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The Boundary-Hopf-Fold Bifurcation in Filippov Systems∗

Konstantinos Efstathiou†, Xia Liu‡, and Henk W. Broer†

Abstract. This paper studies the codimension-3 boundary-Hopf-fold (BHF) bifurcation of planar Filippov sys-
tems. Filippov systems consist of at least one discontinuity boundary locally separating the phase
space to disjoint components with different dynamics. Such systems find applications in several
fields, for example, mechanical and electrical engineering, and ecology. The BHF bifurcation ap-
pears in a subclass of Filippov systems that we call Hopf-transversal systems. In such systems an
equilibrium of one vector field goes through a Hopf bifurcation while the other vector field is trans-
versal to the boundary. Depending on the slope of the transversal vector field, different bifurcation
scenarios take place. The BHF bifurcation occurs at a critical value of the slope that separates these
scenarios. We derive a local normal form for the BHF bifurcation and show the eight different asso-
ciated bifurcation diagrams. The local 3-parameter normal form topologically models the simplest
way to generically unfold the BHF bifurcation. The BHF bifurcation is then studied in a particular
example from population dynamics.

Key words. Filippov system, discontinuity boundary, boundary-Hopf-fold bifurcation, normal form, prey-
predator model

AMS subject classifications. 34A60, 37G15
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1. Introduction. Filippov systems, introduced in [18], are discontinuous dynamical sys-
tems composed of two or more smooth vector fields that are separated by discontinuity bound-
aries; the formal definition is given in section 2.1. For a thorough theoretical introduction to
Filippov systems, we refer the reader to [15, 18, 26]. Such systems appear in applications such
as control systems with switching control laws [1, 9, 12, 30, 31, 32], or population dynam-
ics [11, 13, 20, 24]. See also [3, 17, 33] for more examples in these directions. Apart from these,
Filippov systems also model mechanical systems exhibiting dry friction [2, 19, 21, 23, 25].

In this paper we focus on Hopf-transversal (HT) Filippov systems. Such systems consist of
two smooth vector fields that are separated by a smooth discontinuity boundary. The vector
field on one side undergoes a supercritical or subcritical Hopf bifurcation, while the vector
field on the other side intersects the boundary transversally.

The Hopf bifurcation appears frequently in applications. For smooth dynamical systems
a mature theory exists that discusses the Hopf bifurcation, but this theory cannot be directly
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Figure 1. Sketches of bifurcation diagrams for codimension-2 bifurcations. Here we assume that the system
depends on two parameters, μ1 and μ2. For higher-dimensional parameter spaces these figures represent a
two-dimensional cross-section of the parameter space. (a) Sketch of a boundary-Hopf (BH) bifurcation where a
Hopf bifurcation, a grazing bifurcation, and an equilibrium transition (ET) or nonsmooth fold (NSF) bifurcation
meet. The grazing bifurcation can either be a cycle transition (CT) or a cycle fold (CF). Compare to the four
cases in Figure 5. (b) Sketch of a boundary-fold (BF) bifurcation where an equilibrium transition (ET), an
NSF bifurcation, and a pseudoequilibria fold (PEF) bifurcation meet. Compare to cases A1 and A2 in Figure 5.

generalized to discontinuous systems. In smooth vector fields, the Hopf bifurcation is deter-
mined by a pair of complex eigenvalues passing through the imaginary axis. However, the
analysis of the Hopf bifurcation in the smooth context is not generally applicable to discon-
tinuous vector fields due to the lack of a continuous linearization at the equilibrium when this
lies on the boundary. It is therefore necessary to perform a corresponding analysis for the
Hopf bifurcation in the Filippov setting.

Bifurcations where the discontinuity of the Filippov system plays an essential role (we
talk here about discontinuity-induced bifurcations) appear, for example, in models of prey-
predator ecosystems subject to on-off harvesting control [11, 14, 24]. Accordingly, there has
been considerable work focusing on this type of bifurcation; see [10, 11, 16, 22].

In the context of HT systems, [11] considers the unfolding of the codimension-2 boundary-
Hopf (BH) bifurcation where an equilibrium of one smooth vector field goes through a Hopf
bifurcation while it lies on the boundary. In the BH bifurcation, the codimension-1 Hopf bifur-
cation of the equilibrium is accompanied by a subordinate codimension-1 grazing bifurcation
of limit cycles; see Figure 1(a). A suitable nondegeneracy condition ensures that the same
equilibrium simultaneously goes through a discontinuity-induced bifurcation that is either an
equilibrium transition or a nonsmooth fold ; see section 2.2.1 for precise definitions and for the
form of the nondegeneracy condition. Furthermore, these discontinuity-induced bifurcations
form another codimension-1 family of bifurcations; see Figure 1(a).

A bifurcation scenario complementary to the BH bifurcation is when a hyperbolic equilib-
rium (i.e., not undergoing a Hopf bifurcation) is transversally crossing the boundary while the
previously mentioned nondegeneracy condition fails. This scenario gives a boundary-fold (BF)
bifurcation [8]. The bifurcation diagram of the BF bifurcation is presented in Figure 1(b).
The codimension-2 BF bifurcation occurs at the boundary in parameter space between two
codimension-1 bifurcations, equilibrium transition and nonsmooth fold. Furthermore, the BF
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916 K. EFSTATHIOU, X. LIU, AND H. W. BROER

Table 1
Codimension-1 bifurcations in the vicinity of a BHF bifurcation.

