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Abstract

Neural mass model-based tracking of brain states from electroencephalographic signals holds the promise of simulta-

neously tracking brain states while inferring underlying physiological changes in various neuroscientific and clinical

applications. Here, neural mass model-based tracking of brain states using the unscented Kalman filter applied to es-

timate parameters of the Jansen-Rit cortical population model is evaluated through the application of propofol-based

anesthetic state monitoring. In particular, 15 subjects underwent propofol anesthesia induction from awake to anes-

thetised while behavioural responsiveness was monitored and frontal electroencephalographic signals were recorded.

The unscented Kalman filter Jansen-Rit model approach applied to frontal electroencephalography achieved reason-

able testing performance for classification of the anesthetic brain state (sensitivity: 0.51; chance sensitivity: 0.17;

nearest neighbor sensitivity 0.75) when compared to approaches based on linear (autoregressive moving average)

modelling (sensitivity 0.58; nearest neighbor sensitivity: 0.91) and a high performing standard depth of anesthesia

monitoring measure, Higuchi Fractal Dimension (sensitivity: 0.50; nearest neighbor sensitivity: 0.88). Moreover, it

was found that the unscented Kalman filter based parameter estimates of the inhibitory postsynaptic potential am-

plitude varied in the physiologically expected direction with increases in propofol concentration, while the estimates

of the inhibitory postsynaptic potential rate constant did not. These results combined with analysis of monotonicity

of parameter estimates, error analysis of parameter estimates, and observability analysis of the Jansen-Rit model,

along with considerations of extensions of the Jansen-Rit model, suggests that the Jansen-Rit model combined with

unscented Kalman filtering provides a valuable benckmark for future real-time brain state tracking studies. This

is especially true for studies of more complex, but still computationally efficient, neural models of anesthesia that

can more accurately track the anesthetic brain state, while simultaneously inferring underlying physiological changes

that can potentially provide useful clinical information.
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1. Introduction

Automated electroencephalography (EEG) based depth of anesthesia monitoring is a long-standing problem in

the EEG literature (Bruhn et al., 2006; Voss & Sleigh, 2007; Palanca et al., 2009). Various commercial and non-

commercial depth of anesthesia monitoring approaches have been developed (Kissin, 2000; Struys et al., 2002; Jordan

et al., 2006; Ferenets et al., 2007; Liley et al., 2010; Shalbaf et al., 2013; Shoushtarian et al., 2015b,a) that primarily5

rely on extraction of features from the EEG to track anesthetic brain state. Despite significant history and recent work

attempting to characterise the mulit-channel EEG and brain networks related to anesthesia in more detail (Cimenser

et al., 2011; Lewis et al., 2012; Purdon et al., 2013; Kuhlmann et al., 2013; Lee et al., 2013), the international uptake

of automated depth of anesthesia monitoring in the clinic is still lagging. Moreover, although commercial monitors

can help to improve anesthetic delivery and postoperative recovery (Punjasawadwong et al., 2014; Kettner, 2014)10

their ability to reduce intraopertive awareness is still under question (Myles et al., 2004; Mashour et al., 2012), as

is their ability to track effects of anesthetics with different molecular modes of action (Hirota, 2006). Therefore,

improvements are needed.

Model-based approaches involving autoregressive moving average (ARMA) modelling have been shown to be able

to disentangle the effects of simultaneously applied anesthetic and analgesic (Liley et al., 2010; Shoushtarian et al.,15

2015b,a). Therefore model-based approaches present an interesting alternative to the more standard extraction of

EEG features employed in depth of anesthesia monitoring (Kissin, 2000; Jordan et al., 2006; Ferenets et al., 2007).

In particular, neural mass or neural field model (Deco et al., 2008) approaches that attempt to take into account the

meso-/macro-scale neurophysiology involved in the generation of EEG at rest and during anesthesia (Bojak & Liley,

2005; McCarthy et al., 2008; Ching et al., 2010; Steyn-Ross et al., 2012; Hindriks & van Putten, 2012; Hutt, 2013;20

Hutt & Buhry, 2014) present an interesting alternative to tracking the anesthetic brain state, while simultaneously

allowing for estimation of underlying physiological variables that may have clinical significance.

The main idea behind these approaches is that different regions of parameter space of neural mass models describe

different types of state dynamics of these models, such as limit cycles and fixed points, which in turn result in different

types of modelled EEG amplitude spectra that can be related to real EEG data and spectra (Freestone et al., 2013;25

Moran et al., 2013). Methods that estimate the parameters of these neural mass models using real EEG data can

then be used to infer and track key physiological variables, such as post-synaptic potential (PSP) amplitudes and rate

constants, and these estimates in turn can be used to determine the current brain state (e.g. awake, anesthetised,

asleep, or seizure) based on their relationship to the EEG signal dynamics and amplitude spectra (Freestone et al.,

2013; Moran et al., 2013; Kuhlmann et al., 2015a).30

Various approaches for parameter estimation of neural mass models have been developed (Wendling et al., 2002;

Moran et al., 2013; Chong et al., 2011; Postoyan et al., 2012; Chong et al., 2012a,b, 2015; Freestone et al., 2011,

2013, 2014). Given that neural mass models are generally nonlinear and related noise sources can be considered to

be Gaussian white noise (Liley et al., 2002; Nunez & Srinivasan, 2006), this paper presents the application of the

unscented Kalman filter (UKF) to state and parameter estimation of a neural mass model of population activity in35

cerebral cortex. The goals are (1) to evaluate whether the parameter estimations can be used to efficiently track anes-
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thetic brain states during anesthesia in humans using the gamma-amino-butyric-acid-A (GABA-A) receptor agonist

propofol (Rudolph & Antkowiak, 2004), and (2) to evaluate if the approach can simultaneously provide information

about the key changes in inhibitory post-synaptic potential (IPSP) amplitude and rate constant parameters known

to vary with the level of propofol concentration (Collins, 1988; Bieda & MacIver, 2004; Wang et al., 2004; Ying &40

Goldstein, 2005; McCarthy et al., 2008; Wang, 2009; Hindriks & van Putten, 2012; Hutt, 2013). Such information

may help anesthesiologists monitor the depth of anesthesia as well as understand the patient’s underlying inhibitory

systems during anesthesia and, once such methods have matured, provide improvements in general anesthesia and

surgery outcomes.

2. Methods45

Tracking of anesthetic brain state with neural mass model parameters was performed using a distribution-based

approach (c.f. Zikov et al. (2006)) to classify the brain states of an individual by comparing the distribution of recently

calculated neural mass model parameter estimates computed from single-channel frontal EEG data to distributions

of the same variables for each brain state that have been computed from data from a set of ‘training’ subjects. The

Jansen-Rit (JR) neural mass model with a 6 dimensional state space (Jansen & Rit, 1995) is the primary neural mass50

model considered here. The choice of this model lies in an Occam’s razor approach where the model with the fewest

assumptions that still describes the data and underlying physiology should be selected. This is consistent with the

goal of using models that are simple enough to be part of computationally efficient brain state tracking algorithms.

Thus one goal here is to begin to evaluate the ability of simple models of population activity in cerebral cortex, like

the JR model, to track anesthetic brain states before considering more complex models. Although there are several55

other neural models that have been specifically developed to describe the EEG for different anesthetics (Bojak &

Liley, 2005; McCarthy et al., 2008; Ching et al., 2010; Steyn-Ross et al., 2012; Hindriks & van Putten, 2012; Hutt,

2013; Hutt & Buhry, 2014) this paper focuses on the JR model (and extensions of this model that include inhibition

of inhibition) to provide a benchmark for future studies with more complex models in order to find the simplest

neural mass model that is accurate, informative and efficient enough for clinical application.60

In order to benchmark the neural mass model approach it is compared to approaches based on (1) ARMA model

parameter estimates obtained using the Broersen technique (Broersen, 2002, 2006) or (2) one of the best performing

depth of anesthesia monitoring measures, Higuchi fractal dimension (HFD) (Higuchi, 1988; Ferenets et al., 2007).

