIA matrix. Consider the specific pair of
sets A = {n}, Ã = {n− 1}. One has that Fn−2P (n) = {2},
Fn−2P (n − 1) = {1}, and Fn−1P (n) ∩ Fn−1P (n − 1) 6= ∅,
implying that P ∈ Vn−1. From this example, we know that
a lower bound for l is n− 1.

In the next three subsections, we first discuss the properties
of Si, i = 1, . . . , l, then construct a set, closed under matrix
multiplication, consisting of a specific SIA matrix and all
stochastic Sarymsakov matrices, and finally discuss the class
of pattern-symmetric matrices.

A. Properties of Si
The following novel result reveals the properties of the

sets Si, 1 ≤ i ≤ l.
Theorem 4: Suppose that n ≥ 3. Among the sets

S1, S2, . . . , Sl, the set S1 is the only set that is closed
under matrix multiplication.

Note that a compact subset P of S1 is a consensus set.
However, if P is a compact set consisting of matrices in
Vi, i ≥ 2, Theorem 4 shows that there is no guarantee that
P is still a consensus set.

The proof of Theorem 4 relies on the following key
lemma, based on which the conclusion of Theorem 4 im-
mediately follows. Before stating the lemma, we define a
matrix Q in terms of a matrix P ∈ Vi, i ≥ 2.

For a given matrix P ∈ Vi, i ≥ 2, from the definition of
the Sarymsakov class, one has that there exist two disjoint
nonempty sets A, Ã ⊆ N such that FP (A) ∩ FP (Ã) = ∅
and

|FP (A) ∪ FP (Ã)| ≤ |A ∪ Ã|. (9)

Define a matrix Q = (qij)n×n as follows

qij =



1
|A| , i ∈ FP (A), j ∈ A,
0, i ∈ FP (A), j ∈ Ā,
1
|Ã| , i ∈ FP (Ã), j ∈ Ã,
0, i ∈ FP (Ã), j ∈ ¯̃A,
1
n , otherwise,

(10)

where Ā denotes the complement of A with respect to N .
Lemma 3: Suppose that n ≥ 3. For any i = 2, . . . , l, given

a stochastic matrix P ∈ Vi, then the matrix Q given in (10)
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belongs to the set S2 and PQ, QP are not SIA. In addition,
Q ∈ V1 if (9) holds with the equality sign; Q ∈ V2 if the
inequality (9) is strict.

Remark 1: Note that whether a stochastic matrix is SIA or
not only depends on the positions of its nonzero elements but
not their magnitudes. One can derive other matrices based on
Q in (10) such that PQ is not SIA by varying the magnitudes
of the positive elements of Q as long as each row sum equals
to 1 and the positive elements are kept positive.

There has been research work on defining another class
of matrices that is a subset of the SIA matrices and larger
than the stochastic scrambling matrices. We establish its
relationship with the stochastic Sarymsakov class in view
of Lemma 3.

Definition 4: [24] P ∈ G, if P is SIA and for any SIA
matrix Q, QP is SIA.

Proposition 1: For n ≥ 3, G is a proper subset of the
class of stochastic Sarymsakov matrices S1.

B. A set closed under matrix multiplication

In this subsection, we construct a subset of S, which is
closed under matrix multiplication. This subset consists of
the set S1 and one specific matrix in V2.

Let R be a matrix in V2 and satisfies that for any disjoint
nonempty sets A, Ã ⊆ N , either

FR(A) ∩ FR(Ã) 6= ∅, (11)

or

FR(A)∩FR(Ã) = ∅ and |FR(A)∪FR(Ã)| ≥ |A∪Ã|. (12)

Such a matrix exists. An example is

R =



1
n

1
n

1
n

1
n · · · 1

n
1 0 0 0 · · · 0
0 1 0 0 · · · 0
1
n

1
n

1
n

1
n · · · 1

n
...

...
...

...
. . .

...
1
n

1
n

1
n

1
n · · · 1

n


. (13)

To verify that R satisfies this condition, we only have to
consider the pair of sets A = {2}, Ã = {3} since for other
pairs of A, Ã, FR(A)∩FR(Ã) 6= ∅. It is clear that |FR(2)∪
FR(3)| = |{1, 2}| = |A ∪ Ã| and F 2

R(2) ∩ F 2
R(3) = {1}.

