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Evolutionary conflict between the sexes can induce arms races in
which males evolve traits that are detrimental to the fitness of
their female partners, and vice versa. This interlocus sexual conflict
(IRSC) has been proposed as a cause of perpetual intersexual
antagonistic coevolution with wide-ranging evolutionary conse-
quences. However, theory suggests that the scope for perpetual
coevolution is limited, if traits involved in IRSC are subject to
pleiotropic constraints. Here, we consider a biologically plausible
form of pleiotropy that has hitherto been ignored in treatments of
IRSC and arrive at drastically different conclusions. Our analysis is
based on a quantitative genetic model of sexual conflict, in which
genes controlling IRSC traits have side effects in the other sex, due
to incompletely sex-limited gene expression. As a result, the genes
are exposed to intralocus sexual conflict (IASC), a tug-of-war
between opposing male- and female-specific selection pressures.
We find that the interaction between the two forms of sexual
conflict has contrasting effects on antagonistic coevolution:
Pleiotropic constraints stabilize the dynamics of arms races if
the mating traits are close to evolutionary equilibrium but can
prevent populations from ever reaching such a state. Instead,
the sexes are drawn into a continuous cycle of arms races,
causing the buildup of IASC, alternated by phases of IASC
resolution that trigger the next arms race. These results encour-
age an integrative perspective on the biology of sexual conflict
and generally caution against relying exclusively on equilibrium
stability analysis.

sexual conflict | arms race | intersexual additive genetic correlation |
sex-differential expression | pleiotropy

The sexes have followed distinct evolutionary trajectories due
to divergent selection regimes that have led to, and been

exaggerated by, anisogamy (1–4). This disparity has the potential
to ignite two forms of sexual conflict (5): interlocus and intra-
locus sexual conflict (IRSC and IASC, respectively). Both forms
of conflict have been described as independent drivers of di-
vergence and speciation (5–8) and have important implications
for the rate of trait evolution, the maintenance of genetic vari-
ation, and sexual selection (9–12).
IRSC arises from a direct interaction between the sexes that

increases the fitness of one sex at the expense of the other. Typ-
ically, males evolve adaptations for success in sperm competition
and monopolization of females (male offense traits), which often
prevents females from obtaining fitness benefits through poly-
andry or sperm use (13–15). Subsequently, an arms race is initi-
ated via the evolution of female counteradaptations that reduce
the fitness loss (female defense traits) (14, 16). Repeated or even
perpetual cycles of counteradaptation in each sex are predicted to
follow over evolutionary time, leading to the rapid evolution of
reproductive traits (6, 7).
Whereas IRSC clearly manifests itself as a form of conflict in

mating interactions, IASC involves a more subtle type of sexual
antagonism that operates at the level of phenotype expression.
Here, conflict arises because the sexes share the same genome
but are nevertheless under selection to express different, sex-
specific phenotypes (4, 17, 18). The resolution of IASC can be

achieved via the evolution of sexual dimorphism (2, 19–21).
However, the observation of negative intersexual correlations for
fitness indicates that appreciable levels of IASC are maintained
(22–25), both in the wild (11, 26, 27) and in laboratory pop-
ulations (28–31).
Given their different modes of operation, IASC and IRSC are

traditionally considered as separate forces. In fact, in typical studies
of IASC, fitness is frequency-independent and determined by a
univariate trait, ruling out the possibility of coevolution between
offense and defense traits characteristic of IRSC. Models of IRSC,
however, consider interactions between at least two phenotypic
characters expressed in a mating context, where the strategy of
one sex is governed by a different set of loci from the trait(s)
required by the other sex to counteradapt (6). This has com-
monly been interpreted to imply that loci involved in IRSC have
sex-limited expression (5, 7, 10, 32, 33) and are, therefore,
unaffected by IASC. Nevertheless, some authors have empha-
sized the role of pleiotropic side effects, which may not be re-
stricted to a single sex, in stabilizing the dynamics of intersexual
antagonistic coevolution (8, 32).
For instance, if the evolution of female indifference to a male

mating signal is mediated by mutations in the female’s sensory
system (9, 10), then those same mutations might be expressed in
males as well. If so, potential negative side effects (such as a re-
duced foraging efficiency) of female counteradaptations to sexual
conflict are subject to selection in both sexes. As in this example,
many traits involved in sexual conflict have a complex genetic
basis, providing ample opportunity for pleiotropic effects between
male and female traits, by which the two processes of conflict
can become linked. The potential that the same loci underlie
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both forms of conflict is further increased by the widespread
occurrence of alleles associated with IASC or IRSC through-
out the genome (30, 34–36). Moreover, both IASC and IRSC
are predicted to stem predominantly from reproductive traits,
where the evolutionary interests of the sexes diverge the most
(22), although sexually dimorphic traits may, in fact, be subject
to reduced IASC due to the prior evolution of sex-specific gene
regulation (12, 20).
The potential for IRSC and IASC to interact has been

highlighted recently (4), where it was noted that intersexual
selection acting on a trait that is genetically correlated between
the sexes would often give rise to intralocus sexual conflict. It
was also argued that the outcome of this interaction would
depend on the opportunity for IASC resolution: IASC could
persist and therefore prevent counteradaptation of the trait in
response to IRSC, or IASC could be resolved, resulting in the
escalation of arms races stemming from IRSC. We here de-
velop a formal, quantitative genetic model of traits involved in
inter- and intralocus sexual conflict, to verify these arguments
and examine their implications for the evolution of sexual
conflict. Our analysis supports the intuition that IASC can
stabilize antagonistic male–female coevolution but also indi-
cates that the consequences of interaction between the two
forms of sexual conflict reach much further than anticipated.
Finally, we discuss the implications of these results for the
occurrence of perpetual arms races and the maintenance of
sexually antagonistic variation in fitness.

The Model
Biological Assumptions.Our analysis builds on a model of sexually
antagonistic coevolution introduced by Rowe et al. in 2005 (32)
(henceforth referred to as RCD05). The biological scenario con-
sidered in their study is that males and females are in conflict
over the rate of mating, which is taken to be an increasing sig-
moid function ψðsÞ= 1=ð1+ expð−sÞÞ of the intensity of a mating
stimulus, s. This particular formulation of the model captures the
situation that mating is a contest between male offense and fe-
male defense traits, in which more extreme offense traits in-
crease the rate of mating, whereas more extreme defense traits
have the opposite effect. Biological examples of offense and
defense traits include grasping and antigrasping devices, as seen
in water striders (13), or traumatic insemination and counter-
adaptations to control its harmful effects, as found in bedbugs
(16) and (hermaphroditic) land snails (14).
In RCD05, the intensity of the mating stimulus perceived by a

female is taken to be a function of three evolving phenotypic traits
with sex-limited expression. Specifically, s= z♀ × ðy♂ − x♀Þ depends
on the difference between a persistence trait, y♂, expressed in males,
and a female resistance trait, x♀, reflecting the threshold amount of
persistence required to induce mating. In addition, the perceived
intensity of the mating stimulus depends on the sensitivity of the
female, z♀, which quantifies how strongly she discriminates between
males that differ in their level of persistence. Male sexual fitness is
modeled as an increasing function of the mating rate, such that
sexual selection will invariably favor males who mate at a higher
frequency. In contrast, females are assumed to achieve maximal
reproductive success at an intermediate mating rate θψ. Selection
may therefore act on females to reduce their rate of mating by
increasing the mating threshold or evolving insensitivity to the
mating stimulus. The latter response is likely when there are
no pleiotropic constraints that prevent females from adjusting
their sensitivity (32). However, the sensory system underlying
female mating behavior is probably important in other con-
texts as well, such that the maximization of female re-
productive success may have negative consequences for fitness
components unrelated to mating interactions. Similarly,
evolving higher levels of persistence is presumably associated
with increasing costs for males. To capture these effects, each

of the mating traits is assumed to be subject to stabilizing
natural selection for an intermediate optimum.
In this paper, the analysis of RCD05 is extended in two ways.

First, if the mating characters have pleiotropic effects, then these
need not necessarily be restricted to one sex. Therefore, we
take into account that female resistance and sensitivity genes
are expressed in males, denoting the corresponding phenotypic
trait values as x♂ and z♂, respectively. Likewise, male persis-
tence genes affect a correlated phenotypic character in females,
for which the trait value is denoted as y♀. Stabilizing natural
selection acts on x, y, and z in both sexes in our model. The
optimum trait values and the strength of stabilizing selection
are allowed to differ between males and females. Note that x, y,
and z still have sex-limited effects on the mating rate (as in
RCD05), because their expression in the context of intersexual
interactions is contingent on the asymmetry between male and
female sex roles.
As a second extension, our model also considers the dy-

namics of arms races in cases where mating requires com-
plementarity or matching of male and female mating
characters. This alternative mating mechanism, which has
frequently been considered in models of sexual conflict (8), is
modeled by defining the mating rate as a unimodal function
ψðsÞ= expð−s2=2Þ of the mating stimulus s= z♀ × ðy♂ − x♀Þ
(which here reflects the extent to which the male differs from
the female’s preferred phenotype). As in sexual selection
models, x♀ can then be interpreted as a female mating pref-
erence, y♂ as a male mating trait (e.g., an ornament) on which
the preference acts, and z♀ as a measure of female choosiness.
For simplicity, we will continue to refer to the mating char-
acters as threshold, persistence, and sensitivity, as in RCD05,
except when we are explicitly considering complementarity-
based mating (in which case we will use preference, ornament,
and choosiness instead). Examples of sexually antagonistic mating
systems that could be considered as complementarity-based include
penis length/female reproductive tract coevolution in waterfowl
(3), and male seminal protein/female receptor coevolution in fruit
flies (37).
A key feature of our model is that genes involved in IRSC

are subject to distinct components of selection in males and
females. As a result, selection is likely to favor different op-
timum trait values in the two sexes, setting the stage for IASC
to occur. Prolonged IASC is expected when only a small
fraction of the genes are regulated in a sex-specific manner,
making it more difficult for males and females to diverge to-
ward their sex-specific optima (2, 19, 23). The strength of the
phenotypic correlation between brothers and sisters in their
expression of a mating trait and the corresponding correlated
character provides an observable measure of the degree of
sex-differential expression. Additive genetic intersexual cor-
relation coefficients, which can be inferred from comparisons
between opposite-sex relatives (11, 18), therefore play a
prominent role as control parameters in our further analysis:
Their effect on the rate of IASC resolution allows us to sys-
tematically vary the impact of IASC on antagonistic male–
female coevolution.

Mathematical Representation. Based on fitness functions that
capture the above biological assumptions, we calculated the
strength of selection acting on each of the characters and used
this information to determine their rate of evolution (Materials
and Methods). The evolutionary dynamics of the population
average trait values is described by a multivariate breeder’s
equation (38), du=dt=G  βðuÞ, where u is a (column) vector
ðx♀, z♀, y♂, x♂, z♂, y♀ÞT containing the average trait values and G
is the additive genetic variance–covariance matrix. This matrix
depends on the intersexual correlations rx, ry, and rz, as specified
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in Eq. 4 in Materials and Methods. The vector βðuÞ is the se-
lection gradient, given by

β ðuÞ=

0
BBBB@

a  z♀  
�
ψ − θψ

�
  ψ ′− cx♀  

�
x♀ − θx♀

�
a  ðx♀ − y♂Þ 

�
ψ − θψ

�
  ψ ′− cz♀  

�
z♀ − θz♀

�
b  z♀   ψ ′− cy♂  

�
y♂ − θy♂

�
− cx♂   ðx♂ − θx♂Þ
−cz♂   ðz♂ − θz♂Þ
−cy♀  

�
y♀ − θy♀

�

1
CCCCA
. [1]

Each element of the vector βðuÞ quantifies the marginal fitness
effect of varying one of the characters by one phenotypic unit, in
the context of the current population with average trait values u.
The upper three elements represent selection gradients acting on
the mating traits x♀, z♀, and y♂, which depend on the fitness
effects of mating interactions. The strength of sexual selection
varies with ψ and ψ ′, the values of the mating rate function and
its first derivative at s= z♀ × ðy♂ − x♀Þ. In addition, the impact of
mating on female and male fitness is scaled by two parameters, a
and b, that quantify, respectively, the cost to females of deviating
from their optimum mating rate and the strength of the associ-
ation between mating rate and male reproductive success. Direct
selection on the correlated characters, reflected by the lower
three elements of the selection gradient, occurs only in the form
of stabilizing natural selection, which also acts on the mating
traits. Stabilizing natural selection is parameterized for each trait
by an optimum trait value θ and a selection intensity c, which
determines how much fitness decreases when a phenotype is
displaced by a given amount from its viability selection optimum.

