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Abstract: An appealing explanation for the Planck data is provided by inflationary

models with a singular non-canonical kinetic term: a Laurent expansion of the kinetic

function translates into a potential with a nearly shift-symmetric plateau in canonical

fields. The shift symmetry can be broken at large field values by including higher-

order poles, which need to be hierarchically suppressed in order not to spoil the

inflationary plateau. The herefrom resulting corrections to the inflationary dynamics

and predictions are shown to be universal at lowest order and possibly to induce

power loss at large angular scales. At lowest order there are no corrections from a

pole of just one order higher and we argue that this phenomenon is related to the

well-known extended no-scale structure arising in string theory scenarios. Finally,

we outline which other corrections may arise from string loop effects.
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1 Introduction

Recent years have seen increasingly accurate and meaningful observational evidence

from probes of the cosmic microwave background (CMB) such as WMAP, Planck,

and BICEP2/Keck Array [1–3], for an early phase of cosmological inflation. Infla-

tion means the existence of a very early phase of typically exponentially accelerated

expansion of the universe driven by the large vacuum energy of a scalar field, that

terminates in a reheating process which in turn creates the very hot initial phase of

conventional big bang cosmology [4–6]. The simplest models of this process create

inflation via vacuum energy domination of a single slowly rolling scalar field. Infla-

tion can produce a large, old, and spatially flat universe if it lasts longer than 60

e-folds of scale factor growth (more unconventional assumptions about the reheating

temperature may lower the required amount to ∼ 30). Moreover, inflation naturally

generates a nearly scale-invariant spectrum for the curvature perturbation that is

seeding structure formation. The scale of the inflationary scalar potential and its

first two derivatives may be chosen in a suitable way such that the three properties

reproduce the inflationary observables consistent with experiments.

– 1 –



The arguably simplest models of inflation arise as large-field models where in-

flation is driven by a single scalar field with a monomial scalar potential [7]. In this

case, justifying the form of the scalar potential over large field displacements requires

the presence of a protective weakly broken shift symmetry in the UV completion (see

e.g. [8]). Under these assumptions, choosing a trans-Planckian and hence large initial

field displacement is sufficient to guarantee enough inflation, and choosing the overall

scale of the monomial potential suffices to generate the amplitude of the curvature

perturbation in agreement with observations.

All inflation models necessarily generate gravitational waves with a nearly scale-

invariant power spectrum in addition to the curvature perturbation. These tensor

modes generate a primordial B-mode polarisation pattern in the CMB. The relative

strength of this tensor mode power spectrum, the tensor-to-scalar ratio r, is controlled

by the scale of the inflationary scalar potential and the field range traversed during

the observable period of slow-roll inflation via the Lyth bound [9, 10]. Large-field

models create an observably strong B-mode signal corresponding to r & 0.01 this

way.

However, the data of the recent CMB probes already constrains the tensor mode

fraction to r < 0.095 at 95 % confidence level [2, 3]. Hence, we may wish to construct

slow-roll models with smaller field excursion ∆φ . O(a fewMP) such that they

produce r . 0.01 while preserving something akin to the technical naturalness of

shift symmetry based large-field models. The prototypical example of such a class of

models is the Starobinsky model [11]. Its scalar potential becomes exponentially flat

with increasing field displacement which manifests a restoration of an approximate

shift symmetry. By conformal transformations of the metric one can interpret the

Starobinsky scalar as the scalar degree of freedom of an R+R2 model of gravity, or a

Jordan frame non-minimally coupled scalar field with approximate scale invariance at

larger field values. In this language, recent work established a set of attractor points

for various rather general classes of potentials [12–15], with predictions comparable

to those of the Starobinsky model. Yet more recently, it was emphasised that these

attractor properties can be rephrased as non-trivial kinetic terms which have a pole

of second order in the non-canonical inflaton [16].

In this paper we expound on these ideas by establishing a duality between a

kinetic function with a certain pole structure and shift symmetry of the Einstein

frame canonically normalised inflaton potential. Since non-canonical kinetic terms

are a generic consequence of compactifications of higher-dimensional models such as

string theory, this may provide a new avenue of constructing this set of phenomeno-

logically promising models from more fundamental embeddings.

The rest of the paper is structured as follows. First, we elaborate on the im-

portance of approximate shift-symmetries in the context of inflation and describe

different manifestations thereof. Then, we recall the formulation of inflation where

the inflationary dynamics’ complexity has been shifted in parts to the kinetic term
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rather than the potential. Given a suppression hierarchy for poles of increasing or-

der, we continue to describe corrections to the aforementioned formalism and derive

leading order corrections to the inflationary observables. Assuming the corrections

to follow the pattern of shift-symmetry in an EFT sense, we then study an infi-

nite tower of corrections and demonstrate that the leading order corrections coincide

with the structure obtained before. After outlining phenomenological fingerprints

deriving from the corrections, we attempt to embed the previous considerations into

some UV theory. Following a generic argument as to what the coarse structure of

the UV candidate’s Kähler potential might be, we give perturbative and exact ex-

amples which reproduce the kinetic functions under study in this work. We then

turn our attention to String theory and argue that the necessary terms may be ob-

tained. Specifically, we recall that the more general form of string loop corrections

to the volume moduli Kähler potential in string compactifications spoil the Kähler

potential’s log-structure, and we hence expect them to break the shift symmetry at

large field ranges. We conclude by discussing our results, and point out that our

steepening corrections generically produce a moderate loss of CMB power at large

angular scales for which we give an analytical estimate. Appendix A reviews the

explicit form of the f(R) theory dual to a broken shift symmetry at large fields.

