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Iron has been suggested to affect the clinical course of type 2 diabetes (T2DM) as accompanying increased intracellular iron
accumulation may provide an alternative source for reactive oxygen species (ROS). Although carnosine has proven its therapeutic
efficacy in rodent models of T2DM, little is known about its efficacy to protect cells from iron toxicity. We sought to assess if high
glucose (HG) exposure makes cultured human umbilical vein endothelial cells (HUVECs) and renal proximal tubular epithelial
cells (PTECs) more susceptible to metal induced toxicity and if this is ameliorated by L-carnosine. HUVECs and PTECs, cultured
under normal glucose (5mM, NG) or HG (30mM), were challenged for 24 h with FeCl

3
. Cell viability was not impaired under

HG conditions nor did HG increase susceptibility to FeCl
3
. HG did not change the expression of divalent metal transporter

1 (DMT1), ferroportin (IREG), and transferrin receptor protein 1 (TFRC). Irrespective of glucose concentrations L-carnosine
prevented toxicity in a dose-dependent manner, only if it was present during the FeCl

3
challenge. Hence our study indicates that

iron induced cytotoxicity is not enhanced under HG conditions. L-Carnosine displayed a strong protective effect, most likely by
chelation of iron mediated toxicity.

1. Introduction

High body iron levels are associated with increased levels
of oxidative stress that may elevate the risk of T2DM [1–
7]. Indeed, epidemiological studies have indicated a pos-
itive association between high body iron stores and the
risk of T2DM and of other insulin resistant states such
as metabolic syndrome, gestational diabetes, and polycystic
ovarian syndrome [8–11]. High ferritin levels in T2DM
are closely related to the development of diabetic vascular
complications, possibly through the interaction with vascular
endothelial growth factor (VEGF) [12] or through endothelial
dysfunction [13]. It has also been suggested that an increased

transferrin excretion in diabetic patients withmicroalbumin-
uria may contribute to tubulointerstitial injuries [14] as a
consequence of transferrin reabsorption by PTECs. This in
turn increases intracellular iron concentrations leading to
oxidative damage of the tubular cells [7]. The relationship
between iron metabolism and T2DM seems to be bidirec-
tional since iron affects glucosemetabolism via its deleterious
effect on pancreatic𝛽-cells, and glucosemetabolism impinges
on several iron metabolic pathways [4]. However, studies
performed in the Belgrade rat, which carries amutation in the
iron transporter DMT1, demonstrate that these rats displayed
normal glycemic control and insulin signaling and secretion
despite high levels of nonheme iron [15].
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It is noteworthy to mention that a number of structures
arising secondary to protein glycation might bind transition
metals such as iron and copper. The bound metal retains
redox active and participates in catalytic oxidation reactions
[16]. Iron depletion has been demonstrated to be beneficial
in coronary artery responses, endothelial dysfunction, insulin
secretion, insulin action, and metabolic control in T2DM.

Carnosine has antioxidant properties and is efficient in
the treatment of chemically induced inflammatory lesions
in animals [17, 18], fatty acid mediated lipid peroxidation
[19], and numerous disease models in which oxidative stress
plays a pivotal role [20, 21]. Also in diabetic models oral
carnosine supplementation has proven to ameliorate apopto-
sis of glomerular cells [22], to prevent alterations in carnosine
metabolism [23], to improve hyperglycemia [24], and to
ameliorate dyslipidemia [25]. These changes are associated
with improved renal function, albeit that renal pathology
in such models is mostly relatively minor. The mechanism
by which carnosine exerts its beneficial effects is multifac-
torial including chelation of transition metal ions [26, 27],
inhibition of advanced glycation end products (AGEs), and
inhibition of advanced lipoxidation end products (ALEs)
[28].

In keeping with the protective effect of carnosine in
diabetic models and the relevance of increased iron stores in
T2DMpatients, we sought to address if high glucose exposure
makes cultured human endothelial cells (ECs) and PTECs
more susceptible to iron toxicity and if this is mitigated in the
presence of carnosine.

