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Conformal or Confining

T. Nunes da Silva,1 E. Pallante,1 and L. Robroek1

1Van Swinderen Institute for Particle Physics and Gravity,
University of Groningen, 9747 AG, The Netherlands

(Dated: October 7, 2015)

We present a lattice study of the zero-temperature line of chiral symmetry breaking phase transi-
tions in the conformal window of QCD for varying number of flavors. We argue that it is consistent
with a lower edge of the conformal window between Nf = 8 and Nf = 6, and remarkably in agree-
ment with perturbation theory and recent large-N arguments. We add a theoretical analysis of the
anomalous dimension of the scalar glueball operator and show that its agreement with perturba-
tion theory and large-N arguments would be sufficient to exclude an ultraviolet-infrared fixed-point
merging as a mechanism for the loss of conformality.

The possibility of an emergent conformal symmetry
underlying the interactions of fundamental constituents
between the electroweak symmetry breaking scale and
the Planck scale has recently attained strong theoreti-
cal and experimental appeal. From the theoretical point
of view, we have one successful quantum gauge the-
ory, Quantum Chromodynamics with massless fermions,
where conformal symmetry is lost in a highly non trivial
way, leading to two manifestations of one single break-
ing phenomenon: asymptotic freedom and confinement
[1] — one cannot exist without the other. This concept
is strikingly clear in the recently proposed solution [2]
for the scalar glueball correlator in the ‘t Hooft limit
of large-N QCD. It has also become clear that a wide
class of gauge field theories arising from applying present-
day AdS/CFT correspondence are fundamentally differ-
ent from QCD, i.e., they cannot become QCD by perturb-
ing the conformal field theory neither in the ultraviolet
nor in the infrared. The family of theories called the con-
formal window falls into this category — these theories
in the continuum live at a non-trivial infrared fixed point
(IRFP) and are separated from QCD or supersymmetric-
QCD (SQCD) by a phase transition whose nature has yet
to be established. We are likely to learn more about the
deep differences between confining and conformal gauge
theories and the applicability of the AdS/CFT correspon-
dence by better understanding which mechanism(s) sep-
arate the conformal window from QCD and SQCD; as
a byproduct, we may hope to shed light on the detailed
consequences of removing supersymmetry.

This letter is an attempt to establish to what extent the
emergence of the conformal window realizes the predic-
tions of perturbation theory or the implications of large-
N arguments. We address this question by means of a
lattice field theory study of the order parameter of chiral
symmetry breaking. Subsequently, we offer a theoretical
analysis of the anomalous dimension of the scalar glue-
ball operator, probe of the deconfinement transition. It
allows us to show how this quantity discriminates among
different mechanisms of disappearance of the conformal
window. The combined use of observables sensitive to
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FIG. 1. Lattice phase diagram Nf − 1/β, β the inverse
squared lattice coupling. Data points for Nf = 7, . . . , 12
are midpoints of sharp zero-temperature crossovers in Fig.
2. Best fit to data is linear in β and extrapolated down to
Nf = 4 (dotted gray). Flattening of bulk line at endpoint is
sketched (dashed red); chiral symmetry is broken below the
line. Thermal transitions for Nf = 4, 6 occur away from the
bulk line, at weaker coupling, with volumes 243 ×Nt, Nt = 6
(orange), 8 (green) and 12 (blue), right to left.

chiral symmetry and observables sensitive to confinement
is also the way to understand the interplay of confine-
ment and chiral symmetry breaking at the lower edge of
the conformal window.