The evaluation of the approaches involves applying the distribution-based approach to classify the brain states,

where the distributions are composed of (i) neural mass model parameter estimates, (ii) ARMA model parameter65

estimates, or (iii) HFD values. ARMA models provide a generic model-based benchmark and the Broersen technique

for ARMA models is the primary estimation technique underlying the Brain anesthesia Response (BAR) monitor

(Cortical Dynamics, Australia) (Liley et al., 2008, 2010; Shoushtarian et al., 2015b,a) developed in part by one of

the authors. On the other hand, the HFD, when evaluated with the same dataset as used in this study, has been

demonstrated to perform as well as or better than, three entropy-based features, two commercial entropy-based70

features, and three features used in the most common commercial depth of anesthesia monitoring device, the BIS
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monitor (Covidian, Ireland) (Ferenets et al., 2007).

The methods underpinning our distribution-based classification approach proceed in two stages: first the meth-

ods underlying the JR model, neural mass model parameter estimation, ARMA modelling, ARMA model estimation

and the HFD are described. Then the depth of anesthesia monitoring EEG data and the distribution-based track-75

ing/classification approach are described. To complement the classification performance analysis of the different

distribution-based approaches we further consider the following: (1) a monotonicity analysis of JR model parameter

estimates to determine whether estimates of the parameters considered to be effected by propofol anesthesia vary in

the same direction as known physiologically for increasing concentrations of propofol; (2) an observability and error

analysis of the JR model states and parameters to further understand the influence of the parameter space on JR80

model state and parameter estimation; (3) an error analysis of extensions of the JR model that include inhibition

of inhibition to assess if these extensions would be able to describe the power spectra for different anesthetic brain

states.

2.1. Jansen-Rit (JR) neural mass model

The JR neural mass model (Jansen & Rit, 1995) of population activity in cerebral cortex, or modifications

thereof, forms the basis of many current approaches to infer underlying physiological variables from sparsely sampled

electrophysiological recordings (Wendling et al., 2002; Moran et al., 2013; Chong et al., 2011; Postoyan et al., 2012;

Chong et al., 2012a,b, 2015; Freestone et al., 2011, 2013, 2014). This combined with the simplicity of the JR model

makes it a suitable first choice in the search for the simplest neural mass model that is both accurate, informative and

efficient enough for clinical application in anesthesia. The key features of the JR model considered here are illustrated

in Figure 1(A). The model consists of three cortical populations: excitatory pyramidal cells, spiny stellate excitatory

cells and inhibitory interneurons. The pyramidal population is driven by endogenous input activity and excites

the spiny stellate excitatory cells and inhibitory interneurons, while the spiny stellate and inhibitory interneuron

populations provide excitatory and inhibitory feedback, respectively, to the pyramidal population. The synaptic

dynamics are governed by the population excitatory postsynaptic potential (EPSP) response kernel

he(t;A, a) = H(t)Aat exp (−at) , (1)

and the population IPSP response kernel

hi(t;B, b) = H(t)Bbt exp (−bt) , (2)

where t is time, A and B are the amplitude parameters and a and b are the rate constants for the EPSP and

IPSP responses, respectively, and H(t) is the Heaviside step function. The mean membrane potential, v(t), of each

population is converted into a population firing rate using a sigmoidal transfer function,

S (v(t)) =
2e0

1 + exp (r [v0 − v(t)])
(3)
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where e0 is a scaling parameter, r controls the slope of the sigmoid and v0 is a threshold parameter. The configuration

of EPSP and IPSP response kernels and firing rate transfer functions in the model is schematised in Figure 1(B).

The endogenous noise driving the pyramidal population is captured by the input µ(t) and the EEG output signal

of the model is considered to be mean membrane potential of the pyramidal population. The full set of equations

defining the model are as follows

ẋ1(t) =x4(t) (4)

ẋ4(t) =AaS(x2(t)− x3(t))− 2ax4(t)− a2x1(t) (5)

ẋ2(t) =x5(t) (6)

ẋ5(t) =Aa [µ(t) + c2S(c1x1(t))]− 2ax5(t)− a2x2(t) (7)

ẋ3(t) =x6(t) (8)

ẋ6(t) =Bb [c4S(c3x1(t))]− 2bx6(t)− b2x3(t) (9)

where x1, x2 and x3 are the outputs of the three PSP kernels, c1, c2, c3 and c4, are connectivity constants and85

the single-channel EEG output signal is given by y(t) = x2(t) − x3(t). Unless specified elsewhere the parameter

values used are the same as those specified by Jansen & Rit (1995). For any forward simulations of the model

Euler-Marayama numerical integration (Kloeden & Platen, 1992) was used with a time step of ∆t = 0.1 ms and

the input µ(t) was modelled as Gaussian white noise with a scaled standard deviation of
√

∆tAaσ with σ = 5.74.

Moreover for simulations where the input mean was constant, this value was taken to be 220.90

2.2. JR model state and parameter estimation

To track the states and selected parameters of the JR model estimated from frontal single-channel EEG mea-

surements the time domain method of unscented Kalman filtering (UKF) (Simon, 2006; Freestone et al., 2013) is

used. The UKF updates parameter estimates with each new EEG sample received and its computational efficiency

as compared to more complicated filtering or estimation techniques (Simon, 2006) means that it holds potential95

for real-time tracking of brain states. Moreover, the UKF works well for nonlinear systems like the JR model and

it assumes Gaussian data, however, this is a reasonable assumption for EEG data (Freestone et al., 2013). This

approach has been successfully applied to the tracking of seizure dynamics through feeding single channel EEG into

the UKF to invert the JR model and estimate its state and up to 5 parameters including the four PSP parameters

A, a, B and b (Freestone et al., 2013). Here the same methods are employed, however, the focus is on estimating100

the key parameters that are most effected by increases in propofol concentration, the IPSP amplitude B and IPSP

rate constant b (Collins, 1988; Krasowski et al., 1998; Bai et al., 1999, 2001; Siegwart et al., 2002; Dong & Xu, 2002;

Kitamura et al., 2003; Wang et al., 2004; Feng & Macdonald, 2004; Bieda & MacIver, 2004; Ying & Goldstein, 2005;

McCarthy et al., 2008; Drexler et al., 2009; Wang, 2009; Yue et al., 2011; Wakita et al., 2013; Hutt, 2013). These two

parameters are considered to primarily capture the shape of the EEG amplitude spectrum, while a third parameter,105

the input to the model µ is also estimated to track scaling of the amplitude spectrum. All other model parameters
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are treated as constants. Limiting the parameters to be estimated as θ = [ B b µ ]T somewhat constrains the

ability of the JR model to fit the EEG data, however, it enables evaluation of whether the IPSP amplitude B and

IPSP rate constant b increase and decrease, respectively, as is observed when the concentration of propofol anesthetic

increases (Kitamura et al., 2003; Wang et al., 2004; Bieda & MacIver, 2004; Ying & Goldstein, 2005; McCarthy et al.,110

2008; Wang, 2009; Yue et al., 2011; Wakita et al., 2013; Hutt, 2013). This then can act as a benchmark for more

complex and accurate models of the EEG linked to propofol anesthesia for the purposes of anesthesia monitoring

and simultaneous estimation of known parameter changes.

The UKF approach relies on defining the JR model in the following discrete-time state space form

xt+1 =f (xt,θt) + εt (10)

θt+1 =θt +ϕt (11)

yt =Cxt + et, (12)

where xt ∈ R6 is the vector of JR model states, and the disturbance terms εt, ϕt and et capture model error, param-

eter drift and EEG measurement noise, respectively, and are all defined by independent and identically distributed

Gaussian processes. Considering the parameters as constant plus a drift reflects the idea that the parameters are

slowly varying compared to the states. The EEG output defined here is the same as described earlier for the JR

model but now also includes the measurement noise. By augmenting the state vector with parameters that are to be

estimated, the UKF algorithm can be applied and state and parameter estimation can be performed simultaneously.

The augmented state vector is defined as

xθt =
[
xTt θTt

]T
(13)

and the augmented state vector estimate is given by

x̂θt =
[
x̂Tt θ̂

T

t

]T
(14)

where θ̂t = [ B̂t b̂t µ̂t ]T and x̂t are the parameter and original state estimates, respectively. The time varying

parameter estimates can then be found by determining the a posteriori augmented state estimate

x̂θt = x̂θt+ = E
[
xθt |y1, y2, . . . , yt

]
, (15)

using the UKF. In this case the a posteriori augmented state estimate is the expected value of the current augmented

state at time t given the history of all EEG measurements (or model output), y1, y2, . . . , yt, under Gaussian assump-115

tions. The discrete-time UKF is a well known algorithm in the engineering literature and the reader is referred to

Simon (2006) and Freestone et al. (2013) for further details.