Type Bifurcation set

Hopf BH

Equilibrium transition BET

Nonsmooth fold BNSF

Pseudoequilibria fold BPEF

Cycle transition BCT

Cycle fold BCF

bifurcation is accompanied by a subordinate fold bifurcation of pseudoequilibria; see Fig-
ure 1(b).

Considering now the codimension-2 BH and BF bifurcations in a higher-dimensional pa-
rameter space, such as a 3-parameter family, we expect that there will exist parameter values
where these bifurcations coincide. We call such parameter values boundary-Hopf-fold (BHF)
bifurcation points.

The BHF point acts as the organizing center for the families of codimension-1 and -2
bifurcations appearing in its neighborhood. This can already be seen in simpler situations,
such as with two saddle-node curves meeting at a cusp point. In another context, codimension-
3 bifurcations have been shown to act as organizing centers in a predator-prey model with
nonmonotonic response [6]. In our particular case, studying the full neighborhood of the BHF
point is essential for anticipating and understanding the bifurcation diagrams that appear in
applications. For example, in the context of the predator-prey model studied in section 6, if
one focuses at the BH point, then it becomes easy to miss the nearby family of pseudoequilibria
fold (PEF) bifurcations (see Figure 10(c)) since it is not predicted by the local analysis of the
BH bifurcation. Nevertheless, knowing that the BH bifurcation is close enough to a BHF
bifurcation, and knowing the unfolding of the latter, allows us to anticipate the existence of
the PEF family and to efficiently locate it in the bifurcation diagram.

Our aim is to describe the generic unfoldings of the BHF bifurcation which then include all
the 5 codimension-1 bifurcation families associated to the BH and BF bifurcations and listed
in Table 1. Thus a direct study of a neighborhood of BHF points is required in order to obtain
the local bifurcation diagram, to understand how all the codimension-1 and -2 bifurcations
interact, and to obtain a model that is stable under perturbations.

As we shall see in section 3 the BHF unfolding has codimension 3. We show that the
coalescence of the BH and BF bifurcations accounts for all the bifurcations observed in the
neighborhood of BHF bifurcation points. From this point of view the current work can be
considered as an extension of [10, 22]. Furthermore, our analysis reveals that in order to
obtain a stable model it is not enough to consider a transversal vector field that is constant;
we must also consider nontrivial linear terms.

The inspiration for this work has been the work by Di Bernardo, Pagano, and Ponce [16],
where a 2-parameter family of HT systems with a BHF bifurcation was considered. The
bifurcation diagram for this family is presented in Figure 2. Observe that all the codimension-
1 bifurcations associated to the BH and the BF coalesce in this system at the BHF point.
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Figure 2. Bifurcation diagram of the 2-parameter family studied in [16]. Five codimension-1 bifurcations
meet at the origin. For the labeling of the codimension-1 bifurcations we refer the reader to Table 1. Note that
the tangency of BPEF and BNSF is of order 3/2. In particular, the origin corresponds to a degenerate BHF
bifurcation that does not satisfy the requirements of Definition 3.1.

However, the model of [16] is not generic in the sense that an arbitrarily small perturbation of
the system qualitatively changes the bifurcation diagram by splitting the BH and BF points.
This behavior reflects the fact that the BHF bifurcation has codimension 3. The reason for
the nongeneric character of the system studied in [16] is that the vector field at one side of
the discontinuity boundary was chosen to be perpendicular to the boundary. The analysis in
the present work clearly demonstrates the reason for the nongenericity and furthermore shows
how to modify the nongeneric model in order to obtain a generic 3-parameter family with
persistent dynamics: allow the slope of the transversal vector field to change while adding
nontrivial linear terms to it.

We briefly outline the structure of this paper. In the next section we give an overview of
Filippov dynamics and introduce different types of equivalence between Filippov systems. In
section 3 we construct formal normal forms for the HT system. Subsequently, in section 4 we
compute the universal bifurcation diagram of the HT system. After that, we investigate the
dynamics of the truncated formal normal forms in section 5. In section 6 we study a model
from population dynamics, show that it goes through a BHF bifurcation, and determine its
type. Finally, in section 7 we summarize the main results and point out further research
directions.

2. Preliminaries. In this section we give the definition of Filippov systems and describe
their dynamical properties and bifurcations that are important for our purposes in this paper.
Furthermore, we review different types of equivalence between Filippov systems.

2.1. Definition of Filippov dynamics. A Filippov system Z defined on a two-dimensional
manifold M is a triplet (X,Y, f). Here X and Y are Cr (r ≥ 1 or r = ∞) vector fields and are
extendable over a full neighborhood of the boundary Σ. The latter is given as the zero-set of
the Cr function f :M → R, that is,

Σ = {(x, y) ∈M : f(x, y) = 0}.
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918 K. EFSTATHIOU, X. LIU, AND H. W. BROER

We assume that 0 is a regular value of f , and thus Σ is a smooth one-dimensional submanifold
of M . Note that if we are interested only in local behavior near a certain point (x0, y0) of Σ,
we can replace the previous global smoothness condition with the requirement that (x0, y0)
be a regular point of f , i.e., ∇f(x0, y0) �= 0, so that Σ is locally a smooth one-dimensional
manifold.