Theorem 5: Suppose that R is a matrix in V2 and satisfies
that for any disjoint nonempty sets A, Ã ⊆ N , (11) or (12)
holds. Then, the set S ′1 = S1 ∪ {R} is closed under matrix
multiplication and a compact subset of S ′1 is a consensus set.

Proof: Let P be a matrix in S1. We first show that
RP,PR ∈ S1. Given two disjoint nonempty setsA, Ã ⊆ N ,
assume that FRP (A) ∩ FRP (Ã) = ∅. Since FRP (A) =
FP (FR(A)) and FRP (Ã) = FP (FR(Ã)) based on Lemma
1, one has that FR(A)∩FR(Ã) = ∅. In view of the fact that
P is a Sarymsakov matrix, one has

|FRP (A) ∪ FRP (Ã)| = |FP (FR(A)) ∪ FP (FR(Ã))|
> |FR(A) ∪ FR(Ã)|
≥ |A ∪ Ã|.

It follows that RP is a Sarymsakov matrix. Consider the
matrix PR. Suppose that A, Ã ⊆ N are two disjoint
nonempty sets satisfying that FPR(A) ∩ FPR(Ã) = ∅. One
similarly derives that

|FPR(A) ∪ FPR(Ã)| = |FR(FP (A)) ∪ FR(FP (Ã))|
≥ |FP (A) ∪ FP (Ã)|
> |A ∪ Ã|.

Therefore, PR is a Sarymsakov matrix.
We next show that R2 ∈ S1. Since R ∈ V2, for any

disjoint nonempty sets A, Ã ⊆ N , there exists an integer
k ≤ 2 such that either

F kR(A) ∩ F kR(Ã) 6= ∅ (14)

or

F kR(A) ∩ F kR(Ã) = ∅, and |F kR(A) ∪ F kR(Ã)| > |A ∪ Ã|.
(15)

When (14) holds, it follows from Lemma 1 that FR2(A) ∩
FR2(Ã) 6= ∅. When (15) holds, suppose that FR2(A) ∩
FR2(Ã) = ∅. If (15) holds for k = 1, then from the
assumption on R, we have

|FR2(A) ∪ FR2(Ã)| ≥ |FR(A) ∪ FR(Ã)| > |A ∪ Ã|;

if (15) holds for k = 2, then we immediately have that
|FR2(A) ∪ FR2(Ã)| > |A ∪ Ã|. Hence, R2 ∈ S1.

Recall that the product of matrices in S1 still lies in S1. It
is clear that P2P1 is a Sarymsakov matrix for P1, P2 ∈ S ′1.
By induction Pk · · ·P2P1 ∈ S1 for Pi ∈ S ′1, i = 1, . . . , k,
and any integer k ≥ 2, implying that S ′1 is closed under
matrix multiplication. Then, it immediately follows from
Theorem 1 (5) that a compact subset of S ′1 is a consensus
set. 2

For a set consisting of the Sarymsakov class and two
or more matrices which belong to V2 and satisfy that for
any disjoint nonempty sets A, Ã ⊆ N , (11) or (12) holds,
whether it is closed under matrix multiplication depends on
those specific matrices in V2.

C. Pattern-symmetric matrices

In this subsection, we discuss the SIA index of a class of
n×n stochastic matrices, each element P of which satisfies
the following pattern-symmetric condition

pij > 0⇔ pji > 0, for i 6= j. (16)

System (1) with bidirectional interactions between agents
induces a system matrix satisfying (16), which arises often
in the literature.

We present the following lemma regarding the property of
a matrix satisfying (16).

Proposition 2: Suppose that P satisfies (16) and is an SIA
matrix. Then,

1) P ∈ S2;
2) if P is symmetric, then P ∈ S1.
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For an SIA and nonsymmetric matrix P satisfying (16),
P is not necessarily a Sarymsakov matrix. An example of
such a P is

P =


0 1 0 0
1
2 0 1

2 0
0 1

3
1
3

1
3

0 0 1 0

 .
P is not a Sarymsakov matrix, but P ∈ S2.

With the knowledge of the SIA index, the condition for
a consensus set of stochastic symmetric matrices in the
literature can be derived directly. It has been established
in Example 7 in [18] that a compact set P of stochastic
symmetric matrices is a consensus set if and only if P is
an SIA matrix for every P ∈ P . The necessity part holds
for any consensus set. As we know from Proposition 2, a
stochastic symmetric matrix P is SIA if and only if P is a
Sarymsakov matrix. The sufficient part becomes clear as the
Sarymsakov class is closed under matrix multiplication.

