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Universality Classes of Scale Invariant Inflation

Mehmet Ozkan1, ∗ and Diederik Roest1, †

1Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands

We investigate the inflationary implications of extensions of Poincaré symmetry. The simplest
constructions with local scale invariance lead to universal predictions: the spectral index is ns =
1 − 2/N , in excellent agreement with Planck data, while the tensor-to-scalar ratio is determined by
a free parameter to r = 12α/N2. For the special value α = 1 one finds symmetry enhancement to
the full conformal group. We show that these findings hold both for two-derivative scalar-tensor
theories as well as higher-derivative gravity. Therefore scale invariance underlies a promising set of
inflationary models.

I. INTRODUCTION

What is the fundamental symmetry that underlies the
laws of Nature, and how can we test for it – are there ob-
servational indications for symmetries beyond Poincaré?
In this letter we will argue that the most recent mea-
surements of the temperature fluctuations of the cosmic
microwave background (CMB) suggest an extension of
the Poincaré symmetry with a dilatation or scaling gen-
erator. Moreover, a future detection of primordial grav-
itational waves in the B-mode polarization of the CMB
could point towards a further extension to the conformal
group.

Due to impressively accurate measurements of CMB,
in particular the TT power spectum and TE crosscor-
relation, the Planck satellite has put tight constraints
on the scale dependence of the primordial scalar power
spectrum. This is encoded in the spectral index ns =
1− d log ∆2

R/dN , where N is the number of e-folds from
CMB horizon crossing to the end of inflation. The Planck
2015 data gives [1]

ns = 0.968± 0.006 . (1)

In addition it poses constraints on the power spectrum of
primordial tensor fluctuations: the tensor-to-scalar ratio
r is constrained by the 2σ upper limit r < 0.11, as can
be seen in Fig. 1.

Similar results from the Planck 2013 data release have
spurred an exciting development in inflationary model-
building. In particular, it has been noted that the mea-
sured value is perfectly consistent with ns = 1− 2/N for
N = 50−60. Interestingly, this behaviour has been found
to arise in a wide variety of inflationary models based on
(super-)symmetry, non-minimal couplings and/or non-
canonical kinetric terms [2–8]. An important trait that
many of these models share is an almost complete insen-
sitivity of the inflationary predictions to the details of the
models; it is this robustness that gives rise to the notion
of cosmological attractors [9]. Amongst the predictions of
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FIG. 1. The Planck 2015 one- and two-sigma contour plots
for ns and r, with the predictions of a number of models super-
imposed [1]: the yellow triangles stem from α-attractors with
V = V0 tanh(ϕ)2, while the orange dots include the Starobin-
sky model as well as conformal inflation [4, 12]. We have
included the underlying symmetry in the corresponding color.

these models are 1/N2 scaling of both the tensor-to-scalar
ratio as well as the running of the scalar index. This is a
specific case of the possible N -dependences identified in
[10, 11].

In this letter we will provide a formal demonstration in
simple constructions, both at the two- as well as higher-
derivative level, that an additional symmetry underlies
these attractor constructions. This has already been
pointed out at the two-derivative level for the special case
r = 12/N2, in which case there is a conformal symmetry
[4]. We will demonstrate that there is a one-parameter
family of universality classes when only imposing a scale
symmetry, where the free parameter generalizes the pos-
sible values of r. Both the conformal as well as scale
invariant predictions are superimposed in Fig. 1.
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II. GRAVITY AS A GAUGE THEORY

In this section we will outline the construction of grav-
ity as a Poincaré gauge theory as well as two extensions,
basen on the scale invariant and the conformal symme-
tries.