2. Methods and Materials

2.1. Cell Culture. HUVECs were isolated from fresh human
umbilical cords.The cells were cultured on 1% gelatin (Fluka,
Neu-Ulm, Germany) coated culture flasks at 37∘C and 5%
CO
2
in endothelial cell growth medium (Provitro, Berlin,

Germany) containing 50 ng/mL amphotericin B together
with 50𝜇g/mL gentamicin and 2% fetal calf serum (FCS).
PTECs were isolated from human kidney biopsy spec-
imen and cultured in DMEM/F-12 medium (DMEM/F-
12, GlutaMAX, Invitrogen, Karlsruhe, Germany) supple-
mented with 36 ng/mL hydrocortisone, 5 𝜇g/mL transfer-
rin, 5 ng/mL sodium selenite, 4 pg/mL triiodo-L-thyronine,
5 𝜇g/mL insulin, and 10 ng/mL EGF at 37∘C and 8% CO

2
.

The cells were grown on a 0.01% collagen (Sigma, Munich,
Germany) coating to which FCS was added. All experiments
involving HUVECs and PTECs were performed in passages
3 to 6.

2.2. Cell Viability Assay. HUVECs or PTECs were seeded
in 96-well plates and cultured for 2 consecutive days under
normal glucose (5mM D-glucose) or high glucose (30mM
D-glucose) conditions. Hereafter the cells were challenged for
24 h with different concentrations of FeCl

3
(Sigma, Munich,

Germany) or ZnCl
2
(Sigma, Munich, Germany) either in the

presence or in the absence of L-carnosine (Sigma, Munich,
Germany). In some experiments, the cells were pretreated
for 2 days with L-carnosine and subsequently challenged on
day 3 with FeCl

3
in the absence of L-carnosine. Hereafter

cytotoxicity was assessed by MTT assay as described in [29].
Cell viability was calculated as percentage relative to cells that
were not challenged with FeCl

3
. In each assay and for each

condition at least 6 replicates were used. LC
50

curves were
based on at least 4 independent experiments.

2.3. TUNEL Assay. DNA damage of HUVECs and PTECs
was assessed after treatment by TUNEL assay according to
the manufacture’s protocol using in situ cell death detection
kit fluorescein (Roche, Mannheim, Germany).The excitation
wavelength of 488 nm was applied for fluorescence micro-
scope, and the detection wavelength was FITC Green (515–
565 nm).

2.4. RNA Isolation and qPCR. Total RNA from HUVECs
or PTECs was extracted and cDNA was synthesized as
described in [30]. qPCR was performed using TaqMan
universal PCR master mix (Applied Biosystems, Darmstadt,
Germany) on an ABI-Prism 7700 detection system. The
TaqMan assays were performed for DMT1 (material number
Hs00167206 m1), TFRC (material number Hs00951083 m1),
and GAPDH (material number Hs02758991 g1) for normal-
ization.

2.5. FACS Analysis. The expression of the TFRC onHUVECs
and PTECs was assessed by indirect immune-fluorescence
staining and FACS analysis. To this end, cells were incubated
for 30min at 4∘C with monoclonal antibodies directed
against TFRC (Abcam, Cambridge, UK). Hereafter the cells
were thoroughly washed and the 2nd antibodies were con-
jugated to FITC. The cells were washed twice to remove
unbound antibodies and were finally resuspended in 300 𝜇L
of Cell Wash (BD Biosciences). Analysis was performed on a
FACSCalibur flow cytometer (BDBiosciences) and data were
analyzed using WinMDI version 2.8 software.

2.6. Western Blot. For detection of DMT1 or carnosinase-1
(CN-1) expressed inHUVECs andPTECs, gel electrophoresis
and western blotting were performed. All samples (20𝜇g of
total protein) were 1 : 1 diluted in Laemmli buffer (Bio-Rad,
Munich, Germany) and boiled for 5min before loading on
a SDS-PAGE gel. After electrophoresis proteins were trans-
ferred to PVDF membranes (Roche, Mannheim, Germany)
by semidry blotting as described before [31]. Anti-DMT1
(Abcam, Cambridge, UK) or anti-CNDP1 (Sigma, Munich,
Germany) was used as the first antibody afterwards.

2.7. Carnosinase Activity. Carnosine was incubated with
300 𝜇M FeCl

3
for 30min prior to the initiation of the assay.

CNDP1 recombinant human protein (2 ng/𝜇L) (Life Tech-
nology, Darmstadt, Germany) was hereafter added to either
carnosine or carnosine-FeCl

3
mix. Carnosinase activity was

afterwards determined according to themethod described by
Teufel et al. [32].