The lower edge of the conformal window: a lattice
study. A numerical determination of the lower edge of
the conformal window of QCD is one way to establish
how far large-N QCD or perturbation theory to a given
loop order are from the complete theory. We have nu-
merically mapped out the line of zero-temperature (bulk)
chiral symmetry breaking phase transitions for Nf ≤ 12,
aiming to identify the critical number of flavors N c

f that
signals the disappearance of the conformal window. The
setup of the simulations is the one of [3]. The results
are summarized in Fig. 1. We have also extrapolated
the line to Nf = 16, obtaining βc ∼ 1.2 consistent with
previous studies [4] and [5] carried out with different lat-
tice actions and heavier fermions. This line, i.e., the
critical coupling as a function of Nf in any given renor-
malization scheme, should manifest the fact that fermion
screening is increasingly effective for increasing Nf ; this
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FIG. 2. Sequence of sharp crossovers of the chiral condensate
for Nf = 12 to 7 (left to right). Nf = 12 from [4], Nf =
11, 10, 9, V = 123 × 24, Nf = 8 163 × 32 (circles, solid line),
243×12 (triangles, dotted line), 243×6 (squares, dashed line),
and Nf = 7 163 × 32, all with bare lattice mass am = 0.01.
Edge of exotic phase displayed for Nf = 12, 9 and Nf = 8,
Nt = 6 and Nt = 12 (inset 1). Inset 2 shows data for two
branches of possible hysteresis loop for Nf = 7.

Nf dependence is a leading order effect separating two
phases with different symmetries for Nf ≥ N c

f , differ-
ent in nature from the subleading Nf dependence carried
by (fake) zero-temperature transitions possibly occurring
within the chirally broken phase at Nf < N c

f on coarse
lattices. The critical bulk line should flatten at N c

f in
the massless limit, as sketched in Fig. 1; at finite lattice
spacing a and temperature T = 1/(aNt) the critical bulk
line is the Nt = 1/(aT )→∞ limit of an Nt-finite family
of thermal phase transitions that exists for all Nf > 0.

To illustrate this concept and provide a determina-
tion of N c

f we show in Fig. 1 the location of thermal
phase transitions for varying Nt < Nl, with spatial vol-
ume L = aNl, for the Nf = 6 and Nf = 4 theories. The
locations have been determined with a study analogous in
spirit to [6] and contained in a forthcoming paper [7]. As
expected for theories below the conformal window, where
chiral symmetry restoration occurs at a critical temper-
ature Tc = 1/(a(βc)Nt), the locations move to weaker
coupling for increasing Nt. Fig. 1 also shows that al-
ready at the smallest Nt = 6 the transitions occur at a
coupling weaker than the one predicted by the linear in β
extrapolation of the bulk line. At the same time, no zero-
temperature phase transition occurs for Nf = 6, 4 along
the extrapolated line, nor it is observed at weaker cou-
pling [8], consistently with the fact that chiral symmetry
is all the way broken for these systems. This behavior
has to be contrasted with the one of the Nf = 8 system,
for which we have carried out the same study.

Fig. 2 illustrates the sequence of sharp crossovers that
nicely align to form the critical bulk line in Fig. 1.
Notably for Nf = 8, the transitions with Nt = 6 and
Nt = 12 nicely overlap with the zero-temperature transi-
tion [9], which is indeed their limiting point on the bulk
line in Fig. 1. The edge of the chirally symmetric ex-
otic phase, a genuine lattice artifact studied in [4, 10] is
also shown for Nf = 12, 9 and Nf = 8 with Nt = 6, 12;
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FIG. 3. Chiral condensate (red squares), (connected) Rπ
(blue triangles) and rescaled 2×Polyakov loop (green circles)
for Nf = 8 (left) and Nf = 6 (right), 243 × 6, am = 0.01.
Points in Fig. 1 correspond to the combined observation of
the maximum derivative of the chiral condensate, of Rπ and,
when appropriate, of the Polyakov loop.

this edge is observed to be Nt dependent up to some Nt
[11], see also [12], and it disappears in the massless limit
consistently with exact chiral symmetry [4]. At nonzero
mass, it serves as a useful discriminator on the lattice of
theories inside and outside the conformal window.