2 Shift Symmetry Primer

A scalar potential arising from a weakly broken shift symmetry is known to provide

for controlled trans-Planckian field excursion during slow-roll inflation. The shift

symmetry is said to be weakly broken, if the inflaton scalar potential V (φ) � 1

itself provides the leading source of symmetry breaking. We begin our discussion by

looking at the simple example of a scalar field minimally coupled to gravity

L =
√
−g

[
1
2
R− 1

2
(∂φ)2 − V0(φ)

]
. (2.1)

Generically, integrating out heavy fields and/or radiative contributions lead us to

expect an infinite series of corrections to V0(φ), containing in particular pieces of the

form

∆V = V0(φ)
∑
n≥1

cn
φn

Mn
P

. (2.2)

In the spirit of Wilsonian effective field theory (EFT) we should assume cn =

O(1) ∀ n. Then we have

∆η|φ=∆φ =
∑
n≥2

cnn(n− 1)
∆φn−2

Mn−2
P

& 1 (2.3)

as soon as ∆φ &MP. Controlling such trans-Planckian field excursions requires

cn . η0
1

n2

Mn−2
P

∆φn−2
. 1 (2.4)
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which amounts to a shift symmetry φ → φ + c weakly broken by V0(φ). Indeed,

in the Lagrangian eq. (2.1), the radiative corrections driven by the self-interactions

(cubic and higher derivatives of V0) fall off as 1/φm,m > 0 at large φ > MP, while

graviton-loop corrections produce

δVgrav. ∼ V m
0 , (V ′′0 )n � V0 (2.5)

provided V0 � 1.

The same shift symmetry requirement is evident in the structure of f(R)-gravity

versions producing inflation models close to the Starobinsky model. Here, we need

to require

f(R) = R +
c2

M2
P

R2 +
∑
n≥3

cn

M2n−2
P

Rn (2.6)

with c2 � 1 and
cn

cn−1
2

� 1

cn−1
2

� 1 ∀ n ≥ 3 . (2.7)

Then the exponential approach to a shift-symmetric plateau potential

V (φ) = V0

(
1− e−

√
2/3φ + . . .

)
(2.8)

for the associated canonically normalised scalar φ dominates the resulting scalar po-

tential. The condition eq. (2.7) again marks the pattern of an effective weakly broken

shift symmetry. For a more detailed discussion on shift symmetry and modified grav-

ity, see appendix A.

One of the main aims of this paper is to provide the analogue formulation of this

shift symmetry for non-canonical models of inflation, to which we turn next.

3 Pole Inflation

3.1 Laurent expansion

Conventionally, inflation is studied in terms of a canonically normalised and mini-

mally coupled scalar field and its effective potential. However, UV embeddings of

inflationary physics often yield a minimally coupled but non-canonically normalised

field, where the effective dynamics are encoded in the kinetic term as well as the

field’s potential. Instead of having inflationary dynamics only be determined by the

scalar potential, a part of the models’ complexity and predictivity now lies within

the kinetic term. In particular, if the kinetic term may be cast as a Laurent series

and given reasonable assumptions about the potential, one can study and understand

inflationary dynamics solely in terms of the Laurent expansion’s leading order pole

and its residue [16], as we will now recall.
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Consider an Einstein frame Lagrangian of the form

L =
√
−g

[
1
2
R− 1

2
(
ap
ρp

+ . . .) (∂ρ)2 − VE (ρ)

]
(3.1)

where we assume the kinetic function KE(ρ) to be given by a Laurent series with a

pole of order p at ρ = 0 (without loss of generality) plus sub-leading terms, which

are higher-order in ρ (not higher order in ρ−1) and are thus irrelevant close to the

pole. In principle, higher order terms in ρ−1, i.e. higher orders in the pole, are of

increasing importance when ρ→ ρ0. We will neglect those terms for now to ease our

analysis of the first pole and give a condition which has to be satisfied in order to do

so in (3.8).

The location of the pole corresponds to a fixed point of the inflationary trajectory,

which is therefore characterised almost completely by this point. Upon canonical

normalisation, the fixed point translates into a nearly shift-symmetric plateau in the

potential. As the inflationary behaviour will be determined by the non-canonical

field’s trajectory in the vicinity of the pole, one may approximate VE(ρ) to be

VE = V0(1− ρ+ . . .) , (3.2)

where the linear coefficient can be set to −1 without loss of generality. Sufficiently

close to the pole at ρ = 0, i.e. at large N , the number of e-folds is related to the

inflaton position as

N =
ap

(p− 1)ρp−1
, ρ =

(
ap

(p− 1)N

) 1
p−1

. (3.3)

Since we assume p > 1, indeed the number of e-folds increases as one approaches the

pole. Moreover, it is simple to calculate the slow-roll parameters,

ε =
1

2ap
ρp , η = − p

2ap
ρp−1 . (3.4)

At lowest order in 1/N , the inflationary predictions for this model are therefore given

by

ns = 1− p

p− 1

1

N
, r =

8a
1
p−1
p

(p− 1)
p
p−1

1

N
p
p−1

, (3.5)

where N is the number of e-folds, p the order of the pole in the kinetic function KE

and ap is the leading coefficient of the Laurent expansion as in (3.1).