The discontinuity boundary Σ separates the open subsets MX and MY of M , defined as

MX = {(x, y) ∈M : f(x, y) < 0} and MY = {(x, y) ∈M : f(x, y) > 0}.
The dynamics of Z in MX and MY are defined by the flows of X and Y , respectively.

This means that for (x, y) ∈M \ Σ, Z is given by

Z(x, y) =

{
X(x, y) for (x, y) ∈MX ,

Y (x, y) for (x, y) ∈MY .
(2.1)

Meanwhile, on Σ, Filippov’s convex method [18] prescribes two types of dynamics. In
order to give a formal description of these two types, the boundary Σ is divided into the
crossing set

Σc = {(x, y) ∈ Σ : LXf(x, y)LY f(x, y) > 0}(2.2a)

and the sliding set

Σs = {(x, y) ∈ Σ : LXf(x, y)LY f(x, y) ≤ 0},(2.2b)

where LXf(x, y) denotes the Lie (or directional) derivative of f with respect to the vector
field X at the point (x, y), that is, LXf = (X · ∇)f . Note that Σ = Σs ∪ Σc.

It follows from (2.2) that if at a point (x, y) ∈ Σ the vector field X points toward Σ and
Y points away from Σ, or vice versa, then (x, y) ∈ Σc. In the former case, where X points
toward and Y points away from Σ, an orbit of Z that arrives at (x, y) following the flow of X
continues from (x, y) following the flow of Y . Thus the orbit is a continuous, but in general
nonsmooth, curve that crosses from MX to MY . If Y points toward Σ while X points away,
then the orbit crosses, in the same way, from MY to MX . For concreteness, for (x, y) ∈ Σc

we specify that Z(x, y) = X(x, y) if X points toward Σ and that Z(x, y) = Y (x, y) in the
opposite case.

If, on the other hand, at a point (x, y) ∈ Σ both vector fields point toward Σ or away from
Σ, then (x, y) ∈ Σs. In this case, the dynamics at (x, y) are defined by the vector Zs(x, y)
which is the unique convex linear combination of X(x, y) and Y (x, y) that is tangent to Σ at
(x, y). Therefore, an orbit starting at (x, y) ∈ Σs moves along the boundary. Specifically, the
sliding vector field Zs is defined by Filippov [18] as

Zs(x, y) =
LXf(x, y)Y (x, y)− LY f(x, y)X(x, y)

LXf(x, y)− LY f(x, y)
,(2.3)

provided that LXf(x, y) �= LY f(x, y). It can be verified, using (2.3), that LZsf(x, y) = 0, i.e.,
Zs(x, y) is tangent to Σ at (x, y). In the case where LXf(x, y) = LY f(x, y) for (x, y) ∈ Σs

(further implying LXf(x, y) = LY f(x, y) = 0) we then define Z(x, y) = 0.
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Summarizing, for (x, y) ∈ Σ, we define Z as

Z(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zs(x, y) for (x, y) ∈ Σs, where LXf(x, y) �= LY f(x, y),

0 for (x, y) ∈ Σs, where LXf(x, y) = LY f(x, y) = 0,

X(x, y) for (x, y) ∈ Σc, where LXf(x, y) < 0,

Y (x, y) for (x, y) ∈ Σc, where LXf(x, y) > 0.

(2.4)

Points (x, y) ∈ Σs, where LXf(x, y) = 0 (resp., LY f(x, y) = 0), are called tangency points
of X (resp., Y ). Generically, the function LXf(x, y)LY f(x, y) changes sign at a tangency
point, and therefore such points are generically positioned at the boundary of the sliding
set Σs.

2.2. Bifurcations in Filippov systems. We now give a brief description of the main
organizing centers of the dynamics, such as equilibria and limit cycles, appearing in two-
dimensional Filippov systems, and of their bifurcations. We focus on those structures that
are specific to Filippov systems and appear in our HT family.

The equilibria of X in MX and of Y in MY are also equilibria of Z. Equilibria of X or Y
in Σ are called boundary equilibria. Note that if (x, y) ∈ Σ is an equilibrium of either X or Y
(but not of both), then (x, y) ∈ Σs and Zs(x, y) = 0.

Finally, equilibria of X in MY and of Y in MX will be called virtual equilibria. Note
that virtual equilibria do not affect the dynamics of Z but that introducing the concept
facilitates the description of bifurcations in Filippov systems where an equilibrium crosses the
discontinuity boundary.

A point (x, y) ∈ Σs is called a pseudoequilibrium of Z if Zs(x, y) = 0. Geometrically,
a pseudoequilibrium occurs when the vector fields X and Y are transversal to Σ and anti-
collinear. Note that one can use (2.3) to extend the sliding vector field Zs to all points in
Σ \ {(x, y) : LXf(x, y) = LY f(x, y)}. Note that outside Σs, the extended vector field Zs is no
longer a convex linear combination of X and Y . If Zs(x, y) = 0 for some (x, y) in the crossing
region Σc, then we call such point a virtual pseudoequilibrium of Z.