The Poincaré group has ten generators, consisting of
four translations Pa as well as six Lorentz boosts and
rotations Mab. This symmetry can be gauged by the
introduction of the corresponding gauge fields eµ

a and
ωµ

ab. Their field strengths are given by

Rµν
a(P ) =2∂[µeν]

a + 2ω[µ
abeν]b ,

Rµν
ab(M) =2∂[µων]

ab + 2ω[µ
ac ων]c

b . (2)

In order to obtain general relativity, with only the met-
ric as independent, propagating field, one has to impose
the curvature condition Rµν

a(P ) = 0. This allows one
to identify the gauge field ωµ

ab as the spin connection,
i.e. the Levi-Civita connection of the Vielbein eµ

a. At
this point one can construct the most general diffeomor-
phism invariant theory, with arbitrary couplings for the
metric field as well as any scalar fields that one would
introduce: the Poincaré symmetry poses no further con-
straints apart from general coordinate invariance.

Augmenting the Poincaré symmetry with a dilatation
or scaling generator D (under which only the Abelian
Pa can have a non-trivial weight), we need to add an
additional gauge field bµ. The curvatures now read

Rµν
a(P ) =2∂[µeν]

a + 2ω[µ
abeν]b + 2b[µeν]

a ,

Rµν
ab(M) =2∂[µων]

ab + 2ω[µ
ac ων]c

b ,

Rµν(D) =2∂[µbν] . (3)

Again we impose the curvature condition Rµν
a(P ) = 0,

allowing us to solve for the would-be spin connection in
terms of the Levi-Civita connection and a term with the
additional gauge field:

ωµ
ab = 2eν[a∂[µeν]

b] − eν[aeb]σeµc ∂νeσc + 2eµ
[abb] .

(4)

The Bianchi identity implies

e[µ
aRνρ](D) = Rµνρ

a(M) . (5)

The field strength of the gauge field bµ therefore does not
necessarily vanish, and one could add a kinetic term for
this field; however, we will not do so in order to have only
the metric with propagating degrees of freedom.

The additional dilatation symmetry poses constraints
on the possible dynamics that one can introduce. The
Einstein-Hilbert term, for instance, can be obtained from
a contraction of Rµν

ab(M); in this combination, however,
the gauge field bµ is also present [13]:

R(M) = R− 6∇µbµ − 6bµb
µ . (6)

Similarly, the kinetic term for a scalar field φ with a non-
vanishing scaling weight (which we take to be one) will
also involve the same gauge field, since

2sφ = (∂a − 2ba + ωb
ba)(∂a − ba)φ , (7)

where 2s denotes the scale invariant d’Alambertian. As
we will see, the gauge field bµ that appears in these co-
variant quantities will play an important role in what
follows.

Finally, we consider the extension to the full conformal
symmetry SO(4, 2). In addition to Poincaré and scaling,
this group has four special conformal generators Ka, with
corresponding gauge fields fµ

a. The curvatures of the
conformal group are (see e.g. [14])

Rµν
a(P ) = 2∂[µeν]

a + 2ω[µ
abeν]b + 2b[µeν]

a ,

Rµν
ab(M) = 2∂[µων]

ab + 2ω[µ
ac ων]c

b + 8f[µ
[aeν]

b] ,

Rµν(D) = 2∂[µbν] − 4f[µ
aeν]a ,

Rµν
a(K) = 2∂[µfν]

a + 2ω[µ
abfν]b − 2b[µfν]

a . (8)

In order to eliminate the gauge fields ωµ
ab and fµ

a as
independent fields, we now impose the curvature con-
ditions Rµν

a(P ) = 0 and Rµ
a(M) = 0. In this case

the Bianchi identities imply that Rµν(D) = 0 as well as
R[µνρ]

a(M) = 0. Therefore, in the conformal theory the
bµ field is pure gauge, and the only propagating field is
the metric.

As expected, the conformal symmetry poses yet
stronger constraints on the possible dynamics. Due
to the curvature constraints, R(M) vanishes in this
case. Instead, the Einstein-Hilbert action appears in the
d’Alembertian of a scalar field φ of weight one:

2cφ = 2φ− 1
6φR . (9)

This combination transforms covariantly with scaling
weight three. Note that the gauge field bµ drops out of
this combination; this is due to the fact that the only in-
dependent gauge field that transforms under the special
conformal symmetry is bµ.

