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Abstract – The fundamental theories of physics are local theories, depending on local inter-
actions of local variables. It is not clear if and how strictly local theories can produce non-local
variables that have causal effectiveness. Yet, non-local effectiveness appears to exist, such as in the
form of memory (non-locality through time) and causally effective spatial structures (non-locality
through space). Here it is shown, by construction, how such non-locality can be produced from
elementary components: non-isolated systems, multiplicative noise, self-replication, and elimi-
nation. A theory is derived that explains how causal non-locality can arise from strictly local
interactions.

Copyright c© EPLA, 2015

Introduction. – The theories that form the founda-
tion of physics, quantum field theory and general relativ-
ity, are local theories [1]. They describe the evolution
of local field variables in terms of local interactions in
space-time. Such locality is consistent with the empiri-
cal facts that physical systems flow contiguously through
time and that causal influences cannot travel faster than
the speed of light. Nevertheless, local theories are of-
ten formulated as non-local ones with non-local variables,
if that is convenient for understanding and calculation.
For example, finding the dynamics of a system from the
principle of least action requires non-local trajectories.
Similarly, Maxwell’s equations in local, differential form,
e.g. ∇·E = ρ/ε0, can be formulated in non-local, integral
form, e.g.

∮
S
E·da =

∫
V

ρdV/ε0. Whereas the first form is
purely defined locally, the second form equates non-local
quantities obtained by integrating over a non-local surface
and a non-local volume.

Although non-local formulations are fully equivalent,
mathematically, to the corresponding local ones, they are
different in the way they map formalism to physical reality.
Physical reality is taken to arise from local interactions.
Therefore, only local variables are causally effective in the
sense that they refer to quantities directly involved in in-
teractions that produce change. In contrast, quantities
denoted by non-local variables do not directly interact.
They are not directly causally effective themselves. Non-
local theories using non-local variables, such as volume

and entropy, are often the most natural way to understand
a system. But they are taken to be completely explainable
from a combination of local causal interactions, at least in
principle.

However, there are clear cases, particularly in the realm
of life and technology, where non-local variables do seem
to have direct causal effectiveness. For example, memory
in the form of DNA is a causal factor that appears to act
non-locally through time, a spider’s web is a non-local spa-
tial structure with causal effectiveness, and also the cylin-
der and piston of a steam engine only work because of
their highly specific spatial structure. The question then
arises how non-local variables or structures can get causal
effectiveness if all foundational theories are strictly local.
Locality seems like a conserved property. In a complex
system the interactions may become complex and may
strongly vary across space and time, but those interac-
tions would still be local. Yet, in this article I show, by
construction, that non-locality with causal effectiveness
can indeed arise from local interactions. Local interac-
tions are given in terms of local variables or in terms of
non-local variables that are completely defined by a com-
bination of local causal interactions. Such a defining com-
bination does not exist if a non-local variable has causal
effectiveness of its own.

Before proceeding, a disclaimer is necessary. Non-
locality is also studied in the context of quantum entangle-
ment and Bell’s theorem. But such non-locality concerns
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correlation rather than causation, and the correlations are
fully explained by a local theory [2]. Quantum non-locality
is not the topic of this article.

The construction explained below is simplified as much
as possible. It should be seen as a mere proof of con-
cept, a stylized version of more elaborate actual systems.
The construction proceeds through the following steps. It
assumes a population of non-isolated systems that are per-
turbed by external disturbances. The systems have a lim-
ited lifetime and are autocatalytic, that is, can replicate.
Replication rates differ between different types of systems,
which means that systems with quickly increasing rates
will dominate the population. How strongly external dis-
turbances can perturb each system is assumed to depend
on the system’s structure and momentary state. The form
of this dependence that is optimal for replication is de-
rived. This form turns out to depend in a simple way
on the replication rate itself. Systems will therefore max-
imize their abundance in the population if they use an
approximation of this rate for modulating their variabil-
ity. Whereas the real replication rate is a non-local vari-
able without direct causal effectiveness within a system,
the approximated replication rate has causal effectiveness
through local interactions within that system. In effect,
the coupling of these rates provides a non-local variable
with causal effectiveness. The next section derives these
results in detail.