In a spatial sense, this single-channel EEG analysis using the UKF with the JR model is a simplification of the

more spatially complex forward and inverse modelling of electromagnetic source imaging (Nunez & Srinivasan, 2006).
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Such an approach is warranted here as the focus is on clinically practical anesthetic state monitoring using neural120

mass models. In a temporal sense, this approach is more complex than more standard source imaging approaches

(Nunez & Srinivasan, 2006).

2.3. ARMA models

ARMA time series models provide an accurate linear model description of single-channel EEG (Broersen, 2006).

The basic form of an ARMA model is as follows:

yt = −
p∑
j=1

a(j)yt−j +

q∑
k=1

b(k)zt−k + zt, (16)

where yt is the observed (frontal EEG) signal, and a(j) and b(k) are the autoregressive (AR) and moving-average

(MA) parameters, respectively, at time t. The constants p and q are the corresponding orders of the AR and MA125

parts, respectively, and zt is the observation error or innovation process. The innovation process is assumed to be

a Gaussian white noise process with zero mean and variance σ2
zt . Based on prior investigations a model order of

(p = 2, q = 1) was considered (Kuhlmann et al., 2015b). Although empirical determinations of optimal ARMA fits

obtained with resting awake eyes-closed EEG suggest orders of (p = 3−14, q = 2−5) (Schack & Krause, 1995; Tseng

et al., 1995), such a low order model of (p = 2, q = 1) reduces the degree of overfitting to the EEG and therefore130

provides good out-of-sample testing classification performance (Kuhlmann et al., 2015b).

2.4. ARMA estimation with the Broersen Technique

For a given epoch of single-channel data the Broersen technique was used to estimate an invertible and stationary

ARMA model using a variant of Durbin methods with optimal intermediate autoregressive order on zero meaned data

(Broersen, 2002, 2006). The Broersen method of ARMA model/parameter estimation is a well established method135

and is implemented directly in the ARMASA MATLAB Toolbox (Broersen, 2002, 2006). Subsequent estimates of

the innovation variance, σ2
zt , are calculated as the standard deviation of the zero meaned signal epoch divided by

the square root of the power gain of the derived filter/ARMA model. With regard to Equation 16 the AR and MA

parameters are considered constant over a finite analysis epoch.

2.5. Higuchi fractal dimension - HFD140

HFD is a nonlinear dynamical measure of the fractal dimension of a time-series that quantifies the scaling of

the length of the time series, when viewed geometrically as a curve, as it is successively subsampled (Higuchi,

1988). HFD has very low computational complexity because it can be calculated in the time domain. Moreover

as described above, HFD performs well as a feature for frontal-EEG-based depth of anesthesia monitoring. In

particular, empirical investigations have established that HFD calculated on the 6-47 Hz frequency band gives the145

best performance (Ferenets et al., 2007). Here HFD was calculated on the 6-47 Hz frequency band for finite length

epochs using the method outlined by Ferenets et al Ferenets et al. (2007).
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Table 1: Responsiveness Scores of the Modified OAA/S
Scale.

Score Responsiveness
5 Responds readily to name spoken in normal

tone
4 Lethargic response to name spoken in normal

tone
3 Responds only after name is called loudly

and/or repeatedly
2 Responds only after mild prodding or shaking
1 Responds only after painful trapezius squeeze
0 No response after painful trapezius squeeze

2.6. Depth of anesthesia monitoring data

The data analysed here has been used in previous studies on depth of anesthesia monitoring (Ferenets et al.,

2007; Liley et al., 2010). Detailed information about the patient cohort and anesthetic protocols for this dataset can150

be found in Ferenets et al. (2007). The main details are summarized here. Frontal EEG data was recorded from 15

subjects undergoing propofol anesthesia from the awake to the anesthetised state using the M-Entropy module of

the S/5 Anesthesia Monitor (GE Healthcare Finland Oy). The original EEG data were bandpass filtered at 0.5-118

Hz and sampled at 400 Hz. The standard entropy sensor of the S/5 Monitor was applied with a slightly modified

positioning: the two recording electrodes of the sensor were positioned bilaterally on the forehead approximately 5155

cm above the eyebrows and 4 cm from the midline in either direction. The ground electrode was positioned between

the two recording electrodes. This montage was selected to minimize electromyographic activity that normally

contributes to the calculation of the State Entropy and Response Entropy measures of the S/5 monitor. To start

each subject study, a propofol effect site concentration of 0.75 µg/ml was targeted, then increased every 4 min by

0.25-0.30 µg/ml until loss of response to all relevant clinical measures of anesthetic depth was observed. Behavioural160

responsiveness of each subject was assessed using the modified Observers Assessment of Alertness/Sedation (OAA/S)

score, a subjective clinical measure of arousal, alertness and sedation (Chernik et al., 1990). This behavioural scale

ranges from 5 for the fully alert/awake state to 0 for complete unresponsiveness to a painful stimulus (see Table 1).

2.7. Resting state eyes-closed control data

To control against the possibility that UKF parameter estimates may by drifting due to unknown signal changes165

or saturation of the sigmoidal transfer function, resting state eyes-closed data from a single individual was used.

This 5 minute segment of frontal EEG data was obtained from the FPz position referenced to linked mastoids in

a previous study (Foster & Liley, 2011). The data was sampled at 500 Hz with a 0.1-70 Hz bandpass anti-aliasing

filter and line noise and eye blink artifacts were subsequently removed (Foster & Liley, 2011).

2.8. Data pre-processing and artifact rejection170

The data analysis for the JR and ARMA model estimation follows in part a previously described approach of

the authors that involves the estimation of cortical state and cortical input using ARMA models in order to track
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depth of anesthesia and analgesia, respectively (Liley et al., 2010). HFD was calculated according to the method

detailed in Ferenets et al. (2007). The JR and ARMA model parameter estimates and the HFD were all calculated

on contiguous 1 s non-overlapping data epochs. The 1 s epochs were assessed for artifact as outlined below and175

artifact containing epochs were ignored, otherwise epochs were accepted.

Because the UKF is an iterative algorithm it needs the data to be approximately continuous. The word ‘approx-

imate’ is used here because if a 1-second window is removed or ignored due to artifact then for the next accepted

1-second window the UKF was initialised using values from the end of the last accepted window. Doing so avoids

large artifact induced fluctuations of the parameter estimates that can affect the numerical stablity of the algorithm180

and classification sensitivity. The Broersen method used to estimate the ARMA (p = 2, q = 1) model parameters

operates on a epoch-by-epoch basis and therefore estimation for the current window is not effected by estimates in

the previous window. The same is true for the HFD.

For the UKF applied to the JR model approach, prior to windowing, the data was low pass filtered at 45 Hz with

a 5th order Butterworth filter to remove 50 Hz line noise and resampled up to 1000 Hz to ensure numerical accuracy185

of the UKF. Application of the UKF with the JR model to real EEG data then required rescaling of the mean and

standard deviation of the EEG signal to match that of the JR model for each considered region in parameter space.

Moreover, when the UKF approach is applied to the OAA/S classification of real data the JR model and the initial

parameter estimates, θ̂0, are set to the standard Jansen-Rit parameter values (Jansen & Rit, 1995). The effect of

different regions of parameter space are considered in the additional analysis (see section 2.10).190

For ARMA modelling, prior to windowing, the data was resampled to 80 Hz using a finite impulse response

antialiasing filter with a sharp cutoff at 40 Hz, with the transition band made sufficiently sharp to minimize any

aliasing. This was performed to avoid spurious fitting to 50-Hz line noise spectral peaks or any low-pass filter band

edges.

For the HFD analysis, the raw data were filtered using a 6-47 Hz pass-band linear phase equiripple filter as195

previously described (Ferenets et al., 2007). The HFD was then calculated on 1-second epochs of this filtered data

(Accardo et al., 1997).

