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Topology, the meson spectrum and the scalar glueball:

three probes of conformality and the way it is lost.

E. Pallante∗

Van Swinderen Institute, University of Groningen,

Groningen, 9747 AG, The Netherlands
∗E-mail: e.pallante@rug.nl

We discuss properties of non-Abelian gauge theories that change significantly across the

lower edge of the conformal window. Their probes are the topological observables, the

meson spectrum and the scalar glueball operator. The way these quantities change tells
about the way conformal symmetry is lost.

Keywords: Conformal symmetry, QCD.

1. Introduction

It is a compelling task to understand the role played by conformal symmetry in the

yet to be discovered unified theory for gravity, electroweak and strong interactions.

Instrumental to this aim and relevant for phenomenological constructions beyond

the Standard Model is the study of the breaking patterns of this symmetry in each

component of the complete theory taken in isolation as well as when coupled to

each other.

In this work we mainly focus on the conformal window of non-Abelian gauge

theories in isolation, and in order to simplify the discussion we consider the case of

SU(N) Yang-Mills theory with massless Dirac fermions in the fundamental repre-

sentation, while explicitly commenting on other realizations whenever useful. To-

wards the end, in Sec. 4, we come back to some considerations about the embedding

in the complete theory.

The phase diagram of massless QCD in the plane temperature versus the number

of flavors is shown in Fig. 1. We are interested in the change of properties of the

system across the lower edge of the conformal window; the latter defines a family of

theories that has a stable infrared fixed point (IRFP) where the theory is conformal

with nonzero anomalous dimensions. Theories inside the conformal window are

deconfined and chiral symmetry is exact. In Sec. 2 we discuss properties of the scalar

glueball operator and how its anomalous dimension probes different mechanisms for

the closing of the conformal window. Sec. 3 discusses the topology, the eigenvalue

distribution of the Dirac operator and the role of the U(1) axial anomaly. In Sec. 4

we entertain the possibility of a spontaneous breaking of conformal symmetry in

the complete theory and discuss under which conditions a dilaton could manifest in

the QCD sector.
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Fig. 1. Temperature (T) – flavor (Nf ) phase diagram of SU(N) Yang-Mills theory with Nf mass-
less Dirac fermions in the fundamental representation. A line of thermal chiral phase transitions,

the chiral phase boundary, separates QCD from the high-temperature quark-gluon plasma phase.

The endpoint of the chiral phase boundary is also where the theory deconfines and it coincides
with the lower edge Nc

f of the conformal window; the addition of supersymmetry and/or different

fermion representations can change the latter property and make the phase diagram richer.

2. The scalar glueball and its anomalous dimension

The lower edge of the conformal window of QCD as depicted in Fig. 1 can be seen

as the point in the space of relevant couplings where the system at the same time

deconfines and realizes exact chiral symmetry at zero temperature. There is no

physical reason, nor evidence for a separation of where the system deconfines and

where chiral symmetry is restored; if it were not so, a new phase would appear below

the conformal window, separated from QCD by an additional change of symmetry

patternsa. In fact, the recent study in Ref. 2 provides close agreement between

the lattice determination of the lower edge of the conformal window using chiral

observables 6 < N c
f < 8 and the prediction in Ref. 3, where large-N QCD in the

Veneziano limit (N →∞, Nf/N = const) is solved and the lower edge is identified as

the threshold for the quantum instability of the glueball kinetic term Nf/N = 5/2.

The properties of gluodynamics must change across the lower edge of the con-

formal window, where conformal symmetry is restored and the system realizes an

exact IRFP. In particular, the gluon condensate, i.e., the vacuum expectation value

of the scalar glueball operator GaµνG
a
µν must identically vanish at the fixed point

and the two-point correlator of the scalar glueball acquires conformal scaling with

nonzero anomalous dimension γG. In Ref. 2 we realized that γG, for varying Nf
along the IRFP line, carries information on the nature of the endpoint and the

zero-temperature phase that precedes the conformal window. At a fixed point the

aDifferently from QCD, supersymmetric QCD (SQCD) develops a free non-Abelian magnetic phase
in terms of the dual magnetic variables for Nc + 2 ≤ Nf ≤ 3Nc/2, just below the conformal

window where the fundamental electric theory is infinitely strongly coupled. This can be seen as
a consequence of exact electric-magnetic duality1.
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beta-function vanishes β(α∗) = 0 and one finds2

γG = −β′(α∗) . (1)

The latter is a physical property of the system, renormalization scheme independent.