Results
The coevolution of the mating characters x♀, z♀, and y♂ in the
absence of between-sex pleiotropy has been analyzed by RCD05,
and we briefly recapitulate their results before examining the
interaction between IRSC and IASC. A key finding is that IRSC,
acting by itself, has multiple potential evolutionary outcomes (8,
32). These include escalating arms races, the evolution of female
indifference to the mating stimulus, and continual coevolution of
threshold, persistence, and sensitivity. Female indifference tends
to evolve when females are able to adjust the shape of their
preference function without major negative side effects, enabling
them to avoid large fitness costs of IRSC at evolutionary equi-
librium. By contrast, evolutionary arms races, which result in a
significant reduction of female fitness, occur when adaptation of
the female sensory system is constrained by a lack of genetic
variation or strong stabilizing selection on sensitivity in contexts
other than mating. Hence, RCD05 conclude that the outcome of
IRSC depends critically on the constraints and selective forces
that act on the female preference function.

Evolutionary Equilibria Are Stabilized by IASC. Following Pennell
and Morrow (4), we hypothesized that IASC would restrain IRSC
in cases with between-sex pleiotropic trait expression, potentially
preventing the escalation of arms races. In particular, if the in-
tersexual correlations are high and strong stabilizing selection acts
on the correlated characters x♂, z♂, and y♀, IASC is predicted to
keep the mating traits fixed at an evolutionary equilibrium even if
this would not be stable under the sole action of IRSC. To see
why, suppose that one or several of the mating traits evolve away
from the equilibrium under the influence of intersexual selection
(i.e., sexual selection generated by variation in ψ). This change is
associated with a correlated change of the homologous characters,
causing those to deviate from their viability selection optimum. As
a result, the response to sexual selection is opposed by stabilizing
natural selection in the other sex, which pushes the traits back to
their original values if the pleiotropic fitness effects outweigh the
selective forces resulting from IRSC.

A formal equilibrium and stability analysis confirms this verbal
argument (SI Appendix), demonstrating that IASC can stabilize
the dynamics of IRSC in the vicinity of evolutionary equilibria
that would otherwise be unstable. In such cases, IASC prevents
the sexes from being engaged in an escalating arms race and
allows them to sustain a stable “truce.” The main prerequisite for
stabilization is that the intersexual genetic correlations and se-
lection on the correlated characters must be sufficiently strong in
the direction in phenotype space along which the arms race
would have otherwise unfolded, so that stabilizing natural se-
lection is capable of overpowering the forces generated by IRSC.
The mathematical analysis leads to two additional insights.

First, neither the location nor the number of fixed points de-
pends on the values of the intersexual genetic correlations. As a
result, the evolutionary equilibria of the mating characters are
determined by sexual selection and within-sex stabilizing natural
selection, exactly as in RCD05, whereas the equilibrium values of
the correlated characters are simply given by their respective
optimum trait values θx♂, θz♂, and θy♀. Apart from being useful to
characterize the evolutionary equilibria, this insight also restricts
the range of phenomena that can be associated with qualitative
changes in the dynamics of IRSC due to its interaction with IASC.
Specifically, from the mathematical theory of qualitative changes
in dynamical systems [bifurcation theory (39)], we infer that var-
iation of the intersexual correlations can induce no other generic
local bifurcation than a so-called Poincaré–Andronov–Hopf bi-
furcation, given that all other options require equilibria to move
relative to one another. This bifurcation is associated with the
emergence or disappearance of a cycle (i.e., periodic orbit), which
can either act as an alternative evolutionary attractor or restrict
the attainability of certain evolutionary outcomes. Hence, if IASC
induces a qualitative change in the stability of an equilibrium, the
associated appearance or loss of a cycle could dramatically alter
the outcome of sexual conflict.

Dynamics of Sexual Conflict Away from Equilibria. To complement
the insights offered by the local stability analysis, we studied the
global evolutionary dynamics of the mating characters based on
numerical solutions calculated for the two mating scenario var-
iants of the model. Fig. 1 shows an illustrative result for the case
when mating is a contest between offense and defense traits.
Here, IRSC leads to continuous fluctuations in the male per-
sistence trait and the female sensitivity and mating threshold (cf.
figure 5b in ref. 32). During these evolutionary cycles, the initi-
ation of arms races between threshold and persistence is alter-
nated by the evolution of female indifference to the mating
stimulus, inducing the threshold and persistence trait to evolve
back toward their optimal trait value under natural selection. The
oscillations persist in the presence of low levels of pleiotropic
expression between the sexes (Fig. 1A), but their amplitude de-
creases if the intersexual genetic correlations are stronger. In that
case, fluctuations of the mating traits induce a larger correlated
selection response that is opposed more strongly by stabilizing
selection in the other sex. Modest-to-high values of the intersexual
correlations [still below typical empirically observed values (20)]
entirely prevent the initiation of arms races, causing the trait
values to converge on a stable equilibrium (Fig. 1B). These results
are in line with the conclusions of the mathematical analysis:
Without changing the location of the equilibrium, IASC has in-
duced an evolutionary repellor, surrounded by a stable periodic
solution, to transform into a stable fixed point that attracts the
dynamics in Fig. 1B. Moreover, the qualitative change in the sta-
bility of the equilibrium is associated with the disappearance of the
periodic attractor present in Fig. 1A.
More puzzling to explain are the simulation results obtained

for the model variant with complementarity-based mating, il-
lustrated in Fig. 2. Here, again, Fig. 2A shows the outcome of
evolution when the intersexual genetic correlations are weak. In
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this case, females evolve costly choosiness, and we observe an
arms race to exaggerated levels of ornamentation and corre-
sponding costly preferences. Eventually, the sexes converge on a
stable equilibrium, at which chase-away sexual selection (9, 10)
favoring further exaggeration is balanced by natural selection
acting in the opposite direction. Antagonistic coevolution can
escalate in two directions and thereby converge on two different
fixed points (shown in Fig. 2A, Upper and Lower). When the
intersexual correlations are high (Fig. 2B), such that female
choice is subject to strong pleiotropic constraints, arms races
driven by chase-away sexual selection occur as well, but they are
more effectively halted by natural selection, as a consequence of
stronger pleiotropic side effects in the other sex. However, as the
interlocus sexual conflict built up by the arms race is resolved,
sexual selection on the female preference and male ornamen-
tation changes direction, suddenly triggering an arms race in the
opposite direction. As a result, rather than stabilizing the dy-
namics of IRSC, IASC prevents the coevolving sexes from
reaching evolutionary equilibria, so that males and females are
caught in a recurrent evolutionary cycle (thick lines in Fig. 2B).
At first sight, these results seem to contradict the conclusions

from the mathematical analysis, which stated that stable equi-
libria of IRSC cannot be destabilized by IASC. However, the
arms races observed in Fig. 2B never get close to the endpoints of

the coevolutionary chase in Fig. 2A, so we cannot yet infer the
stability properties of the equilibria. We therefore ran simula-
tions from other initial conditions, closer to the endpoints
reached by evolution in Fig. 2A. The additional simulations (thin
lines in Fig. 2B, Upper and Lower) indicate that the sexes can still
attain the same stable state characterized by exaggerated trait
expression when the intersexual correlations are strong. In other
words, no differences exist between Fig. 2A and Fig. 2B in the
stability properties of the evolutionary equilibria, consistent with
the analytical results. We are thus led to conclude that IASC has
consequences for the dynamics of sexually antagonistic co-
evolution far away from equilibrium that contrast sharply with
predictions derived from the local equilibrium stability analysis.
Fig. 3 shows simulations for a different parameter set, in which

the evolutionary cycles observed in Fig. 2B occur in a more basic
form. These illustrate that the coevolutionary dynamics is dom-
inated alternatingly by inter- and intralocus sexual conflict, with
periods of arms races that displace the sexes from their optima,
and phases of intralocus sexual conflict resolution that set the
stage for the next arms race to occur. Note that the resolution of
IASC in these simulations is only partly mediated by the evolu-
tion of sexual dimorphism. IASC is also resolved by dynamic
changes in the direction of intersexual selection and associated
shifts in sex-specific fitness optima, which may temporarily align
the selection gradients on correlated characters in males and
females. At other times, the same process may cause sex-specific
optima to diverge again, leading to the renewed buildup of IASC.
Furthermore, a comparison between the panels illustrates that
the destabilizing effect of between-sex pleiotropy is trait-specific:
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Fig. 1. IASC stabilizes sexually antagonistic coevolution of offense and
defense traits. Male and female mating traits (solid lines) covary with their
respective homologous character in the other sex (dashed lines) as a result of
between-sex pleiotropic gene expression. The population-average trait values
converge on an evolutionary cycle when the intersexual genetic correlations
are low (A) but are driven toward a stable equilibrium (B) when sensitivity
and threshold are subject to stronger IASC. Parameters are a= 5, b= 0.5,
θx♀ = θx♂ = 0.05, θy♀ = θy♂ =−0.05, θz♀ = θz♂ = 0.5, θψ = 0.2, cx♀ = cx♂ = 0.5,
cy♀ = cy♂ = cz♀ = cz♂ = 0.1. In A, rx = rz = 0.1 and ry = 0.2; in B, rx = rz = 0.5 and
ry = 0.2.
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population toward exaggerated trait values when the intersexual genetic
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Simulations converging on two alternative equilibria. Two additional stable
equilibria exist when choosiness is allowed to be negative at equilibrium. We
do not show further results for this case, because the evolutionary trajec-
tories at positive and negative values of choosiness are nearly symmetric.
Thick lines in B, Upper and Lower show simulations from the same initial
conditions as in A, but at higher values of the intersexual additive genetic
correlation (rx = rz = 0.95 and ry = 0.2). Here, males and females engage in
arms races, which are reversed halfway on their way toward attaining
equilibrium. The cause of these sudden reversals is IASC resolution, which
induces a correlated selection response in the mating traits, changing the
relative positions of the sexes in their coevolutionary chase. The interaction
of inter- and intralocus conflict thus keeps the sexes caught in a perpetual
cycle of arms races, alternated by phases of conflict resolution. The equi-
librium states attained in A are also potential endpoints of evolution in B but
can only be reached from initial conditions close to the equilibria. This is
shown by two example simulations (thin lines) that converge on the alter-
native equilibria in B, Upper and Lower. Parameters (other than the in-
tersexual correlations) are as in Fig. 1.
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In order for IASC resolution to reverse the direction of chase-
away sexual selection (which requires that x♀ − y♂ changes sign),
the correlated selection response, which pulls the traits back to
their viability selection optimum, must be larger in females than
in males (SI Appendix, Figs. S2–S4).