Fig. 3 displays the differences between Nf = 8 and
Nf = 6. The chiral condensate, the (connected) chiral
cumulant Rπ =χconn/χπ=(∂〈ψ̄ψ〉/∂mvalence)/(〈ψ̄ψ〉/m)
ratio of the connected scalar and the pseudoscalar chi-
ral susceptibilities, and the real part of the Polyakov
loop are shown for Nt = 6. For the Nf = 8 theory,
a second sharp crossover of the chiral condensate and a
dip in the chiral cumulant mark the edge of the exotic
phase, analogously to our Nf = 12 study [4]. These
are absent for Nf = 6. Another contrast between the
two theories is in the Polyakov loop: for Nf = 6 it be-
comes nonzero at the thermal transition, signaling the
onset of the high-temperature deconfined phase, while
for Nf = 8 it only becomes nonzero at the edge of the
exotic phase, where the system is deconfined and chiral
symmetry exact. We observe the Nf = 4 theory to be-
have as Nf = 6. Throughout this study, we have not
observed an anomalous behavior that could hint at con-
sequences of the fourth-root of the fermion determinant
for staggered lattice fermions.

The most striking result is the extension of the bulk
line in Fig. 1, and therefore the conformal window, below
Nf = 8. The fate of Nf = 7 is less certain at this stage,
though we observe a reduced crossover, an almost closing
gap, and signs of hysteresis in the interval β = [4.275, 4.3]
right on the bulk line; a study analogous to Nf = 8 and
6, possibly at a lighter fermion mass, is likely to clarify
the situation. These results also clearly suggest that the
Nf = 6 theory is below the conformal window. The sharp
crossovers in Fig. 3 do not leave space for a behavior
analogous to Nf = 8 at a lower mass.

We suspect that the transition observed forNf = 8 and
interpreted as a thermal transition in [6, 13] — with a dif-
ferent improvement of the fermion action — may instead
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be the edge of the exotic phase, later on discovered by
the same authors [14] and extensively studied [4, 10, 12].
This result does not contradict the upper bounds on the
chiral phase boundary in, e.g., [6, 15], but it shows the
delicacy of this study and how the gradual understanding
of many aspects of the conformal window finally seems
to lead to a consistent picture.

The strategy of this study is motivated by the observa-
tion that most quantities will plausibly evolve in a non-
singular way from the conformal to the confining phase,
rendering the determination of the endpoint numerically
uncertain if not corroborated by the signature of a phase
transition. Interestingly, a lower edge below Nf = 8 and
close to Nf = 7 is not far from the prediction of two-loop
perturbation theory and intriguingly in good agreement
with the large-N result Nf/N = 5/2, for N = 3 [16]
and four-loop perturbation theory. It is also in agree-
ment with the perturbatively small value of the fermion
mass anomalous dimension for Nf = 12 [3, 17], because
Nf = 12 is not close to the lower edge of the conformal
window.

The anomalous dimension of the scalar glueball op-
erator in perturbation theory and large-N . It is well
known that the anomalous dimension of the scalar glue-
ball operator Tr(G2) is constrained by the trace anomaly,
i.e., the nonzero contribution to the trace of the energy-
momentum tensor. The trace anomaly of QCD that en-
ters the matrix elements of renormalized gauge invariant
operators is [18]

Tµµ =
β(α)

16πα2
Tr(G2) + fermion mass contribution , (1)

with the beta-function

β(α) ≡ dα(µ)

d lnµ
α ≡ g2

4π
. (2)

The dimension of a quantum operator O is dictated by
the scaling equation

dO

d lnµ
= dOO O(µ) ∼ µdO , (3)

dO = dc + γO, with canonical dimension dc and anoma-
lous dimension γO. The nonrenormalization of Tµµ im-
plies that it scales classically, i.e., dTµµ = 4 in four dimen-
sions, and the scaling equation (3) applied to Eq. (1)
gives for Tr(G2)

dG = 4− β′(α) +
2

α
β(α) , (4)

with β′(α) the derivative of the beta-function w.r.t. α.
At a nontrivial stable IRFP, β(α∗) = 0 and the anoma-
lous dimension