In Ref. 2 we have determined γG in perturbation theory to a given loop order,

n = 2, 3, 4 loops, inside the conformal window and compared this result with the

Veneziano limit of large-N QCD3. One salient aspect is the fact that perturbation

theory as well as the large-N solution predict an increasing anomalous dimension

|γG| (|β′(α∗|) for decreasing Nf↘N c
f . This behavior turns out to be opposite2 to

the one implied by a UV-IR fixed-point merging phenomenon at N c
f . In this case

we can assume without loss of generality

β(α,Nf ) = (Nf −N c
f )− (α− αc)2 (2)

close to N c
f where the merging would occur, see also Ref. 4. This beta-function has

pairs of zeros α± = αc ±
√
Nf −N c

f and it develops a local maximum β′(αc) = 0

for Nf = N c
f , with |β′| decreasing for decreasing Nf↘N c

f . Both zeros α± acquire

an imaginary component for Nf < N c
f .

A UV-IR merging mechanism is the simplest, maybe not unique, framework

where the so called walking phenomenon is realized just below the conformal win-

dow. Instead of using the running coupling — a renormalisation scheme dependent

quantity — this phenomenon is best identified by the realization of preconformal

Miransky/Berezinsky-Kosterlitz-Thouless (BKT) scaling5–7 of observables in the

vicinity of the conformal windowb, for Nf ↗ N c
f . From a statistical mechanics

point of view, the realization of this scaling is a direct consequence of a so-called

conformal phase transition that would occur at N c
f , treating Nf as a continuous

parameter. The inverse of the correlation length ξ of the system

1

ξ
∼ ΛUV θ(N

c
f −Nf ) e−c/

√
Nc

f−Nf , c > 0 (3)

decreases exponentially in the broken phase Nf < N c
f and it vanishes identically

in the symmetric phase Nf > N c
f , leaving an imprint in the spectrum on both

sides. We come back to this point in Sec. 4 when studying the spectrum across the

endpoint and the role of conformal symmetry.

A scenario where no UV-IR fixed point merging occurs remains a plausible one.

It is actually favored by perturbation theory and it more closely resembles what

happens in SQCD, where no physical UVFP emerges — differences can still reside

in the detailed structure of the beta-function, as noticed in Ref. 3 and further

discussed in Ref. 2, and in the occurrence of the free magnetic phase in SQCD.

bThe comparison of theories with different Nf requires the setting of a common reference scale.
A common UV scale is to be chosen in order to trace a preconformal Miransky/BKT scaling in

the IR-dominated observables.
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A nonperturbative, e.g., lattice determination of the anomalous dimension γG
is therefore desirable, in order to discriminate between realizations of loss of con-

formality with and without UV-IR merging. One obvious way to extract γG is by a

nonperturbative measurement of the two-point correlator of the scalar glueball op-

erator; on the lattice one should separate its universal scaling law from nonuniversal

violations of scaling. Another intriguing possibility may be suggested by the study

of the Wilson flow of the vacuum expectation value of the scalar glueball operator

(the gauge energy density) in Ref. 8. There, the evolution of this expectation value

away from the ultraviolet has been derived in perturbative QCD as the solution of

a Wilson flow equation, an approximately trivializing map realized by a first order

ordinary differential equation in field space with the Wilson gauge action as the

evolution kernel. Trivializing maps have been discussed in the context of field the-

ories in the continuum and on the lattice9, while Ref. 8 discusses explicit examples

and proposes their use for high precision scale setting in lattice QCD studies, see

also Refs. 10,11. By defining the quantity t2〈E〉, with t the flow “time” with di-

mensions
[
energy−2

]
, in the MS scheme and at a renormalization scale µ = 1/

√
8t

one obtains for SU(3)8

t2〈E〉 =
3

4π
α(µ)

{
1 + k1α(µ) +O(α2)

}
k1 =

1

4π

{
11γE +

52

3
− 9 ln 3−Nf

(
2

3
γE +

4

9
− 4

3
ln 2

)}
= 1.0978 + 0.0075Nf (4)

to next-to-leading order in the running coupling α(µ) = g2(µ)/(4π). The quantity

in Eq. (4) exhibits the important property of being finite once expressed in terms of

the renormalized gauge coupling, at least at next-to-leading order in perturbation

theory. In other words, the flow of t2〈E〉 → 0 on a Euclidean spacetime lattice as

a function of t is dictated by dimensional arguments, while its proportionality to

the running coupling in perturbation theory encodes asymptotic freedom. In par-

ticular, the residual t-scale dependence in the running coupling encodes the specific

and highly nontrivial way in which asymptotic freedom realizes the breaking of con-

formal symmetry in the quantized theory; asymptotic freedom also guarantees that

t2〈E〉 → 0 in the ultraviolet limit t → 0. Beyond perturbation theory, we could

think to infer the evolution towards the infrared of a properly renormalized t2〈E〉
based, again, on dimensional reasoning and underlying symmetries. However, con-

straints on one-point functions are usually not as powerful as those on other n−point

functions. To illustrate this we use an argument that we argue should be valid for

both ψ̄ψ and GG at an IRFP. Both VEVs 〈ψ̄ψ〉 and 〈GG〉 must vanish at the IRFP.