Global Bifurcation Analysis. The remaining section of the Results
provides a description of how the dynamical effects of between-

sex pleiotropy unfold, building on insights from dynamical-sys-
tems analysis (39). Readers unfamiliar with this subject can first
read Discussion, where we concentrate on the biological impli-
cations of the results.
Because time plots are not well suited to summarize the results

of simulations from multiple initial conditions, we switched to a
representation of the evolutionary dynamics in phase space and
reduced the number of variables to enable visualization of the
phase diagrams in 3D. This was accomplished by treating z♀ as a
fixed character (equivalent to assuming the absence of additive
genetic variation in female choosiness) and setting ry = rz = 0,
such that the evolution of y♀ and z♂ is decoupled from that of the
other characters. The remaining characters, x♀, x♂, and y♂ appear
as variables on the axes of the phase diagrams in Fig. 4. The six
panels illustrate the dynamics at different values of the in-
tersexual correlation rx, increasing from 0.6 in Fig. 4A to 0.9 in
Fig. 4F. In this section, we consider only the model variant with
complementarity-based mating.
The phase diagram depicted in Fig. 4A reflects qualitatively

what we have seen in Fig. 2A: Starting from trait values near 0,
chase-away sexual selection can occur in two different directions,
leading to either one of two stable endpoints (colored red and
green) at which males and females express costly mating traits.
IASC is fully resolved at these equilibria, with the correlated
character x♂ being at its viability selection optimum (θx♂ = 0).
The two attractors are separated by a saddle point (gray), which
has a stable manifold that divides the phase space into the sep-
arate basins of attraction of the red and the green equilibrium.
Intersexual arms races leading toward the stable fixed points
exhibit damped oscillations. These have become exaggerated in
Fig. 4B (rx = 0.7), giving rise to a first bifurcation (i.e., a quali-
tative change in the phase diagram) that is marked by the ap-
pearance of an unstable limit cycle (dotted black). Trajectories
leading from the saddle point toward the green equilibrium loop
around the cycle, eventually to converge on the red equilibrium.
The bias toward the red equilibrium is caused by a slight asym-
metry in the viability selection optima for the female preference
and the male ornament (θx♀ = 0, θy♂ = 0.05). As a consequence,
the difference between x♀ and y♂ is smaller in the vicinity of the
green equilibrium, making it easier for intralocus sexual conflict
resolution to reverse the direction of chase-away sexual selection
(SI Appendix, Fig. S2). However, at slightly higher values of the
intersexual genetic correlation (Fig. 4C; rx = 0.76), the approach
to the red equilibrium is also destabilized. A second unstable
limit cycle has emerged, causing recurrent reversals of the di-
rection of sexually antagonistic coevolution until the process
eventually settles down at the red equilibrium.
In Fig. 4D (rx = 0.8), a connection between the stable and

unstable manifolds of the two limit cycles has led to the ap-
pearance of a third cycle (dark blue), which attracts trajectories
in the interior of the phase space. The unstable limit cycles now
prevent evolution from reaching either one of the stable equi-
libria, except from a restricted range of initial conditions (com-
parable to the case illustrated by Fig. 2B). When the intersexual
correlation is increased even more, two additional bifurcations
occur that further restrict the possibility of establishing a truce
between the sexes. First, an unstable cycle arises (Fig. 4E;
rx = 0.85), which acts as a source for trajectories leading to the
stable fixed points. This cycle tightly surrounds the saddle point
and eventually collapses onto it (Fig. 4F; rx = 0.9), transferring its
stability properties to the interior equilibrium (gray). It is pos-
sible for evolution to reach the stable fixed points from the
neighborhood of this equilibrium, following trajectories that spiral
outward along the manifold on which the unstable cycle existed.
However, selection is much more likely to push the population
along the unstable manifold of the former saddle point, which
continues to dominate the dynamics around the interior equilib-
rium. Evolution in this direction very quickly drives the population
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Fig. 3. Effect of between-sex pleiotropy on the dynamics of IASC and IRSC
during trait evolution. Each panel shows a simulation of evolving mean trait
values (Lower; line styles as in Fig. 2) with a corresponding time plot of trait-
specific indices of sexually antagonistic selection (dashed: IRSC index; solid:
IASC index). Positive values of IASC and IRSC indices are indicative of sexual
antagonism; negative values indicate that fitness effects are concordant
between the sexes (Materials and Methods). (A) Complementarity-based
mating without between-sex pleiotropy (rx = ry = rz = 0). Preference and or-
nament evolve in an arms race driven by IRSC, first in one then in the other
direction, converging eventually on a stable equilibrium. In B, the approach to
the equilibrium is destabilized by IASC, which can be seen to build up during the
period that IRSC is strong (rx = 0.8; ry = rz =0). IASC is resolved when x♂ evolves
back toward it sex-specific optimum, but this process induces a correlated change
in x♀ that causes the direction of sexual selection to reverse. As a result, a new
IRSC arms race is triggered, initially accelerated by concordant selection on the
preference and its pleiotropic character. (C) When also male ornamentation
genes have pleiotropic effects in the other sex (rx = 0.8; ry = 0.5; rz = 0) evolution
can attain the equilibrium again. Although the overall level of between-sex
pleiotropy and IASC have increased relative to B, conflict resolution has become
less effective in reversing the direction of sexual selection. This is because both x♀
and y♂ are pushed toward their viability selection optimum by the correlated
response to stabilizing selection on, respectively, x♂ and y♀. The difference be-
tween the two traits, which determines the direction of chase-away sexual se-
lection, is therefore less strongly affected by IASC resolution than in B.
Parameters are a=0.4, b= 0.1, θx♀ = θx♂ = 0, θy♂ = θy♀ = 0.05, θz♀ = 0.95, θψ = 0.25,
cx♀ = 0.1, cx♂ = cy♂ = cy♀ = cz♀ = 0.05. For clarity, trait values for the correlated
characters and IASC indices are not shown if the corresponding intersexual ge-
netic correlation is equal to zero.
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into the basin of attraction of the stable limit cycle, so that continual
arms races are a much more likely outcome of evolution.
In this entire series of bifurcations, only the final bifurcation is

associated with a change in the qualitative properties of an equi-
librium (without even affecting its stability). The other qualitative
changes that occurred in the phase diagram result from global bi-
furcations (SI Appendix, Fig. S5) that are not detected by a stability

analysis of the equilibria. Moreover, we note that there has not been
a single qualitative change in the evolutionary dynamics close to the
stable fixed points (red and green) over the entire range of in-
tersexual correlations (Fig. 4).
The above analysis relies on a number of simplifying assumptions,

so we ran several checks to verify the robustness of the results. First,
we recovered a similar sequence of bifurcations in a model with

A B

C D

E F

Fig. 4. Between-sex pleiotropy induces a sequence of qualitative changes in the dynamics of sexual conflict. The phase diagrams (A–F) show evolutionary
trajectories starting from different initial conditions at six different values of the intersexual genetic correlation rx: (A) rx = 0.6, (B) rx = 0.7, (C) rx = 0.76, (D)
rx = 0.8, (E) rx = 0.85, and (F) rx = 0.9. Two stable equilibria (indicated by a red and green dot) exist throughout this range of parameter values, separated by a
third, unstable equilibrium (gray dot) in the interior of the trait space. Trajectories are colored according to the attractor at which they end up; differences in
line thickness are used to highlight important trajectories. Seen from the upper right, trajectories generally follow a counterclockwise motion. Unstable limit
cycles (present in B–F) are indicated by black dots. Stable periodic attractors (thick closed orbits in D–F) and the trajectories leading toward them are shown in
blue. Throughout, female choosiness was kept fixed at z♀ = 1.5, consistent with the absence of genetic variation for that trait. To further reduce the number
of variables, we took ry = rz = 0, so that y♀ and z♂ evolve independently of the other traits. Other parameters are a= 0.4, b= 0.1, θx♀ = θx♂ = 0, θy♂ = 0.05,
θψ =0.25, cx♀ = 0.1, cx♂ = cy♂ = 0.05.
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coevolving female choosiness (SI Appendix, Fig. S6), indicating that
the main results are not specific to the reduced model with only
three coevolving characters. Another restriction, implicit in our use
of a quantitative genetics framework, is that we have assumed a
fixed genetic architecture of the traits, whereas, in reality, the ge-
netic variances and covariances are responding to selection (40). In
fact, previous studies have shown that IRSC is capable of generating
strong linkage equilibria within populations, leading to bimodal trait
distributions and possibly speciation (8, 41). However, without high
mutation rates and weak selection on females, phenotypic di-
versification is limited in individual-based simulations of our model
(SI Appendix, Figs. S7–S12). Despite being genetically explicit (en-
abling the genetic architecture of traits to evolve), the individual-
based simulations closely follow the quantitative genetic predictions,
lending support to the robust occurrence of the instability un-
covered by our analysis.

Discussion
The potential for IASC to affect trait evolution and diversifica-
tion caused by IRSC has recently been emphasized (4) but never
before put to the test of formal analysis. Previous models of
IRSC (7, 8, 10, 32, 33), which have not included IASC, predict
arms races of sexually antagonistic adaptation and counteradap-
tation between the sexes, possibly leading to exaggerated traits and
substantial fitness losses due to sexual conflict (6). We included
IASC in a quantitative genetic model of IRSC trait evolution and
found that, depending on the genetic architecture of traits (i.e., their
degree of sex-limited expression) and the biological mechanism of
mating interactions (i.e., whether compatibility is determined by a
contest or trait complementarity), IASC can either restrain or in-
duce male–female antagonistic coevolution.
The stabilizing effect of IASC dominates near evolutionary

equilibria. Here, selection is weak and trait values evolve slowly,
so that there is ample time for the resolution of IASC. Because
the correlated characters are close to their optimum, mutations
expressed in mating interactions are also exposed to purifying se-
lection in the other sex. A general mathematical argument con-
firms that this additional source of stabilizing selection thwarts the
initiation of arms races in populations at evolutionary equilibrium.
Far away from equilibrium, the mating traits evolve more rapidly,

allowing unresolved IASC to build up. The pleiotropic effect of
mating-trait mutations is then subject to directional selection in the
other sex, which can slow down antagonistic coevolution, or even
reverse its direction. The latter phenomenon occurs with comple-
mentarity-based mating, when the female preference, which is
ahead in the coevolutionary chase, is subject to stronger pleiotropic
constraints than the male ornament, which is following behind (SI
Appendix, Figs. S2–S4). Furthermore, arms-race reversals occur
above a critical level of the intersexual correlation, at which the
correlated selection response to IASC resolution is sufficient to pull
the mean female preference toward the other side of the male trait
distribution, qualitatively changing the direction of chase-away
sexual selection. In this way, rather than helping the sexes to
maintain a truce, IASC fuels a never-ending cycle of IRSC arms
races, interrupted by phases of IASC resolution, which set the stage
for the next arms race to occur.
In conclusion, whether IASC stabilizes or destabilizes IRSC

arms races is determined primarily by the balance between the
rate of conflict resolution and the rate at which new sexually
antagonistic variation is accumulated during episodes of rapid
trait evolution. The timescale of both processes is affected by the
genetic architecture of conflict traits, characterized in our anal-
ysis by the additive genetic intersexual correlation between
mating characters and their pleiotropic homologs in the other
sex. Research that has focused solely on IASC has shown that
negative intersexual correlations for fitness are maintained in
populations (11, 19, 26), suggesting that the resolution of IASC
may be slow (20, 22) (but see ref. 42). However, intersexual

genetic correlations for individual traits are varied (19), with
systematic differences existing among trait types (20). Moreover,
specific information on the extent of between-sex pleiotropy for
traits involved in IRSC is scarce. Quantitative estimates of the
strength of interaction between IASC and IRSC therefore re-
quire further developments in our understanding of the genetic
basis of the two forms of sexual conflict.