The fact that bµ drops out in the conformal set-up,
with a fixed ratio between the coefficients of the Einstein-
Hilbert term and the d’Alembertian of the scalar field
φ, has a dramatic consequence: the conserved current
that is associated with the dilatation symmetry vanishes
[15, 16]. For the scale invariant set-ups, there is a non-
zero conserved current for dilatations, which vanishes
when the scale invariance is enhanced to conformal in-
variance [17]. At the same time, the trace of the energy-
momentum tensor vanishes in the conformal but not in
the scale invariant case.

There are two situations in which scale invariance im-
plies the full conformal symmetry. First of all, in the
off-shell supersymmetric extension of the locally scale-
invariant gravity models, one needs enhancement to the
full conformal symmetry in order to match the num-
ber of fermionic and bosonic degrees of freedom. Sec-
ondly, in two dimensions, it was proven that scale invari-
ance together with unitarity implies conformal invariance
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[18, 19]. Therefore, it is intriguing to consider two dimen-
sional scale invariant gravity to see whether the theory
also exhibits conformal invariance. Turning our atten-
tion to d = 2, we find that the definition of conformal
and scale invariant d’Alambertians coincide, and neither
of them include an Einstein-Hilbert term. Indeed, the
scale invariant completion of the Einstein-Hilbert term
contains bµ as a total derivative, which can be simply be
dropped out in the action.

III. SCALAR-TENSOR THEORY

What are the implications of the constrained dynamics
on the possible inflationary models? In order to address
this question, we add a propagating scalar degree of free-
dom. Due to the scale symmetry, this requires the in-
troduction of a pair of scalar fields with weight one, that
will be referred to as the dilaton or conformon χ and the
inflaton φ.

Following [4] we will write the kinetic terms for these in
an SO(1, 1) invariant combination. This symmetry will
correspond to the non-compact shift symmetry of the in-
flaton, which will only be broken by the scalar potential.
This leads to

L =
1

12
(χ2 − φ2)R(M)− 1

2
α(χ2sχ− φ2sφ)+

− 1

36
F
(φ
χ

)
(φ2 − χ2)2 . (10)

Since we have an independent curvature and kinetic term,
we have included a relative coefficient α between these.
Moreover, all terms are scale invariant and only the func-
tion F breaks the SO(1, 1) symmetry by introducing a
non-trivial profile to the scalar potential1.

In order to obtain a Poincaré gravity theory, we employ
the scale symmetry to impose χ2−φ2 = 6M2

Pl, which has
the solution

χ√
6Mpl

= cosh
ϕ√

6αMpl

,
φ√

6Mpl

= sinh
ϕ√

6αMpl

.(11)

in terms of a canonical scalar field ϕ. Moreover, the
vector field bµ can be eliminated by its field equation:
for the above gauge choice it vanishes, while for other
choices it is pure gauge. Most importantly, the scalar
potential for ϕ reads

V = F (tanh
ϕ√

6αMpl

) , (12)

and is simply given by the function F with the hyperbolic
argument. The same behaviour was found for supercon-
formal α-attractors [7], which we will comment on in the
conclusions.

1 At the two-derivative level, after gauge fixing the theory will be
closely related to cases where a global non-compact symmetry is
broken perturbatively [20, 21].

For any finite value of α, this implies that the scalar
potential at large field values is flattened due to the hy-
perbolic functions (“inflation of moduli space” instead
of space-time). In this regime, the deviation from De
Sitter will be governed by a single exponential drop-off
term, and lead to a universal behaviour. Remarkably,
this is virtually independent of the choice of the function
F . In order to have the modes that we are observing
inside this regime, the parameter α should be of order
log(N) or smaller, where N ∼ 60 is the number of e-folds
since CMB horizon crossing. The resulting inflationary
predictions are given by [7]

ns = 1− 2

N
, r =

12α

N2
, (13)

up to higher-order corrections in 1/N . For values of α .
log(N) where this approximation works, this yields an
excellent fit to the measured Planck value of the spectral
index, and moreover predict the tensor-to-scalar ratio of
the order of a permille.