One would like to know how they approach zero when a scale perturbation — it be-

ing the fermion mass or t, respectively — is applied. Chiral symmetry is exact in the

conformal window, and only at the lower endpoint of the IRFP line a chiral restora-

tion phase transition occurs. In other words, the chiral order parameter 〈ψ̄ψ〉 along

this line, except its endpoint, does not undergo a phase transition and it must obey
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all constraints of exact chiral symmetry. One constraint that will also be later use-

ful is the one on the chiral cumulant Rπ = χσ/χπ = (∂〈ψ̄ψ〉/∂m)/(〈ψ̄ψ〉/m), or

equivalently the ratio of the renormalized pseudoscalar and scalar meson masses.

At the chiral restoration transition the relevant magnetic EoS12

m = A〈ψ̄ψ〉δ +B〈ψ̄ψ〉+ 〈ψ̄ψ〉0 (5)

has B = 0, 〈ψ̄ψ〉0 = 0 and it implies Rπ = 1/δ, with critical exponent δ. Chiral

symmetry implies that limm→0Rπ = 0 in the broken phase, while limm→0Rπ = 1

in the symmetric phase; thus 0 ≤ Rπ ≤ 1. Away from the endpoint along the

IRFP line no chiral phase transition occurs, and exact chiral symmetry suggests

limm→0Rπ = 1; thus B 6= 0. Differently from the endpoint, the only constraint

imposed by conformal symmetry on the scaling of this and other one-point functions

with a scale perturbation is that their VEVs vanish at the IRFP; this is guaranteed

for 〈ψ̄ψ〉 also with B 6= 0. On the other hand, given that 0 ≤ 1/δ ≤ 1, the

contribution of the A term is dominant w.r.t. the linear term close to the chiral

limit. An analogous reasoning can be applied to 〈GG〉 (〈E〉), where now chiral

symmetry is no longer imposing constraints. The t-evolution can contain a term

carrying its anomalous dimension t−2−γG/2, but it is not the only one. Also note

that this term goes to zero for t→∞ only if γG > −4.

Obviously, the infrared behavior realized on the lattice by the quantity t2〈E〉
will depend on the chosen kernel of the Wilson-flow differential equation. It may

still be possible to device a useful evolution equation able to distinguish between

the confining and the conformal behavior of the theory in the infrared.

3. Topology and the U(1) axial anomaly

In order to identify all the relevant properties of the lower edge of the conformal

window we need to determine the role that each symmetry plays in this context. In

particular, three symmetries or lack thereof and their order parameters should be

considered: conformal symmetry, chiral (flavored) symmetry SU(Nf )L×SU(Nf )R
and the U(1) axial anomaly. Despite the fact that a true order parameter for

confinement is absent in QCD, we can still identify confinement with the presence of

a mass-gap, i.e, a glueball mass in quenched QCD. The lower edge of the conformal

window is then also the point where the properties of glueball operators change and

the mass-gap disappears, as in Ref. 3.

In this section we discuss the topology, the way the U(1) axial anomaly manifests

and its interplay with chiral and conformal symmetry, in the conformal window and

across its lower edge. Two quantities that are relevant to understand the fate of

the U(1) axial anomaly are the topological charge Q

Q =
1

32π2

∫
V

d4xGaµνG̃
a
µν , (6)

with G̃ the dual of the gauge-field strength tensor Gµν , and the topological suscep-
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tibility χt, i.e., the second moment of the topological charge distribution

χt =
〈Q2〉
V

= − 1

V

(
1

Z

∂2Z

∂θ2

)∣∣∣∣
θ=0

(7)

with the QCD partition function Z dependent on the QCD θ-angle. The U(1) axial

anomaly can be defined as the nonzero contribution to the divergence of the flavor

singlet axial current

∂µJ
5
µ =

g2Nf
16π2

GaµνG̃
a
µν + explicit fermion mass contribution. (8)

This is an operator identity and it implies that the axial current is conserved, i.e.,

no anomaly in two limits: Nf = 0 and N = ∞. The latter limit becomes evident

in the Witten-Veneziano formula, where the anomaly contribution to the mass of

the η′ meson only appears at O(1/N). We add that results in the large-N limit are

directly relevant in the formulation of AdS/CFT arguments.