Putting all of this together, we observe that the presence of a fixed point of the

kinetic function amounts to an effective shift symmetry of the canonically normalised

inflaton at large field values, provided that all higher-order poles in the kinetic func-

tion beyond the leading-order pole defining the fixed point have successively sup-

pressed coefficients as in eq. (3.8) below. We emphasise that this happens regardless
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of the specific potential present in the non-canonical frame. This provides us with

a new handle on finding regimes where inflaton potentials show an effective shift

symmetry via analysing the local structure of the non-canonical kinetic function. In

other words, vastly enhancing the kinetic term such that it becomes dominant with

regard to the potential - e.g. with a pole in the kinetic function as above - enters the

canonical normalisation such that, regardless of the specific potential, the canonically

normalised field will slowly roll down its effective potential which will be of plateau

type.

The case p = 2 is special for a number of reasons. First of all, this gives rise

to a value of the spectral index that agrees exceedingly well with the Planck data.

Secondly, from a theoretical perspective, large classes of models with different in-

teractions actually give rise to nearly identical predictions (3.5) with p = 2: this

is referred to as the unity of cosmological attractors [16]. In what follows, we will

therefore reserve special emphasis for corrections to p = 2 poles.

At this point we can finish the discussion of the effective shift symmetry arising

near the pole in the kinetic function. We see that the single pole generates a scalar

potential close to ρ = 0 for the associated canonically normalised field φ of the form

V0(φ) =


V0

(
1− Aφ

2
2−p

)
, p 6= 2

V0

(
1− e

− φ√
ap

)
, p = 2

(3.6)

where A =
(

2−p
2
√
ap

) 2
2−p

. This shows the plateau at ρ → 0 occurring for φ → ∞ if

p ≥ 2 and for φ → 0 otherwise. The higher powers in ρ of V0(ρ) beyond the linear

term are irrelevant due to the fact that the pole structure has inflation taking place

for ρ→ 0. Hence, higher powers in the Laurent expansion of KE(ρ)

KE(ρ) =
ap
ρp

+
∑
q>p

aq
ρq

(3.7)

will perturb V0(ρ)→ V (ρ) = V0(ρ) + ∆V (ρ). Therefore, an extended plateau in the

potential eq. (3.6) requires us to restrict to the regime where the following condition

holds
aq
ρq
� ap

ρp
∀ q > p. (3.8)

Similar to the suppression of higher-dimension operators in some scalar potential,

there is a priori no reason why condition (3.8) should hold. We hence propose

condition (3.8) as a statement dual to the requirement to suppress higher-dimension

operators in the canonical picture and will give a toy model realisation of (3.8)

in section 4 and specifically via expression (4.2). This suppression pattern of the

residues of the Laurent expansion dictated by the approximate shift symmetry on

the plateau forms a complete analogue of the two known cases discussed in the

previous section.
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3.2 Universal corrections

Previously, we discussed how a real pole corresponding to a fixed point in field space

translates to an approximately shift-symmetric plateau upon canonical normalisa-

tion. We now proceed to investigate the effect of perturbing the duality between

fixed points and shift-symmetry, i.e. perturbing the function KE.

Suppose there is a higher-order pole with small coefficient aq, (i.e. in the regime

of validity of equation (3.8)):

KE(ρ) =
aq
ρq

+
ap
ρp

+ . . . , (3.9)

while the scalar potential is still given by the Taylor expansion, and the dots represent

less singular terms in ρ. This gives rise to the relation

N =
aq

(q − 1)ρq−1
+

ap
(p− 1)ρp−1

(3.10)

in the approximation of being close to the pole. However, in order to invert this

relation, one has to assume that the perturbation is small with respect to the original

term:

aq
ρq
� ap

ρp
. (3.11)

We thus rediscover condition (3.8). As a perturbative expansion, we then obtain the

solution:

ρ = ρ0 + δρ , δρ =
aq

ap(q − 1)
ρp−q+1

0 , (3.12)

where ρ0 (and subsequent quantities with the same subscript) refer to the unper-

turbed result of the previous section. Similarly, the corrections for the slow-roll

parameters become

δε = −(q − p− 1)

2(q − 1)

aq
a2
p

ρ2p−q
0 ,

δη = −(q − p)(q − p− 1)

2(q − 1)

aq
a2
p

ρ2p−q−1
0 , (3.13)

at lowest order in aq. We therefore obtain

δns = − aq

ap
q−1
p−1

(q − p)(q − p− 1)

(q − 1)(p− 1)
q−1
p−1
−2
N

q−1
p−1
−2 ,

δr = − 8aq

ap
q−2
q−1

(q − p− 1)

(q − 1)(p− 1)
2p−q
p−1

N
q−2p
p−1 . (3.14)

These are universal corrections arising from a perturbation of the shift symmetry at

large field values of the canonically normalised inflaton field.
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Motivated both by observational and theoretical evidence (as well as the desire

to obtain more manageable formulae), we now restrict ourselves to the case p = 2.

Other cases will be qualitatively identical. In the case of p = 2 the above formulae

simplify to

ns = 1− 2

N
− aq
apq−1

(q − 2)(q − 3)

(q − 1)
N q−3 ,

r =
8ap
N2
− 8aq

ap
q−2
q−1

(q − 3)

(q − 1)
N q−4 . (3.15)

These are the universal corrections to the cosmological attractor predictions provided

the corrections respect the effective shift symmetry structure of eq. (3.8). They

should be understood as a double expansion, both in 1/N as well as in aqN
q−2. The

latter requirement follows from the approximation to obtain ρ(N) (and is given by

aqN
q−p
p−1 in general). Here we have assumed that ap is of order one. In terms of

these expansion parameters, the correction term to the spectral index is bilinear in

both, while the correction to the tensor-to-scalar ratio is an order in 1/N higher.