Artifact rejection of epochs involved calculating the electromyogram (defined as the total power between 70-110

Hz excluding a notch at 98-102 Hz due to 50 Hz electric power harmonic at 100 Hz) using the raw EEG data. The

root mean square (RMS) amplitude was also calculated from the EEG time series resampled at 80 Hz based on200

prior studies (Liley et al., 2010). Epochs were automatically excluded from further analysis if any of the following

occurred: total electromyographic power greater than approximately 400 µV2 or less than approximately 0.004 µV2,

RMS amplitude less than 5 µV or greater than 150 µV, or amplitude distributions were not normal (based on

Lilliefors test at P<0.01). Given that the UKF was applied to the EEG time series resampled at 1000 Hz a second

artifact rejection approach was also considered for the UKF analysis where the RMS amplitude and Lilliefors test205

was calculated using the EEG time series sampled at 1000 Hz instead of 80 Hz.
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Table 2: Training and testing sets of cross-validation anal-
ysis.

Set Subject # OAA/S epochs # patients per
indices OAA/S

0 1 2 3 4 5 0 1 2 3 4 5
Train
1

1, 3, 4, 6, 7,
10, 11, 15

7 2 6 7 22 35 7 2 5 4 8 8

Test
1

2, 5, 8, 9, 12,
13, 14

6 2 6 9 24 36 6 2 5 3 7 7

Train
2

1, 5, 7, 8, 9,
10, 13, 15

7 2 6 7 23 38 7 2 6 4 8 8

Test
2

2, 3, 4, 6, 11,
12, 14

6 2 6 9 23 33 6 2 4 3 7 7

Train
3

2, 5, 6, 7, 11,
12, 13, 15

7 2 6 7 21 36 7 2 5 4 8 8

Test
3

1, 3, 4, 8, 9,
10, 14

6 2 6 9 25 35 6 2 5 3 7 7

# OAA/S epochs: number of OAA/S epochs used for each
OAA/S score for each set; # patients per OAA/S: number
of patients contributing data for each OAA/S score for
each set.

2.9. Tracking/classifying OAA/S state using distributions

The tracking/classification of the OAA/S score was performed using discrete distributions of either the estimated

JR or ARMA model parameters (see sections 2.2 and 2.4) or Higuchi Fractal Dimension (see section 2.5). The

primary goal is to track the OAA/S score for an arbitrary individual undergoing general anesthesia during surgery.210

Out-of-sample cross validation is applied here to evaluate the ability of the considered approaches to track/classify

the OAA/S score of an arbitrary subject. This involves breaking up the data into training and testing sets that

provide an approximately equal number of patients and number of OAA/S epochs for each OAA/S score. Moreover,

the training sets were chosen such that no more than half of the patients are the same in each training set. This

provides a balance between training and testing sets while preserving differences between the training sets. Three-fold215

cross validation was applied, meaning three train and test set pairs were created for validation. The data contained

in each of these sets is detailed in Table 2. OAA/S epochs were defined to be 30-second segments prior to the

OAA/S measurement times. This duration corresponds approximately to the amount of time it takes to obtain

an OAA/S measurement. The OAA/S measurements were written down in the 10 seconds preceding each increase

in propofol concentration. Only these OAA/S epochs were used in the cross-validation classification performance220

analysis, however, in practice the same training distributions can be used for tracking of brain states with continuous

data. For an example case, tracking in this sense is considered here, where new parameter estimates are obtained

every second and the current distribution of parameter estimates is computed over the last 30 seconds of data and is

updated every second. Here ‘current distribution’ essentially refers to the distribution of the most recent parameter

estimates obtained from scrolling EEG data.225

For the case of the JR or ARMA models, training distributions of estimated parameters for each model for each
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OAA/S score, P
(o)
ij..k, were obtained from the OAA/S epochs for all of the subjects in a training set pooled together

for each OAA/S score, where o indexes the OAA/S score and ij..k are the dimensions of the discrete probability

distribution which correspond to the estimated parameters. For the case of HFD, univariate training distributions

were constructed from the calculated HFD values. In this sense training does not involve any form of learning but

rather the creation of distributions for each OAA/S score using the training set data. Then the current OAA/S

score is estimated by comparing the distributions of the estimated parameters, or HFD values, of a current 30-second

(OAA/S) epoch, P
(t)
ij..k, to the 6 training distributions of the estimated parameters, or HFD values, corresponding to

the 6 OAA/S scores. This is achieved by taking the estimated OAA/S score for a current individual OAA/S epoch

to be the minimum of the total variation (TV) between the current distribution and each of the 6 OAA/S score

training distributions:

TV
(o)
t =

∑
i,j,..,k

1

2

∣∣∣P (o)
ij..k − P

(t)
ij..k

∣∣∣ , (17)

Ôt = argminoTV
(o)
t . (18)

Total variation takes on values between 0 for exact matching distributions and 1 for non-overlapping distributions.

The OAA/S index o with the smallest total variation (i.e. closest match to the different OAA/S level training

distributions) is chosen to be the estimate, Ôt. This estimate is compared with the true OAA/S score for the 30-

second epoch in order to assess classification sensitivity. This is done for each OAA/S epoch in the training and

testing sets. Different measures, such as Jensen-Shannon Divergence (Lin, 1991) or earth mover’s distance (Levina230

& Bickel, 2001), could be used to compare differences in probability distributions, however, the main focus here is

to compare the JR and ARMA model and HFD approaches using the same distribution-based method.

2.9.1. Definition of discrete probability distributions

Discrete probability distributions were defined as multivariate functions of estimated parameters or univariate

functions of HFD values. The discrete probability distributions were created by dividing each dimension into N bins235

where the bin centres were selected to uniformly span the range of values defined by the training set. In addition,

all bin widths were equal except for bins on the edges of the distribution which were allowed to cover the remaining

possible range of values that could be encountered in an arbitrary test set (i.e. −∞ to ∞). In the analysis presented

here N = 5 bins were considered for each JR or ARMA model parameter dimension. The number of bins was

explored and N = 5 provided a balance between under and overfitting the data (results not shown). For the case240

of HFD, since there is only one feature dimension, this dimension was divided into 20 bins when computing the

corresponding discrete probability distribution.

2.10. Additional Analysis

2.10.1. Monotonicity analysis of JR model parameter estimates

To assess whether the IPSP amplitude estimates, B̂t, and IPSP rate constant estimates, b̂t, respectively increase

and decrease monotonically with increases in propofol concentration a monotonicity index was calculated on the
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estimates as follows:

Ω =
0.5

Nt

∑
k=1,...,Nt

[∑
i=1,..,k 1B̂i<B̂k

(B̂i, B̂k)

k
+

∑
i=1,..,k 1b̂i>b̂k

(b̂i, b̂k)

k

]
(19)

where Nt is the number of parameter estimate samples for an individual, k = 1, ..., Nt indexes this sequence of

samples and

1x<y(x, y) = 1 if x < y, or 0 otherwise, (20)

and

1x>y(x, y) = 1 if x > y, or 0 otherwise, (21)

are indicator functions. The monotonicity index, Ω, takes on values close to 1 when B̂t and b̂t increase and decrease245

perfectly monotonically, respectively, as time progresses with increases in propofol concentration, while Ω shifts

towards 0 when the parameter estimates no longer vary monotonically in the desired directions. The parameter

space of the JR model was explored to find a region of the parameter space in which parameter estimates would vary

monotonically in the desired directions when applied to subject 9, a subject who displayed all OAA/S behavioural

levels. In particular, the EPSP amplitude A, EPSP rate constant a and the initial IPSP rate constant estimate b̂0250

were varied for many different runs of the UKF. The rate constants were focused on as they primarily control the

preferred frequencies of the model output (Jansen & Rit, 1995), while EPSP amplitude was varied to investigate

what happens when the balance of excitation and inhibition is changed.