Theory. – We assume non-isolated systems with a dy-
namical structure s. The systems are capable of self-
replication. Systems have a small probability per unit of
time to change structure as s → s′, with s′ a small random
variation on s. The structural space through which s can
move is undefined. Systems have a typical lifetime τ and
a time-varying growth rate ks(t), with their number ns(t)
given by

dns/dt = ks(t)ns(t), (1)

with ns ≥ 0; when ns = 0, systems of type s have become
extinct. Equation (1) produces exponential growth when
ks(t) > 0, exponential decline when ks(t) < 0, and stable
numbers when ks(t) = 0. The growth rate is assumed to
depend on the distance between two real-valued scalars,
E(t) and xs(t). Here E(t) is an environmental variable
(written as Et below), and xs(t) a state variable of the
system. Then

ks(xs, t) = ks(xs − Et), (2)

with ks maximal at xs = Et and monotonically decreas-
ing to −1/τ for large |xs − Et|. The latter corresponds
to exponential decline when there is no replication. The
growth rate thus depends on how well the system state
matches the environment. Unlimited growth is prevented
by letting ks decrease uniformly for all systems such that
the total number of systems N(t) =

∑
s ns is constrained

to a given constant N0. N0 can be thought to depend
on a limited availability of raw materials, free energy, and

space. Then N(t) = N0 yields

dN(t)/dt =
∑

s

dns/dt =
∑

s

ks(t)ns(t) = 0. (3)

Because ns(t) > 0 for all systems that have not become
extinct, the rightmost equality implies that ks(t) must
vary around zero, on average. Variations in Et and the
introduction of new variants s will occasionally drive ks

downwards. Systems that can recover quickly from such
decreases by having a large dks/dt will then gradually re-
place systems with smaller dks/dt. Systems can therefore
maximize the likelihood that their type s persists by max-
imizing dks(t)/dt rather than ks(t) itself. This maximiza-
tion must be constrained by the condition that systems s
do not become extinct. Below we will derive conditions
for such a constrained maximization.

The environmental variable Et is assumed to vary un-
predictably, with power distributed across many time
scales, both smaller and larger than τ [3,4]. It can be
thought to arise from a random walk-like process, but
band limited and with a non-uniform, typically power-law
spectral density (like coloured noise, [5]; Et is not assumed
to be zero mean, but its time derivative is). The process
generating Et is taken to be independent of the other ran-
dom processes, in particular the process generating new
systems s including their σs (see below) and the Wiener
process Wt (see below). Independence is interpreted here
as the assumption that the processes are in no way causally
related.

The state variable xs of a system s is assumed to
evolve according to a random walk with state- and time-
dependent drift and diffusion

dxs(t) = μs(xs, t)dt + σs(xs, t)dWt, (4)

with a deterministic part in the form of a drift μs, and a
stochastic part in the form of a Wiener process, with dWt

a zero-mean Gaussian white noise. The noise is multiplica-
tive through σs. Both μs and σs are produced within sys-
tem s. They are structural properties of the system that
can change along with the system’s structure, with small
random variations. Structural changes are assumed to be
independent of the noise dWt. Both are taken to arise
from disturbances of the system. Such disturbances may
come directly from thermal and quantum noise, and indi-
rectly from long-range electromagnetic and gravitational
fluctuations.

In order to simplify the notation, the subscript s is not
written below. Equation (4) is an Itô process [6] that
becomes another Itô process when transformed through a
function of x and t (Itô’s lemma). For the growth rate
k(x, t) this produces

dk =
∂k

∂t
dt + μ

∂k

∂x
dt +

1
2
σ2 ∂2k

∂x2
dt + σ

∂k

∂x
dWt. (5)

Using eq. (2) and rearranging terms then gives

dk = μ
∂k

∂x
dt +

1
2
σ2 ∂2k

∂x2
dt + σ

∂k

∂x
dWt −

∂k

∂x

∂Et

∂t
dt. (6)
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The first two terms represent drifts, one produced by μ
and the other produced by the net effect on k of noisy
variations along x when k as a function of x is curved
(∂2k/∂x2 �= 0). The last two terms in eq. (6) are noisy, one
produced by the Wiener process and the other by unpre-
dictable changes in the environment. As stated above, if a
system is to survive amongst other systems, it should max-
imize its expected dk without becoming extinct. Below we
will simplify the analysis by taking μ = 0.

