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General Introduction 

Over the past decades, the prevalence of cardiovascular and renal disease has steadily 

risen all over the world, and these noncommunicable diseases are currently among the 

leading global and regional causes of death (1-3). These growing numbers are likely to 

reflect the aging of the population and rising prevalence of lifestyle-related diseases 

like obesity, type 2 diabetes, and hypertension; all known to be important risk factors 

for the development and progression of cardiovascular and renal disease (3,4). A wide 

range of pathophysiological pathways and risk factors are involved in the development 

and progression of cardiovascular and renal disease (5-10). Therefore, a comprehensive 

approach is needed to prevent and reduce the impact of these lifestyle-related diseases 

and their subsequent health consequences. Dietary and nutritional factors are relevant 

players in the development and progression of lifestyle-related diseases. Moreover, 

pathophysiological pathways that are accessible through dietary intervention are of 

particular interest for prevention and treatment of cardiovascular and renal disease. In 

this thesis, we will use serum markers to explore several pathophysiological pathways 

that are involved in the development and progression of cardiovascular and renal 

disease and accessible through dietary intervention.

Renal Risk Prediction

The incidence and prevalence of end-stage renal disease (ESRD) have steadily 

increased worldwide (11,12). For example, the number of patients with ESRD requiring 

renal replacement therapy (i.e., dialysis or transplantation) has doubled over the last 

15 years in the Netherlands (13). This increase in prevalence is likely contributable 

to the rising rates of lifestyle-related diseases like type 2 diabetes and hypertension, 

which are major risk factors for the development of chronic kidney disease (CKD) and 

progression to ESRD (3,14). Although patients with type 2 diabetes and hypertension 

are at increased risk for CKD, not all patients in these high-risk groups will eventually 

develop CKD or progress to ESRD. Risk prediction may help to early identify patients 

at risk for renal disease and guide the initiation of appropriate treatment to further 

reduce the incidence and progression of CKD.

Over the past decades, several models have been developed to predict the 

risk of CKD in the general population (15-18). However, patients with diabetes and 

(micro)albuminuria are also at a particularly high risk of death prior to reaching ESRD 

(19,20). However, existing models predicting the risk of kidney disease fail to take this 

potential competing risk of death into account. Therefore, in chapter 1, we aimed to 

investigate the effects of accounting for the presence of competing risks in renal risk 
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prediction in type 2 diabetes. To this end, we compared the predictive performance 

of Cox regression and competing risk models using traditional risk factors for 10-year 

risk prediction of early- and late-stage renal complications (i.e., [micro]albuminuria and 

50% increase in serum creatinine, respectively) in patients with type 2 diabetes.

Exploration of Novel Pathophysiological Pathways

Traditional risk factors, however, only partially explain the risk for future renal and 

cardiovascular events. Interventions targeting these traditional risk factors including 

glycemic control (21,22), blood pressure lowering (23,24), and lipid management (25-

27) were found to delay cardiovascular and renal disease progression. In addition, 

the use of renin-angiotensin aldosterone system (RAAS) inhibitors has been shown to 

lower blood pressure and decrease albuminuria which leads to additional protective 

renal and cardiovascular effects (28-30). Despite these current treatment regimens, the 

residual risk for cardiovascular and renal disease remains extremely high (31). Thus, 

new targets for therapeutic intervention and monitoring of disease progression are 

required to further slow the progression of cardiovascular and renal disease. 

Laboratory medicine may be a valuable tool to identify and explore 

pathophysiological pathways that are involved in the development and progression of 

cardiovascular and renal disease. In addition, the discovery of novel biomarkers may 

refine and complement risk prediction and monitoring of disease progression. In this 

thesis, we will focus on two pathophysiological pathways involved in cardiovascular 

and renal disease progression that may be accessible through dietary interventions 

(i.e., fluid balance and vascular calcification). 

Effects of Sodium and Potassium Intake on Fluid Balance

Hypertension is one of the leading causes for the development and progression 

of cardiovascular and renal disease (32). High sodium intake has been found to be 

associated with increased blood pressure, whereas potassium intake was found to be 

inversely associated with blood pressure (33). Moreover, lifestyle measures including 

dietary sodium restriction and increased potassium intake are recognized to lower 

blood pressure and cardiovascular risk (34-36).

A key aspect in long-term regulation of blood pressure is fluid balance, which is 

regulated by means of osmoregulation and volume regulation. Normally, body fluid 

volume and electrolyte concentration are maintained within very narrow limits despite 

wide variations in dietary sodium and potassium intake. The mechanisms involved in 

counterbalancing the blood pressure raising effects of sodium have been investigated 

repeatedly. These include suppression of RAAS, resulting in a decreased tendency for 
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sodium reabsorption (37), and stimulation of release of natriuretic peptides, allowing 

for increased natriuresis (Figure 1) (38). 

Figure 1.  Simplified schematic overview of the potential effects of sodium and potassium intake 
on markers of osmoregulation and volume regulation.