Corrections bilinear in N will become of increasing importance for larger N . This

will nicely be illustrated in the next subsection when transforming to canonical fields.

3.3 Canonical Formulation

We will now turn to a description of the corrections to the plateau potential arising

from the least suppressed residue aq in the Laurent expansion. Starting from the

perturbed Laurent expansion with two poles (3.9), we find the relation ρ(φ) for the

canonically normalised field φ for p 6= 2 to leading order in aq as

ρ(φ) = Aφ
2

2−p +
aq

2
√
ap
A

p−2(q−2)
2 φ

2
2−p (p−q+1) . (3.16)

For the special case p = 2 the relation becomes exponential and we get

ρ(φ) = e
− φ√

ap + 1
4
aqe

(q−3) φ√
ap , q > p = 2 . (3.17)

We obtain the resulting canonical scalar potential V (φ) = V0(ρ(φ)) to O(aq) by

plugging eq. (3.2) into the original potential

V (φ) =


V0

(
1− Aφ

2
2−p − aq B φ

2
2−p (p−q+1)

)
, p 6= 2

V0

(
1− e−

φ√
ap − 1

4
aqe

(q−3) φ√
ap

)
, p = 2 .

(3.18)

Here, the correction coefficient B for p 6= 2 has the form B = 1
2
√
ap
A

p−2(q−2)
2 . Con-

sequently, for aq < 0 the plateau potential universally acquires a rising correction,

increasing for φ→∞ for p ≥ 2, and for p < 2 rising towards φ = 0.
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We see that if all microscopic parameters ap, p, q take O(1) values, then A,B =

O(1) as well, and their precise values are irrelevant for the general arguments given

here. The only relevant quantities are:

• p which determines the leading functional form of the plateau potential,

• aq � 1 which controls the magnitude of the correction, and

• the difference q − p which controls the functional dependence of the first cor-

rection in the scalar potential.

This structure of the scalar potential allows for two observations.

First of all, the case

q = p+ 1 (3.19)

leads to a rather curious observation. Namely, in this case the corrections to the scalar

potential are constant! For this reason, they only serve to redefine the constants in

the original form (3.6):

Ã =
A

1− aqB
, Ṽ0 = V0 (1− aqB) , p 6= 2 (3.20)

Ṽ0 = V0 (1− 1
4
aq) , p = 2 . (3.21)

There is an easy way to understand why this happens. We look again at the kinetic

function, writing

KE(ρ) =
ap
ρp

+
ap+1

ρp+1
+
∑
q>p+1

aq
ρq

. (3.22)

Now perform a field redefinition ρ→ ρ+ ε, and insert this into KE. We get

KE(ρ+ ε) =
ap

(ρ+ ε)p
+

ap+1

(ρ+ ε)p+1
+ . . .

=
ap
ρp
− papε

ρp+1
+
ap+1

ρp+1
+ . . . (3.23)

Hence, by adjusting the field definition to ε = ap+1/(pap) we can always absorb the

pole of order p + 1, but not other poles of higher-order at the same time. This

is the reason why a pole at order p + 1 does not contribute at that order to the

scalar potential. Beyond leading order, the field redefinition generates contributions

to poles at order p + 2 and higher. Consequently, we expect a pole in KE at order

p+ 1 to contribute at higher sub-leading orders to the scalar potential.

At the next order, i.e. for

q = p+ 2 (3.24)
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the correction scales as the inverse of the leading plateau potential term. The cases

p = 1, 2, 3 form illustrative examples for this situation

V (φ) =



V0

(
1− Aφ2 − aq B

φ2

)
, p = 1

0

V0

(
1− e−

φ√
ap − 1

4
aqe

φ√
ap

)
, p = 2

0

V0

(
1− A

φ2
− aq B φ2

)
, p = 3 .

(3.25)

4 Complex Poles

The above analysis only considers a single correction. In order to further link the

above discussion with our argument in chapter 2, we will now consider an infinite

tower of corrections to the leading pole of a kinetic function and hence readily demon-

strate that in order not to spoil the inflationary dynamics, a hierarchy between the

corrections reminiscent of the EFT argument has to arise. To that end, consider

higher powers in the Laurent expansion of KE(ρ)

KE(ρ) =
ap
ρp

+
∑
q>p

aq
ρq

. (4.1)

As an example, we will assume the above to arise from a toy model of the closed

form

KE(ρ) =
ap

ρ2 + ε2
, (4.2)

where ε2 � 1. The perturbation ε2 affects the pole structure, moving the pole at

ρ0 = 0 from the real to the complex plane at ρ0 → ±iε, as shown in figure 1. It is

important to note that the function KE(ρ) does not become complex itself at any

point, it merely contains a complex pole.