2.8. Lentivirus Transduction. CN-1 cDNAwas constructed as
described before [24] from IMAGE clone accession number
BX094414 and then cloned into HIV based lentivirus vector
pPM337. Viruses were produced in HEK293 cells using
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pCMV891 and pMD.G plasmids. Supernatants of HEK293
cells were collected and concentrated as virus solution. For
transduction, HUVECswere incubated in 1 : 100 diluted virus
solutions for 48 hours hereafter. Cell lysates were obtained by
a freeze-and-thaw cycle in liquid nitrogen. Western blotting
of 20𝜇g total protein from HUVECs supernatant and cell
lysates was performed to confirm CN-1 expression. Trans-
duced and wild type HUVECs were challenged with iron in
the presence or absence of carnosine.

2.9. Statistics. Data between two groups were evaluated by 𝑡-
test, and differences formultiple groupswere assessed by one-
way ANOVA. Significance was defined according to a 𝑝 <
0.05.

3. Results

3.1. Susceptibility of Endothelial and Tubular Epithelial Cells
to Transition Metals. To assess susceptibility of HUVECs
and PTECs to transition metal mediated toxicity cells were
challenged for 24 h with different concentrations of FeCl

3
or

ZnCl
2
. While HUVECs were equally susceptible to FeCl

3
or

ZnCl
2
(LC
50
: ∼0.1mM for both transition metals), PTECs

were more susceptible to ZnCl
2
(LC
50
: ∼0.1mM) as com-

pared to FeCl
3
(LC
50
: ∼5mM). Susceptibility to FeCl

3
was

significantly higher inHUVECs than in PTECs (Figures 1(a)–
1(c)). Since HUVECsmedium contains 2% FCS while PTECs
are cultured in serum-free culture medium supplemented
with transferrin, we tested if this might explain the difference
in susceptibility between HUVECs and PTECs. Even if
HUVECs were challenged in PTECs medium in the absence
of transferrin the cells were highly susceptible to FeCl

3
and

no increase in susceptibility was observed with increasing
transferrin concentrations (Figure 1(d)). PTECs became also
susceptible to lower concentration of FeCl

3
(400 𝜇M) if they

were challenged over a longer period of time (Figure 1(e)).
Transition metal mediated toxicity was associated with DNA
damage as evidenced by an increased number of TUNEL
positive cells (Figure 1(f)).

3.2. Carnosine Prevents Iron Mediated Toxicity Regardless
of the Presence of High Glucose. We next assessed if HG
conditions make the cells more vulnerable to FeCl

3
medi-

ated toxicity. Cell viability of HUVECs and PTECs was
not impaired under HG conditions (3 days of culture) nor
was HG associated with increased susceptibility to FeCl

3
.

When the cells were challenged in the presence of carnosine,
toxicity was strongly abrogated underNG andHG conditions
(Figures 2(a) and 3(b)). For both HUVECs and PTECs the
protective effect of carnosine revealed a dose-dependent
relation (Figures 2(c) and 2(d)). Protection only occurred
when carnosine was present during the FeCl

3
challenge but

not when carnosine was used as pretreatment only (Figures
2(e) and 2(f)). Similar to carnosine also deferoxamine (DFO)
was able to protect HUVECs (Figure 2(g)) and PTECs (data
not shown) against ironmediated toxicity, albeit that at higher
concentrations of FeCl

3
the protection by 100𝜇M of DFO

started to wean off. Higher concentrations of DFO were not

used as these concentrations negatively affected cell viability,
independent of FeCl

3
.

3.3. Ectopic CN-1 Expression in HUVECs Does Not Abrogate
Protection by Carnosine. To assess if aberrant overexpression
of serum carnosinasewouldmitigate protection against FeCl

3

mediated toxicity, HUVECs were transduced with CNDP1
cDNA by lentivirus. CN-1 expression was detected in both
cell lysates and supernatants of CNDP1 transduced HUVECs
but not inwild typeHUVECs (data not shown). Susceptibility
to FeCl

3
was not changed upon CNDP1 transduction nor was

the protective effect of carnosine abrogated (Figure 3(a)). To
exclude that protection by carnosine was at large mediated
via its constituent amino acids we performed similar exper-
iments with 𝛽-alanine or L-histidine. Although L-histidine
showed a minimal but significant level of protection when
iron concentration was at 150𝜇M, protection was by far not
comparable to that of carnosine (Figure 3(b)). Nevertheless,
the minor protective effect of L-histidine was diminished
when iron concentration was at 300𝜇M. Carnosinase protein
and activity were found in both the cell lysate and super-
natants ofCNDP1 transducedHUVECs but were significantly
lower as compared to human serum. We also tested whether
carnosine-iron complex would be resistant to the hydrolysis
of carnosinase. In this setting, carnosine was incubated with
300 𝜇MFeCl

3
for 30min prior to the initiation of carnosinase

activitymeasurement. Indeed carnosinase activity was hardly
detectable when iron was added (Figure 3(c)), suggesting
either a higher resistance of iron complexed carnosine to
hydrolysis by serum carnosinase or direct inhibition of serum
carnosinase by iron.