What is the fate of the U(1) axial anomaly, what is the distribution of the

topological charge Q, and what is the value of χt in the conformal window? To give

what is maybe a straightforward answer, we first clarify how many relevant, in the

renormalisation group sense, order parameters are at the lower edge of the conformal

window. By dimensional arguments and the effective lagrangian description13 the

U(1) axial order parameter

〈det ψ̄fLψ
f
R〉 ∼ Λ3Nf (9)

becomes irrelevant for infrared physics for Nf > 2, while the chiral symmetry order

parameter 〈ψ̄LψR〉 is always relevant. This already suggests that one single phase

transition should be associated with the restoration of chiral symmetry and the

effective restoration of the U(1) axial symmetryc for Nf > 2. This holds true for

the chiral phase transition of finite temperature QCD with Nf > 2, as well as the

conformal window with N c
f > 2. We can even add that the approximate statements

that apply to the near-conformal system at T > Tc become exact for the massless

theory at the IRFP inside the conformal window.

We now recall the relation of the topological charge Q to the eigenmodes and

eigenvalues of the Dirac operator, the relation of the latter to the chiral condensate

and the decomposition of the meson two-point functions in terms of the Dirac

eigenvalues.

The Atiyah-Singer index theorem14 expresses the index of an elliptic operator

of any compact oriented differentiable manifold in topological terms. While Eq. (6)

is in terms of the gauge fields, the index theorem provides the topological charge in

terms of the index of the Dirac operator, part of the QCD fermion sector: Q can

cWhile the U(1) axial anomaly in Eq. (8) is an operator identity and does not vanish in QCD for
any finite Nf and N , its effect may be absent in the n-point functions of the theory, at least for

n = 2, and one talks about the effective restoration of the symmetry.
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be written as the sum of the chiralities of the eigenmodes of the Dirac operator

Q =
∑
s

χs = n+ − n− , (10)

where n± indicates the number of zero modes with chirality +1 and −1, respectively.

In fact, since the zero modes of the (massless) theory have chirality χ0 = ±1,

while the nonzero modes have chirality χ(s 6=0) = 0, one should conclude that the

topological charge is nonzero (and integer) only in the presence of zero modes.

To summarize, the index theorem tells that any field configuration with Q 6= 0

has at least one eigenfunction of vanishing eigenvalue, and thus vanishing fermion

determinant.

The Banks-Casher relation15

〈0|ψ̄ψ|0〉 = − lim
m→0

m

∫ ∞
−∞

dλ
ρ(λ)

λ2 +m2

{
= −π ρ(0), if ρ(0) 6= 0

∝ mα, if ρ(λ) ∝ λα
(11)

expresses the order parameter of chiral symmetry 〈0|ψ̄ψ|0〉 in terms of the Dirac

eigenvalue distribution ρ(λ). The limit V → ∞ taken before the limit m → 0 in

the r.h.s. is mandatory in the presence of spontaneously broken chiral symmetry; it

is not so if chiral symmetry is exact. Eq. (11) tells that the vanishing/appearance

of the chiral condensate corresponds to the vanishing/appearance of ρ(0), i.e., the

Dirac eigenvalue level density at λ = 0. Note that the Banks-Casher relation carries

no explicit information on the Nf dependence.

The third useful ingredient is the decomposition of the meson two-point functions

in terms of Dirac eigenvalues; the analysis is based on Ref. 16, see also Ref. 17. The

degeneracy pattern of the pseudoscalar isovector (π), scalar isosinglet (σ), scalar

isovector (δ) and pseudoscalar isosinglet (η′) two-point functions when SU(Nf )L×
SU(Nf )R or UA(1) are restored

C~π
SU(Nf )
←−−−−−−−→ Cσ

UA(1)

xy
xy

C~δ ←−−−−−−−→ Cη′

is a useful vademecum. When chiral symmetry is exact, for T > Tc or in the confor-

mal window, the ordering of the infinite volume and zero mass limits is irrelevant

and the spectral decomposition of the meson correlators reads16

C~π = −(Q = 0) + (Q = ±1)

C~δ = −(Q = 0)− (Q = ±1)

Cσ = −(Q = 0)− (Q = ±1) +Nf (Q = ±1)