The Genetic Architecture of Sexual Conflict. Currently, the most
detailed studies of the genetics of IRSC come from seminal
proteins. Sex peptide (SP) is one gene that has been recognized
as a mediator of IRSC (15), and other candidate genes have also
been identified, including genes that are required by females to
respond to SP postmating (25, 37). Several IRSC candidate
genes identified by Gioti et al. (37) were not sex-limited in their
expression, creating potential for them to also mediate IASC.
Similarly, Innocenti and Morrow (30) found that many of the
transcripts associated with IASC were enriched in reproductive
tissues, such as the female spermatheca and the male accessory
gland and ejaculatory duct. Altogether, this suggests that the
same loci could be involved in both IASC and IRSC.
Although reproductive traits are the primary candidates to me-

diate both types of sexual conflict, sexually antagonistic transcripts
associated with IASC have also been identified in nonreproductive
tissues (30), and several aspects of morphology and physiology that
are exposed to sex-specific selection but not directly related to re-
productive functions have strong genetic correlations between the
sexes (20). Nonreproductive traits may also be necessary to coun-
teradapt in an IRSC arms race. For example, in cockroaches and
bed bugs, behavioral, morphological, and physiological adaptations
are thought to be involved in adaptations to IRSC in both sexes (16,
33). Nonreproductive traits may therefore participate in both IRSC
and IASC, although reproductive traits might generally be subject to
stronger sex-specific selection.
Estimating between-sex genetic correlations is a challenge, be-

cause correlated phenotypic characters can easily be overlooked
due to the diffuse nature of pleiotropy. Therefore, a promising
complementary approach to genomic analyses of the genetic ar-
chitecture of sexual conflict traits is to test for IASC effects using
experimental manipulations of candidate genes previously identified
for their role in sexually antagonistic interactions. It might also be
insightful to conduct artificial selection experiments on traits in-
volved in IRSC, to identify whether the traits have a shared genetic
basis, where resulting phenotypes and their fitness effects could be
quantified in each sex. A recent study by Fuchikawa and Okada (43)
used this method to study whether exaggeration of male mandibles
in seed beetles affected female fitness via an intersexual genetic
correlation. Although they found no evidence of IASC over this
trait, it provides a framework for other studies of this kind.

Mechanisms of Mating Interactions. Apart from between-sex plei-
otropy, a requirement for sustained arms-race reversals in our
model is that mating compatibility is determined by trait com-
plementarity rather than by a contest between offense and de-
fense traits. IASC was observed to complicate the dynamics of
arms races in the contest scenario as well (SI Appendix, Fig. S1),
but its destabilizing effects never prevented evolution from ul-
timately reaching an equilibrium state. Both mating mechanisms
have been considered in theoretical studies of IRSC and moti-
vated by specific biological examples (8). RCD05 already showed
that evolutionary cycles, featuring fluctuations in sensitivity (Fig.
1 and SI Appendix, Fig. S1), may occur when mating is de-
termined by a contest. However, barring changes in sensitivity,
changing the direction of chase-away sexual selection is precluded
in the contest model, because male sexual fitness is an increasing
function of the expression of the offense trait, irrespective of the
level of female defense. A similar monotonic relationship holds
for female sexual fitness as a function of the defense trait. These
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constraints, however, are an immediate consequence of the as-
sumption that offense and defense are unidimensional traits.
Male and female mating behaviors are frequently determined by

many traits (including behavioral, morphological, and physiological
characteristics). Accordingly, intersexual arms races generally occur
in multidimensional phenotype space. There, male–female co-
evolution can unfold in many different directions, so that the res-
olution of IASC may trigger sudden changes in the direction of
arms races. Populations evolving in multidimensional phenotype
spaces, in which mating interactions are governed by a contest be-
tween more than one offense and defense trait, may therefore show
complex dynamics of sexual conflict similar to what is observed in
our model for complementarity-based mating. Consistent with this
hypothesis, frequency-dependent selection operating on multivari-
ate phenotypes is known to frequently result in complex non-
equilibrium dynamics or even evolutionary chaos (44).

Implications for Theory. The evolutionary cycling observed in our
model of sexual conflict is a consequence of an interaction
between processes on a fast and a slow timescale, typical of
systems with delayed nonlinear feedback control [relaxation
oscillators (45)]. Sexually antagonistic coevolution is the fast
process (7), which drags along pleiotropically correlated char-
acters. The accumulating displacement of these characters from
their optimum acts as a control variable with a sudden, switch-
like effect on the direction of intersexual selection, mediated by
IASC resolution. The strength of the feedback and its timescale
of operation are set by the additive genetic correlations.
Broadening this analogy, we speculate that similar dynamical
instabilities can occur in other coevolutionary processes that
are subject to pleiotropic constraints, such as in the context of
host–parasite coevolution (6) or biological signaling (46).
Because pleiotropy has been seen predominantly as a source
of evolutionary constraint so far, further theoretical in-
vestigation into its consequences for the dynamics of evolu-
tion is warranted.
The rich dynamics of sexual conflict, uncovered by a numerical

bifurcation analysis, also draws the attention to the limitations of
equilibrium analyses to characterize complex evolutionary phe-
nomena. The standard approach to analyzing phenotypic models
of evolution is to locate evolutionary equilibria and then charac-
terize their stability by studying the dynamics of evolution in the
vicinity of the equilibria (47). This local analysis does not provide
conclusive information about the dynamics far away from equi-
libria, yet its results are often extrapolated to infer a qualitative
description of the global evolutionary dynamics. The present
model serves as an illustration of a biological scenario where such
qualitative analysis leads to the wrong conclusions. Specifically,
the analytical results fail to detect the emergence of an evolu-
tionary cycle that arises through a series of global bifurcations and
serves as an alternative evolutionary attractor. How commonly this
problem occurs in the analysis of biological models is an open
question, especially for studies of complex trait evolution, because
a systematic search for global bifurcations is not routinely included
in model analyses.

Conclusion
Our findings inspire an integrative perspective on the biology of
inter- and intrasexual conflict that sheds new light on several
issues debated in the field. First, we show that pleiotropic con-
straints, in the form of correlated trait expression subject to
stabilizing selection, do not necessarily restrain arms races but
may rather create conditions favorable to perpetual antagonistic
coevolution. The reversal of arms races by IASC resolution
provides a previously unidentified mechanism for explaining the
ongoing evolution of mating traits, despite the presence of sta-
bilizing natural selection preventing unlimited trait exaggeration.
Second, our simulations, which show a recurrent buildup of

unresolved IASC during intersexual arms races, alternated by
periods of conflict resolution, suggest that IASC may be more
dynamic than has so far been recognized. This idea is consistent
with the observation that closely related species show markedly
different patterns of sex-biased gene expression (42). It can also
help to resolve the paradox that appreciable levels of sexually
antagonistic genetic variation segregate in populations, whereas
sexual dimorphism is known to evolve rapidly in many cases (12,
22, 48). That is, even if the evolution of sexual dimorphism leads
to a rapid loss of sexually antagonistic variation, new sexually
antagonistic alleles might be introduced continually as a pleio-
tropic side-effect of intersexual arms races.

Materials and Methods
Fitness Functions. Individual fitness is calculated as the product of survival and
reproductive success. Reproductive success depends on the mating rate ψ in
both sexes, but in qualitatively different ways: Male fitness is an increasing
function of ψ , whereas female fitness is maximized at an intermediate
mating rate θψ . Male and female survival are affected similarly by stabilizing
natural selection, which acts independently on each of the phenotypic
characters expressed by the individual. Hence, the fitness of a female is a
function of her own phenotype ðx♀, y♀, and z♀Þ and of her mating rate,
which also depends on the average persistence y♂ of the resident males with
whom she interacts:

W♀ = e−
1
2aðψðz♀ðy♂−x♀ÞÞ−θψÞ2 ×e−

1
2

�
cx♀ ðx♀−θx♀ Þ2+cy♀ ðy♀−θy♀ Þ2+cz♀ ðz♀−θz♀ Þ2

�
. [2]

Likewise, the fitness of a male depends on his own traits x♂, y♂, and z♂, and
on the average threshold x♀ and sensitivity z♀ of his mating partners:

W♂ = eb  ψðz♀ðy♂−x♀ÞÞ ×e−
1
2

�
cx♂ ðx♂−θx♂ Þ2+cy♂ ðy♂−θy♂ Þ2+cz♂ ðz♂−θz♂ Þ2

�
. [3]

In these expressions, the parameters a and b scale the fitness conse-
quences to females and males of IRSC. Moreover, θk and ck (where k can
stand for any of the phenotypic characters) specify the optimal value of
character k under natural selection and the stabilizing selection
intensity, respectively.

Calculating the Response to Selection. The strength and direction of selection
on the phenotypic characters is quantified by the selection gradient,
β= ðβx♀ , βz♀ , βy♂ , βx♂ , βz♂ , βy♀ ÞT. Its elements are calculated directly from the
fitness functions (Eqs. 2 and 3), using standard methods from evolutionary
quantitative genetics (49). Specifically, depending on whether k is expressed
in females or males,

βk =
d lnW♀

d   k

����� x♀=x♀
y♀=y♀
z♀=z♀

  or  
d lnW♂

d   k

����� x♂=x♂
y♂=y♂
z♂=z♂

.

In the calculation of the selection gradients, we follow the common
approach of assuming weak selection and limited phenotypic variation
in the population. On the scale of a phenotypic SD, the fitness function
can then be approximated by a linear function, and the selection
gradients become independent of the phenotypic variances. Qualita-
tively different outcomes of sexual conflict occur in populations with
high levels of standing genetic variation, in which case the approxi-
mations underlying Eq. 1 break down (SI Appendix, Individual-based
simulations).

The population average value of each character changes in response to
selection acting on the character itself, and due to selection on correlated
characters. The combined effect of the direct and indirect component of the
selection response is found by multiplying the selection gradient with the
genetic variance–covariance matrix G (38). Several of the off-diagonal
elements of G represent additive genetic covariances between a mating
character and its pleiotropic character in the other sex (2). These in-
tersexual covariances are of prime interest, because they quantify to
what extent the resolution of IASC is constrained by male and female
traits sharing a common genetic basis. The other off-diagonal elements
measure covariance between nonhomologous characters due to pleiot-
ropy or linkage disequilibrium. For simplicity, these elements of G are
assumed to be negligibly small.
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The number of parameters can be reduced further, if all traits are mea-
sured on a standardized scale. In that case, the additive genetic variances are
equal to one and G takes the form of a correlation matrix:

G=

0
BBBBBB@

1 0 0 rx 0 0
0 1 0 0 rz 0
0 0 1 0 0 ry
rx 0 0 1 0 0
0 rz 0 0 1 0
0 0 ry 0 0 1

1
CCCCCCA
. [4]

Here, rx, ry, and rz denote the additive genetic intersexual correlations be-
tween the expression of a mating character in one sex and its homologous
pleiotropic character in the other.

Quantifying IASC and IRSC. Following ref. 19, we consider IASC to arise when
the selection gradients on genetically correlated characters in males and
females point in opposite directions. The indices of IASC plotted in Fig. 3 and
SI Appendix, Fig. S1 are therefore calculated as

IIASCx =−βx♀   βx♂ ,   I
IASC
y =−βy♀   βy♂   and  I

IASC
z =−βz♀   βz♂ .