2.10.2. JR model observability and error analysis of UKF estimation

To further investigate how UKF parameter estimation depends on the region of the JR model parameter space,255

the mean square error (MSE) of the parameter estimates and the observability index was computed across multiple

forward simulations of the JR model spanning the same region of parameter space considered in the monotonicity

analysis: the EPSP amplitude A, EPSP rate constant a and the IPSP rate constant b. For the calculation of MSE,

simulations were averaged over the cases when the initial parameter estimates θ̂ were set 20% above or below the

true parameter values θ.260

The observability index, δ, is a control theoretic concept that essentially tells us how well we can estimate

the states of a system in a deterministic sense without consideration of the sources of noise (Hermann & Krener,

1977). Here the observability index is calculated for the augmented state space system defining the JR model in

Equation (13). Given that the JR model is a nonlinear system, a method for nonlinear observability (Hermann &

Krener, 1977) has been employed that follows the approach of Whalen et al. (2015). The reader is referred to this265

paper for mathematical details, however, it is briefly noted that the observability index is taken to be the average over

many simulated samples and state trajectories of the absolute ratio of the minimum and maximum singular values of

the inner product of the observability matrix evaluated at each sample using the Jacobian of the Lie derivative map

of the JR model (Whalen et al., 2015). This definition produces an observability index with the range 0 ≤ δ ≤ 1

where values closer to 1 indicate full observability of the states.270
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2.10.3. Error analysis of extensions of the JR model

To consider whether extensions of the JR model may give more physiologically realistic estimation of the variation

of IPSP amplitude and IPSP rate constant as propofol concentration increases, extensions of the JR model that

include inhibition of inhibition were evaluated. Extending the model to include inhibition of inhibition is justified

because previous anesthesia modelling studies have suggested that inhibition of the inhibitory population by itself

at the cortical level is important for describing the EEG changes linked to anesthesia (Bojak & Liley, 2005; Hindriks

& van Putten, 2012). Two types of extensions were considered. The first simply involved feeding the output of

the IPSP kernel back to the inhibitory population input by way of an extra connectivty parameter c5. The second

involved a similar new connection, however, the connection was mediated by an additional IPSP kernel parametrised

by the amplitude and rate constant parameters M and m, respectively. The equations defining the first extension

are as follows

ż1(t) =z4(t) (22)

ż4(t) =AaS(z2(t)− z3(t))− 2az4(t)− a2z1(t) (23)

ż2(t) =z5(t) (24)

ż5(t) =Aa [µ(t) + c2S(c1z1(t))]− 2az5(t)− a2z2(t) (25)

ż3(t) =z6(t) (26)

ż6(t) =Bb

[
c4S

(
c3z1(t)− c5

c4
z3(t)

)]
− 2bz6(t)− b2z3(t) (27)

where the − c5c4 z3(t) term in the last state equation is the principle difference with the original JR model.

The equations defining the second extension are as follows

v̇1(t) =v5(t) (28)

v̇5(t) =AaS(v2(t)− v3(t))− 2av5(t)− a2v1(t) (29)

v̇2(t) =v6(t) (30)

v̇6(t) =Aa [µ(t) + c2S(c1v1(t))]− 2av6(t)− a2v2(t) (31)

v̇3(t) =v7(t) (32)

v̇7(t) =Bb [c4S (c3v1(t)− v4(t))]− 2bv7(t)− b2v3(t) (33)

v̇4(t) =v8(t) (34)

v̇8(t) =Mm [c5S (c3v1(t)− v4(t))]− 2mv8(t)−m2v4(t) (35)

where the addition of the extra IPSP block introduces two new dimensions to the state-space of the model. The

block diagrams of the first and second JR model extensions are displayed in Figures 5(A) and (B), respectively.

To evaluate whether the extended models could give more realistic estimation of the IPSP amplitude and rate275

constant variation, for subject 9 who experienced all OAA/S levels, the average amplitude spectra of each OAA/S
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level was compared using the MSE to the average amplitude spectra of forward simulations of the models as the

level of inhibition of inhibition (i.e. c5) was varied. For the first extended model, multiple forward simulations

were performed across different values of the IPSP amplitude B and IPSP rate constant b to assess if there exists a

trajectory through this parameter subspace where the parameters could move in the physiologically known directions280

as the OAA/S level decreases (i.e. propofol concentration increases). This was achieved by creating maps of the

OAA/S score linked to the average data amplitude spectrum that best matches the average amplitude spectrum for

multiple forward simulations for each point in the considered parameter subspace. For the second extended model

the same approach was considered, however, the IPSP amplitude B was held fixed at the standard value of B = 22

(Jansen & Rit, 1995) while the IPSP rate constants b and m were varied given that other modelling studies suggest285

that the IPSP rate constants are critically important in modelling propofol EEG (Hindriks & van Putten, 2012;

Hutt, 2013)

3. Results

It is demonstrated that the UKF reliably estimates parameters for forward simulations of the JR model. An

example of tracking the OAA/S state using the UKF approach is then provided, along with a comparison of the290

classification performance of the JR model, ARMA model and HFD approaches. The monotonicity, observability

and error analysis of the JR model/UKF approach is then considered, along with the error analysis of extensions of

the JR model.

3.1. UKF estimation of time-varying JR model parameters

Figure 1(C) demonstrates that the UKF, when applied to an example forward simulation of the JR model, can295

produce parameter estimates (black) that reliably track the true parameters (red), IPSP amplitude B, IPSP rate

constant b and input µ, as they vary over a 100 second simulation.

3.2. Example of UKF based OAA/S score tracking

An example of tracking the OAA/S score using the UKF approach with the JR model is given in Figure 2(A).

The figure shows the raw EEG signal for subject 9 who experienced all OAA/S levels. The beginning of the recording300

displays significant artifact which disappears after the propofol induction is begun at the SI marker and the subject

has settled. The estimates of the IPSP amplitude B̂, IPSP rate constant b̂ and input µ̂ are displayed below the

raw data. It can be seen that the IPSP amplitude estimate increases with increasing propofol concentration until

loss of responsiveness, as is consistent with observed physiology, however, the IPSP rate constant estimate does not

decrease as is observed physiologically. Moreover, the input estimate increases with an overall increase in amplitude305

of the EEG signal as is expected. The fifth and sixth subplots of Figure 2(A) provide illustration of OAA/S score

tracking using training set 2 to generate the training distribution. The fifth subplot displays the total variation time

series for each OAA/S score, TV
(o)
t , illustrating how the lowest total variation values shift from corresponding to

an OAA/S score of predominantly 5 (red) at the beginning through to predominantly 0 (pale pink) as the propofol
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C

Figure 1: (A) Laminar cortical depiction of the JR model which consists of pyramidal, spiny stellate excitatory
interneuron and inhibitory interneuron populations. The pyramidal population excites the stellate and inhibitory
populations, is driven by endogenous input, is excited by the stellate population and inhibited by the inhibitory
population. (B) The block diagram of the JR model. The model is driven by the input µ(t) and the mean membrane
potential of the pyramidal population is considered to be the output and approximately equivalent to the EEG.
Excitatory, he(t;A, a), and inhibitory, hi(t;B, b), PSP response kernels provide synaptic contributions to mean
population membrane potentials, while the sigmoidal firing rate function S(.) produces the output firing rates of the
stellate (purple), pyramidal (aqua) and inhibitory (red) populations. The connectivity strengths between populations
are captured by c1, c2, c3 and c4. (C) UKF parameter estimation example for a forward simulation of the JR model
with time-varying parameters. Top left: DC-filtered version of the JR model EEG output yt; Top right: true IPSP
amplitude time series Bt (red) and its estimates B̂t (black); Bottom Left: true IPSP rate constant time series bt
(red) and its estimates b̂t (black); Bottom right: true input time series µt (red) and its estimates µ̂t (black).

concentration increases. The sixth subplot shows how the estimate of the OAA/S score Ôt, and its moving average310

over 30 seconds
¯̂
Ot, decreases as the actual OAA/S score decreases.

To verify the parameter estimates obtained in Figure 2(A), amplitude spectra of forward simulations of the model

for the average parameter estimates corresponding to each OAA/S level were compared to the amplitude spectra

of the data, yt, and the data estimated by the UKF, ŷt, corresponding to each OAA/S level. Figure 2(B) plots

this comparison where the forward simulations are performed by setting the average parameter estimates for each315

OAA/S level to be the actual parameter values used in the forward simulations. It can be seen that the average

amplitude spectra of forward simulations (red) provides a reasonable match to the average amplitude spectra for the

data (blue) for each OAA/S level by capturing the main shape and or alpha frequency peak. Note there is strong
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Figure 2: (A) Example of tracking depth of anesthesia using the UKF-based JR model parameter distribution
approach. 1st row: Raw EEG signal for subject 9. 2nd row: IPSP amplitude estimate B̂. 3rd row: IPSP rate
constant estimate b̂. 4th row: Input estimate µ̂ . 5th row: Total variation time series for each OAA/S score. 6th
row: OAA/S score estimate. Vertical dashed lines and numbers indicate time of OAA/S measurment and OAA/S
score, respectively. SI: start of anesthetic induction. White gaps in all graphs indicate periods where artifact has
been removed. TV: Total variation. (B) Amplitude spectra for the EEG data yt (blue), the UKF data estimates ŷt
(green) and forward simulations using the average estimated parameters (red) for each OAA/S level for the same
data analysis in (A).

overlap between the average amplitude spectra for the data (blue) and the UKF estimate of the data (green). This is

why the green UKF trace makes it difficult to see the blue data trace. The reason for this strong overlap is because320

the UKF obtains the parameter estimates by trying to set its estimate of the data to be as close as possible to the

actual EEG data signal. Therefore the best way to verify the parameter estimates is instead through the amplitude

spectra of forward simulations.