A sliding cycle is a closed orbit of Z that is composed of an orbit segment of Zs on the
sliding set Σs and an orbit segment of one of the smooth vector fields, either X or Y , in MX

or MY , respectively; see the leftmost frame in Figure 4(a).

2.2.1. Equilibrium transition and nonsmooth fold bifurcation. When an equilibrium of
Z collides with the discontinuity boundary we generically have either an equilibrium transition
(ET) or a nonsmooth fold (NSF) bifurcation; cf. [15, 16]. In the ET the equilibrium collides
with a virtual pseudoequilibrium and they give their place to a virtual equilibrium and a
pseudoequilibrium; see Figure 3(a). In the NSF bifurcation the equilibrium collides with a
pseudoequilibrium and they both become virtual; see Figure 3(b).

The following theorem, proved in [15], gives conditions for the occurrence of an ET or
NSF bifurcation in a Filippov system Z = (X,Y, f) that smoothly depends on a parameter
β. Here X = X(x, y;β) and Y = Y (x, y;β) are smooth vector fields, and the discontinuity
boundary is a smooth curve given by Σ = {(x, y) : f(x, y;β) = 0} with f a smooth function.

Theorem 2.1 (ET and NSF bifurcation [15]). Assume that X(0, 0, 0) = 0 and D(x,y)X(0, 0, 0)
is nonsingular. Moreover, assume that for β = 0 an equilibrium branch (x(β), y(β)) of the
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Σ

β < 0

Σ

β > 0

(a) ET bifurcation

Σ

β < 0

Σ

β > 0

(b) NSF bifurcation

Figure 3. ET and NSF bifurcations. The discontinuity boundary Σ is displayed as a solid line. The dashed
line represents the motion of the equilibrium of one of the vector fields as a parameter changes. Round points
represent equilibria (filled) or virtual equilibria (hollow). Squares represent pseudoequilibria (filled) or virtual
pseudoequilibria (hollow). The cross marks where the equilibrium and the pseudoequilibrium meet when β = 0.

vector field X(x, y, β) transversally crosses the discontinuity manifold Σ at (x, y, β) = (0, 0, 0),
that is,

d

dβ

∣∣∣∣
β=0

f(x(β), y(β), β) �= 0.

Finally, assume that the nondegeneracy condition

δ := D(x,y)f(0, 0, 0)(D(x,y)X(0, 0, 0))−1Y (0, 0, 0) �= 0

is satisfied. Then, at β = 0, there is an ET if δ > 0 and an NSF if δ < 0.

2.2.2. Grazing bifurcations of limit cycles: Cycle transitions and cycle folds. A grazing
bifurcation occurs when the limit cycle of X touches the boundary Σ. Depending on the
stability type of the smooth limit cycle from inside, two generic cases are associated with the
grazing bifurcation; cf. [24]. The first case is called cycle transition: the limit cycle touches Σ
at a point and becomes a sliding cycle; see Figure 4(a). In this case the limit cycle is stable
from inside. In the second case, called cycle fold, an unstable limit cycle and a stable sliding
cycle initially coexist. When the limit cycle touches Σ it collides with the sliding cycle; more
precisely, the two cycles coincide. After the collision both cycles disappear; see Figure 4(b).

2.3. Equivalence between Filippov systems. An important part of this study is the
classification of Filippov systems up to some kind of equivalence. In the literature several
such kinds of equivalence have been proposed. We discuss here those used in the present
work.

The simplest type of equivalence between Filippov systems is smooth equivalence; cf. [22].
Definition 2.2 (smooth equivalence). Two Filippov systems Z = (X,Y, f) and Z̃ = (X̃, Ỹ , f̃)

are smoothly equivalent if there exist a diffeomorphism ϕ : R2 → R
2 in phase space, strictly

positive smooth functions KX : R2 → R, KY : R2 → R, and a strictly increasing smooth
function k : R → R with k(0) = 0 such that

(2.5) Dϕ ·X = (KXX̃) ◦ ϕ, Dϕ · Y = (KY Ỹ ) ◦ ϕ, f = k ◦ f̃ ◦ ϕ.
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(a) Cycle transition. A limit cycle touches the boundary and becomes a grazing cycle.

(b) Cycle fold. A limit cycle and a grazing cycle collide and disappear.

Figure 4. Two cases of grazing bifurcation; cf. [24]. The discontinuity boundary Σ is represented by the
vertical line; Σs is the solid part and Σc the dashed part. The hollow arrows in Σs show the direction of the
flow of Zs. The boundary between Σs and Σc is the tangency point represented by the black square.

Note that the functions KX and KY in Definition 2.2 induce time rescalings of the vector
fields X̃ and Ỹ , respectively. Furthermore, f̃ and k ◦ f̃ have the same zero level set and thus
define the same boundary.

3. Normal form for the boundary-Hopf-fold bifurcation. In this section we first define
the boundary-Hopf-fold (BHF) bifurcation and then derive a formal normal form for it. We
study the bifurcation diagram in section 4.