The two noisy terms are equally likely positive or neg-
ative, with zero mean. Thus maximizing the expected
dk implies maximizing the drift term with σ2. However,
just maximizing this term through σ2 would also increase
the noise term depending on σ. Large noisy variations
increase the probability that dk becomes negative for an
extended time, and thereby increase the likelihood that
the system’s type will become extinct. Therefore, the vari-
ance vσ of this noise term needs to be constrained. But it
should not be very different from the variance of the last
term, vE , which depends on Et but not on σ. Making vσ

much smaller than vE would increase the probability of ex-
tinction, because then σ and thus the drift term would be
small, whereas the noise would be nearly constant (almost
completely determined by Et). On the other hand, mak-
ing vσ much larger than vE would make Et irrelevant for
the dynamics. This would conflict with the basic assump-
tion of the construction here that variations in Et partly
drive the systems’ dynamics.

The relevant time scale for comparing the drift and
noise terms is the system’s lifetime τ . Through eq. (2)
the growth rate k depends on z = x − Et. The integrals
below will be limited to a range [−Z,Z] of z such that be-
yond this range the partial derivatives of k are sufficiently
small to be neglected, that is, ∂k/∂z ≈ 0 and ∂2k/∂z2 ≈ 0
for |z| > Z. Because Et is assumed to be a random walk-
like process, it drifts along the z-axis. The range of z
it can reach is limited because there is no replication for
large |z|, but that range is assumed here to be much larger
than [−Z,Z]. We will therefore assume that the expected
values of z produced by Et in a time τ are distributed
uniformly, at least approximately, over the range [−Z,Z].

With these simplifying assumptions, constraining the
expected noise variance over the system’s lifetime τ
requires

τ

2Z

Z∫
−Z

dzσ2

(
∂k

∂z

)2

= K, (7)

where 〈dW 2
t 〉 = dt was used [6], and K is a positive

constant such that

K ≈ σ2
E(τ)
2Z

Z∫
−Z

dz

(
∂k

∂z

)2

. (8)

Here σ2
E(τ) is the expected variance of Et in a time τ ,

which depends on the details of Et. Equation (8) im-
plements the condition discussed above that the noise

arising from Et should neither dominate nor be negligi-
ble. However, the precise value of K is not important
for the argument below. We can now find the σ(z) that
maximizes the expected drift in time τ

J =
τ

2Z

Z∫
−Z

dz
1
2
σ2 ∂2k

∂z2
(9)

under the constraint of eq. (7). This is an example of an
isoperimetric problem that can be solved with the method
of Lagrange multipliers [7]. Writing g(z) = σ2, h(z) =
∂k/∂z, and h′(z) = ∂h/∂z, then an extremum of J given
constraint K implies an extremum of the functional F

F (g, h, h′) =
1
2
g(z)h′(z) − λg(z)h2(z), (10)

with λ a Lagrange multiplier. Whereas we are interested
in finding the function g that maximizes F for a given h,
we will first find the function h that maximizes F for a
given g. This will result in a simple, invertible relation-
ship between g and k, which subsequently also solves the
problem of finding g given h. The assumption here is that
all functions involved are sufficiently smooth, in particu-
lar that F varies smoothly for small variations δh and δg.
From the Euler-Lagrange equation

d
dz

(
∂F

∂h′

)
− ∂F

∂h
= 0 (11)

we find
dg(z)
dz

+ 4λg(z)h(z) = 0. (12)