While this theory generically is invariant under
Poincaré and scale transformations, it has a point of en-
hanced symmetry when α = 1. Exactly for this value the
gauge field bµ drops out of (10), and can be rewritten
in terms of conformal d’Alembertians for the two scalar
fields. Therefore this point corresponds to a conformal
theory, as pointed out in [4]. This corresponds to the
value r = 0.003 for N = 60, similar to the Starobinsky
theory [12].

Another possibility for scale invariant theories is to
take an SO(2) symmetric combination instead:

L =
1

12
(χ2 + φ2)R(M) +

1

2
α(χ2sχ+ φ2sφ)+

− 1

36
F
(φ
χ

)
(φ2 + χ2)2 , (14)

Note that this is only possible for the scale invariant case,
where the Einstein-Hilbert and scalar kinetic terms come
with independent signs and coefficients, and does not
have a conformal counterpart (the latter would require
α = −1 and leads to a ghost degree of freedom). The
canonical inflaton is defined similar to (11) but now with
trigonometric functions. One of the examples of this class
is natural inflation [22], which corresponds to the choice

F (x) =
x2

1 + x2
, V = sin2 ϕ√

6αMpl

. (15)

Other choices of F correspond to different scalar poten-
tials. In this case, there is no universal behavior for
generic values of α; the functional choice remains very
relevant for the inflationary predictions, in contrast to
the universal regime for the SO(1, 1) case.

IV. HIGHER DERIVATIVE GRAVITY

In this section we will investigate the compatibility
of extended symmetries with f(R)-theories of gravity,
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where the higher derivative terms induce the additional,
inflationary degree of freedom.

Our starting point will be the scale invariant action
including an arbitrary function, L = e χ4 f(Θ), where the
argument is a linear combination of the two invariants:

Θ = χ−2R(M)− 6αχ−32sχ . (16)

To gauge fix the dilatation symmetry, we set χ =
√

6MPl.
In order to convert this theory to a scalar-tensor theory,
we take Θ to be an independent field and introduce a
Lagrange multiplier ϕ to enforce the relation (16). The
field equations for F and bµ lead to

∂f(Θ)

∂Θ
= e

√
2
3α

ϕ
Mpl , bµ =

1√
6α

∂µϕ

Mpl
, (17)

Hence we have traded the auxiliary field Θ and the gauge
field bµ for the canonically scalar field ϕ. Note that the
latter is pure gauge, in accordance with having no prop-
agating degrees of freedom. The scalar potential for the
canonical inflation reads in Einstein frame [23]

V =
1

2
M2
ple
−
√

2
3α

ϕ
Mpl [Θ− e−

√
2
3α

ϕ
Mpl f(Θ)] , (18)

which is fully determined by the choice of function f(Θ).
Turning to the conformal theory, the analogous con-

struction is more restrictive: the only invariant argument
is

Θ = χ−32Cχ = −1

6
χ−2R+ χ−32χ . (19)

Note that in this case one cannot add the square of co-
variant derivatives, as this term is not invariant under
special conformal transformations. The above is identi-
cal to the scale invariant argument, where bµ drops out
for the special choice α = 1. In this case the condition
bµ = 0 arises as a gauge fixing condition for the special

conformal transformations (in addition to χ =
√

6MPl

for the dilatations). The two types of extensions of
Poincaré symmetry therefore lead to similar results, with
an α-dependent scalar potential for the scale invariant
case, while α = 1 in the conformal case.

Specific choices for the function f(R) deserve special
mention. In the simplest example, when the function
consists of a constant and a linear term, the theory has
no additional propagating scalar degree of freedom: it
is just general relativity with a cosmological constant.
This is reflected in the solution (17) as these set ϕ to a
constant value. Secondly, the next-to-simplest combina-
tion of a linear and an (enhanced) quadratic term is the
α-generalization of Starobinsky inflation, with

V = V0(1− e−
√

2
3α

ϕ
Mpl )2 . (20)

For values of α up to order log(N), the predictions of this
model are identical to (13).