Definition 3.1 (BHF bifurcation). Consider a general planar Filippov system Z = (X,Y, f)
smoothly depending on parameters μ ∈ R

m, m ≥ 3, and such that there exists a μ-dependent
family of points (x0(μ), y0(μ)) ∈ R

2 with X(x0, y0;μ) = 0 for all μ. Denote by α(μ)±iω(μ) the
eigenvalues of the linearization D(x,y)X(x0, y0;μ) and by �1(μ) the first Lyapunov coefficient
of X at (x0, y0) (see [28, 29] or (3.3) below for the definition of �1). Furthermore, let

δ(μ) = ∇(x,y)f(x0, y0;μ)(D(x,y)X(x0, y0;μ))
−1Y (x0, y0;μ).

We say that the system goes through a BHF bifurcation at μ = μ0 when the following condi-
tions are satisfied:

(i) f(x0, y0;μ0) = 0, ∇(x,y)f(x0, y0;μ0) �= 0, and ∇μg(μ0) �= 0, where g(μ) = f(x0, y0;μ).
(ii) α(μ0) = 0, ω(μ0) > 0, �1(μ0) �= 0, and ∇μα(μ0) �= 0.
(iii) LY f(x0, y0;μ0) �= 0; that is, Y (x0, y0;μ0) is transversal to Σμ0 at (x0, y0).
(iv) δ(μ0) = 0 with ∇μδ(μ0) �= 0.
(v) ∇μg(μ0), ∇μα(μ0), and ∇μδ(μ0) are linearly independent.
Condition (i) in Definition 3.1 says that at μ = μ0 the equilibrium (x0, y0) of X transver-

sally crosses the discontinuity boundary Σμ0 ; the latter is locally a smooth one-dimensional
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922 K. EFSTATHIOU, X. LIU, AND H. W. BROER

submanifold of R2. Condition (ii) implies that, at the same parameter value μ = μ0, the
vector field X goes through a Hopf bifurcation.

Recall also that when the point (x0, y0), which is an equilibrium forX, meets the boundary
it generically goes through either an NSF bifurcation or an ET; cf. Theorem 2.1. The type of
bifurcation depends on the sign of δ: for δ < 0 the system goes through an NSF bifurcation;
for δ > 0 it goes through an ET. Condition (iv) in Definition 3.1 implies that at μ = μ0, where
δ = 0, the situation is degenerate.

Theorem 3.2 (formal normal form). Consider a BHF bifurcation point μ0 of a Filip-
pov system Z; see Definition 3.1. Then at (x0, y0) there is a local diffeomorphism ϕ that
depends smoothly on parameters μ and a smooth invertible reparameterization μ �→ λ =
(ρ, ν, γ, λ4, . . . , λm) such that the original Filippov system is smoothly equivalent, in the sense
of Definition 2.2, to the system

(3.1a) Z(x, y;λ) =

{
X(x, y;λ) for f(x, y;λ) < 0,

Y (x, y;λ) for f(x, y;λ) > 0,

with

X(x, y;λ) =

(
ν −1
1 ν

)(
x
y

)
+ κ(x2 + y2)

(
x
y

)
+O((x, y)4;λ),(3.1b)

Y (x, y;λ) =

(
σ

γ − σν + a1(λ)x+ a2(λ)y +O((x, y)2;λ)

)
,(3.1c)

and

(3.1d) f(x, y;λ) = x− ρ+O((x, y)2;λ),

where κ = sgn(�1(μ0)) = ±1 and σ = sgn(LY f(x0, y0;μ0)) = ±1. All higher order terms in
X, Y , and f smoothly depend on λ.

The parameters ρ, ν, γ that appear in the normal form (3.1) have the following interpreta-
tions. First, ρ determines the passage of the equilibrium of X through the boundary Σ which
occurs at ρ = 0. Then, X goes through a Hopf bifurcation at ν = 0. Finally, γ determines
whether we have an ET or an NSF bifurcation when the equilibrium of X crosses Σ; the two
cases are separated by γ = 0.

3.1. Proof of Theorem 3.2. We construct the formal normal form (3.1) in successive
steps.

Step 1. A μ-dependent translation brings the equilibrium (x0, y0) of Xμ to the origin
(0, 0) ∈ R

2.
Step 2. Since ∇μg(μ0), ∇μα(μ0), and ∇μδ(μ0) are linearly independent, there is a smooth

invertible parameterization μ �→ λ = (ρ̃, ν̃, γ̃;λ4, . . . , λm) in an open neighborhood of μ0 in
parameter space such that in the new parameters we have g(λ) = −ρ̃, α(λ) = ν̃, and δ(λ) = γ̃.
Furthermore, we choose the reparameterization so that μ0 maps to λ0 = 0 ∈ R

m.
Step 3. Let h(x, y;λ) = f(x, y;λ) + ρ̃. Since ∇(x,y)h(x0, y0;λ0) = ∇(x,y)f(x0, y0;λ0) �= 0,

we can define a smooth λ-dependent coordinate transformation so that in the new coordinates,
that we still denote by (x, y), we have h(x, y;λ) = x. Then, in these coordinates we have
f(x, y;λ) = x− ρ̃.
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Step 4. Note that the eigenvalues of D(x,y)X(x0, y0;λ) in the new parameters are α(λ)±
iω(λ) = ν̃ ± iω(λ). The next step is to apply a linear coordinate transformation T (λ),
depending smoothly on λ, in order to transform X to

X(x, y;λ) =

(
ν̃ −ω(λ)

ω(λ) ν̃

)(
x
y

)
+O((x, y)2;λ).