Cη′ = −(Q = 0) + (Q = ±1)−Nf (Q = ±1) , (12)
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where the Q = 0, ±1 terms are a shorthand notation for the zero and ±1 topological

charge sector contributions, and only the terms proportional to Nf in Cσ and Cη′

come from disconnected contributions. The case Nf = 2 is special: exact chiral

symmetry, i.e. the degeneracy of the chiral partners C~π = Cσ and C~δ = Cη′ is

automatically verified, while the degeneracy of the U(1) axial partners, i.e., C~π =

C~δ and Cσ = Cη′ requires the vanishing of the contributions from the nonzero

topological charge sector. For Nf > 2, restored chiral symmetry itself requires

the absence of (Q = ±1) contributions and it implies the degeneracy of the U(1)

axial partners. This is consistent with the fact that the chiral and U(1) axial

order parameters are both relevant for Nf = 2, and their restoration can thus occur

separately, while only the chiral order parameter is relevant for Nf > 2. One crucial

difference between theories below the conformal window with T > Tc, and theories

in the conformal window is that all contributions of irrelevant operatorsd to n-point

functions vanish exactly at the IRFP in the conformal window. In other words, the

U(1) axial anomaly is not manifest at the IRFP.

To understand the fate of Q and χt we observe that the formulae valid for the

symmetry-restoration region V Σm � 1 of QCD with Nf ≥ 3 degenerate flavorse

can to a certain extent be applied to the IRFP. In practice, we suggest that one can

take the results in Ref. 18 in the limit V Σm→ 0f . The chiral condensate of QCD

for V Σm� 1 reads18

〈ψ̄LψR〉 = −V Σ2

4Nf
m+ . . . (Nf ≥ 3) , (13)

in contrast with 〈ψ̄LψR〉 = −(Σ/2)e−iθ in the opposite limit V Σm � 1. The

θ-vacuum angle dependence has disappeared in Eq. (13), the condensate is propor-

tional to the fermion massg and it decreases as Nf increases, a screening effect. Also,

the chiral condensate is exclusively due to nonzero modes in the trivial topology

sector Q = 0.

From Ref. 18 we also learn that the partition function at fixed winding number

is ∝ (V Σm)|Q|Nf for V Σm � 1, while Gaussian for V Σm � 1. In both cases the

topological susceptibility χt = Σm/Nf to leading order in m, is proportional to the

fermion mass and inversely proportional toNf , consequence of the fact that fermions

drastically modify the gluodynamics by introducing a leading order fermion mass

dependence in the topological quantities. Also, the suppression of large Q sectors

increases with Nf , i.e., the shift towards larger eigenvalues increases with Nf .

The interplay of gluodynamics and fermions is even more evident when tak-

ing the N → ∞ limit with finite Nf in mass-degenerate QCD18. In this limit,

dIt does not apply to dangerously irrelevant operators.
eThe low-energy constant Σ is related to the infinite volume fermion condensate in the chiral limit
〈0|ψ̄ψ|0〉 = −Σ at θ = 0.
fGiven that the ordering of the infinite volume and zero mass limits does not matter in the restored

phase, we can take m→ 0 first.
gNote that we cannot obtain the power-law dependence with exponent δ of Eq. (5) valid at a

critical point.
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fermion degrees of freedom strongly affect the properties of the partition function

in the symmetry-restoration region V Σm � 1. On the contrary, outside this re-

gion the probability for finding field configurations of large winding number and

the topological susceptibility are the same as in gluodynamics. Gluodynamics it-

self changes drastically for T > Tc. Lattice results19,20 are consistent with an

exponential suppression at finite N of the Yang-Mills topological susceptibility

χt ∼ exp (−γ(T )N) cos θ; it vanishes in the large-N limith. This suppression is

also consistent with the exponential suppression of instantons, which carry nonzero

topological charge. Refs. 21,22 have suggested that an analogous suppression occurs

at the lower edge of the conformal window.

Our discussion uses instead the fact that topology is drastically affected by

fermions, that chiral symmetry is exact in the conformal window, that the U(1)

axial order parameter is infrared irrelevant, the absence of zero modes of the Dirac

operator, and that all VEVs of dimensionful quantities should vanish at the IRFPi.

All these properties suggest that the topological charge is zero at the IRFP, as well as

the topological susceptibility. This means that there are no instantons (in contrast

to instantons of all sizes in QCD). Cluster decomposition is satisfied, differently from

what happens when taking a fixed topological charge sector in QCDj. In some sense,

the same result is obtained in the infinite temperature limit T →∞ of QCD, where

instantons are squeezed until none contributes and U(1) axial symmetry becomes

exact.

A lattice formulation of the theory inside the conformal window will only ap-

proximately reproduce the properties so far discussed, and a numerical study will

need to consider corrections to the physics of the IRFP induced by finite lattice

spacing, finite volume and a non vanishing fermion mass.