At this point we would like to stress that the same
result follows from a much more general set of functions
f(R): any function that has an expansion of the form

f(R) = c2R
2 + c1R+ c01 + c−1R

−1 + . . . , (21)

will at large R be dominated by the quadratic term that
gives rise to a plateau at large and positive ϕ values,
while the remaining terms yield exponentially suppressed
drop-off terms. Only the leading of these, coming from
the linear term in f(R), will contribute to the scalar po-
tential,

V =
1

8c2
− c1

4c2
e
−
√

2
3α

ϕ
Mpl + . . . . (22)

This determines the predictions (13) at this order; all
other terms only come in at higher order in 1/N .

Similarly, any function that has an expansion of the
form

f(R) = c2R
2 + c3R

3 + c4R
4 + . . . , (23)

will at small R again be dominated by the quadratic
term, which yields a plateau at large and negative ϕ val-
ues in this case:

V =
1

8c2
− c3

16c23
e

√
2
3α

ϕ
Mpl + . . . . (24)

In this case the first of the exponentially suppressed drop-
off terms is given by the quartic term, which yields iden-
tical predictions (13).

Finally, the most general expansion [24–27]

f(R) = . . .+ c1R+ c2R
2 + c3R

3 + . . . , (25)

has an inflationary plateau with the same predictions,
provided the quadratic term that leads to the scale-
invariant plateau is sufficiently enhanced in order to be
long enough to generate N e-folds.

V. CONCLUSIONS

Extending the Poincaré symmetry with a scaling sym-
metry has strong implications for inflation: very spe-
cific types of models arise naturally in set-ups with
this extended symmetry. We have outlined this for-
malism for both two-derivative scalar-tensor theories as
well as higher-derivative f(R) theory. In contrast to
Poincaré gravity, in the scale invariant and conformal
cases the Einstein-Hilbert term comes with additional
fields. Upon eliminating and gauge fixing these, this gives
rise to scalar potentials (12) and (18) in terms of ex-
ponentially suppressed terms, whose argument is set by√

2/3α. Symmetry enhancement to the full conformal
group occurs for α = 1.

Interestingly, for a large range of values of the parame-
ter α, these lead to a single family of universality classes
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with the very simple predictions (13) indicated in Fig. 1.
In particular, the spectral index takes a definite value,
which is perfectly compatible with Planck measurements.
It is amusing to note that imposing scale invariance in the
underlying theory implies a very specific deviation of a
scale invariant spectrum of scalar perturbations, which
would correspond to ns = 1. In addition, the tensor-to-
scalar ratio has a simple expression and generically takes
a permille value.

The same predictions appeared earlier in the context
of superconformal α-attractors [7]. In that construction,
the SO(1, 1) symmetry was broken for any value of α 6= 1;
in the present framework, this would correspond to the
inclusion of a d’Alembertian for the weight-zero combi-
nation φ/χ, thus breaking this global symmetry in the
kinetic sector. In contrast, we retain both the scale sym-
metry and the SO(1, 1) symmetry for any value of α 6= 1;
the global symmetry is only broken by the profile func-
tions F (φ/χ) 6= 1 or f(R) 6= R2. It therefore appears
that the full conformal symmetry and the crucial infla-
ton shift symmetry are only compatible when α = 1.

Finally, it has been argued in [15, 28] that the confor-
mal symmetry in [4] only provides a redundant descrip-
tion of a Poincaré invariant theory. This point is sim-
ilar to the role of the superconformal symmetry in the

construction of Poincaré supergravities [14, 29, 30] and
whose relation to the Planck results was reviewed in [31].
However, while any inflationary model can be embedded
in a scale invariant or conformal theory, for most mod-
els this will require more contrived constructions with
a number of ingredients. In contrast, the universality
classes studied in this letter arise from the simplest pos-
sible construction with either two scalars or an f(R) the-
ory. A case in point are α 6= 1 models for a conformal
theory: these would require a modification of the sim-
ple construction that we propose (e.g. this would involve
a weight-zero scalar field breaking the SO(1, 1) global
symmetry). This underlines our central observation that
imposing scale or conformal invariance naturally leads to
the promising set of inflationary models with specific non-
minimal couplings and/or non-canonical kinetric terms.
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