3.4. Influence of Iron and Carnosine on Iron Transporters. The
expression of two major iron transporters, that is, DMT1
and TFRC, was investigated at mRNA and protein level in
both HUVECs and PTECs. To avoid toxicity, HUVECs and
PTECs were cultured for 24 h in the presence of low iron
concentration (60𝜇M). While in HUVECs DMT1 mRNA
was strongly downregulated by iron and carnosine, in PTECs
the effect was small (Figure 4(a)). TFRC mRNA expression
was downregulated in both HUVECs and PTECs by iron and
carnosine (Figure 4(b)). Although downregulation of DMT1
mRNA was observed in the presence of iron and carnosine
this was not reflected by a decrease in DMT1 protein expres-
sion (Figure 4(c)). In HUVECs TFRC protein expression was
slightly decreased by iron, but not by carnosine. In contrast,
both iron and carnosine decreased the expression of TFRC
on PTECs (Table 1).

4. Discussion

A recent trial to assess chelation of transition metals by
EDTA, that is, the Trial to Assess ChelationTherapy (TACT)
study [33], has provided evidence that intravenous chelation
therapy may reduce the risk of mortality and vascular events
in diabetics who had previously experienced a myocardial
infarction, whereas no benefit was observed in nondiabetics.
Also a number of studies have indicated that transition
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Figure 1: Iron and zincmediated toxicity in HUVECs (a) and PTECs (b). PTECs weremore tolerant to iron toxicity as compared to HUVECs
(c). Ironmediated toxicity was not largely influenced by transferrin (TRF) (d). Although PTECswere less susceptible to ironmediated toxicity,
toxicity increased upon longer exposure (e). Iron toxicity was associated with an increased number of TUNEL positive cells, which was
significantly abrogated by L-carnosine (f).
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Figure 2: Influence of high glucose and carnosine on iron mediated toxicity in HUVECs (a, c, and e) and PTECs (b, d, and f). High glucose
concentration neither increased cell susceptibility to iron nor disrupted the protective effect of carnosine on iron toxicity in HUVECs (a) and
PTECs (b). The protective effect of carnosine showed a clear dose-dependent relation in both HUVECs (c) and PTECs (d). Carnosine was
only protective when presented during iron challenge but not when cells were pretreated (e and f). Like carnosine also the iron chelator DFO
prevented iron mediated toxicity in HUVEC when iron concentration was less than 600 𝜇M (g). Med: medium, CN: carnosine, Glc: high
glucose, and Glc + CN: high glucose + carnosine.

metals, in particularly iron, may have a large impact on the
development of diabetes and diabetic complications [34–36].
Since serum carnosinase, encoded by the CNDP1 gene, has
been suggested to be implicated in susceptibility to diabetic
nephropathy, the present study was carried out to assess
if carnosine, the natural substrate of serum carnosinase, is
able to mitigate iron mediated toxicity in endothelial and
proximal tubular cells. The main findings of our study are as
follows. Firstly, HG does not make endothelial and proximal

tubular cells more susceptible to transition metal induced
toxicity. HUVECs and PTECs were equally susceptible to
Zn2+, while for Fe3+ PTECs were more resistant as compared
to HUVECs. Secondly, carnosine is able to prevent iron
mediated toxicity in both cell types in a dose-dependent
manner. The presence of serum carnosinase did not abrogate
the protective effect of carnosine. Protection by carnosinewas
likely mediated by chelation of iron as it only occurred when
carnosine was present during the iron challenge. Moreover,
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Figure 3: Ectopic expression of the human serum carnosinase-1 in HUVECs did not abrogate the protective effect of carnosine (a). The
ability of the constitutive amino acids of carnosine, that is, 𝛽-alanine and L-histidine, to protect HUVECs against iron mediated toxicity
was tested (b). Although L-histidine was slightly protective when iron concentration was 150𝜇M, protection was clearly less compared to
L-carnosine. No protection was afforded by 𝛽-alanine. Recombinant carnosinase activity was attenuated by the presence of 300𝜇MFeCl

3
(c).