γG = −β′(α∗) (5)

is a physical property of the system, renormalization
scheme independent. It is instructive to determine
γG in perturbation theory to a given loop order in-
side the conformal window, and compare this result
with the Veneziano limit of large-N QCD (N → ∞,
Nf/N = const) [16]. Given the loop expansion β(α) =
−α

∑∞
l=1 blα

l, with universal coefficients b1,2 [19] and b3,4
in the MS scheme [20], the IRFP coupling to n-loop or-
der αIR,n is solution of β(α) = 0 to that order, while
β′(α) = −

∑n
l=1(l + 1)blα

l. However, the zero of the
beta-function is in general a necessary, but not sufficient
condition for the existence of a stable IRFP. At two loops
αIR,2 = −b1/b2 and β′(αIR,2) = −b21/b2. The four-loop
beta-function is a cubic equation with three zeros, one
of which is negative [21]. The smallest positive zero is
listed in Table I, and values agree with [21]. In all cases,

n = 2 n = 3 n = 4

Nf αIR,n β′(αIR,n) αIR,n β′(αIR,n) αIR,n β′(αIR,n)

6 - - 12.992 84.646 - -

7 - - 2.453 5.956 - -

8 - - 1.464 2.654 1.552 1.784

9 5.237 4.169 1.027 1.472 1.070 1.460

10 2.21 1.522 0.764 0.869 0.815 0.851

11 1.23 0.706 0.578 0.513 0.626 0.496

12 0.754 0.360 0.435 0.296 0.470 0.281

TABLE I. Smallest positive zero of the QCD beta-function
αIR,n, n = 2, 3, 4 loops in the MS scheme, and derivative
β′(αIR,n) at the zero, in the interesting range Nf ≤ 12.

the derivative β′(α∗) is positive and increases along the
IRFP line for decreasing Nf . The disappearance of the
zero occurs for Nf > 8 at two loops, while it shifts to
lower Nf at three and four loops, suggesting a lower end-
point of the conformal window in the range 7 < Nf < 8 at
four loops — provided the zero can be taken as sufficient
condition. At two loops the disappearance of the zero
is determined by the change of sign of b2, implying that
the fixed point disappears at infinite coupling αIR,2 →∞.
This behavior, however, is likely to be an artifact of the
truncated perturbative expansion; the same singularity
occurs in β′(αIR,2).

It is most interesting to compare these results with
the implications of the exact beta-function of large-N
QCD in the Veneziano limit derived in [16], which mani-
fests salient analogies and differences with the exact beta-
function of SQCD [22–24]. Writing in short the large-N
QCD beta-function for the canonical ‘t Hooft coupling as

β(g) =
g3 c(g)

1− 4
(4π)2 g

2
, (6)

the absence of supersymmetry generates a new anoma-
lous dimension contribution, not present in SQCD, in
c(g). The fate of a fixed point depends on the numerator
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and denominator of Eq. (6). The pole generates a cusp
in the flow of g, unless the numerator has a zero before
the pole is hit — and a zero associated to an IRFP inside
the conformal window must be shown to be renormal-
ization scheme independent. Remarkably, this has been
shown to be true [16] for the large-N QCD beta-function
in the Veneziano limit at the lower edge of the conformal
window, identified at Nf/N = 5/2 where the stability
of the glueball kinetic term is lost. Below the conformal
window, zeros of the beta-function may still occur. One
example is the saturation of the coupling gphys entering
the static inter-quark potential in large-N Yang-Mills

V (r) = σr −
g2phys(1/r)

4πr
, (7)

with nonzero string tension σ. The effective charge gphys
in the Coulomb potential is observed to saturate to a con-
stant at large distances in lattice SU(3) Yang-Mills [25]
and provides agreement with the effective bosonic string
theory prediction and open-close string duality [26]. In
other words, the beta-function of gphys develops a zero,
while conformal symmetry remains broken due to the
linear confining contribution to the potential (non-zero
string tension) dominating the large distance behavior.
From [27] we learn an important lesson. In [27] a renor-
malization scheme for the large-N Yang-Mills exact beta-
function was constructed, where the canonical ‘t Hooft
coupling coincides with the physical effective charge en-
tering the static inter-quark potential in Eq. (7), and
it develops a zero at the Landau pole of the Wilsonian
coupling, at r−1 = ΛW . Hence, it actually predicts that
for r > Λ−1W the effective charge gphys saturates to a con-
stant.