4. The spectrum and conformal symmetry

Understanding the breaking pattern of conformal symmetry close to the Planck

scale, i.e., at an energy scale where gravity is relevant and it is to be included in

the complete lagrangian of the universe, is likely to shed light on the way short

distances relate to large distances within a unified description of physical forces. It

is also an appealing possibility that answers are in large part to be found in the

quantum field theoretical framework of which many features are familiar to us.

In which manner is conformal symmetry broken? The spontaneous breaking of

hFor T < Tc the topological susceptibility of pure Yang-Mills remains nonzero at large-N and

it guarantees the presence of the anomaly contribution to the η′ mass, m2
η′ = O(1/N) via the

Witten-Veneziano formula f2πm
2
η′ = 2Nfχt.

iThis is true also for 〈GG̃〉. In QCD, instantons contribute to the θ-vacuum expectation value
as 〈θ|GG̃|θ〉 ∝ K sin θe−S0 , S0 = 8π2/g2 and K contains the fermion determinant. This VEV

vanishes in QCD because K = 0 due to the presence of vanishing eigenvalues.
jZero topological charge in QCD can be made by a widely separated instanton with +n and

anti-instanton with −n which would spoil cluster decomposition.
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conformal symmetry is appealing in many respects, though we do not easily find

examples of it in known physical systems. QCD in its present formulation is never

conformal, it deviates from the free (conformal) theory in a highly nontrivial way,

encoded in the logarithms of asymptotic freedom; in this example, as many others,

conformal symmetry is explicitly broken due to the presence of conformally non

invariant terms in the renormalized lagrangian. The situation can be different once

we couple matter fields to gravity; in the end conformal symmetry is a symmetry

of spacetime itself. It is also plausible to think that we need to first formulate

the complete theory in curved spacetime and eventually recover known physics in

flat spacetime, with possible corrections. To what extent these corrections modify

known low-energy theories is unknown, while they should not spoil the agreement of

the Standard Model as presently formulated with established experimental results.

In this context, one interesting question is: What are the signatures that allow

to determine which way conformal symmetry is broken? We can choose among

explicit breaking, the spontaneous breaking of a global symmetry and the spon-

taneous breaking of a local, i.e., gauge symmetry; we have examples of all three

in nature. The spontaneous breaking of conformal symmetry can be implemented

analogously to known examples, and it carries the imprint of dynamical scalar de-

gree(s) of freedomk. If conformal symmetry is treated as a global symmetry, then

a massless Goldstone boson, the dilaton would arise analogously to pions in QCD,

the Goldstone bosons of global chiral symmetry. We could also promote the con-

formal symmetry group, or a subgroup of it, to a local gauge symmetry. This is

a highly non trivial change, whose imprint would be a Brout-Englert-Higgs mech-

anism and the associated scalar boson. The idea of local gauge symmetry (local

scale invariance) has been pursued recently.23,24

We can conceive that the scalar field of the spontaneously broken local or global

conformal symmetry will couple to matter fields of the complete theory for gravity,

electroweak and strong interactions as dictated by the underlying symmetries, which

now include conformal symmetry. Such scalar is therefore a dynamical degree of

freedom which may leave its imprint at all scales. The breaking happens only

once, in the complete theory, and one needs to uncover the renormalisation-group

(RG) flow of all couplings from the Planck scale down to the electroweak symmetry

breaking scale, and further down to low-energy QCD. It is not yet clear to which

extent one should allow for additional explicit breakings at multiple energy scales

below the Planck energy. Certainly, all physical quantum anomalies responsible for

explicit breakings should be preserved; an exception can be the conformal anomaly.

This work focusses on the conformal window of QCD, and non-Abelian gauge

theories in general, and it is legitimate to ask under which conditions is conformal

symmetry lost at the lower edge of the conformal window and if a scalar degree

of freedom related to its breaking may arise. Massless QCD in isolation, i.e. not

kThis scalar may carry some different properties as compared to ordinary matter scalar fields.
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embedded in the complete theory, seems to suggest a straightforward solution: the

breaking of conformal symmetry is in this case a consequence of the spontaneous

breaking of chiral symmetry and the appearance of a mass-gap, i.e., confinement.

The induced conformal symmetry breaking is thus explicit, no dilaton is needed; in

other words, the vacuum expectation value of the trace of the energy-momentum

tensor Tµµ can become nonzero due to the contributions from the condensates 〈GG〉
and 〈ψ̄ψ〉. This is not different in nature from the conformal symmetry breaking

realized by the quantum corrections to classical chromodynamics.