The above claim for stochastic symmetric matrices cannot
be extended to stochastic matrices that satisfy (16). The
reason is that a stochastic matrix satisfying (16), is not
necessarily a Sarymsakov matrix. Hence, in view of Theorem
4, the product of two such matrices may not be SIA anymore.
An example to illustrate this is a set P consisting of two
matrices

P1 =


0 1 0 0
1
2 0 1

2 0
0 1

3
1
3

1
3

0 0 1 0

 , P2 =


0 1

2 0 1
2

1 0 0 0
0 0 0 1
1
3 0 1

3
1
3

 .
P1, P2 both satisfy (16). However, the matrix product
(P1P2)k does not converge to a rank-one matrix as k →∞.

IV. A CLASS OF GENERALIZED SARYMSAKOV MATRICES

We have seen in Theorem 5 that the Sarymsakov class
plus one specific SIA matrix can lead to a closed set under
matrix multiplication that contains S1. The property (12) of
the matrix R turns out to be critical and we next consider a
class of matrices containing all such matrices.

Definition 5: A stochastic matrix P is said to belong to
a set W if for any two disjoint nonempty sets A, Ã ⊆ N ,
either (11) or (12) with R replaced by P holds.

The definition of the setW relaxes that of the Sarymsakov
class by allowing the inequality in (3) not to be strict. It is
obvious that S1 is a subset ofW . In addition,W is a set that
is closed under matrix multiplication. To see this, we show
PQ ∈ W for P,Q ∈ W . For any two disjoint nonempty sets
A, Ã ⊆ N , suppose that FPQ(A)∩FPQ(Ã) = ∅. It follows
from (12) that

|FPQ(A) ∪ FPQ(Ã)| = |FQ(FP (A)) ∪ FQ(FP (Ã))|
≥ |FP (A) ∪ FP (Ã)|
≥ |A ∪ Ã|,

which implies that PQ ∈ W .
Compared with the definition of S1, the subtle difference

in the inequality in (12) drastically changes the property of
W . A matrix in W is not necessarily SIA. For example,

permutation matrices belong to the class W since for any
disjoint nonempty sets A, Ã ⊆ N ,

FP (A)∩FP (Ã) = ∅ and |FP (A)∪FP (Ã)| = |A∪Ã|. (17)

One may expect that the set W ∩ S is closed under matrix
multiplication. However, the claim is false and an example
to show this is the following two SIA matrices

P1 =

 1
3

1
3

1
3

1 0 0
0 1 0

 , P2 =

0 1 0
0 0 1
1
3

1
3

1
3

 ,
where

P1P2 =

+ + +
0 1 0
0 0 1


is not SIA anymore.

Instead of looking at whether a subset ofW is a consensus
set which concerns the convergence of the matrix product
formed by an arbitrary matrix sequence from the subset, we
explore the sufficient condition for the convergence of the
matrix product of the elements from W and its application
to doubly stochastic matrices.

A. Sufficient conditions for consensus

Theorem 6: Let P be a compact subset of W and let
P (1), P (2), P (3), . . . be a sequence of matrices from P .
Suppose that j1, j2, . . . is an infinite increasing sequence of
the indices such that P (j1), P (j2), . . . are Sarymsakov matri-
ces and ∪∞r=1{P (jr)} is a compact set. Then, P (k) · · ·P (1)
converges to a rank-one matrix as k →∞ if there exists an
integer T such that jr+1 − jr ≤ T for all r ≥ 1.

Remark 2: In Theorem 6, if Tr = jr+1− jr, r ≥ 1 is not
uniformly upper bounded, we may not be able to draw the
conclusion. The reason is that the compactness condition of
Theorem 1 may not be satisfied so that Theorem 1 does not
apply.

When the set P is a finite set, we have the following
corollary.

Corollary 1: Let P be a finite subset of W and let
P (1), P (2), P (3), . . . be a sequence of matrices from P .
Suppose that j1, j2, . . . is an infinite increasing sequence of
the indices such that P (j1), P (j2), . . . are Sarymsakov ma-
trices. Then, P (k) · · ·P (1) converges to a rank-one matrix as
k →∞ if there exists an integer T such that jr+1− jr ≤ T
for all r ≥ 1.