3.3. Comparison of OAA/S classification approaches

The training and testing OAA/S classification performance for the comparison of the JR and ARMA model325

parameter estimate and HFD approaches within the distribution-based framework is shown in Tables 3 and 4,

respectively. These results correspond to the three-fold cross-validation described in the methods. Here performance

evaluation focuses on total sensitivity, as well as sensitivity for each OAA/S class. Sensitivities are given as the

proportion of correctly classified OAA/S epochs and thus take values between 0 and 1. Given that there are six

OAA/S classes, the chance level performance for each OAA/S score sensitivity is 1/6= 0.17. The ‘nearest neighbour’330

sensitivity is also shown because there is strong overlap in the distributions of estimated parameters for adjacent
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OAA/S scores and nearest neighbour sensitivity accounts for this. Nearest neighbour sensitivity is defined by checking

if the current OAA/S score estimate is within range of the true OAA/S score ±1. In Tables 3 and 4 the rows with

bold sensitivities correspond to the best performing UKF method. In the following, training sensitivity and testing

sensitivity refer to the sensitivities obtained for the training and testing sets, respectively.335

Generally, the UKF method with the distribution dependent on the estimated parameters B and b and based

on the second artifact rejection approach involving the RMS amplitude and Lilliefors test calculated on the 1000

Hz sampled signal gave the better testing sensistivity of the UKF based approaches with an average total testing

sensitivity of 0.51 ± 0.03 (mean ± standard deviation; ’average’ refers to average over cross-validation sets; ’total’

refers to total over all OAA/S classes) and an average total nearest neighbour testing sensitivity of 0.75 ± 0.05. By340

comparison the same UKF method based on the first artifact rejection approach involving the RMS amplitude and

Lilliefors test calculated on the 80 Hz sampled signal gave an average total testing sensitivity of 0.42 ± 0.02 and an

average total nearest neighbour testing sensitivity of 0.69 ± 0.08.

Of all methods considered, the (2,1) order ARMA model gave the best overall performance with an average total

testing sensitivity of 0.58 ± 0.05 and an average total nearest neighbour testing sensitivity of 0.91 ± 0.06. On the345

other hand, the HFD approach obtained an average total testing sensitivity of 0.50 ± 0.02, which is close to the best

UKF case, and an average total nearest neighbour sensitivity of 0.88 ± 0.01, which is better than the best UKF case.

Comparing Tables 3 and 4 it can be noted that the training sensitivtiy is generally better than the testing sensitivity

as is expected.

3.4. Monotonicity, observability and error analysis of the JR model/UKF approach350

The monotonicity analysis was performed to see if parameter estimates from real data vary in the physiologically

known direction as propofol concentration increases when considering regions of parameter space other than the

standard JR model parameters. This monotonicity analysis of the UKF parameter estimates across a large region

of the JR model parameter space (spanning A, a and b̂0) is captured in Figure 3(A). In the figure the monotonicity

index Ω is displayed for each point in the parameter space for which the UKF has been applied to estimate the JR355

model parameters using the EEG data from subject 9. It can be seen that the monotonicity index is closest to 1 in

the yellow regions of the monotonicity maps. Therefore these regions are expected to give rise to parameter estimates

for the IPSP amplitude B and the IPSP rate constant b that vary in the known physiological direction.

However, if one considers the MSE of the parameter estimates for JR model forward simulations shown in

Figure 3(B) and effectively spanning the same parameter space as the monotonicity analysis, one can see that the360

MSE is lowest (most yellow) in the region close to the standard JR model parameters (A = 3.25, a = 100, b = 50).

This suggests that the parameter regions shown to produce parameter estimates for the IPSP amplitude B and

the IPSP rate constant b that vary in the known physiological direction may not be providing reliable parameter

estimates.

The analysis of the observability index for the augmented-state JR model captured in Figure 3(C) further confirms365

this idea demonstrating that the nonlinear observability of the augmented-state is highest (most yellow) in a region

close to the standard JR model parameters.
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Table 3: Average training sensitivity of the distribution
approach.

Sensitivity
OAA/S class

Method Distrib. Tot. 0 1 2 3 4 5
params.

UKF B, b, µ 0.50 0.43 0.67 0.61 0.29 0.10 0.85
UKF B, b 0.49 0.38 0.67 0.56 0.38 0.06 0.85
UKF B 0.47 0.43 0.67 0.67 0.19 0.00 0.86
UKF b 0.43 0.10 0.83 0.50 0.10 0.06 0.85
UKF2 B, b, µ 0.57 0.71 1 0.66 0.29 0.23 0.81
UKF2 B, b 0.55 0.81 1 0.67 0.10 0.20 0.81
ARMA a1, a2, b1 0.69 0.86 1 0.5 0.76 0.39 0.87
HFD HFD 0.58 0.62 0.67 0.22 0.43 0.38 0.82

Nearest Neighbour Sensitivity
OAA/S class

Method Distrib. Tot. 0 1 2 3 4 5
params.

UKF B, b, µ 0.71 0.67 0.83 0.89 0.43 0.58 0.85
UKF B, b 0.69 0.57 0.83 0.89 0.52 0.52 0.85
UKF B 0.70 0.52 0.83 0.83 0.52 0.47 0.92
UKF b 0.67 0.67 1 0.89 0.48 0.40 0.85
UKF2 B, b, µ 0.81 0.81 1 0.83 0.52 0.71 0.94
UKF2 B, b 0.76 0.86 1 0.78 0.38 0.60 0.93
ARMA a1, a2, b1 0.92 0.95 1 0.72 0.90 0.90 0.96
HFD HFD 0.88 0.95 1 0.61 0.71 0.85 0.98
Distrib. params.: parameters used to define the dis-
tributions; UKF: unscented Kalman filtering; UKF2:
UKF using the second artifact rejection approach with
RMS amplitude and Lilliefors test calculated on the
1000 Hz sampled signal; ARMA: autoregressive moving
average; HFD: Higuchi fractal dimension.

To further assess if the parameter regions that give a high monotonicity index actually do coincide with unreliable

parameter estimates, an example UKF estimation case that gave a high monotonicity index (A = 1.25, a = 50,

b = 300) was considered and evaluated on control resting eyes-closed data. Figure 4(A) demonstrates the UKF370

parameter estimation result for this case for subject 9. It can be seen that the IPSP amplitude estimate B̂ increases

while the IPSP rate constant estimate b̂ decreases as is desired. However, when the same UKF approach is applied

to the resting control data the same variations in the parameter estimates occur. Thus demonstrating that these

parameter estimates obtained in this region of parameter space are not useful for depth of anesthesia monitoring.

This result can be attributed to the fact that the sigmoid firing rate function leads to a saturation of estimated states375

in this region of parameter space and this saturation reduces the ability of the UKF to infer the states (results not

shown).
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Table 4: Average testing sensitivity of the distribution ap-
proach.

Sensitivity
OAA/S class

Method Distrib. Tot. 0 1 2 3 4 5
params.

UKF B, b, µ 0.41 0.22 0.17 0.50 0.04 0.03 0.90
UKF B, b 0.42 0.28 0.17 0.50 0.04 0.04 0.90
UKF B 0.43 0.39 0.17 0.44 0.00 0.06 0.91
UKF b 0.41 0.22 0.17 0.56 0.04 0.03 0.90
UKF2 B, b, µ 0.49 0.50 0.17 0.50 0.07 0.22 0.87
UKF2 B, b 0.51 0.67 0.17 0.61 0.11 0.21 0.87
ARMA a1, a2, b1 0.58 0.72 0.17 0.28 0.33 0.49 0.82
HFD HFD 0.50 0.56 0.00 0.00 0.26 0.36 0.83

Nearest Neighbour Sensitivity
OAA/S class

Method Distrib. Tot. 0 1 2 3 4 5
params.