Perhaps physically more interesting is the fate of the conformal window, once

QCD is embedded in the complete theory. We have said that the scalar field(s)

of the spontaneously broken global or local conformal symmetry at the Planck

scale leaves its imprint in the dynamics, hence it affects the beta-functions of the

complete theory. The RG flow and fixed-point structure of the complete theory

must be reconsidered in the presence of the new scalar degree(s) of freedom. A

priori, the beta-function of the QCD gauge coupling itself β(N,Nf ) becomes a

function of the scalar contributions, i.e., matter scalar fields and the dilaton. From

the general construction in Ref. 24 and the well known one-loop results25 we deduce

some relevant features in flat spacetime:

• The dilaton does not couple directly to SU(N) Yang-Mills fields. It

couples to matter scalar fields (the Higgs field and others) through the

scalar potential and to fermions through a purely imaginary Yukawa term

(imf/ΛPl)ψ̄η(x)ψ. This term disappears if fermions are massless, mf = 0.

If matter scalar fields are also absent, low-energy strong interactions do not

talk to the dilaton.

• In the presence of scalar fields the gauge coupling beta-function β(g) is

modified; in particular, to find the fixed points one needs to consider the

system of differential equations β(g, λi, yi) = 0 that includes all scalar fields

self-couplings λi and the Yukawa couplings yi.

• Matter scalar fields usually screen gauge forces as fermions do. Thus,

the coefficient of the one-loop beta-function β(g) = −b0g3 becomes b0 =

11/3N −2/3Nf −1/6Ns
25–27, where Ns does not include the dilaton which

does not couple directly to YM fields. One concludes that the loss of asymp-

totic freedom, b0 = 0, is anticipated by matter scalars to a lower Nf and the

upper edge of the conformal window is shifted, unless asymptotic freedom

has been fully destroyed by the scalar self-couplings λi.

• At two-loops in QCD β(g) = −b0g3 − b1g5 and an IRFP arises at g2∗ =

−b0/b1, as long as b0 > 0 and b1 < 0. A sign change of b1 implies the

disappearance of the IRFP and would signal the lower edge of the conformal

window N c
f . Corrections to b1 in the presence of matter scalar fields and

the dilaton are more involved and depend on the details of the theory, its

group and representation structure. We can still say that matter scalar

fields will act analogously to fermions in screening gauge forces; all in all
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Fig. 2. Spectrum of the Nf = 12 theory from Ref. 28.

the conformal window would be shifted to lower Nf and its width changed,

or disappear due to scalar self-couplings.

• The dilaton is special. Interestingly, its Yukawa coupling y to fermions can

contribute to β(g) at O(y2g)24 and it being imaginary, it carries a sign

opposite to the other Yukawa contributions. On the other hand, if y is

proportional to the fermion mass its contribution vanishes if fermions are

massless.

To summarize, if fermion mass terms are turned on via, e.g., a Brout-Englert-Higgs

mechanism, then the Yukawa coupling of the dilaton to fermions is turned on. It

becomes then phenomenologically interesting to study small mass perturbations to

a fixed point of the massless theory.

Turning back to massless QCD in isolation, we comment on its spectrum when

adding a small fermion mass perturbation and varying Nf across N c
f . QCD with

Nf = 12 massless flavors can be taken as a prototype of a theory inside the conformal

window. Its particle spectrum in the presence of a fermion mass perturbation has

been theoretically discussed in Ref. 28 with analogies to quantum critical phenom-

ena. A perturbative mass deformation at the IRFP allows to parametrize violations

of universal scaling and to determine on the lattice the anomalous dimension of the

fermion mass operator at the IRFP. We find γm ∼ 0.2528; note that a value γm � 1

already suggests that Nf = 12 is not close to the lower edge of the conformal win-

dow, in agreement with our recent results2 that place the endpoint between Nf = 8

and Nf = 6. The ordering of states, pseudoscalar (PS), vector (V), scalar (S), axial

(PV) mesons and the nucleon (N) for twelve flavors does not lead to surprises, see

Fig. 2. All masses approach zero in the chiral limit with a universal power-law,

corrected by mass-induced small violations of universal scaling28. This behavior
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Fig. 3. Illustration of π − σ inversion near the conformal window, away from the chiral limit.