This gives
g(z) = g0e−4λk(z), (13)

where h(z) = ∂k/∂z was used and g0 is a constant. The
parameters g0 and λ in eq. (13) can be found numerically
from eq. (7). They depend on the detailed form of k(z),
which is constrained by eq. (3). If solutions exist for given
parameters, there is a range of possible values (g0, λ). The
largest value of λ gives the largest J , because it can be
shown that J = 2λK. This follows from using eq. (13)
for expressing h and h′ in terms of g and substituting in
the equations for J and K. But λ cannot be chosen freely,
because there is a further constraint on g = σ2. The latter
is the instantaneous variance of x, because eq. (4) implies
〈dx2〉 = σ2dt. This variance is not thermal but actively
driven, somewhat analogous to that in active matter [8].
Driving the variance consumes a proportional amount of
free energy per unit of time. The system must acquire this
free energy from its environment. How much is available
for varying x depends on the availability of free energy
in the environment, on evolved acquisition mechanisms
within the system, and on how much free energy the sys-
tem needs for other processes. We assume here that the re-
sult of these factors varies much slower than x and Et, and
is effectively independent of them. The rate of available
free energy is then effectively a constant that constrains
g(z), and thereby λ.
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Quite remarkably, eq. (13) shows that the σ in dx
(eq. (4)) that maximizes dk (eq. (6)) is an explicit and very
simple function of k, with σ2 ∝ 1/ exp(4λk). Here σ2 only
depends on z through k and only depends on t through
z. Thus the instantaneous variance is inversely related to
the instantaneous growth rate. Intuitively, this result can
be understood as follows. When the growth rate is larger
than zero, the contribution of system s to the population
is increasing, and little change in its state is needed. But
when the growth rate is smaller than zero, the numbers
of system s are declining. If nothing is changed, the sys-
tem may become extinct. With an increased variance, the
state varies faster, which increases the probability that a
state with positive growth rate is encountered. If that
happens, the variance is decreased automatically, which
results in maintained growth, at least until changes in en-
vironment or population require further change. Another
way to view this mechanism is as a controlled diffusion
process. The systems s quickly diffuse away from areas
of the state space that have a low growth rate, and much
slower away from areas with a high growth rate. In effect,
they accumulate in areas with high growth. The efflux
from those areas is compensated by a continuous influx of
new copies of system s produced by self-replication.

Although the optimal solution is σ2 ∝ 1/ exp(4λk), it
could not be literally realized in the system. Whereas
σ is a property of the system (eq. (4)), k is the growth
rate in eq. (1). The growth rate is a non-local variable
that is not available to the system in a direct way. The
system has no way to measure it directly and instantly.
The system can therefore at best approximate k as an
internally produced estimate k̂. The σs of eq. (4) is then a
function of k̂s and not of ks. The estimate k̂s can gradually
evolve and improve in new, random variants of system s,
because it is advantageous for replication. Only factors
to which the system has direct access may be included
in k̂. For example, the system may get sensors that give
information on the state of Et relative to its own state.
Systems that produce a k̂ that estimates k better will have
a σ2 ∝ 1/ exp(4λk̂) that is closer to the optimal solution.
They will therefore have an expected dk that is larger than
that of other systems. The population will thus gradually
become dominated by systems that have adequate k̂.

The reason why k̂ needs not equal k exactly, is that
variations around the optimal k will still produce a near-
optimal drift J . This follows from the smoothness as-
sumption of the variational approach taken here (eq. (10)
and below). A variation of k̂ around the optimum, k, pro-
duces a variation of σ and therefore a variation δg, which
subsequently produces a small change in F and therefore
in J as well. Thus J remains close to its optimum. The
sensitivity of σ to variations in k̂ depends on λ. This is
a further reason to constrain λ, depending on how accu-
rately k̂ estimates k.