The inflationary predictions from the presence of a complex pole follow at lowest

order from the universal corrections that we derived earlier: expanding the complex

pole

KE =
ap
ρ2
− apε

2

ρ4
+
apε

4

ρ6
+ . . . , (4.3)

it is clear that at lowest order in ε2 the form of the kinetic function, and hence the

inflationary predictions, is exactly that of the perturbed Laurent expansion consid-

ered previously with p = 2 and q = 4. As a consequence, the inflationary predictions

are given by (3.15) with q = 4 and aq = −apε2. Note that the latter always corre-

sponds to a blue-shifting of the spectral index at large N . Further note how (4.3)

realises (4.1) with aq � ap ∀ q > p, i.e. satisfies (3.8). This suppression pattern of
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Figure 1. Pole structure of KE. Left panel: a pole of order p = 2, localised in the real

part of ρ. Right panel: the perturbed case, showing the split of the original pole in two

complex poles of order one. The non-canonical inflaton may now move over the hilltop

along the real line which corresponds to shift-symmetry breaking in canonical fields.

the residues of the Laurent expansion dictated by the approximate shift symmetry

on the plateau is in complete analogy to the known earlier cases given in chapter 2.

If the above kinetic term only has a complex pole (and no sub-leading correc-

tions), the transition to a canonical inflaton field φ can be done exactly and reads

ρ = e−φ/
√
ap − 1

4
ε2eφ/

√
ap . (4.4)

The scalar potential around the would-be pole reads

VE = V0(1− e−φ/
√
ap + 1

4
ε2eφ/

√
ap + . . .) . (4.5)

Again, the nearly shift-symmetric plateau of the canonically normalised inflaton is

broken at large field values, the exact value depending on the perturbation ε2 of the

kinetic pole structure.

5 Towards a UV embedding

5.1 Kähler potentials

Within the framework of non-canonical inflation, the complexity of the inflationary

dynamics has been shifted to the kinetic function. Poles in the kinetic function then

translate to nearly shift-symmetric potentials and complex poles or higher order

terms in 1/ρ break the shift-symmetry at large fields. It is therefore an important

question whether one can embed kinetic functions with the aforementioned structure

into a UV theory. We start with a general observation.

Consider a toy potential of the form K = log f where the function f in the

argument of the logarithm is a real function, e.g. an arbitrary polynomial, of Φ + Φ̄

or ΦΦ̄. Now assume that f has a real zero of order n at e.g. Φ0 = 0. Close to the pole,
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the function can then be approximated as f = (Φ + Φ̄)n + . . .. The corresponding

Kähler metric takes the following form

KΦΦ̄ =
fΦfΦ̄ − fΦΦ̄f

f 2
=

n

(Φ + Φ̄)2
+ . . . . (5.1)

Upon identifying Φ = Φ̄ = ρ and n = 2ap this becomes the previously considered

Laurent expansion. The order of the pole is therefore independent of the order of

the zero in the argument of the logarithm; instead, the order of the zero determines

the residue of the pole, which always has order two. This argument underlines the

robustness of cosmological attractors: changes to the location of the zero of f and

to its order do not affect the resulting pole structure of order two. Given that the

function f has a zero of some order, the denominator of (5.1) always factorises on

the real line.

Turning to the type of corrections corresponding to complex poles

KΦΦ̄ =
n

(Φ + Φ̄)2 + ε2

=
n

(Φ + Φ̄)2
− nε2

(Φ + Φ̄)4
+ . . . , (5.2)

that become relevant at large field values, we first note that the denominator does

not factorise on the real but only on the complex plane. Hence in order to generate

such Kähler potentials, we must resort to a different structure than the one described

above. A prototypical example would be f = (Φ + Φ̄)2 + ε2. Indeed this will induce

additional terms in the Kähler metric that correspond to higher-order poles, similar

to (5.2):

KΦΦ̄ =
n((Φ + Φ̄)2 − ε2)

((Φ + Φ̄)2 + ε2)2

=
n

(Φ + Φ̄)2
− 3nε2

(Φ + Φ̄)4
+ . . . . (5.3)

In order to obtain exactly the Kähler metric (5.3), we note that it can actually be

integrated to yield

K =
Φ + Φ̄

ε
tan−1

(
Φ + Φ̄

ε

)
− 1

2
ln
(
ε2 +(Φ + Φ̄)2

)
. (5.4)

Expanding the Kähler potential at small ε, we find

K = −n log(Φ + Φ̄)− nε2

6(Φ + Φ̄)2
+ . . . . (5.5)

The leading term outside the logarithm corresponds to the pole of order four (neces-

sarily with opposite sign, to counter the pole of order two) that is the first to become
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relevant at large field values, i.e. at large N . As we have argued, this gives rise to a

universal signature in terms of the spectral index and tensor-to-scalar ratio.

An alternative way to generate the type of corrections that become relevant at

large field values is to simply consider corrections to the Kähler potential outside

of the logarithm, i.e. a more general expansion of the form (5.6) but with arbitrary

corrections and order:

K = −n log(Φ + Φ̄) +
n′

(Φ + Φ̄)q−2
+ . . . . (5.6)

In a way, terms outside of the logarithm may be thought of as a way to reintroduce

the η-problem, but in a controlled way such that this only occurs at large fields. As

we have argued, this gives rise to a universal signature in terms of the spectral index

and tensor-to-scalar ratio at leading order in aq = 2−q(q − 1)(q − 2)n′.