Note that the linear part of X is invariant under rotations and uniform coordinate scalings.
This means that we can choose the linear transformation T (λ) so that it has the form

T (λ) =

(
1 0

T1(λ) T2(λ)

)
.

The benefit of such a choice is that it leaves invariant the function f(x, y;λ) = x− ρ̃.
Note, furthermore, that smooth invertible coordinate transformations leave invariant the

value of δ. This implies that in the new coordinates we have that

∇(x,y)f(0, 0;λ)(D(x,y)X(0, 0;λ))−1Y (0, 0;λ) = γ̃.

Computing the left-hand side of the last relation gives

(3.2)
ν̃Y1(0, 0;λ) + ω(λ)Y2(0, 0;λ)

ν̃2 + ω(λ)2
= γ̃.

Therefore, for λ = 0 (which implies ν̃ = γ̃ = 0 and ω(λ) �= 0) we find that Y2(0, 0; 0) = 0.
Furthermore, from the assumption that Y is transversal to the discontinuity boundary at the
origin we find that Y1(0, 0; 0) �= 0.

Step 5. A smooth, λ-dependent, near-identity coordinate transformation containing only
quadratic and higher order terms in x, y (cf. [4, 5]) brings the vector field X to the form

X(x, y;λ) =

(
ν̃ −ω(λ)

ω(λ) ν̃

)(
x
y

)
+ (x2 + y2)

(
c(λ) −d(λ)
d(λ) c(λ)

)(
x
y

)
+O((x, y)4;λ).

Note that after this transformation the boundary Σ is deformed and is, in general, no longer a
straight line. In particular, the function f in the new coordinates takes the form f(x, y;λ) =
x − ρ̃ + O((x, y)2;λ). It follows that f(0, 0;λ) = −ρ̃, and thus for ρ̃ = 0 the boundary Σ
contains the origin while the tangent vector to Σ at the origin is vertical.

Furthermore, note that since such a coordinate transformation does not contain linear
terms, it does not affect the constant part of the vector field Y .

Step 6. Dividing X by the positive function ϕ(x, y) given by

ϕ(x, y) = ω(λ) + d(λ)(x2 + y2),

that is, by reparameterizing time, brings the last system to the form

X(x, y;λ) =

(
ν −1
1 ν

)(
x
y

)
+ �1(λ)(x

2 + y2)

(
x
y

)
+O((x, y)4;λ).
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Here

(3.3) �1(λ) =
c(λ)− νd(λ)

ω(λ)

is the first Lyapunov coefficient of X and ν = ν̃/ω(λ). Note that dν/dν̃(0) = 1/ω(0) �= 0,
that is, the map ν̃ �→ ν is a smooth, locally invertible reparameterization. Therefore we can
use the new parameter ν in place of ν̃.

Step 7. Uniformly scaling the coordinates by |�1(λ)|1/2 can further simplify the system so
that

X(x, y;λ) =

(
ν −1
1 ν

)(
x
y

)
+ κ(x2 + y2)

(
x
y

)
+O((x, y)4;λ),

where κ = sgn(�1(λ)) = ±1. This step depends on the nondegeneracy conditions imposed on
X(cf. [28, 29]), i.e., that the first Lyapunov coefficient �1(λ) is not zero. Since �1(0) �= 0, this
scaling depends smoothly on λ.

Furthermore, after the scaling transformation, by also multiplying f by |�1(λ)|1/2 the
boundary Σ can be expressed as the zero level set of the scaled function f(x, y) = x − ρ +
O((x, y)2;λ), where ρ = |�1(λ)|1/2ρ̃.

Step 8. The previous uniform coordinate scaling changes the constant terms of Y to

Y (x, y;λ) =

(|�1(λ)|1/2Y1(0, 0;λ)
|�1(λ)|1/2Y2(0, 0;λ)

)
+O(x, y;λ).

We now rescale time for the flow of Y by dividing Y by its first component Ỹ1(x, y;λ) =
|�1(λ)|1/2|Y1(0, 0;λ)| + O(x, y;λ). Note that Ỹ1(0, 0; 0) = |�1(0)|1/2|Y1(0, 0; 0)| �= 0; therefore
there is a neighborhood of the origin in the product of phase space and parameter space where
such rescaling is possible. Then we obtain

Y (x, y;λ) =

(
σ

Y2(0, 0;λ)/|Y1(0, 0;λ)|
)
+

(
0 0

a1(λ) a2(λ)

)(
x
y

)
+

(
0

O((x, y)2;λ)

)
,

where σ = sgn(Y1(0, 0; 0)) = sgn(Ỹ1(0, 0; 0)) = ±1. Also note that σ = sgn(LY f(x0, y0;μ0))
since it represents whether the flow of Y goes toward Σ or away from it and our coordinate
transformations do not change this. Equation (3.2) can be rewritten as

νσ +
Y2(0, 0;λ)

|Y1(0, 0;λ)| =
ω(λ)(ν2 + 1)

|Y1(0, 0;λ)| γ̃.