Comparable indices for the strength of IRSC are calculated by multiplying the
selection gradient of amating trait with its effect on fitness in the other sex, that is:

IIRSCx =−βx♀
d lnW♂

d   x♀
=b  βx♀   z♀   ψ ′,

IIRSCy =−βy♂
d lnW♀

d   y♂
= a  βy♂   z♀  

�
ψ − θψ

�
  ψ ′,

IIRSCz =−βz♀
d lnW♂

d   z♀
=b  βz♀   ðx♀ − y♂Þ  ψ ′.
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This online appendix contains a step-by-step derivation of the general mathematical results (supported by table S1),
followed by supplementary figure S1 (dynamic of IASC and IRSC indices in the contest mating scenario), figures S2–S4
(detailing the mechanism of arms-race reversals), figure S5 (schematic representation of global bifurcations), figure S6
(results for a model with coevolving female choosiness) and figures S7–S12 (individual-based simulation results).

Mathematical analysis

Evolutionary equilibria. The point of departure of the mathematical analysis is the multivariate breeder’s equation
[1]

du

dt
“ Gβpuq, (S1)

which describes the evolutionary dynamic of the average trait values. Except in degenerate cases (rk “ 1 or rk “ ´1
for at least one of the traits), which we exclude in the further analysis, the genetic variance-covariance matrix G
is non-singular. This means that G´1 exists, so that the equilibrium points of the system of ordinary differential
equations [S1] can be found by solving βpu˚q “ 0 for the equilibrium trait values u˚ “ px˚B, z

˚
B , y

˚
D
, x˚

D
, z˚

D
, y˚Bq

T. As a
further consequence, neither the number of equilibria nor their location are affected by the genetic variance-covariance
matrix.

It follows straightforwardly from equation [1] that x˚
D
, z˚

D
and y˚B are given by their respective optimal trait values

θxD
, θzD

and θyB
. The equilibrium values of the three remaining characters can be expressed as functions of the mating

stimulus s̄:

¨

˝

x˚Bps̄q
z˚Bps̄q
y˚

D
ps̄q

˛

‚“

¨

˝

cxB
´a pψps̄q ´ θψqψ

1ps̄q 0
´a pψps̄q ´ θψqψ

1ps̄q czB
a pψps̄q ´ θψqψ

1ps̄q
0 ´b ψ1ps̄q cyD

˛

‚

´1¨

˝

cxB
θxB

czB
θzB

cyD
θyD

˛

‚ (S2)

Based on this result, the equilibria can be found by locating the roots of the function fps̄q “ z˚Bps̄q py
˚
D
ps̄q´x˚Bps̄qq´ s̄.

The equilibrium condition fps˚q “ 0 cannot be solved analytically, except in a number of special cases discussed in
[2]. However, plotting the graph of f provides a straightforward graphical method to determine how many equilibria
there are, while numerical root-finding methods can be applied to approximate the equilibrium values of the mating
stimulus to arbitrary precision.

Stability analysis. The stability of the equilibria is assessed by linearizing equation [S1] around each of the equilibrium
points,

dpu´ u˚q

dt
« G

Bβpuq

Bu

ˇ

ˇ

ˇ

ˇ

u“u˚
loooooooomoooooooon

M

pu´ u˚q (S3)

and evaluating the eigenvalues of the matrix M. This matrix, which is the product of the genetic variance-covariance
matrix and the Jacobian of the selection gradient, can be written as a block matrix

M “

ˆ

I R
R I

˙ˆ

J 0
0 ´C

˙

“

ˆ

J ´RC
RJ ´C

˙

(S4)

where I is the 3ˆ 3 identity matrix, 0 is a 3ˆ 3 matrix of zeros, and C and R are diagonal matrices

C “

¨

˝

cxD
0 0

0 czD
0

0 0 cyB

˛

‚ and R “

¨

˝

rx 0 0
0 rz 0
0 0 ry

˛

‚ (S5)
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Table S1. Summary of notation used in the mathematical analysis

Notation Definition

Complex numbers1

z P C Complex number z “ a` i b, where i is the imaginary unit, defined by i2 “ ´1

<pzq Real part of z; <pa` i bq “ a

=pzq Imaginary part of z; =pa` i bq “ b

z̄ Complex conjugate of z, i.e., if z “ a` i b then z̄ “ a´ i b

|z| Absolute value or magnitude of z, i.e., if z “ a` i b then |z| “
?
a2 ` b2

Vectors and matrices

x Lowercase boldface symbols represent (column) vectors

xris The number at position i in vector x

xT Transpose of a vector; transposition changes column vectors into row vectors and vice versa

x: Conjugate transpose of a vector; x: “ x̄T

xx, yy Inner product of x and y; xx, yy “ x:y “
ř

k x̄rksyrks

}x} Lenght of x; }x} “
a

xx, xy

A Uppercase boldface symbols represent matrices

Ari,js The element at row i and column j of matrix A

AT Transpose of a matrix; AT
ri,js “ Arj,is

A: Conjugate transpose of a matrix; A:
“ Ā

T

AS Symmetric part of matrix A; AS
“ 1

2
pA`A:

q

ΛmaxpHq, ΛminpHq Largest and smallest eigenvalue of a Hermitian2 matrix H

1 Definitions in this part of the table assume that a, b P R
2 A matrix H is Hermitian if H “ H:

Throughout, we assume that 0 ă rk ă 1 and ck ą 0 for all characters, so that the eigenvalues of R2, I ´R2 and C
are strictly positive. Finally, the matrix J, given by

J “

¨

˝

´a z˚B
2 Ψ2 ´ cxB

aΨ1 ` a s˚Ψ2 a z˚B
2 Ψ2

aΨ1 ` a s˚Ψ2 ´a py˚
D
´ x˚Bq

2 Ψ2 ´ czB
´aΨ1 ´ a s˚Ψ2

´b z˚B
2 ψ2ps˚q b ψ1ps˚q ` b s˚ψ2ps˚q b z˚B

2 ψ2ps˚q ´ cyD

˛

‚ (S6)

is a 3ˆ3 submatrix of the Jacobian that specifies how small perturbations of xB, zB or yD away from their equilibrium
value influence the strength and the direction of selection acting on each of the mating characters. Here, we used the
shorthand notation Ψ1 “ ψ1ps˚q pψps˚q´θψq and Ψ2 “ ψ2ps˚q pψps˚q´θψq`ψ

1ps˚q2. Furthermore, s˚ “ z˚Bˆpy
˚
D
´x˚Bq

denotes the equilibrium value of the mating stimulus. Aside from the contributions of stabilizing natural selection
that appear on the diagonal, J captures the fitness consequences of IRSC, which are mediated by the effects of the
mating characters on the value of the mating stimulus.

The equilibrium is stable if and only if all eigenvalues of M have negative real parts. Accordingly, if λ is the
eigenvalue with the largest real part, a necessary and sufficient condition for stability is that <pλq ă 0 (a summary of
our notation used for complex numbers is provided in table S1). Let w be the eigenvector associated with eigenvalue
λ. In accordance with the block structure of M, w is split into two parts, which are written as linear combinations of
two vectors u,v P C3. We are primarily interested in the case that <pλq ą 0 for RÑ I, implying that the equilibrium
is not stable in the absence of intersexual genetic correlations, (and aim to show that such an equilibrium can become
stable for some R ‰ I). In this case, J has at least one eigenvalue with positive real part. The further calculations
simplify if we choose

w “

ˆ

u`Rv
v

˙

, such that Mw “ λw ô

#

Ju` JRv ´RCv “ λu` λRv

RJu`RJRv ´Cv “ λv
(S7)

We note that u is a vector that tends to the dominant eigenvector of J as R Ñ I. In that same limit, the vector v
tends to a vector of zeroes. Slightly rearranging the eigenvector equation in [S7] yields two other useful expressions

G´1Mw “ λG´1w ô

#

Ju` JRv “ λpI´R2
q´1u

Cv “ λRpI´R2
q´1u´ λv

(S8)

In order to calculate <pλq, we make use of the properties of the inner product xx, yy “ x:y. In particular, for any real-
valued matrix A, xAv, vy “ pAvq:v “ v:ATv “ xv, ATvy. In addition, xv, λvy “ λ xv, vy and xλv, vy “ λ̄ xv, vy,
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such that

<pλq “ 1

2
pλ` λ̄q

“
xv, λvy ` xλv, vy

2 xv, vy

“
xv, RJu`RJRv ´Cvy ` xRJu`RJRv ´Cv, vy

2 xv, vy

“
xRv, JS Rvy ´ xv, Cvy

xv, vy
`
xRv, Juy ` xu, JTRvy

2 xv, vy
,

(S9)

where the long expression substituted for λv in the third step of this calculation is taken from equation [S7]. Appearing
in the final step of this derivation is the symmetric part of the matrix J, defined as JS

“ 1
2 pJ`J

T
q. A similar derivation,

built on the result of equation [S8], gives rise to

<pλq “ xu, λpI´R2
q´1uy ` xλpI´R2

q´1u, uy

2 xu, pI´R2
q´1uy

“
xu, Ju` JRvy ` xJu` JRv, uy

2 xu, pI´R2
q´1uy

“
xu, JSuy

xu, pI´R2
q´1uy

`
xRv, JTuy ` xu, JRvy

2 xu, pI´R2
q´1uy

(S10)

We can now form a linear combination of equations [S9] and [S10], and recognize that xv, vy ` xu, pI ´R2
q´1uy “

xw, G´1wy, yielding a result that only depends on the symmetric part of J:

<pλq “ xu`Rv, JS
pu`Rvqy ´ xv, Cvy

xw, G´1wy
(S11)

Given that the matrices JS and C are both Hermitian (i.e., JS
“ pJS

q: and C “ C:), we next apply the following
theorem from linear algebra to calculate an upper bound on <pλq.

Theorem 1 (Rayleigh quotient theorem) For any n ˆ n Hermitian matrix H, the Rayleigh quotient QpH, zq “
xHz, zy{xz, zy cannot be larger than the largest eigenvalue of H, ΛmaxpHq. Moreover, QpH, zq “ ΛmaxpHq if and only
if z is equal to the eigenvector associated with the largest eigenvalue. In the same way, QpH, zq attains its minimum
value when z is an eigenvector of H associated with the smallest eigenvalue ΛminpHq. Consequently, for any vector
z P Cn

ΛminpHq ď QpH, zq ď ΛmaxpHq (S12)

The proof of this result builds on the fact that the eigenvectors of a Hermitian matrix form an orthonormal basis of
Cn and that the associated eigenvalues are real, so that they can be ordered.

The application of the Rayleigh quotient theorem to equation [S11] yields

<pλq “ xu`Rv, u`RvyQpJS,u`Rvq ´ xv, vyQpC,vq

xw, G´1wy

ď
xu`Rv, u`RvyΛmaxpJ

S
q ´ xv, vyQpC,vq

xw, G´1wy

“
xw, wy

xw, G´1wy

ˆˆ

1´
xv, vy

xw, wy

˙

ΛmaxpJ
S
q ´

xv, vy

xw, wy
QpC,vq

˙

(S13)

which still depends on the relative magnitude of the two components u and v of the eigenvector w. However, we can
already infer that the sign of <pλq is determined by the sign of the weighted mean of the dominant eigenvalue of JS

and the eigenvalues of C, which are all negative. Accordingly, there is a range of values of ΛmaxpJ
S
q for which an

unstable equilibrium can be stabilized, but equilibria for which ΛmaxpJ
S
q ă 0 cannot become destabilized.