CN: carnosine.

Table 1: TFRC expression under different conditions in either
HUVECs or PTECs.

TFRC expression % HUVEC PTEC
Med 69.2 ± 4.6 30.1 ± 3.7
CN 69.8 ± 3.4 16.5 ± 1.7
Fe (60𝜇M) 54.0 ± 3.9 23.0 ± 4.7
Fe (60𝜇M) + CN 70.0 ± 1.0 15.8 ± 3.6

also deferoxamine was able to prevent iron mediated toxicity.
Thirdly, it seems that both iron and carnosine were able
to downregulate DMT1 and TFRC mRNA although at the
protein level this was only observed for TFRC.

It has been suggested that dietary glycoxidation and lipox-
idation products, rich in meat and other animal products,
may at large be responsible for the increased risk of T2DM
[15, 37, 38]. Glycoxidation and lipoxidation products, which
occur after reaction between carbonyl groups on sugars
and amine groups on proteins, DNA, and lipoproteins, are
abundantly present in diabetic patients and are believed to be
instrumental for diabetic complications. It is conceivable that
glycoxidative and lipoxidative stress may act in concert with
ROS to amplify tissue damage [39, 40]. Our data however do
not indicate that HGmakes endothelial and proximal tubular
cells more susceptible to iron mediated toxicity. It can be
argued that this might be a consequence of a relative short
exposure to HG; however other studies using similar cells
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expression of DMT1 in HUVECs and PTECs is shown.

and culture conditions have demonstrated lipid peroxidation
already after 48 h [41].

In plasma iron is linked in its ferric form to transferrin.
The transferrin bound iron is subsequently taken up by cells
through TFRC via an endocytic process. In the endocytic
vesicle ferric iron is reduced and transferred to the cytosol
via DMT1 [42, 43]. The expression of both TFRC and DMT1
was lower in PTECs as compared to HUVECs which may
explain why PTECs were more resistant to iron. Yet it should
be underscored that susceptibility of HUVECs to iron was
not influenced by the presence of transferrin. This argues
against the notion that intracellular iron accumulation via
iron-transferrin mediated endocytosis was a major cause of
toxicity in our in vitro model, albeit that it does not exclude
the role of intracellular iron accumulation per se for toxicity.

Our data indicate that the protective effect of carnosine
likely resides outside the cell. In support of this assumption is
the observation that carnosine can only protect against iron
mediated toxicity when it is present during the iron challenge.
Previously the ferroxidase-like activity of carnosine has been
linked to its cytoprotective effect [44]. Since ferroxidase
catalyzes the oxidation of Fe2+ to Fe3+ ferroxidase activity
indeed would have the potential to be cell protective as Fe2+

may generate damaging hydroxyl radical in the presence of
H
2
O
2
. Yet in our study iron toxicity was performed with

both Fe2+ (data not shown) and Fe3+ which in essence were
toxic for HUVECs to a similar extent and carnosine was able
to prevent toxicity mediated by both iron ions. Nonetheless,
since we did not measure ferrous and ferric ions it cannot be
excluded that carnosine pushes the equilibrium towards Fe3+.

It has also been suggested that complex formation of
carnosine with transition metals underlies in part the antiox-
idative properties of carnosine, albeit that this has been
questioned by others [45]. Complex formation has mostly
been studied for Zn2+ and Cu2+ and is mainly attributed
to the imidazole moiety within histidine [46, 47]. Like
carnosine also DFO was protective, making iron chelation
as an alternative explanation for the protective effect of
carnosine. Overexpression of serum carnosinase however did
not abrogate the protective effect of carnosine, which was
explained by the finding that the carnosinase activity was
significantly reduced in the presence of iron.

In conclusion our in vitro studies clearly demonstrate the
ability of carnosine to ameliorate iron mediated toxicity in
cultured endothelial and proximal tubular cells. In keeping
with the high serum carnosinase concentration in humans,
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the in vivo relevance of our findings needs to be addressed
in future studies. The use of carnosine analogues or tran-
sition metal ions complexed carnosine that are resistant to
hydrolysis by carnosinase may overcome this hurdle. The
recent finding that the carnosinase-resistant, D-carnosine,
or its bioavailable prodrug D-carnosine octylester has a
salutary effect on lipoxidation mediated cellular injury in
experimental atherosclerosis and renal disease is promising
[48]. Yet it remains to be assessed if such compounds are also
able to prevent iron mediated toxicity.
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