Define a new parameter

γ =
ω(λ)(ν2 + 1)

|Y1(0, 0;λ)| γ̃,

and note that this induces a local diffeomorphism in parameter space. Then we can write Y
in its final form as

Y (x, y;λ) =

(
σ

γ − σν + a1(λ)x+ a2(λ)y +O((x, y)2;λ)

)
.

This concludes the proof of Theorem 3.2.
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4. Bifurcation diagram. In this section we show that the normal form (3.1) has five
families of codimension-1 bifurcations. We describe in detail these families and how they
fit together in the parameter space. We first consider the Hopf bifurcation and the grazing
bifurcation which involve only the vector field X and the boundary. Then we consider together
the ET and NSF bifurcations. Finally, we study the fold bifurcation of pseudoequilibria.

In order to state the main result we first introduce an extra bit of notation. Recall that
in the normal form (3.1) the vector field Y becomes

Y (x, y;λ) =

(
σ

γ − σν + a1(λ)x+ a2(λ)y +O((x, y)2;λ)

)
.

Define the quantity

ξ(λ) = 2a2(λ)− σ(1 + ν2)
∂2f

∂y2
(0, 0;λ).

We will assume that ξ has a definite sign τ in the parameter region of interest, i.e., in a small
enough neighborhood of the origin in parameter space. This can be ensured by checking that
ξ(0) �= 0. We show in the proof of Lemma 4.2 that this implies that the (one-dimensional)
sliding vector field has a sign-definite quadratic part when it goes through a fold bifurcation,
and therefore the fold bifurcation is nondegenerate. Under these assumptions we define τ =
sgn ξ(0). We can now state the following result.

Theorem 4.1 (HT bifurcation set). There is an open neighborhood of the origin in the
product of phase space (x, y) and parameter space (ρ, ν, γ), in which the HT formal normal
form (3.1) has the following bifurcations:

(i) A codimension-2 boundary-Hopf (BH) bifurcation takes place at {ρ = 0, ν = 0}. The
BH bifurcation acts as the organizing center for the Hopf bifurcation and the grazing
bifurcation. The Hopf bifurcation takes place on the set BH = {ρ ≥ 0, ν = 0} and is
supercritical for κ = −1 and subcritical for κ = 1. The grazing bifurcation is a cycle
transition for κσ = 1 while it is a cycle fold for κσ = −1. It takes place on the set

BG = {ν = −κρ2 +O(ρ3), ρ ≥ 0}.

Furthermore, we denote the set BG by BCT when we have a cycle transition and by
BCF when we have a cycle fold.

(ii) A codimension-2 boundary-fold (BF) bifurcation takes place at {ρ = 0, γ = 0}. The
BF bifurcation acts as the organizing center for the ET, NSF, and pseudoequilibria
fold (PEF) bifurcations. The ET takes place on the set BET = {ρ = 0, γ > 0} while
the NSF takes place on the set BNSF = {ρ = 0, γ < 0}. Provided that ξ(0) �= 0 the
PEF bifurcation takes place on the set

BPEF =

{
ρ =

1

2σξ0(ν, λ̄)

γ2

1 + ν2
+O(γ3), (στ)γ ≤ 0

}
,

where ξ0(ν, λ̄) = ξ(ρ = 0, ν, γ = 0, λ4, . . . , λm).
Note that Theorem 4.1 describes eight different bifurcation diagrams depending on the

values of κ = ±1, στ = ±1, and κσ = ±1, where τ = sgn(ξ). Moreover, note that neglecting
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(a) Case A1: κ = −1, σ = −1, ξ = −1/2. (b) Case A2: κ = −1, σ = 1, ξ = 1/2.

(c) Case B1: κ = −1, σ = 1, ξ = −1/2. (d) Case B2: κ = −1, σ = −1, ξ = 1/2.

Figure 5. Bifurcation diagrams for the system Z0 (5.1) in (ρ, ν, γ) space. Note that the grazing bifurcation
for systems in the same row is of a different type: for κσ = 1 (cases A1, B2) the limit and sliding cycles of Z0

undergo a cycle transition while for κσ = −1 (cases A2, B1) they undergo a cycle fold.

higher order terms the bifurcation diagram is invariant under the discrete transformation
R : (κ, σ, ξ; ρ, ν, μ) �→ (−κ,−σ,−ξ; ρ,−ν, μ). It is thus possible to fix κ = −1 and consider the
four cases determined by the values of τ = ±1 and σ = ±1. In Figure 5 we depict these four
bifurcation diagrams in (ρ, ν, μ) space. As we show in section 5, the discrete transformation
R can be amended by the mapping (x, y, t) �→ (x,−y,−t) in phase space in order to provide
a diffeomorphism between truncated normal forms. Therefore, the Filippov systems Z and
R′Z have the same number of equilibria, pseudoequilibria, limit and sliding cycles, etc., but
with opposite stability characteristics.
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4.1. Proof of Theorem 4.1. We prove Theorem 4.1 by successively treating the codimen-
sion-1 bifurcations (Hopf, grazing, ET, NSF, and PEF).