In order to obtain a result that explicitly depends on the intersexual correlations, we use the fact that u and v are
related to each other by the second equation on the right-hand side of [S8]. As a consequence,

xv, vy

xw, wy
“

xv, vy

xv, vy ` xu`Rv, u`Rvy

“
1

1` xpPλ`Rqv, pPλ`Rqvy
xv,vy

“
1

1`QppP:λ `RqpPλ `Rq,vq

(S14)
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where Pλ “ pλRq
´1pC` λIqpI´R2

q is a complex-valued, 3ˆ 3 diagonal matrix that maps v to u. Substituting this
result in equation [S13] and bounding the remaining Rayleigh quotients leads to the conclusion that

<pλq ď κ

˜

ΛmaxpJ
S
q ´

ˆ

rmin|λ|

|p1´ r2minqcmin ` λ|

˙2

cmin

¸

(S15)

where cmin “ minpcxD
, czD

, cyB
q and rmin “ minprx, rz, ryq. Contained in the prefactor κ are several factors that are

strictly positive and that, therefore, do not affect the sign of <pλq, including a term that is bounded by the eigenvalues
of the genetic variance-covariance matrix.

Varying one of the model’s parameters in such a way that <pλq changes sign, causes a bifurcation event to occur,
i.e., a qualitative change in the dynamical behavior of the model. Two different types of bifurcations can happen
when <pλq “ 0, depending on whether the imaginary part of λ is zero at the bifurcation point or not. The first case,
i.e., λ “ 0, is accompanied by a change in the location (and, sometimes, the number) of equilibria, and requires that
M is singular at the bifurcation point. Given that both C and R are positive definite, equation [S4] implies that M
can only be singular if J is singular. This condition does not depend on the genetic variance-covariance matrix, so
the corresponding bifurcations are independent of the intersexual genetic correlations. The reverse implication is that
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Figure S1. Dynamic of IASC and IRSC during the evolution of offense and defense traits
Similar to figure 3, each panel shows a simulation of evolving mean trait values with a corresponding timeplot of trait-specific indices
of sexually antagonistic selection (dashed lines: IRSC index; solid lines: IASC index; see Materials and Methods). Mating is modeled
as a contest between offense and defense traits. (a) Evolution in the absence of between-sex pleiotropy (rx “ ry “ rz “ 0). Female
threshold (green) and male persistence (blue) coevolve in an escalating arms race until eventually opposed by viability selection. In
(b), the approach to the equilibrium is perturbed by IASC, which can be seen to build up during phases of rapid intersexual coevolution
(rx “ 0.9; ry “ rz “ 0). Pleiotropic gene expression in males constrains the evolution of the female mating threshold, inducing
females to reduce their mating rate by an alternative mechanism: lowering sensitivity (red) to the mating stimulus. When females
become insensitive, threshold and persistence fall back towards lower levels, initially aided by the resolution of IASC (the IASC index
is negative for a brief period). Viability selection then pushes female sensitivity up again, initiating a second arms race towards
positive values of threshold and persistence. This time, a slightly lower level of IASC is built up, allowing the population to converge
on the equilibrium. Parameters are: a “ 5.0, b “ 0.5, θxB

“ θxD
“ 0, θyD

“ θyB
“ 0.05, θzB

“ 0.95, θψ “ 0.25, cxB
“ 0.1,

cxD
“ cyD

“ cyB
“ czB

“ 0.05.
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qualitative effects of intralocus conflict on the stability of intersexual selection equilibria, must involve bifurcations of
the second type, known as Poincaré-Andronov-Hopf (or, Hopf) bifurcations. A Hopf bifurcation is a local bifurcation
at which a pair of two complex conjugate eigenvalues crosses the imaginary axis (i.e., <pλq and <pλ̄q change sign while
=pλq “ ´=pλ̄q ‰ 0). These events are associated with the birth of a limit cycle that branches from the equilibrium
point.

Taking rmin as the bifurcation parameter of interest, we now return to inequality [S15] and ask if a Hopf bifurcation
can occur when the impact of IASC increases. For equilibria that go through a Hopf bifurcation, |λ| ‰ 0, which implies
that the right-hand side of inequality [S15] is a strictly decreasing function of r2min in a neighborhood of the bifurcation
point. Therefore, the first conclusion we can draw is that IASC has in general a stabilizing effect on the evolutionary
dynamics of IRSC in the vicinity of equilibria. Furthermore, a qualitative change in the stability of an equilibrium
can occur when an evolutionary fixed point is unstable under the sole action of IRSC (i.e., when r2min “ 0), but
when stabilizing natural selection on the homologous characters is sufficiently strong to overcome destabilizing sexual
selection. In particular, if <pλq ą 0 at rmin “ 0, such that ΛmaxpJ

S
q ą 0, and if cmin ą ΛmaxpJ

S
q, then there is a

critical value r˚min such that the equilibrium is guaranteed to be stable for all r˚min ă rmin ď 1.

Supplementary figures

Reversal of arms races. Here, we analyze the evolutionary trajectories of populations approaching equilibrium in
order to clarify how IASC resolution reverses the direction of arms races when mating compatibility is determined by
complementarity of mating traits. Simulation data are represented in two different ways in the following figures, one
emphasizing the coevolutionary chase between the sexes (left column in figures S2 – S3), the other highlighting the
build-up and resolution of IASC (right column in figure S2 – S3). Figure S2 shows results for the simplified model
also analyzed in the main text (figure 4), for three different values of the additive genetic correlation rx. At the lowest
value of rx (a,b; cf. figure 4a), the population can be seen to approach the green equilibrium, building up unresolved
IASC on its way. The resolution of the conflict causes a temporary de-escalation of the arms race (figure S2a), due to
its pleiotropic effect on xB. However, the population never crosses the xB “ yD line (dashed diagonal in a), implying
that the direction of IRSC does not change qualitatively. So, after IASC has been resolved, the population resumes
the coevolutionary chase until it is halted at the green equilibrium by stabilizing natural selection.

In figure S2c,d (cf. 4b), the intersexual genetic correlation is slightly stronger than in (a,b), such that higher
levels of unresolved IASC build up during the arms race. By dragging down xB, which was ahead of yD during the
first phase of evolution, genetic conflict resolution switches the relative positions of the sexes in their coevolutionary
chase, causing its direction to reverse. Initially aided by the natural selection gradients, this second arms race unfolds
quickly, causing again high levels of IASC to build up. However, after a short phase of de-escalation, the correlated
selection response is not strong enough to reverse the arms race once more, allowing the population to reach the red
equilibrium.

The arms race towards the red equilibrium is more difficult to reverse, because a small asymmetry between the
natural selection optima of xB and yD makes it slightly more difficult for the males to closely follow the females in
that direction of the coevolutionary chase. Hence, higher levels of unresolved IASC are required to switch the relative
positions of the sexes, as, for example, shown in figure S2e,f. Here, the population cycles several times, but note
that the amount of IASC built up in the approach of the red equilibrium progressively decreases. Eventually, the
population manages to resolve the genetic conflict and attain a truce with respect to intersexual conflict. At even
higher levels of rx (cf. 4d–f), full resolution of IASC is no longer feasible without triggering a new arms race, leading
to perpetual coevolution between the sexes.

The argument so far considers only a single character (the female preference) that is pleiotropically expressed in
the other sex. Figure S3 illustrates what happens when another trait (i.e., the male ornament) is subject to IASC
instead. In this case, the correlated selection response to IASC resolution holds back the males in their pursuit of
the females, enlarging rather than reversing the difference between xB and yD. As a result, IASC resolution for male
mating traits tends to preserve the direction of intersexual selection. When acting simultaneously, IASC resolution for
male and female mating traits have opposite effects on the stability of intersexual antagonistic coevolution (figure S4).
Arms race reversals, therefore, require stronger cross-sexual pleiotropic constraints on female mating traits (which are
leading the coevolutionary chase) than on male traits (which are following behind). The scope for pleiotropy may
frequently be asymmetric in this direction, as female preferences often rely on behavioral traits with a complex genetic
architecture, whereas male ornamentation traits are usually highly sexually dimorphic already.
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Figure S2. Pleiotropic expression of a female mating trait in males reverses the direction of arms race.
Large colored dots denote the location of stable (red, green) and unstable (grey) evolutionary equilibria. Smaller open dots and colored
trajectories (red/green) indicate combinations of realized trait values at regular time points during three simulations, for different
levels of the intersexual genetic correlation: rx “ 0.65 (a and b); rx “ 0.7 (c and d) and rx “ 0.75 (e and f). Data points in the
left panels show the trait values pxB, yDq; the corresponding right panels show the same simulations, summarized by two series of
points, plotted at the coordinates pxB, xDq (in red/green) and pyD, 0q (white). Corresponding points in time of the two data series
are connected by lines in (b,d,f), with different colors to indicate whether conflict resolution reverses the relative position of male and
female mating traits (black Ñ yes; white Ñ no). This information is inferred from additional data contained in the plots: small grey
dots in panel (a,c,e) indicate, at each point in time, the trait values that would result if IASC were to be fully resolved; grey lines
(also present in (b,d,f)) trace the correlated selection response associated with such hypothetical, instantaneous IASC resolution. For
completeness, dashed grey lines on the background of (b,d,f) also indicate the direction of trait evolution induced by IRSC and its
correlated selection response. The red-green gradient used for trajectories, data points and the area of trait space that is traversed by
conflict resolution provides a visual indication of the level of unresolved IASC. Parameters as in figure 4.
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Figure S3. Pleiotropic expression of a male mating trait in females does not destabilize the approach to evolu-
tionary equilibrium.
Conflict-resolution plots (see the legend of S2 for details) of a reduced model (female choosiness is kept fixed at zB “ 1.5), where
only the male ornament genes are pleiotropically expressed in the other sex (rx “ rz “ 0; ry “ 0.9). Each panel shows data for two
simulations, started from different initial conditions on the right and on the left of the interior fixed point. Other parameters are as
in figure 4.
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Figure S4. Combined effect of between-sex pleiotropy for male and female mating traits.
Panel (a) and (b) show two simulations of a model variant with four evolving traits (xB, yD, xD and yB; female choosiness is kept
fixed at zB “ 1.5), i.e., both female preference and male ornamentation genes are expressed in both sexes. In (a) (rx “ 0.9; ry “ 0.7,
rz “ 0), the destabilizing effect of IASC resolution for the preference genes (cf. figure S2) dominates, so that the coevolutionary chase
leading towards the green equilibrium is reversed. In (b) (rx “ 0.9; ry “ 0.8, rz “ 0), IASC resolution for the male ornamentation
genes has a slightly larger impact, tipping the balance in favor of preserving the direction of intersexual selection (cf. figure S3).
Other parameters as in figure 4.
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Global bifurcations. As a complement to the biological explanation of arms-race reversals, we used a dynamical-
systems approach to illustrate how populations are drawn into a perpetual cycle of sexual conflict. The phase-diagrams
in figure 4 illustrate the appearance of an alternative attractor, as a consequence of a sequence of global bifurcations.
Figure S5 provides a more detailed reconstruction of the first three steps in this bifurcation sequence: the appearance
of a first and second unstable limit cycle (figure S5a,b), that ultimately prevent populations from reaching equilibrium,
followed by the emergence of a stable cycle that attracts the evolutionary dynamic from most initial conditions (figure
S5c).

rx rx 

a 

rx rx 

b 

rx rx 

c 

Figure S5. Global bifurcations
For each panel, schematic drawings illustrate relevant features of the phase diagram before (left), at (middle) and after (right) the
point where a global bifurcation occurs. (a) first homoclinic bifurcation: the qualitative transition between the phasediagrams in
figure 4a and b is marked by the appearance of an unstable limit cycle, which emerges from a homoclinic connection between the
unstable manifold of the saddle point and the stable manifold of the same equilibrium. (b) second homoclinic bifurcation: at the
transition between figure 4b and c, a second unstable cycle appears, due to another homoclinic connection between the stable and
unstable manifolds of the interior saddle point. (c) heteroclinic cycle-cycle connection, followed by a period-halving cascade: the
two limit cycles in figure 4c are unstable, but they attract the dynamics in one direction (i.e., they have a stable and an unstable
manifold, like saddle-points). A connection between the manifolds of the two cycles gives rise to a new evolutionary attractor with
the topology of a double Klein bottle. Populations evolving along the new attractor exhibit quasi-periodic behavior. The attractor
quickly collapses onto a single stable limit cycle (as in figure 4d), after a cascade of period-halving bifurcations.