5.2 Comments on matching to string theory

Which of these structures can be obtained in string theory settings? If we look

at the peculiar behaviour of non-canonical inflation with p = 2 and q = 3, we

discover by comparison a relation to a well known fact of the Kähler geometry argued

for 1-loop corrections in string theory to the volume moduli Kähler potential K in

supergravity [17–21]. Namely, for p = 2 we can think of KE(ρ) as arising from a

logarithmic Kähler potential for a chiral modulus field χ

K0 = −2ap ln(χ+ χ̄) , χ+ χ̄ = 2ρ (5.7)

where we get KE(ρ) = ∂χ∂χ̄K ≡ Kχ̄χ. A string loop correction to K is the generically

argued [17–21] to change K with a quantity

δK = − 2q

(q − 2)(q − 1)

aq
(χ+ χ̄)q−2

, q = 3, 4 . (5.8)

Here, we have chosen the prefactor of the loop correction such that the induced term

in Kχ̄χ matches the form eq (3.9). Hence, according to [17–21] the corrections form

degree −(q − 2) polynomials in K. From the general analysis in [19, 20] we know

that for constant superpotential W0 the leading-order supergravity scalar potential

for such a modulus χ induced by the above Kähler potential correction scales like

δV ∼ (2− q)(3− q)δK . (5.9)

Again, we see that for q = 3 the leading correction to the potential vanishes. In this

context of string loop corrections in type IIB compactifications this phenomenon was

named “extended no-scale structure” in [17–20] as the above leading correction to

the no-scale potential of the Kähler moduli (which have ap=2 = 3/2) was observed

there to vanish (and hence “extend” no-scale) for all loop corrections to K which

scale with power q = 3 = p+ 1 in the resulting Kähler metric Kχ̄χ.
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Our analysis of the scalar potential above shows that for models with pole-

dominated kinetic terms this extended no-scale structure holds for kinetic functions

with an arbitrary leading pole of order p > 0 even if p 6= 2. Moreover, it has a

natural explanation as a shift redefinition of the modulus.

We can now take a look a the leading-order structure of both the string 1-loop

and the leading O(α′3)-corrections to the type IIB volume moduli Kähler potential

K = −2 ln(V + ξ/2)− C

T + T̄
− D

(T + T̄ )2
,

= −2 lnV − ξ

(T + T̄ )3/2
− C

T + T̄
− D

(T + T̄ )2
, (5.10)

with V ∼ (T + T̄ )3/2 and at lowest order in ξ. In such a simple situation of a single

Kähler modulus the above inflationary regime would correspond to working close to

T = 0 where the α′-corrections are out of control. However, the simple toy example

serves us here to point out that a comparison with string theory as a possible UV

completion fixes concrete numbers for the possible values for p and q. Namely, from

the single modulus toy example we get p = 2 and q = 3, 7/2, 4 of which the q = 3

contribution drops out of the scalar potential at leading order as discussed above.

Moreover, matching to a string example would allow us also to compute the compute

c and aq in terms of the microscopic parameters ξ, C,D. As C,D are gs-suppressed

in the string coupling compared to the tree level terms and ξ, this may allow also for

an understanding of the smallness of aq in terms of small gs. It remains to be seen,

whether an embedding of this structure in a concrete controlled string theory setting

(either away from small volume regimes, or in a better-controlled singular regime) is

possible.

6 Discussion

The topic of this paper is non-canonical inflation. We have recalled how a leading

pole in the Laurent expansion of the kinetic function translates into a nearly shift-

symmetric plateau in the effective scalar potential of the canonically normalised

inflaton field, i.e. a fixed point of the cosmological evolution. This is a generic

feature and does not depend on the order of the pole.

Subsequently, we have investigated higher-order poles as perturbations of the

Laurent expansion of the kinetic term. The fixed point hence vanishes which results

in the approximate shift-symmetry of the inflaton potential to be broken at large

fields. Given a hierarchical suppression of higher order poles, we have outlined the

leading corrections to the inflationary predictions in terms of the number of e-folds

and the perturbation of the pole structure, and found that such corrections induce

terms with positive powers of N in the spectral index ns, which therefore rise to

prominence at sufficiently large-N (i.e. at large field values). Moreover, we have
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provided an explanation of the irrelevance of the first higher-order pole and have

argued this to be an alternative way to view the extended no-scale structure in string

theory: the effect of a pole one order higher than the leading one can be absorbed

in a redefinition of the field.

We can use our results for ns to analytically estimate the power-loss at large an-

gular scales resulting from the blue-shifting of the spectral index. From the definition

of ns = d lnP/d ln k = P−1dP/dN we get

∆P (δns)

P

∣∣∣∣N
N+∆N

=

N∫
N+∆N

δns

=
aq

ap
q−1
p−1

(q − p)(q − p− 1)

(q − 1)(p− 1)
q−2p+1
p−1

N
q−2p+1
p−1 ∆N +O(∆N2) . (6.1)

For the particular case of exponential potentials arising from p = 2 and q = 4, setting

a2 = 1 and a4 = −ε2 we get

∆P (δns)

P

∣∣∣∣N
N+∆N

=− 2

3
ε2N∆N +O(∆N2) . (6.2)

In the same particular case we also have that

δns =
2

3
ε2N (6.3)

Using N = 60 we see that a bound ε2 . 2 × 10−4 limits the shift of the spectral

index to δns . 0.008 which is the 2-σ range for the ns measurement from Planck.

By plugging in these numbers and the range of efolds ∆N ' 5 over which power-loss

occurs we find the power loss for this case to be

∆P (δns)

P

∣∣∣∣N
N+∆N

= −2

3
ε2N∆N ' −0.04 (6.4)

which is about 4%. This is in qualitative agreement with previous studies employing

exponentially rising corrections [22–30]. For order-one values of ap, p and q, one

obtains similar results.

Finally, we have discussed the possible UV embedding of non-canonical inflation.