It should be noted that there is no circular logic in
the theory developed here. The derivation assumes that

eq. (5) follows from eq. (4), and thus that σ is not an
explicit function of k. This assumption seems to conflict
with eq. (13), which has σ as a literal function of k. But
the assumption is correct when taking σ as a function of k̂.
Varying k, as in dk, does not affect k̂ instantly. Because k̂
cannot estimate k with zero lag, dk̂ and dk are indepen-
dent locally in time. Therefore, eq. (5) still follows from
eq. (4). Estimation with non-zero lag is possible, because
k is autocorrelated across many time scales. The latter
property follows from eq. (2) and the fact that Et is auto-
correlated in that way. Also the structural forms of k̂ and
σ cannot change instantly, but only as a result of further
evolution of system s, with some lag. The actual opti-
mization occurs gradually in real systems. It is therefore
cyclical, involving time delays as in a feedback loop, not
circular. The theoretical derivation from eq. (5) to eq. (13)
just produces a time-averaged short-cut to the ideal end-
point of the actual optimization. The result should be
seen as an unreachable limit. It seems circular merely be-
cause the optimization is static in the theory, whereas it
is dynamic and approximate in actual systems.

As an illustration of the theory, we can take k(z) =
k0 exp(−z2/2) − 1/τ , τ = 1, Z = 4, and K = 1. In ac-
cordance with eq. (2), this function assumes a maximum
growth rate for z = x − Et = 0, thus when x matches Et.
When the match is poor, for large |z|, there is no repli-
cation and n declines exponentially. For simplicity, we
assume here that the system has evolved a close approxi-
mation of k. The system thus uses σ(k̂) with k̂ ≈ k. For
example, k̂ may be based on an approximation of eq. (2)
with Et− rather than Et, where Et− is measured by the
system at a time t− slightly before t. The resulting dis-
tribution of n(z) depends on the details of Et and could
only be obtained through numerical simulation. In order
to get an idea of the order of magnitude of the variables in-
volved, we may assume for this example that Et is chosen
such that n(z) is approximately distributed uniformly in
[−Z,Z]. Then

∫
dzk(z) = 0 (from eq. (3)) gives k0 = 3.19.

Solutions of eq. (7) then exist for g0 in the range 0 to 1.43,
and λ > 0.35. With ḡ the mean of g(z) in [−Z,Z], an en-
ergy constraint ḡ = 10 gives g0 = 0.76 and λ = 0.87, with
J = 1.73, that is, a drift 1.73 times the standard deviation
of the noise, K1/2. J increases monotonically with ḡ. Sys-
tems that are more effective in harvesting environmental
energy therefore have an advantage. Qualitatively similar
results were obtained with another functional form for the
growth rate, k(z) = k0/(1 + z2) − 1/τ .

The actual k and the estimated k̂ have quite different
properties with respect to locality. The variable k is a
non-local variable of the non-local theory represented by
eq. (1). The variable is non-local, because it describes the
overall effect of a potentially large range of local factors,
including stochastic ones. Together these factors produce
the growth rate of a system, and they are related to k
in an indirect way. But this is not different, in princi-
ple, from how the integral form is related to the local
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form of Maxwell’s equations. They are related merely
through a well-defined, possibly complex, transformation.
In contrast, the variable k̂ is rather special. Although
it is directly defined by strictly local interactions within
the system, it produces, in addition, a correlation with k.
Correlation means here that the zero-lag cross-correlation
between k̂s(t) and ks(t) is positive, E[k̂s(t)ks(t)] > 0. This
correlation is not produced by instantaneous variations
of k̂s(t) and ks(t), because dk̂s and dks are independent.
Rather, it is produced by slower changes in k̂s(t) in re-
sponse to changes in ks(t). As stated above, these slower
changes are effective because ks(t) is autocorrelated across
many time scales.

The correlation between k̂ and k only exists because
system variants with less or no correlation have become
extinct. No transformation between k̂ and k exists. Yet
k̂ is effective in maximizing dk precisely because it has
been driven, through competition between different sys-
tem types, to approximate k. In effect, k̂ tracks k. Part
of the causal effectiveness of k̂, as promoting system sur-
vival, arises from the fact that it tracks k. Therefore,
the causally effective variable k̂ has a non-local scope,
through k. Equivalently, the non-local variable k thus
obtains causal effectiveness that goes beyond that of the
local interactions that define k. It has obtained causal
effectiveness of its own, through k̂. It should be noted
that there is no conflict with causality here, because non-
local spatial effectiveness has to originate from previous k,
rather than instantaneously.