B. Applications to doubly stochastic matrices

In fact, the set of matricesW contains all doubly stochastic
matrices. We can establish the following property of doubly
stochastic matrices using the Birkhoff–von Neumann theo-
rem [28].

Lemma 4: Let P be a doubly stochastic matrix. For any
nonempty set A ⊆ N , |FP (A)| ≥ |A|.

Proof: From the Birkhoff–von Neumann theorem [28], P
is doubly stochastic if and only if P is a convex combina-
tion of permutation matrices, i.e., P =

∑n!
i=1 αiPi where∑n!

i=1 αi = 1, ai ≥ 0 for i = 1, . . . , n! and Pi are
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permutation matrices. For any permutation matrix Pi, it is
obvious that |FPi(A)| = |A| for any set A ⊆ N . In view of
the Birkhoff–von Neumann theorem, it holds that

FP (A) = ∪αi 6=0FPi
(A).

It then immediately follows that |FP (A)| ≥ |A|. 2

From the above lemma, it is easy to see that for a doubly
stochastic matrix P , either (11) or (12) holds. Hence, doubly
stochastic matrices belong to the set W . The following
lemma reveals when a doubly stochastic matrix is a Sarym-
sakov matrix.

Lemma 5: Let P be a doubly stochastic matrix. P is a
Sarymsakov matrix if and only if for every nonempty set
A ( N , |FP (A)| > |A|.

Lemma 5 provides a condition to decide whether a doubly
stochastic matrix belongs to S1 or not. We have the following
corollary based on Theorem 6.

Corollary 2: Let P be a compact set of doubly stochastic
matrices and let P (1), P (2), P (3), . . . be a sequence
of matrices from P . Suppose that j1, j2, . . . is an infinite
increasing sequence of the indices such that P (j1), P (j2), . . .
are Sarymsakov matrices and ∪∞r=1{P (jr)} is a compact
set. Then, P (k) · · ·P (1) converges to a rank-one matrix as
k →∞ if there exists an integer T such that jr+1− jr ≤ T
for all r ≥ 1.

For doubly stochastic matrices with positive diagonals, a
sharp statement can be made.

Proposition 3: Let P be a doubly stochastic matrix with
positive diagonals. If P is SIA, then P ∈ S1.

For doubly stochastic matrices satisfying condition (16),
we have a similar result.

Proposition 4: Let P be a doubly stochastic matrix satis-
fying condition (16). If P is SIA, then P ∈ S1.

V. CONCLUSION

In this paper, we have discussed products of generalized
stochastic Sarymsakov matrices. With the notion of SIA in-
dex, we have shown that the set of all SIA matrices with SIA
index no larger than k is closed under matrix multiplication
only when k = 1. Sufficient conditions for the convergence
of the matrix product of an infinite matrix sequence to a
rank-one matrix have been provided with the help of the
Sarymsakov matrices. The results obtained underscore the
critical role of the stochastic Sarymsakov class in the set
of SIA matrices and in constructing a convergent matrix
sequence to consensus. Construction of a larger set than the
one constructed in the paper which is closed under matrix
multiplication is a subject for future research.
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[16] A. Nedić, A. Ozdaglar, and P. A. Parrilo. Constrained consensus and
optimization in multi-agent networks. IEEE Transactions on Automatic
Control, 55(4):922–937, 2010.

[17] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic
matrices. Proceedings of the American Mathematical Society, 14:733–
737, 1963.

[18] V. D. Blondel and A. Olshevsky. How to decide consensus: A
combinatorial necessary and sufficient condition and a proof that
consensus is decidable but NP-hard. SIAM Journal on Control and
Optimization, 52(5):2707–2726, 2014.

[19] J. Liu, A. S. Morse, B. D. O. Anderson, and C. Yu. Contractions
for consensus processes. In Proc. of the 50th IEEE Conference on
Decision and Control, pages 1974–1979, 2011.

[20] T. A. Sarymsakov. Inhomogeneous Markov chains (in russian). Teor.
Verojatnost. i Primen., 6:194–201, 1961.

[21] D. J. Hartfiel. Nonhomogeneous Matrix Products. World Scientific,
Singapore, 2002.

[22] W. Xia, J. Liu, M. Cao, K. H. Johansson, and T. Başar. Products
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