While Kähler potentials of logarithm type are bread and butter in string theory com-

pactifications, loop corrections can induce higher-order terms in the Kähler potential.

These would generically result in a shift symmetry breaking at large field displace-

ments. We leave a concrete embedding of these terms into a reliable string theory

set-up for future investigation. In particular, the properties of complex structure

moduli space close to a conifold point may provide a viable path to embedding our
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structure into string theory, while working with volume moduli close to zero volume

(if one took the above toy comparison literally) is clearly a badly controlled regime.

While elegant, rephrasing the formulation of inflationary dynamics in terms of a

non-trivial kinetic function does not reduce the severity of the need to fine tune the

scenario. Having to impose condition (3.8) is one of our central findings. Further, one

formulation may not be understood as more fundamental than the other. However, it

recasts the context in which the fine tuning has to occur such that new insights may

be possible. Concretely, since a non-canonical kinetic term arises an intermediate step

in any UV derived 4D effective theory, it is instructive and may even provide a short

cut to know which types of non-canonical kinetic terms affect possible inflationary

dynamics in what way.
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A Shift symmetry and f(R)

It is well known that potentials such as

V ∼ V0

(
1− e−

√
2/3χ + . . .

)
(A.1)

may be recast in terms of an f(R) ∼ R2 - theory in the inflationary regime given

sub-leading terms die off exponentially fast such that V → V0 = constant for large

fields.

The study of single higher order terms such as e.g. ∆f(R) ∼ βR3 has shown

either to induce a runaway direction towards large fields in the potential (β > 0) or

to cause instabilities that lead to causally disconnected spacetime regions (β < 0)

[31]. It is crucial to note that regardless of the suppression of the single higher

order term, i.e. the size of the coefficient β, the resulting effect will eventually occur,

thus rendering the resulting scalar field potential ultimately unstable or ill-defined

(depending on the sign of β respectively).

Now consider the vanilla Starobinsky potential where a rising exponential has

been added

V = V0

(
1− e−

√
2/3φ
)2

+ εV0e
√

2/3φ − ε V0 . (A.2)
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This toy model displays a nearly shift-symmetric plateau in an intermediate regime

which is broken at large fields given ε� 1 (the size of ε determines the length of the

inflationary plateau). The subtraction of the term ε V0 ensures a minimum at φ = 0.

It can be shown [32], that the above symmetry breaking at large fields may

exactly be recast in the language of modified gravity as

f(R) =
ε− 1

3ε
R + 4εV0

[
(1− ε)2

9ε2
+

2

3ε
+

R

6εV0

]3/2

(A.3)

plus some integration constant which may readily be obtained. Expanding the above

then precisely recovers the pattern described by (2.6) with an infinite tower of higher

order terms suppressed with appropriate powers of ε. The coefficients of the first and

second term are easily shown to approach the familiar Starobinsky coefficients for

ε→ 0 while all the higher order terms vanish in that limit.

We thus learn that an enhanced c2R
2 term in the series expansion of a closed form

that is to leading order Rn with n < 2 is responsible for the inflationary plateau, as

expected, where the shift symmetry breaking is realised by an infinite but suppressed

tower of higher order terms. It is important to note, that there has to be an infinite

number of higher order terms to avoid the drastic consequences described to come

from a single higher order term or, likewise, a finite series.

References

[1] WMAP Collaboration, C. Bennett et al., Nine-Year Wilkinson Microwave

Anisotropy Probe (WMAP) Observations: Final Maps and Results,

Astrophys.J.Suppl. 208 (2013) 20, [arXiv:1212.5225].

[2] Planck Collaboration, P. Ade et al., Planck 2015 results. XX. Constraints on

inflation, arXiv:1502.02114.

[3] BICEP2, Planck Collaboration, P. Ade et al., Joint Analysis of

BICEP2/KeckArray and Planck Data, Phys.Rev.Lett. 114 (2015), no. 10 101301,

[arXiv:1502.00612].

[4] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and

Flatness Problems, Phys.Rev. D23 (1981) 347–356.

[5] A. D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the

Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,

Phys.Lett. B108 (1982) 389–393.

[6] A. Albrecht and P. J. Steinhardt, Cosmology for Grand Unified Theories with

Radiatively Induced Symmetry Breaking, Phys.Rev.Lett. 48 (1982) 1220–1223.

[7] A. D. Linde, Chaotic Inflation, Phys.Lett. B129 (1983) 177–181.

[8] M. Kawasaki, M. Yamaguchi, and T. Yanagida, Natural chaotic inflation in

supergravity, Phys. Rev. Lett. 85 (2000) 3572–3575, [hep-ph/0004243].

– 17 –

http://arxiv.org/abs/1212.5225
http://arxiv.org/abs/1502.02114
http://arxiv.org/abs/1502.00612
http://arxiv.org/abs/hep-ph/0004243


[9] D. H. Lyth, What would we learn by detecting a gravitational wave signal in the

cosmic microwave background anisotropy?, Phys.Rev.Lett. 78 (1997) 1861–1863,

[hep-ph/9606387].

[10] J. Garcia-Bellido, D. Roest, M. Scalisi, and I. Zavala, Lyth bound of inflation with a

tilt, Phys.Rev. D90 (2014), no. 12 123539, [arXiv:1408.6839].

[11] A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity,

Physical Letters B 91 (1980), no. 1 99.

[12] R. Kallosh and A. Linde, Universality Class in Conformal Inflation, JCAP 1307

(2013) 002, [arXiv:1306.5220].