Discussion. – Correlation in nature usually arises from
direct causal connections or connections with a common
cause. Noise generally decreases such correlations over
time, although there are exceptions [9]. The theory con-
structed in the previous section is different on both counts.
First, it uses noise to produce rather than destroy correla-
tions. Noise is essential for producing variants with a drift
term that utilizes a correlation between k and k̂. Second,
this correlation does not originate from direct causal con-
nections, but from random generation followed by elimi-
nation. Systems with no or little correlation between k
and k̂ become extinct, leaving the ones that happen to
have more correlation, by chance. Crucially, the system
dynamics includes multiplicative noise that is coupled to
k̂, and thereby to the non-local k.

The theoretical construction explained above requires a
series of assumptions. Although none of these are implau-
sible when taken separately, it is difficult to assess how
probable they are in combination. Moreover, details of
the stochastic processes involved may affect the result [10].
Yet, it should be noted that the goal here was to provide
a proof of concept. Counter-intuitively, the theory shows
that causal non-locality can indeed arise from local causal
interactions. It thereby shows that causal non-locality is
possible.

The theory depends critically on the existence of self-
replication. Self-replication is rare, but is known to exist

in chain reactions of various kinds, in crystal growth, and
in autocatalytic chemical processes. But self-replication
is most commonly found in biological organisms. Indeed,
the theory explained above resembles the Darwinian pro-
cess of natural selection. Yet, it should be seen as an
addition to that process. The regular Darwinian process
concerns the factor μ(x, t) that was deliberately set to zero
here. That term produces a drift proportional to ∂k/∂x
(eq. (6)). Maximizing this drift requires a μ(x, t) that at
least has the same sign as ∂k/∂x. It would correspond
then to a conventional hill climbing optimization. Suit-
able forms for μ(x, t) may be found by random variations
of systems s, as argued by Darwin. However, ∂k/∂x plays
no role in eq. (1), not even indirectly. The term μ can
therefore not produce a correlation between a non-local
and local variable as the noise term can. Nevertheless, μ
can contribute to non-locality in an indirect way. When
the term with μ in eq. (6) is positive, the condition on K
(eq. (8)) can be relaxed, because the system is less vulnera-
ble to downward fluctuations of dk. In addition, the range
over which z varies becomes smaller, because x attempts
to follow Et. Then σ2 can be larger, which increases the
drift term that is responsible for producing non-locality.

Biological evolution is obviously much more complex
than the mechanisms presented here. In particular, it
has a clear separation of the time scales of hereditary
change and behavioural change within an organism’s life-
time. More complex versions of the model of eq. (4) that
take some of these elaborations into account have been
evaluated computationally [4]. Such simulations yield re-
sults that are consistent with those derived here more rig-
orously for a simplified system.

Although the theory presented here is conjectural, it
provides a plausible explanation of non-local causality.
The correlation between k and k̂ is then, presumably, the
origin of all more elaborate versions of non-local causality
that have subsequently evolved. Examples are the tempo-
ral non-locality of memory (genetic, neuronal, and techno-
logical), the spatial non-locality of devices such as spider’s
webs and steam engines, and, probably, even the human
ability to produce non-local theories.

REFERENCES

[1] Wilzcek F., Rev. Mod. Phys., 71 (1999) S85.
[2] Englert B.-G., Eur. Phys. J. D, 67 (2013) 238.
[3] Bell G., Philos. Trans. R. Soc. B, 365 (2010) 87.
[4] van Hateren J. H., Biol. Cybern., 109 (2015) 33.
[5] Hänggi P. and Jung P., Adv. Chem. Phys., 89 (1995)

239.
[6] Paul W. and Baschnagel J., Stochastic Processes:

From Physics to Finance, 2nd edition (Springer,
Heidelberg) 2013, p. 57.

[7] van Brunt B., The Calculus of Variations (Springer,
New York) 2004.

[8] Romanczuk P. et al., Eur. Phys. J. B, 69 (2009) 1.
[9] Gammaitoni L. et al., Eur. Phys. J. ST, 202 (2012) 1.
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