UKF B, b, µ 0.71 0.61 1 0.89 0.56 0.48 0.91
UKF B, b 0.69 0.56 1 0.78 0.59 0.47 0.91
UKF B 0.69 0.67 1 0.72 0.41 0.48 0.93
UKF b 0.68 0.61 1 0.94 0.44 0.43 0.91
UKF2 B, b, µ 0.77 0.56 0.67 0.83 0.63 0.71 0.92
UKF2 B, b 0.75 0.72 0.67 0.83 0.52 0.66 0.90
ARMA a1, a2, b1 0.91 1 1 0.78 0.96 0.85 0.95
HFD HFD 0.88 0.94 0.83 0.67 0.78 0.86 0.96
Distrib. params.: parameters used to define the dis-
tributions; UKF: unscented Kalman filtering; UKF2:
UKF using the second artifact rejection approach with
RMS amplitude and Lilliefors test calculated on the
1000 Hz sampled signal; ARMA: autoregressive moving
average; HFD: Higuchi fractal dimension.

3.5. Error analysis of extensions of the JR model

The error analysis of extensions of the JR model considered whether the inclusion of inhibition of inhibition could

produce parameter trajectories in the extended model(s) that follow physiologically expected trajectories for propofol380

anesthesia (i.e. an increase in IPSP amplitude and a decrease in IPSP rate constant). Figure 5 captures this analysis

for the first and second extensions of the JR model depicted in Figure 5(A) and (B), respectively.

For the first extension, Figure 5(C) displays the maps of the OAA/S score linked to the average data amplitude

spectrum that best matches the average amplitude spectrum for multiple forward simulations for each point in the

considered parameter subspace spanned by the IPSP amplitude B and IPSP rate constant b. It can be seen that385

for c5 = 0 (corresponds to no inhibition of inhibition and is equivalent to the JR model) that there is a part of the

parameter space (along B = 22) where the best matching OAA/S levels transition from 3 (aqua), to 2 (green), to

1 (yellow), to 0 (red) as the rate constant b decreases. This could be considered a potential match to physiology,

however, as the rate constant continues to decrease the OAA/S level 5 begins to provide the best amplitude spectrum

match to the model. Moreover, as the level of inhibition of inhibition increases the region over which interesting var-390
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C Observability Index

B Parameter MSE

A Monotonicity Index 

Figure 3: (A) Maps of the monotonicity index, Ω, spanning a region of the JR model parameter space constrained by

A, a and b̂0. The colorbar indicates the strength of the monotonicity index. (B) Maps of the MSE of the parameter
estimates of forward simulations of the JR model spanning a region of the JR model parameter space constrained
by A, a and b. The colorbar indicates the magnitude of the MSE. (C) Maps of the nonlinear observability index of
the augmented-state JR model spanning a region of the JR model parameter space constrained by A, a and b. The
colorbar indicates the magnitude of the observability index.
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Figure 4: Example UKF estimation case that gave a high monotonicity index (A = 1.25, a = 50, b = 300). (A) UKF
parameter estimation results obtained with the data from subject 9. (B) UKF parameter estimation results obtained
with control resting-eyes closed data. In (A) and (B) - 1st row: EEG signal; 2nd row: IPSP amplitude estimate

B̂; 3rd row: IPSP rate constant estimate b̂; 4th row: Input estimate µ̂. White gaps in all graphs indicate periods
where artifact has been removed. In (A) vertical dashed lines and numbers indicate time of OAA/S measurment and
OAA/S score, respectively. SI: start of anesthetic induction.

-iations in the OAA/S map occur become smaller and smaller.

For the second extension which includes the additional IPSP kernel, Figure 5(D) displays the maps of the OAA/S

score linked to the average data amplitude spectrum that best matches the average amplitude spectrum for mul-

tiple forward simulations for each point in the considered parameter subspace spanned by the IPSP rate constant

parameters m and b. Similar features are observed here as are seen for the first extension and inhibition of inhibition395

primarily contributes to reducing the region over which interesting variations in the OAA/S map occur.

4. Discussion

The key findings of this study are that the UKF applied to the JR model approach produces reasonable OAA/S

score classification results when compared to a high performing standard depth of anesthesia monitoring feature

HFD, however, its performance is inferior to the ARMA model approach. Therefore the UKF applied to the JR400

model provides a benchmark for future approaches that use neural mass or neural fields models to track anesthetic

state while also providing physiologically meaningful information about underlying physiological parameter changes.

Moreover, although the JR model can potentially be used to track anesthetic brain state, the parameter estimates

derived from this model and its extensions that include inhibition of inhibition may not provide clear physiological
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Figure 5: The block diagrams of the (A) first and (B) second extension of the JR model. In (A) the primary
variation on the JR model is the additional feedback connection from the output of the IPSP kernel to the input of
the inhibitory population via the connection weight c5. In (B) the primary variation on the JR model is the additional
feedback connection from the output of the inhibitory population to the input of the inhibitory population via the
connection weight c5 and an additional IPSP kernel, hi(t;M,m).(C) Best matching OAA/S score maps for the first
extension of the JR model for the parameter subspace spanned by the IPSP amplitude B, IPSP rate constant b and
the degree of inhibition of inhibition c5. (D) Best matching OAA/S score maps for the second extension of the JR
model for the parameter subspace spanned by the IPSP rate constants m and b (B = 22) and the degree of inhibition
of inhibition c5. In (C) and (D) the color code indicates the OAA/S score linked to the average data amplitude
spectrum from subject 9 that best matches the average amplitude spectrum for multiple forward simulations for each
given point in the considered parameter subspace.
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interpretation, in particular in terms of the IPSP rate constant. Therefore future work with more complex, or405

appropriately designed, models (Bojak & Liley, 2005; Bojak et al., 2015) is warranted to devise a method that

can both efficiently track anesthetic brain state and simultaneously infer realistic physiological changes linked to

anesthesia.

4.1. OAA/S score classification

Although the UKF applied to the JR model approach produced reasonable OAA/S score classification testing410

sensitivty (0.51 ± 0.03) compared to the HFD (0.50 ± 0.02), the UKF approach was still weaker when considering

nearest neighbour testing sensitivity (0.75 for UKF vs 0.88 for HFD). Moreover, HFD and the ARMA approach were

evaluated on the first artifact rejection strategy where RMS amplitude and Lilliefors test were calculated on the 80

Hz sampled signal, while the best performing UKF case was evaluated on the second artifact rejection strategy where

RMS amplitude and Lilliefors test were calculated on the 1000 Hz sampled signal. The second strategy led to greater415

artifact rejection of epochs and this may have contributed to improving the separability of the different OAA/S

distributions. The key point, however, is that the UKF performs worse than the HFD and ARMA approach when

the first artifact rejection strategy is applied. The weaker performance of the UKF, in particular with respect to the

ARMA model (testing sensitivity of 0.51 for UKF vs 0.58 for ARMA), can be understood in part by the decision to

only track the IPSP amplitude B, IPSP rate constant b and the input µ of the JR model-based on the physiological420

knowledge that the IPSP amplitude and rate constant are effected by propofol concentration (Kitamura et al., 2003;

Wang et al., 2004; Bieda & MacIver, 2004; Ying & Goldstein, 2005; McCarthy et al., 2008; Wang, 2009; Yue et al.,

2011; Wakita et al., 2013; Hutt, 2013). This decision puts more contraints on the UKF estimation process to fit the

data. On the other hand, the ARMA model coefficients essentially capture the most significant aspects of the data

and this leads to better classification accuracy.425

It would be possible to use the UKF to track more parameters in order to produce a better performing UKF

based classifier of the OAA/S score. We did explore the UKF applied to real data to track the EPSP and IPSP

amplitudes and rate constants and sigmoid threshold of the JR model, but in this case the IPSP parameters did not

both move in the desired directions and the case was not considered further (results not shown). Moreover, the goal

here is not just to track anesthetic state, but rather to begin with a simple cortical model, the JR model, and see430

if it can simultaneously be used to track anesthetic brain state while also estimating realistic physiological changes

in parameters that may provide additional information in the clinic. Here the JR model has been evaluated for this

purpose and will provide a valuable benchmark for future studies with more complex and realistic models that are

also simple enough to be employed efficiently in the clinical environment.