Coevolving choosiness. In order to simplify the model and visualize the trajectories in three dimensions, we chose
to reduce the number of coevolving variables (except in the mathematical analysis and figures 1–3). This reduction
was accomplished by restricting between-sex pleiotropic gene expression to a single mating character and by keeping
zB fixed (corresponding to assuming an absence of genetic variation in this trait). Apart from the additional scenarios
analyzed in the supplementary material (figures S3 and S4), we also confirmed the main conclusions in a model with
coevolving choosiness. In this case as well, we observe the appearance of a stable evolutionary cycle that dominates
the evolution of sexual conflict at higher values of the intersexual additive genetic correlation rx (figure S6).
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Figure S6. Destabilization of IRSC arms races with coevolving female choosiness.
The phase diagrams (a) – (f) show 3D projections of evolutionary trajectories starting from different initial conditions at six different
values of the intersexual genetic correlation rx: (a) rx “ 0.6; (b) rx “ 0.65; (c) rx “ 0.673; (d) rx “ 0.677; (e) rx “ 0.678 and
(f) rx “ 0.789. Unlike in figure 4, female choosiness is not held fixed. Hence, the model has four coevolving characters, xB, xD,
yD (information on this trait is lost in the 3D projection used for visualization) and zB. (a) The starting point of the bifurcation
sequence is comparable to figure 4a: there are two stable equilibria (red and green dots) separated by a saddle point (grey). (b,c)
Next, two unstable cycles emerge through homoclinic bifurcations, followed by a hetero-clinic cycle-to-cycle connection that leads to
quasi-periodic behavior (d). The attractor (in dark blue) then undergoes a rapid sequence of period-halving bifurcations, and in (e),
it has almost collapsed into a single limit cycle. The final phase diagram (f) shows the third unstable limit cycle (cf. figure 4e), just
before it disappears through a Hopf bifurcation at the interior equilibrium point. Parameters as in figure 3 with ry “ rz “ 0.
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Individual-based simulations. Individual-based simulations were implemented in C``, closely following the assump-
tions of the quantitative-genetic model. The simulation program keeps track of a population of N individuals with
equal proportions of males and females. Each individual carries separate sets of gene loci for x, y and z. Some of the
loci are expressed in both sexes, others have sex-limited expression, so that the intersexual additive genetic correlation
can be varied by modifying the proportion of sex-limited genes. We allowed for two alleles (denoted + and –) to
segregate at a locus and included a low rate of mutation to introduce new genetic variation. Phenotypic trait values
are calculated based on the assumption of additive gene action, i.e., each + allele increases the trait value by an
amount δ{2, whereas a – allele decreases the trait value by δ{2.
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Figure S7. Comparison between individual-based simulation and quantitative-genetic predictions
For the same parameters as in figure 2a, the evolution of the mating traits (solid lines) and correlated characters (dashed lines)
was modeled using a stochastic individual-based simulation. The trajectory of the mean trait values in a simulated population of
N “ 10000 individuals (a) matches in detail with the corresponding prediction from the quantitative genetic model [S19] (b), except
for minor differences in the rate of convergence to the equilibrium and the equilibrium trait values. These qualitative differences
relate to discrepancies between the observed (colored lines) and predicted (black lines) genetic variances (c) and intersexual genetic
correlations (d), which are a consequence of the genetic architecture of the traits in the individual-based simulation (see discussion
in text). Each phenotypic character was determined by L = 600 haploid, bi-allelic loci. Some of these were expressed in both sexes
and therefore affected a mating character and a correlated character in the other sex: the phenotypic characters xB and xD were
assumed to share a common genetic basis of Kx = 300 loci (so that 300 loci exhibited sex-specific expression; rx = 300 / 600 =
0.5), yD and yB shared Ky = 120 loci (implying that each was also affected by 480 sex-specific loci; ry = 120 / 600 = 0.2) and
zB and zD shared again Kz = 300 loci (rz = 300 / 600 = 0.5). Mutations occurred at a rate of 0.001 per genome per generation
(corresponding to a rate of µ “ 3.47ˆ10´7 per gene copy). The phenotypic effect size of mutations was set to δ = 1/15, allowing all
trait values to range from -20 to 20. Panel (e) shows the values of the average additive genetic correlations between traits (orange:
choosiness ˆ preference; purple: choosiness ˆ ornament; blue-green: preference ˆ ornament). Between-trait correlations are ignored
in the quantitative genetic model, but may evolve in the individual-based simulation due to non-random mating and genetic drift,
potentially affecting the evolutionary trajectory. Lines in (c-e) represent smoothed data (low-pass filter; data-reduction factor 4); raw
data are indicated by dots.

Each generation in the simulation program proceeds in three steps. First, the phenotypes of individuals are
determined from their genotype, depending on whether the individual is male or female. Second, the viability of each
individual is calculated taking into account stabilizing viability selection on the mating traits and the homologous
characters. The last step in the life-cycle is the production of offspring. Here, in contrast to the quantitative genetic
model, we did not evaluate reproductive success based on the population average trait values. Rather, the mating
process was implemented in a more mechanistic fashion, allowing us to obtain a stronger validation of the quantitative
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genetic model: for every offspring, the simulation algorithm first randomly picks a female from the population of
surviving females. This female is then assumed to encounter n “ 50 different males sampled randomly from the
surviving males. The mating rate of the focal female with each of the males (denoted by ψi for the i-th male) is
evaluated. Next, a single mating partner is picked for the focal female from the sample of n males. This sampling
step is implemented as a weighted lottery with weights given by male relative reproductive success exppb ψiq. The
reproductive success of the female determines the probability that she will produce an offspring from the current mating
attempt. Female reproductive success is calculated as expp´a

ř

1ďiďnpψi ´ θψq
2{p2nqq, i.e., assuming multiplicative

costs of interactions with all the n males encountered by the female. The procedure is repeated until N{2 male and
N{2 female offspring are produced. All surviving males and all surviving females are available to participate in each
mating attempt, irrespective of how many mating attempts they have participated in already. After all offspring have
been created, the parental generation is removed from the memory and replaced by their offspring. Inheritance was
implemented assuming either haploid or diploid genetics and free recombination between loci.
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Figure S8. Occurrence of oscillations in an individual-based simulation
The correspondence between individual-based simulation results (a) and the quantitative-genetic model (b) extends to the parameter
regime where oscillations occur (parameters are as in figure 2b). In this simulation, the evolving trait values remain far from the edges
of the feasible phenotype range (from -20 to +20) and selection is weak, such that the between-trait correlations (e) remain negligible
and the observed genetic variances (c) and intersexual correlations (d) match well with their expected values (black lines) based on
equation [S19]. Population size and genetic parameters were as in figure S7 (see the legend of that figure for further details), except
that Kx and Kz were increased to 570 (rx = rz = 570 / 600 = 0.95). This also had an effect on the per-locus mutation rate, which
increased to µ “ 4.27ˆ 10´7, still corresponding to a genomic mutation rate of 0.001 per generation.

To ensure correspondence between the generation time in the individual-based simulations and the time units of
the quantitative-genetic model, we scaled the time variable of the breeder’s equation [S1] by a factor 2 to take into
account that each of the phenotypic characters is exposed to selection in only half of the individuals (i.e., either in
males or in females). In addition, estimates for the elements of the G-matrix were derived from the parameters of the
individual-based simulation, using approximations from the neutral theory of molecular evolution. In particular, under
the assumptions of the infinite-alleles model [4], the probability F that a single locus is homozygous at mutation-drift
equilibrium in a diploid population of size N is given by F “ 1{p1` 4µNq, where µ is the mutation rate. Given that
the genetic variance at the locus is half of the heterozygosity, 1 ´ F , we can now estimate VL the additive genetic
variance of a neutral phenotypic character that is encoded by L diploid loci:

VL “ 2Lˆ
1

2

ˆ

1´
1

1` 4µN

˙

ˆ δ2 “ Lδ2
4µN

1` 4µN
, (S16)
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where δ is the phenotypic effect of a mutation. Similarly, the additive genetic covariance CK between two neutral
phenotypic characters that share a common genetic basis of K loci is given by

CK “ Kδ2
4µN

1` 4µN
. (S17)

The amount of additive genetic (co)variation that is present for phenotypic characters that are subject to selection
is expected to converge to the neutral expectation (equations [S16] and [S17]) in the limit of weak selection. Hence,
if selection is weak, we expect that the dynamic of the individual-based simulation is captured approximately by the
following breeder’s equation:

du

dt
“

1

2

¨

˚

˚

˝

VL 0 0 CKx 0 0
0 VL 0 0 CKz 0
0 0 VL 0 0 CKy

CKx 0 0 VL 0 0
0 CKz 0 0 VL 0
0 0 CKy 0 0 VL

˛

‹

‹

‚

βpuq “
1

2
Lδ2

4µN

1` 4µN

¨

˚

˚

˝

1 0 0 Kx{L 0 0
0 1 0 0 Kz{L 0
0 0 1 0 0 Ky{L

Kx{L 0 0 1 0 0
0 Kz{L 0 0 1 0
0 0 Ky{L 0 0 1

˛

‹

‹

‚

βpuq (S18)

Here, we have assumed (as in the individual-based simulations) that the number of loci coding for each phenotypic
character (L) and the phenotypic effect of a mutation (δ) are identical for all characters. The number of loci that are
shared between male and female characters however, are allowed to differ between traits, so that Kx, Ky and Kz can
be varied to control the degree of between-sex pleiotropy for each character independently. As mentioned above, the
factor 1{2 in front of the G-matrix appears because each phenotypic character is subject to selection in only one sex.

Equation [S18] applies to a diploid population. The analogous equation for a haploid population is given by

du

dt
“

1

4
Lδ2

2µN

1` 2µN

¨

˚

˚

˝

1 0 0 Kx{L 0 0
0 1 0 0 Kz{L 0
0 0 1 0 0 Ky{L

Kx{L 0 0 1 0 0
0 Kz{L 0 0 1 0
0 0 Ky{L 0 0 1

˛

‹

‹

‚

βpuq (S19)

Accordingly, for the same value of L and all other parameters, a haploid population evolves up to four times more slowly
than a diploid population. The difference is due to two factors: first, relative to a diploid, a haploid individual carries
only half the amount of gene copies, and therefore accumulates mutations at half the rate of a diploid individual;
second, mutations are more rapidly lost from a haploid population, due to the smaller effective population size of
its gene pool. As a result, the amount of genetic variation maintained at mutation-drift equilibrium in a haploid
population is up to two times lower than in a diploid population.

Figures S7 and S8 compare the quantitative-genetic predictions based on equation [S19] with individual-based
simulation results. The trajectories predicted by the two methods are, overall, in good agreement, both for a simulation
that shows an arms race towards a stable equilibrium (figure S7a,b) and for one that exhibits oscillations (figure S8a,b).
As expected, the additive genetic variances (panel S7c and S8c) are slightly lower in the individual-based simulation
than predicted by equation [S16], since part of the variation is eroded by selection. However, given the observed
time-scale correspondence between the two modeling methods, this discrepancy appears to have relatively minor
consequences for the predicted rate of adaptive evolution.