signals exact chiral symmetry and the presence of a fixed point where conformal

scaling holds. One obvious constraint below the conformal window, Nf < N c
f , is

that the spectrum of the zero-temperature theory at a given Nf cannot qualitatively

differ from that of zero-temperature QCD, because they share the same underlying

symmetries. Massless pseudoscalar mesons, the pions, are the Goldstone bosons

of the spontaneously broken chiral symmetry, while the vector, axial and scalar

mesons have a nonzero mass in the chiral limit. Away from the chiral limit, an

ordering of states different from real world QCD can occur, provided all constraints

implied by the spontaneously broken chiral symmetry and the U(1) axial anomaly

are satisfied. Some of these constraints, of immediate use in lattice studies, are i)

the non degeneracy of chiral partners, which translates in the (pseudo)scalar sector

into a constraint on the chiral cumulant Rπ →
m→0

0, ii) the Gell-Mann-Oakes-Renner

(GMOR) relation29, iii) the non degeneracy of U(1) axial partners. Generally, even

an inversion of the pseudoscalar (π) and scalar (σ) states should be possible away

from the chiral limit as shown in Fig. 3, without violating any of the constraints.

No dilaton will be present for QCD in isolation, while a scalar state numerically,

but not parametrically, lighter can occur just below the conformal window. We add

that recent AdS/CFT constructions30 also fail to produce a parametrically lighter

scalar. If a conformal phase transition occurs at the lower edge of the conformal

window, the corresponding preconformal scaling would leave its imprint also in the

spectrum, still ensuring that its properties smoothly merge with those of the QCD

spectrum — because no change of underlying symmetries separates the preconformal

region and QCD.

5. Conclusions

Some observables change drastically across the lower edge of the conformal win-

dow of non-Abelian gauge theories. We have identified them and discussed their
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properties inside and below the conformal window; nonperturbative (lattice) stud-

ies of many of these properties would be desirable. Throughout, we have used the

idea that the drastic change from QCD to theories inside the conformal window

results from the interplay of chiral symmetry and confinement, and we discussed

the somewhat different role of the U(1) axial anomaly and conformal symmetry

itself.

Within the gauge sector, the scalar glueball operator exhibits the nice feature

that its anomalous dimension at the IRFP is constrained by the nonrenormalization

of the energy-momentum tensor. The way this anomalous dimension varies along

the IRFP line is a direct probe of the mechanism for the loss of conformal symmetry.

Interestingly, perturbation theory and large-N arguments predict a variation with

Nf opposite to the one associated with a UV-IR merging mechanism. In addition

to the study of the two-point function of the scalar glueball operator in order to

determine its anomalous dimension at the IRFP and its variation with Nf , we

commented on the possibility that a Wilson-flow equation with an appropriately

devised evolution kernel could discriminate between a conformal and a confining

behavior in the infrared.

Topology is a powerful probe of the conformal window. We have suggested a

close analogy between high-temperature massless QCD with Nf > 2, T > Tc and

a theory at the IRFP in the conformal window. One crucial difference between

the two is the actual existence in the latter of an IRFP, which makes approximate

statements exact. It is also observed that the commutativity of the infinite volume

and zero mass limits in the chirally symmetric phase allows to a certain extent

to establish an analogy with the symmetry-restoration region of QCD, where one

works in the limit V Σm � 1. The restoration of chiral symmetry, the infrared

irrelevance of the U(1) axial order parameter for Nf > 2, the exact disappearance

of irrelevant operators at the IRFP, the absence of zero eigenmodes of the Dirac

operator and the vanishing of all vacuum expectation values suggest consistently

that the topological charge and the topological susceptibility vanish at the IRFP;

in other words, the effect of the anomaly is irrelevant for infrared physics which is

all contained in the trivial topology sector. Fermions provide the dominant effect

inside the conformal window, canceling all effects from gluodynamics. On a lattice,

mass corrections jointly to lattice spacing effects and finite spacetime volume force

the system to be never exactly at the IRFP, so that topological quantities will not

be exactly zero, though drastically suppressed as compared to QCD and theories

just below the conformal window.

If conformal symmetry is spontaneously broken at the energy scale where gravity

matters, then its associated scalar degree of freedom plays a role in the complete

theory at all scales. For QCD in isolation it is plausible that conformal symmetry is

explicitly broken as a consequence of the spontaneous breaking of chiral symmetry

and confinement, and no dilaton arises. The spectrum just below the conformal

window allows for inversion in the ordering of states away from the chiral limit, but
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it does not allow for a parametrically lighter scalar meson due to the constraints

imposed by the spontaneously broken chiral symmetry, i.e., the vanishing of the

chiral cumulant in the massless limit due to the pseudoscalar Goldstone bosons of

chiral symmetry. It remains interesting and challenging to consider QCD as well as

the complete Standard Model for strong and electroweak interactions embedded in

a hypothesized complete theory that couples them to gravity, and study which way

a spontaneously broken conformal symmetry modifies low-energy interactions.
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