If the same behavior is realized beyond large-N in the
presence of Nf < N c

f massless fundamental flavors, then
the QCD beta-function below the conformal window in
a given renormalization scheme can develop zeros with-
out implying conformal symmetry. The only probes of
the absence of conformal symmetry remain the n-point
functions that involve the string-tension term of the inter-
quark potential, the observables sensitive to chiral sym-
metry breaking and, importantly, topological quantities.

A fundamental difference between SQCD and QCD is
the presence in SQCD of a phase just below the lower
edge, for Nc + 2 ≤ Nf ≤ 3Nc/2, where the only descrip-
tion that makes physical sense is in terms of the dual vari-
ables that describe the free non-Abelian magnetic phase
[28]; this property is consistent with the occurrence of
the cusp in the flow just below the conformal window
for SQCD. The absence of this phase in QCD calls in-
stead for a differentiable flow, thus without cusps, across
and below the lower edge of the conformal window. It
is rewarding that the beta-function of large-N QCD can
realize this property [16]. It also supports that the lower
edge singularity for b2 = 0 at two loops arises as an ar-
tifact of n-loop perturbation theory. Finally, since the

large-N beta-function reproduces the two-loop one up to
O(1/N2) contributions [16], the predicted γG also repro-
duces the two-loop result up to O(1/N2); however, it is
expected to remove the singularity for b2 = 0 at the lower
edge of the conformal window.

Perturbation theory, as well as the large-N solution
thus predict an increasing anomalous dimension |γG|
(|β′(α∗|) for Nf↘N c

f . We observe that this behavior
is opposite to the one implied by an UV-IR fixed-point
merging phenomenon at N c

f . In fact, assuming in some
generality

β(α,Nf ) = (Nf −N c
f )− (α− αc)2 (8)

close to N c
f where the merging would occur, see also [29],

the beta-function develops a local maximum at N c
f , i.e.,

β′(αc) = 0, with decreasing |β′| along the IRFP line
Nf↘N c

f . A measurement of γG for varying Nf inside
the conformal window and in agreement with perturba-
tion theory and large-N would therefore exclude a fixed-
point merging mechanism for the conformal window of
QCD. We recall that the UV-IR fixed-point merging is
one simple way to realize preconformal Miransky-BKT
scaling [29, 30] just below the conformal window. If the
fixed-point merging turns out not to occur in QCD, it
becomes interesting to understand from a renormaliza-
tion group point of view if preconformal scaling can at
all be realized with a single IRFP, and if it can repro-
duce the trend of the anomalous dimensions implied by
perturbation theory and large-N arguments.

To conclude, our numerical study of the order param-
eter of chiral symmetry breaking points at a lower edge
of the conformal window for QCD between Nf = 8 and
Nf = 6, in remarkably close agreement with perturbation
theory and large-N arguments, the latter based on the
behavior of glueball operators sensitive to confinement.
A lattice determination of the anomalous dimension of
the scalar glueball operator at the conformal IRFP is de-
sirable. We also recognize that the Wilson flow proposed
in [31, 32] can be a useful tool in this context, in order
to discriminate between a conformal and a confining be-
havior in the theory formulated on a lattice. Finally, a
conformal window for non-supersymmetric QCD extend-
ing to flavors as low as Nf = 7 would make these theories
more appealing for phenomenology beyond the standard
model, realizing the emergence of conformal symmetry
right above QCD at the electroweak symmetry breaking
scale.

We thank M. Bochicchio, M.P. Lombardo and K.
Miura for interesting discussions. The numerical work
was in part based on the MILC public lattice gauge the-
ory code and carried out on the Dutch national super-
computer Cartesius with the support of SURF Founda-
tion.
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