Since we do not allow the allelic effect sizes or the number of loci to evolve, the phenotypic trait values in the
individual-based simulations are restricted to a finite range (between ´Lδ{2 and `Lδ{2 for haploid genetics). This
constraint has three consequences that are ignored in the quantitative-genetic model. First, the maximal genetic
variance decreases with the absolute mean trait value in the individual-based simulation, an effect that can clearly
be observed in figure S7c after generation 10000. Second, also the intersexual correlations are constrained by the
finite genetic architecture of the traits when the mean trait values evolve towards the end points of the feasible
phenotype range. This effect is only weak in figure S8d, but appreciable in figure S7d where systematic deviations of
the intersexual correlations from their expected values are observed after generation 10000. Third, mutation can only
act in one direction at the extreme ends of the feasible phenotype range and generally has a tendency to bias evolution
towards trait value 0. Consistent with these three effects, the individual-based simulation shows a retarded approach
to equilibrium at lower escalated trait values (figure S7a).

Mutation bias may also partially explain why the amplitude of the oscillations in the individual-based simulations
is less than predicted by the quantitative-genetic model (figure S8a,b). However, additional simulations show that the
discrepancy in amplitude also depends on the population size (figure S9) and other factors that influence the amount
of standing genetic variation (mutation rate, number of loci and allelic effect size). Therefore, we hypothesize that
the presence of genetic variation, which is not taken into account in the derivation of the selection gradients, causes
the arms race to reverse prematurely, reducing the amplitude of the evolutionary oscillations. Data recorded from
simulations across a range of population sizes are consistent with this hypothesis (figures S9 and S10). The same
simulations also validate the quantitative genetic model [S18] for diploid populations.

Surprisingly, the predicted dynamics of the quantitative-genetic model is mirrored most accurately in relatively
small populations, even though the impact of genetic drift on evolution is generally inversely related to population
size. The pattern suggested by figure S9 is confirmed by a more careful quantification of the period and amplitude of
the evolutionary oscillations observed in the individual-based simulations (figure S10). Close correspondence between
the two modelling methods is found for populations smaller than 20000 individuals, whereas substantial deviations
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Figure S9. Individual-based simulations of diploid populations across a range of population sizes
Also for diploid populations, individual-based simulations show evolutionary oscillations, in agreement with the predictions of the
quantitative-genetic model (parameters are as in figure 2b). Across a range of population sizes (row (a): N = 1000; (b): N = 2000;
(c): N = 5000; (d): N = 10000; (e): N = 20000; (f): N = 50000; (g): N = 100000) the three columns show, respectively, the
dynamic of average trait values for the mating characters, their additive genetic variances and the intersexual genetic correlations
rx, rz and ry. Throughout, individual-based simulation results are shown in color, whereas the corresponding quantitative genetic
predictions are shown in black. Quantitatively, the agreement between simulation results and quantitative genetic predictions is better
at the lower population sizes, despite the dynamics of the genetic variances (middle column) and the larger effect of genetic drift, which
are ignored by the breeder’s equation [S18]. As population size increases, the amplitude of the oscillations in the individual-based
simulation decreases, presumably due to the presence of higher levels of standing genetic variation in large populations. A systematic
change in the dynamics occurs at population size 20000 and above (panel e-g): here the genetic variances and intersexual correlations
start to exhibit regular oscillations, and the dynamic of the average trait values slows down. Genetic parameters are: L = 100 diploid
loci, Kx = Kz = 95, Ky = 20, δ = 0.06, µ “ 1.28ˆ 10´6corresponding to a genomic mutation rate of 0.001. As before, raw data
(dots) are presented along with smoothed data (lines) in the middle and right column of panels.

13



1x103 1x104 1x105
1x10-4

1x10-3

1x10-2

1x10-1

1x102

1x103

1x104

1x105

Population size

G
en

et
ic

 v
ar

ia
nc

e

Pe
rio

d

1000 10000 100000
0

1

2

3

4

5

6

Am
pl

itu
de

Population size

Figure S10. Period and amplitude of the oscillations in the individual-based simulation model
The simulations shown in figure S9 were extended to include 10 full evolutionary cycles, from which we estimated the average period (a;
orange filled squares) and amplitude (b) of the oscillations as a function of the population size. Lines show corresponding predictions
from the quantitative genetic model [S18]. Also shown in (a) are the average additive genetic variances observed in the simulations,
for the mating characters (red, blue and green filled circles for choosiness, preference and ornament, respectively) and their correlated
characters (corresponding open circles). The same symbols are used in (b) to indicate the amplitude of the oscillations for each
trait (line styles for the predicted values follow the convention used in earlier figures). Throughout, error bars indicate the standard
deviation of the estimates obtained from the individual-based simulations. Data points have been slightly displaced in the horizontal
direction to improve clarity.

in amplitude and period occur in populations larger than that size. The two outcomes coincide with two distinct
population-genetic regimes: if 4µN ! 1, evolution is mutation-limited, the amount of genetic variation present in
the population is low and adaptation proceeds as a sequence of discrete mutation and trait-substitution events; by
contrast 4µN ą 0.1 when N ą 20000 (given that µ “ 1.28 ˆ 10´6), implying that an appreciable level of standing
genetic variation is present in the largest simulated populations.

Previous models of IRSC have shown that the presence of genetic variation can give rise to frequency-dependent
selection favoring further diversification, a self-reinforcing process that can dramatically alter the outcome of evolution
[3]. Since these effects have not been incorporated in the derivation of the selection gradients, the maintenance of genetic
polymorphism by frequency-dependence provides a likely explanation for the observed discrepancies at high population
size. To support this intuition, we ran simulations at which high levels of standing genetic variation were expected.
An example is shown in figure S11. Here, 4Nµ “ 25.6, and the additive-genetic variances reach high values (figure
S11c) compared to the earlier simulations. Females, in particular, exhibit extensive genetic variation in preference,
supported by negative frequency-dependent selection. As a consequence, it is impossible for a single male phenotype
to realize a high mating rate across the full spectrum of available female mating types (i.e., this is the ‘Buridan’s ass’
scenario, described in earlier studies of sexual conflict [3]). Phenotypic diversification enables the females to escape
male harassment, while keeping the males trapped at an intermediate compromise phenotype. Therefore, sexual
conflict no longer generates directional arms races in the simulation of figure S11, and the evolutionary oscillations
predicted by our model have reduced to subtle periodic fluctuation of the population mean values of preference and
ornamentation (barely visible in figure S11a).

To complete the analysis, we ran individual-based simulations of the mating-contest scenario. Unlike the other
simulations, which were first run for a while to allow genetic variation to build up, these simulations were started
with a population of genetically identical individuals from which data were recorded immediately. This was necessary
to enable the visualisation of the transient dynamics. The low initial genetic variation in the simulation caused
the initial dynamic to slow down, but otherwise the match between simulation data and the quantitative-genetic
model was satisfactory (figure S12): we recovered the expected qualitative contrast between sustained oscillations and
convergence to a stable equilibrium at low and high intersexual correlations, respectively. However, the oscillations in
the individual-based simulations were slower and had a lower amplitude. These effects appear to be due mainly to a
reduction of the genetic variance for the female mating threshold.

In summary, we conclude that the individual-based simulations (figures S7-S12) alltogether confirm the robustness
of our main results. In particular, the quantitative genetic model, with its assumption of a constant G-matrix was
shown to provide an adequate description of the evolutionary dynamic in a genetically explicit individual-based model
implementation, in the limit of weak selection and mutation-limited evolution (figures S7-S8). Moreover, the main
findings extend qualitatively beyond this regime, up to the point where the maintenance of standing genetic variation
opens up alternative possibilities (e.g., phenotypic diversification) for the evolutionary outcome of sexual conflict
(figures S9-S11).
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Several processes included in the individual-based simulations could have potentially undermined the predictions of
the quantitative genetic model: (1) genetic variation in the direction of the selection gradient is reduced by selection,
both as a result of a change of mean allele frequencies, and by generating linkage disequilibria between selected loci
[5]; (2) non-random mating generates a genetic correlation between male and female mating characters, which is
ignored in our main analysis; (3) each character is coded by a finite number of loci, introducing mutation bias (as a
function of trait value) and other side-effects of a finite genetic architecture, and (4) genetic drift produces random
gene-frequency change and linkage disequilibria that potentially interfere with adaptive evolution. Signatures of each
of these effects were observable in the individual-based simulations, and in some cases, the genetic variances and
covariances were found to evolve dynamically (e.g., figure S9f,g). Yet, the joint effect of the deviations from the
assumed fixed G-matrix was relatively minor (except in figure S11, by construction). The observed robustness of
the quantitative-genetic predictions results from the fact that the evolving characters were modeled as quantitative
traits coded by many freely recombining loci: accordingly, the strength of selection is diluted over many loci, while
linkage disequilibria are broken down effectively by recombination. Theory [6] predicts that, in this regime, indirect
selection mediated by linkage disequilibria can be ignored relative to direct selection (including selection on pleiotropic
characters), so that the fixed G-matrix assumed in the quantitative-genetic analysis provides a correct first-order
approximation for the evolving genetic architecture in the individual-based simulations. A clear illustration of this
point is provided by the linkage disequilibrium generated by mate choice, which is not taken into account in the
quantitative-genetic analysis. Despite strong sexual selection and non-random mating, the expected positive genetic
correlation between preference and ornament is hardly detectable in the simulations (figure S7e, S8e), except when
high genetic variation is present, as in figure S11.
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Figure S11. Diversification of mating preferences supported by frequency dependent selection
The maintenance of high levels of standing genetic variation in this simulation opens up the possibility for females to diversify, thus
allowing them to permanently escape male harassment. The signatures of this so-called ‘Buridan’s ass’ scenario [3] are apparent
in (a) and (c): the additive genetic variance of the female mating preference is much higher than that of the male ornament, and
directional arms races have been replaced by subtle fluctuations of the frequency distributions generated by negative frequency-
dependent selection. (b) Under the weak-selection assumption of the quantitative genetic model, the variation in the population is
ignored, so that the breeder’s equation [S18] fails to predict the evolutionary trajectories. As before, panel (d) and (e) show the
additive genetic intersexual correlations and between-trait correlations, respectively. Note that the correlation between preference and
ornament is 2%, due to non-random mating. Parameters are: N = 100000, L = 20 diploid loci, Kx = Kz = 38, Ky = 8, δ = 0.3,
µ “ 6.41ˆ 10´5, corresponding to a genomic mutation rate of 0.01; other parameters as in figure 2b.
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Figure S12. Individual-based simulations of the contest mating scenario
Evolutionary oscillations of male offense and female defense traits are stabilized by between-sex pleiotropic gene expression in individual-
based simulations (upper panels), in agreement with the corresponding runs of the quantitative-genetic model (lower panels). (a) At
low values of the intersexual genetic correlations (rx = rz = 0.1; ry = 0.2), the mating traits show regular oscillations, but with
a smaller amplitude and longer period than in the quantitative-genetic model (b). These quantitative differences are the result of a
reduced genetic variance in the female mating threshold, which causes this trait to lag behind in the oscillations during the second
half of the simulation. (c) The regular oscillations are lost at higher values of the intersexual genetic correlations (rx = rz = 0.5;
ry = 0.2), in line with the results of the quantitative genetic model (d). However, the individual-based simulation continues to show
irregular, damped oscillations around the equilibrium point, as a result of genetic drift. Parameters: a “ 5, b “ 0.5, θxB

= θxD
=

-0.05, θyB
= θyD

= 0.05, θzB
= θzD

= 0.5, θψ = 0.2, cxB
= cxD

= 0.5, cyB
= cyD

= czB
= czD

= 0.1, N = 25000, L = 500 haploid
loci, Kx = Kz = 50 in (a) and Kx = Kz = 250 in (b), Ky = 100, δ = 0.04, µ “ 3.57ˆ 10´7 in (a) and µ “ 4.17ˆ 10´7 in (b),
both corresponding to a genomic mutation rate of 0.001.
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