4.2. Monotonicity, observability and error analysis of the UKF/JR model435

The monotonicity, observability and error analysis revealed that for the parameter subspace considered there are

greater errors in UKF based estimation of JR model parameters when the parameters and their estimates don’t

operate close to the standard JR model parameters (Jansen & Rit, 1995). This can be understood in part by the

fact that the standard parameters correspond to a region in parameter space involving an alpha rhythm limit cycle
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(Jansen & Rit, 1995) and state observability is generally higher when limit cycle dynamics are present as compared440

say to a stable fixed point (Whalen et al., 2015). These results highlight the importance of considering monotonicity,

observability and error analysis when investigating other neural mass model inversion procedures. Moreover, the

demonstration that parameter estimates (IPSP amplitude and rate constant) that vary in the desired direction

for anesthesia data can also move in the same direction with resting eyes-closed data also highlights the general

importance for controlling for parameter estimate changes using control data.445

4.3. JR model extensions, other models and realistic physiological inference

The exploration of the JR model extensions involving inhibition of inhibition revealed that the JR model without

inhibition of inhibition already contains an interesting region of parameter subspace where if the IPSP amplitude

is fixed then the IPSP rate constant would be expected to decrease as the OAA/S level shifts from 3 to 0 with an

increase in anesthetic level as is observed physiologically. However, further descreases in the IPSP rate constant450

would then lead to a preferred match with an OAA/S score of 5. This suggests that the JR model could potentially

be modified in some way to avoid this ’wrap around’, however, it is not clear at present how to do this. The addition

of inhibition of inhibition only led to a reduction of the region over which interesting variations of the best matching

OAA/S score linked data spectra and model data spectra could be seen. Therefore this is not a likely full solution.

Local cortical inhibition of inhibition was demonstrated to be important in a thalamocortical model of propofol455

anesthesia (Hindriks & van Putten, 2012), in particular with respect to controlling the amplitude of the alpha rhythm.

The results presented here are consistent with this, however, there are also critical differences between these models.

In particular, the JR model is only a cortical model. Thalamocortical loops have been suggested to be important in

creating the frontal alpha rhythm seen in propofol anesthesia (Ching et al., 2010), however, there are also cortical

level models of anesthesia that can capture many of the important features of anesthesia (Bojak & Liley, 2005;460

Steyn-Ross et al., 2012), including propofol anesthesia (Hutt, 2013; Hutt & Buhry, 2014). Therefore the scope is

currently open to evaluate the ability of new and existing models of anesthesia to find a model that is simple enough

to be computationallly efficient, but complex enough for it to be able to characterise the key physiological changes

linked to anesthesia within brain state tracking applications.

For the JR model, when the UKF was applied to real EEG data near the standard JR model parameter region,465

the UKF estimate of the IPSP amplitude increased with propofol concentration as is observed physiologically, while

the IPSP rate constant increased also, which is inconsistent with known physiology. The actual degree of variation

of IPSP parameters with propofol concentration observed physiologically is highly dependent on the brain region

studied, the neurotransmittor receptors considered, and the experimental preparation, whether it be cell cultures

or isolated cells (Krasowski et al., 1998; Bai et al., 1999, 2001; Siegwart et al., 2002; Dong & Xu, 2002; Feng &470

Macdonald, 2004; Drexler et al., 2009; Yue et al., 2011; Wakita et al., 2013), or tissue slices (Collins, 1988; Bieda

& MacIver, 2004; Wang et al., 2004; Ying & Goldstein, 2005; Wang, 2009). In tissue slices, measurements focus

more directly on PSP-level parameters and appear to indicate a greater sensitivity to propofol of the IPSP rate

constant than for IPSP amplitude, however, there are still observed variations in both parameters depending on the

preparation (Collins, 1988; Bieda & MacIver, 2004; Wang et al., 2004; Ying & Goldstein, 2005; Wang, 2009). The JR475
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model IPSP amplitude and rate constant parameters are lumped population level parameters that can be considered

a combination of the various kinds of inhibitory receptors and subtypes influenced by propofol at the molecular scale

(Rudolph & Antkowiak, 2004). Therefore it is expected that population models that take into account different

inhibitory receptor types may be able to better characterise the effects of propofol on the EEG, however, such model

extensions may compromise the goal of having the simplest possible model that is clinicially useful while at the same480

time adequately characterises the data.

In a validation study of dynamical causal modelling applied to isoflurane anesthesia and involving a networked

variation of the JR model (Moran et al., 2011) it was found that the parameter estimates of the EPSP and IPSP

amplitude decreased and increased, respectively, as was observed in rats who underwent isoflurane anesthesia. The

results presented here for the JR model demonstrating the IPSP amplitude increase for increases in propofol concen-485

tration are consistent with this finding, especially as isoflurane and propofol are believed to act through GABAergic

receptors (Rudolph & Antkowiak, 2004; Garcia et al., 2010). It is also known, however, that like propofol, isoflurane

also decreases the IPSP rate constant (Bojak & Liley, 2005). Therefore there is still scope to perform realistic

physiological parameter inference using other models and considering different anesthetics with different molecular

modes of action.490

4.4. Other estimation approaches

Here the OAA/S classification/tracking performance of the UKF applied to the JR model was primarily derived

using the standard JR model parameters and setting the initial parameter estimates to the standard values. Then

the algorithm was let to run on the data and the parameter estimates were allowed to equilibrate to the data. This

approach was applied as it would simplify the setup time in the clinic. An alternative approach could be to apply a495

dynamic causal modelling (Kiebel et al., 2009), particle swarm (Bojak & Liley, 2005) or other parameter estimation

(Sorenson, 1980) approach to a short window of data in order to find the parameters (not necessarily just IPSP

amplitude, IPSP rate constant and the input) that best fit the subject’s resting data. Then allow the UKF to track

variations of key parameters of interest starting from the region of parameter space found by the analysis of the

resting segment.500

An approach like this was recently applied using a new efficient window-based frequency-domain method of

dynamical causal modelling involving Bayesian belief updating (Cooray et al., 2015). This algorithm was applied

to continuous univariate EEG time series from epilepsy patients and provides an interesting alternative to compare

with the time-domain UKF approach in future studies, in particular regarding computational efficiency. The run

time of the UKF including artifact rejection for subject 9 in Figure 2 for 50.3 minutes of data is 13.1 minutes with505

an i7-3520M 2.9 GHz CPU and 8 GB of RAM, and the code has not been optimised. This indicates that the UKF

framework presented here can be run in real-time applications. The Bayesian belief updating algortihm has been

shown to run 10-20 times faster than standard dynamical causal modelling algortihms (Cooray et al., 2015), and

therefore is a likely candidate for real-time applications also.

To apply the UKF to real data in this study the EEG signal mean and standard deviation was rescaled to match510

that of the JR model output. It may be possible to avoid this transformation by applying an appropriate high
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pass filter to the JR model output. This was considered by augmenting the state of the JR model with a first

order butterworth filter, and it was found that UKF parameter estimation worked for simulated data but was not

reliable for the real EEG data (results not shown). Therefore this remains a topic of future research that could be

solved through combined hardware/software solutions where the parameters of the EEG acquisition filters are known515

exactly. Here a commercial system was used for data collection and the exact filter specifications were not available.

Finally, it is worthwhile noting that the UKF approach presented here is similar in flavor to previous applications

of Kalman filtering to multi-channel EEG source imaging (Galka et al., 2004; Barton et al., 2009), however, these

approaches work with linear models while the UKF presented here deals with nonlinear models. It may be the case

that multi-variate applications of the UKF to neural mass models (Freestone et al., 2014) or multi-model supervisory520

observers (Chong et al., 2015) can better characterise anesthetic brain state transitions, however, there are still

difficulties with using multi-channel EEG in the clinical general anesthesia setting.

5. Conclusion

Tracking the state of the brain during anesthesia is a challenging problem and physiologically motivated ap-

proaches have the potential to provide improved solutions. Here it has been demonstrated using the UKF that525

the JR model can track anesthetic brain state with reasonably accuracy, however, more complex, or appropriately

designed, models of anesthesia need to be investigated to determine if neural model-based approaches can outper-

form other model-based and standard depth of anesthesia monitoring methods, while simultaneously providing useful

information about underlying physiological variable changes linked to anesthesia.
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