Thirst ↑ Vasopressin ↑

Water reabsorption ↑ 

Plasma osmolarity ↑

Water intake ↑

Plasma osmolarity ↓

[Na+] ↑

Sodium intake ↑

Potassium intake ↑

Effective circulating volume ↑

Effective circulating volume ↓

Natriuretic peptides ↓RAAS ↑

Sodium reabsorption ↑

Previous studies, including meta-analyses of randomized controlled trials, have 

suggested that the blood pressure lowering effects of potassium are more pronounced 

at higher levels of sodium intake (36,39,40). During sodium restriction, potassium 

intake was found to have little or no effect on blood pressure (41). This suggests 

interaction between potassium intake and sodium- and volume status, but this 

interaction has not been well characterized. In particular, the neurohumoral responses 

of osmoregulation and volume regulation pathways to potassium supplementation 

have not been documented. Therefore, in chapter 2, we investigated the humoral 

effects of potassium supplementation during a fully controlled sodium-restricted diet 

using a panel of markers that are involved in osmoregulation and volume regulation 

(Figure 1). We additionally investigated the effects of sodium supplementation, with 

surmised opposite changes in markers of osmoregulation and volume regulation. 
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Cardiovascular and Renal Disease - A Role for Vasopressin?

Arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), is one of the key 

hormones involved in osmoregulation and volume regulation (42). The primary stimuli 

for physiologic release of AVP are an increase in plasma osmolarity, hypotension, 

hypovolemia, and stress (42). AVP acts through three different vasopressin receptors, 

namely the V1a, V2, and V3 (or V1b) receptors, which mediate vasoconstriction, stimulate 

water retention, and facilitate secretion of adrenocorticotropic hormone (ACTH), 

respectively (43). 

Apart from the role of AVP in normal physiology, elevated levels of AVP have been 

hypothesized to have deleterious renal and cardiovascular effects. It has been shown 

that AVP levels are higher in patients with diabetes compared with healthy individuals 

(44,45), especially in patients with diabetes and (micro)albuminuria (46). Furthermore, 

it has been shown that AVP infusion induces hypertension, glomerular hyperfiltration, 

albuminuria, and glomerulosclerosis in various experimental models, including rodent 

models of diabetes (47-49). In contrast, lowering AVP concentration by water loading 

resulted in less kidney damage (50). However, epidemiological studies investigating 

the association between AVP levels and the rate of kidney function decline are lacking. 

Therefore, in chapter 3, we investigated the association of copeptin, a sensitive 

surrogate marker for AVP (51), with renal function decline, both cross-sectionally and 

longitudinally, in patients with type 2 diabetes.

Several studies have reported that copeptin is also associated with cardiovascular 

events and mortality in patients with cardiovascular diseases (i.e., acute myocardial 

infarction, heart failure, and stroke) (42). Moreover, copeptin levels were found to be 

strongly associated with cardiovascular events and mortality in patients with type 2 

diabetes and ESRD (52). However, patients with type 2 diabetes and ESRD represent 

a very small, highly selected group of patients with a strongly increased risk for 

cardiovascular diseases and mortality. It is not known whether copeptin is associated 

with cardiovascular and all-cause mortality in regular ambulatory patients with type 2 

diabetes. In chapter 4, we prospectively investigated whether plasma copeptin levels 

were associated with cardiovascular and all-cause mortality in patients with type 2 

diabetes treated in primary care.

Elevated secretion of AVP may also result in hyponatremia, a disorder of water 

balance, with a relative excess of body water compared to total sodium content 

(53). For example, in patients with heart failure, the AVP concentration dramatically 

increases due to severe effective circulating volume depletion (53,54). The resulting 

sodium and water retention attenuates the effective circulating volume depletion, but 
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ultimately at the expense of the occurrence of hyponatremia (54). Hyponatremia has 

been associated with an increased mortality risk in various study populations including 

patients with CKD (55), heart failure (56,57), and the general population (58-61).

Diabetes is a condition predisposing for elevated levels of AVP and heart failure 

(44,62), both common causes of hyponatremia. Elevated levels of AVP and heart 

failure, however, are also associated with an increased mortality risk (63-65). Therefore, 

in chapter 5, we investigated whether serum sodium concentration is associated with 

cardiovascular and all-cause mortality in patients with type 2 diabetes, and whether a 

potential association of serum sodium with mortality could be explained by copeptin, 

a surrogate marker for AVP, or NT-proBNP, a marker of heart failure.

Vitamin K and Vascular Calcification

Another pathophysiological pathway that may contribute to the development 

and progression of renal and cardiovascular disease, in particular in CKD and type 

2 diabetes, is vascular calcification (66,67). Until recently, vascular calcification was 

thought to result from passive precipitation of calcium and phosphate that was closely 

linked to ageing (66-68). However, accumulating evidence indicates that vascular 

calcification is an active, tightly regulated, and complex process, with competition 

between factors promoting calcification and inhibitors of mineralization, but the exact 

underlying mechanisms remain not completely understood (66,68). 