[13] S. Ferrara, R. Kallosh, A. Linde, and M. Porrati, Minimal Supergravity Models of

Inflation, Phys.Rev. D88 (2013), no. 8 085038, [arXiv:1307.7696].

[14] R. Kallosh, A. Linde, and D. Roest, Universal Attractor for Inflation at Strong

Coupling, Phys.Rev.Lett. 112 (2014), no. 1 011303, [arXiv:1310.3950].

[15] R. Kallosh, A. Linde, and D. Roest, Superconformal Inflationary α-Attractors,

JHEP 1311 (2013) 198, [arXiv:1311.0472].

[16] M. Galante, R. Kallosh, A. Linde, and D. Roest, Unity of Cosmological Inflation

Attractors, Phys.Rev.Lett. 114 (2015), no. 14 141302, [arXiv:1412.3797].

[17] G. von Gersdorff and A. Hebecker, Kahler corrections for the volume modulus of flux

compactifications, Phys.Lett. B624 (2005) 270–274, [hep-th/0507131].

[18] M. Berg, M. Haack, and B. Kors, String loop corrections to Kahler potentials in

orientifolds, JHEP 0511 (2005) 030, [hep-th/0508043].

[19] M. Berg, M. Haack, and E. Pajer, Jumping Through Loops: On Soft Terms from

Large Volume Compactifications, JHEP 0709 (2007) 031, [arXiv:0704.0737].

[20] M. Cicoli, J. P. Conlon, and F. Quevedo, Systematics of String Loop Corrections in

Type IIB Calabi-Yau Flux Compactifications, JHEP 0801 (2008) 052,

[arXiv:0708.1873].

[21] M. Berg, M. Haack, J. U. Kang, and S. Sjrs, Towards the one-loop Kähler metric of

Calabi-Yau orientifolds, JHEP 1412 (2014) 077, [arXiv:1407.0027].

[22] C. R. Contaldi, M. Peloso, L. Kofman, and A. D. Linde, Suppressing the lower

multipoles in the CMB anisotropies, JCAP 0307 (2003) 002, [astro-ph/0303636].

[23] S. Downes and B. Dutta, Inflection Points and the Power Spectrum, Phys.Rev. D87

(2013), no. 8 083518, [arXiv:1211.1707].

[24] M. Cicoli, S. Downes, and B. Dutta, Power Suppression at Large Scales in String

Inflation, JCAP 1312 (2013) 007, [arXiv:1309.3412].

[25] F. G. Pedro and A. Westphal, Low-` CMB power loss in string inflation, JHEP

1404 (2014) 034, [arXiv:1309.3413].

[26] R. Bousso, D. Harlow, and L. Senatore, Inflation after False Vacuum Decay:

– 18 –

http://arxiv.org/abs/hep-ph/9606387
http://arxiv.org/abs/1408.6839
http://arxiv.org/abs/1306.5220
http://arxiv.org/abs/1307.7696
http://arxiv.org/abs/1310.3950
http://arxiv.org/abs/1311.0472
http://arxiv.org/abs/1412.3797
http://arxiv.org/abs/hep-th/0507131
http://arxiv.org/abs/hep-th/0508043
http://arxiv.org/abs/0704.0737
http://arxiv.org/abs/0708.1873
http://arxiv.org/abs/1407.0027
http://arxiv.org/abs/astro-ph/0303636
http://arxiv.org/abs/1211.1707
http://arxiv.org/abs/1309.3412
http://arxiv.org/abs/1309.3413


Observational Prospects after Planck, Phys.Rev. D91 (2015), no. 8 083527,

[arXiv:1309.4060].

[27] R. Bousso, D. Harlow, and L. Senatore, Inflation After False Vacuum Decay: New

Evidence from BICEP2, JCAP 1412 (2014), no. 12 019, [arXiv:1404.2278].

[28] R. Kallosh, A. Linde, and A. Westphal, Chaotic Inflation in Supergravity after

Planck and BICEP2, Phys.Rev. D90 (2014) 023534, [arXiv:1405.0270].

[29] M. Cicoli, S. Downes, B. Dutta, F. G. Pedro, and A. Westphal, Just enough

inflation: power spectrum modifications at large scales, JCAP 1412 (2014), no. 12

030, [arXiv:1407.1048].

[30] B. J. Broy, D. Roest, and A. Westphal, Power Spectrum of Inflationary Attractors,

Phys.Rev. D91 (2015), no. 2 023514, [arXiv:1408.5904].

[31] A. L. Berkin and K. Maeda, Effects of R3 and R Box R terms on R2 inflation,

Physical Letters B 245 (1990), no. 3 348.

[32] B. J. Broy, F. G. Pedro, and A. Westphal, Disentangling the f(R) - Duality, JCAP

1503 (2015), no. 03 029, [arXiv:1411.6010].

– 19 –

http://arxiv.org/abs/1309.4060
http://arxiv.org/abs/1404.2278
http://arxiv.org/abs/1405.0270
http://arxiv.org/abs/1407.1048
http://arxiv.org/abs/1408.5904
http://arxiv.org/abs/1411.6010

	1 Introduction
	2 Shift Symmetry Primer
	3 Pole Inflation
	3.1 Laurent expansion
	3.2 Universal corrections
	3.3 Canonical Formulation

	4 Complex Poles
	5 Towards a UV embedding
	5.1 Kähler potentials
	5.2 Comments on matching to string theory

	6 Discussion
	A Shift symmetry and f(R)