Matrix Gla protein (MGP) is a strong endogenous inhibitor of soft tissue calcification 

(69). Activation of MGP by carboxylation is vitamin K-dependent and essential for 

MGP’s activity as a calcification inhibitor (Figure 2) (70,71). Plasma desphospho-

uncarboxylated (dp-ucMGP) was found to be a sensitive marker for vascular vitamin 

K status (72). High plasma dp-ucMGP concentrations, indicative of functional vitamin 

K insufficiency, are common in patients with CKD and have been associated with an 

increased cardiovascular risk (73,74). In addition, a recent study showed that high plasma 

dp-ucMGP concentrations are associated with adverse health outcomes in a general 

population cohort (75). However, data regarding the prevalence of functional vitamin 

K insufficiency, and thus its clinical impact, are incomplete. In chapter 6, we assessed 

the prevalence of functional vitamin K insufficiency, as derived from plasma dp-ucMGP, 

in a large Dutch general population-based cohort. Furthermore, we investigated 

whether plasma dp-ucMGP concentration is associated with cardiovascular events 

and mortality and whether these associations are modified by comorbidities such as 

diabetes, hypertension, and CKD.
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As mentioned, functional vitamin K insufficiency may be a serious health problem. 

Inadequate dietary intake of vitamin K may contribute to functional vitamin K 

insufficiency. However, vitamin K recycling may also be impaired. For example, in a rat 

model of CKD, it was shown that the activity of γ-glutamyl carboxylase, the enzyme 

that catalyzes the posttranslational γ-carboxylation of vitamin K-dependent proteins 

such as MGP (Figure 2), was reduced (76). Status markers like plasma levels of vitamin 

K1 (phylloquinone [PK]) and vitamin K2 (menaquinones [MK-n]) are likely to provide 

relevant additional information in this rapidly emerging field. Given the growing 

interest in vitamin K status and intake, the development of new LC-MS/MS methods 

can be useful for speeding-up the sample preparation process and for obtaining a 

higher sample throughput. In chapter 7, we describe a simple and rapid LC-MS/MS 

method for determination of PK, MK-4, and MK-7 in human plasma. Furthermore, we 

investigated the association of plasma vitamin K concentration with vitamin K intake 

and functional vitamin K status, as derived from plasma dp-ucMGP, in renal transplant 

recipients.

Figure 2.  Schematic illustration of the vitamin K cycle. Vitamin K serves as a crucial cofactor 
in activation of matrix Gla protein (MGP). The vitamin K cycle can be inhibited by vitamin K 
antagonists.
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Aims of this Thesis

In this thesis, we will explore several pathophysiological pathways involved in the 

development and progression of cardiovascular and renal disease that are accessible 

through dietary interventions (Figure 3).

Figure 3.  Simplified schematic overview of several diet-sensitive pathophysiological pathways 
involved in the development and progression of cardiovascular and renal disease. Adapted from 
references 77 and 78 with permission from Elsevier.

Traditional Risk Factors
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Diabetes Mellitus
Obesity
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Risk prediction may help to early identify patients at risk for CKD and guide the 

initiation of appropriate treatment to further reduce the incidence and progression 

of CKD. In chapter 1, we will investigate the effects of accounting for the presence of 

competing risks in renal risk prediction in type 2 diabetes using traditional risk factors.

Traditional risk factors, however, only partially explain the risk for future renal and 

cardiovascular events and the residual risk for cardiovascular and renal disease remains 

extremely high despite the current treatment regimens targeting traditional risk factors. 

Novel insights in the pathophysiological mechanisms underlying the development and 

progression of cardiovascular and renal disease as well as novel targets for (dietary) 

intervention are required to further slow the progression of cardiovascular and renal 

disease. 

In chapter 2, we will focus on osmoregulation and volume regulation and we will 

assess the effects of sodium and potassium supplementation, on top of a fully controlled 

sodium-restricted diet, on markers of osmoregulation and volume regulation in (pre)

hypertensive subjects. In chapters 3 and 4, we will zoom in on vasopressin, one of 

the key hormones involved in osmoregulation and volume regulation and investigate 

whether copeptin is associated with renal function decline and cardiovascular and all-

cause mortality in type 2 diabetes. In chapter 5, we will investigate whether low serum 

sodium concentration, a potential consequence of an elevated AVP concentration, is 

associated with mortality in type 2 diabetes, and whether this association could be 

explained by copeptin or NT-proBNP. 

Another pathophysiological pathway that may contribute to the development 

and progression of cardiovascular disease is vascular calcification, which is common 

in high-risk populations such as type 2 diabetes, hypertension, and CKD. MGP is 

a strong vitamin K-dependent inhibitor of soft tissue calcification. In chapter 6, we 

will investigate the prevalence of functional vitamin K insufficiency and its health 

consequences in a large Dutch general population-based cohort. In chapter 7, we will 

describe a simple and rapid LC-MS/MS method for determination of vitamin K1 and K2 

(MK-4 and -7) in human plasma. 
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