Hopf bifurcation. In Theorem 3.2 we transformed the vector fieldX to the standard normal
form for the Hopf bifurcation. Therefore, in the transformed system, the origin is an equilib-
rium of X and it goes through a Hopf bifurcation (supercritical or subcritical depending on
κ) at ν = 0. Nevertheless, the origin is an equilibrium of Z only when ρ ≥ 0 (since for ρ < 0
the origin becomes a virtual equilibrium), and this accordingly restricts the set BH.

Grazing bifurcation. The vector field X has a limit cycle only when κν ≤ 0 (without taking
into account the discontinuity boundary). If we now also consider the effect of the boundary,
we find that the limit cycle can go through a grazing bifurcation only when the equilibrium
of X is real (as opposed to virtual). This implies that the grazing bifurcation can occur only
in the region {ρ ≥ 0, κν ≤ 0} of the parameter space. To lowest order, the limit cycle touches
the boundary when ν = −κρ2. Taking into account the higher order terms gives that the
grazing bifurcation occurs at

νG = −κρ2 +O(ρ3);

see [11] for details.
The exact type of grazing bifurcation (cycle transition or cycle fold) depends on the values

of κ and σ. When κ = −1 (i.e., the Hopf bifurcation is supercritical) the generated, stable,
limit cycle exists for ν ∈ (0, νG). If, now, σ = −1, then at νG we have a cycle transition and
for ν > νG the limit cycle becomes a sliding cycle. If, on the other hand, σ = 1, then for
ν < νG the limit cycle coexists with a sliding cycle and at ν = νG these cycles collide and
disappear. For κ = 1 (i.e., when the Hopf bifurcation is subcritical) the generated, unstable,
limit cycle exists for ν ∈ (νG, 0). If σ = −1, then the limit cycle coexists with a sliding cycle
for ν ∈ (νG, 0). At νG these cycles collide, and for ν < νG there are no cycles. Finally, if
σ = 1, then for ν ∈ (νG, 0) the system has only a limit cycle and for ν < νG it has a sliding
cycle.

ET and NSF bifurcation. In particular, for the formal normal form (3.1) we find that the
origin transversally meets Σ at ρ = 0 and it can go either through an ET or an NSF bifurcation
depending on the sign of

δ(λ) := ∇(x,y)f(0, 0;λ)(D(x,y)X(0, 0;λ))−1Y (0, 0;λ) =
γ

1 + ν2
;

see Theorem 2.1. This implies that the plane ρ = 0 is a bifurcation set and is separated by
the line γ = 0 into two subsets containing ET and NSF bifurcations. In particular, for γ > 0
the origin goes through an ET while for γ < 0 through an NSF.

PEF bifurcation. The bifurcation sets BET and BNSF meet along the line BBF = {ρ =
0, γ = 0} which is the set of BF bifurcations. The BF bifurcation is generically accompanied
by a subordinate PEF bifurcation [8]. We now study in more detail the latter bifurcation and
prove the following result.

Lemma 4.2 (PEF bifurcation). Let ξ �= 0. Then the normal form system (3.1) goes through
a PEF bifurcation on the surface BPEF in the parameter space (ρ, ν, γ) parameterized as

(4.1) ρ =
1

2σξ0(ν, λ̄)

γ2

1 + ν2
+O(γ3), στγ ≤ 0,
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where higher order terms in γ are also smooth functions of ν, λ4, . . . , λm.
Proof. Recall that (x0, y0) ∈ Σ is a pseudoequilibrium of Z if and only if it is an equilibrium

of the sliding vector field Zs, that is,

Zs(x0, y0;λ) = 0.

Since ∇(x,y)f(0, 0) = (1, 0), the boundary Σ can be locally parameterized by y. Thus for
(x, y) ∈ Σ we have x = ρ + h(y;λ), where h is of second order in ρ and y. Therefore,
pseudoequilibria (x0, y0) of Z are determined as roots y0 of the equation

Zs(ρ+ h(y;λ), y;λ) = 0,

which depends only on y. Recall that the sliding vector field, Zs, is tangent to Σ, and Σ is
vertical at the origin. Therefore in order for y0 to satisfy the last equation it is enough that
it satisfies that ζ(y0;λ) = 0, where

ζ(y;λ) := (Zs)2(ρ+ h(y;λ), y;λ) = 0,

and (Zs)2 denotes the vertical component of Zs.
We first prove that the conditions for the PEF bifurcation are satisfied at the origin. Below,

for a function q(y;λ) in the product of phase space and parameter space we will denote by
q0 the value of q at the point y = 0, ρ = γ = 0. Furthermore, we denote by qy, qρ, etc., the
partial derivative of q with respect to y, ρ, etc. We compute that

ζ0 = ζ0y = 0

and
ζ0yy = 2a02 + (1 + ν2)σh0yy = 2a02 − (1 + ν2)σf0yy = ξ0 �= 0,

where we use that f(ρ+ h(y, λ), y, λ) = 0 implies f0yy = −h0yy.
The common solution set of the equations ζ(y, λ) = 0 and ζy(y, λ) = 0 defines in the space

(y;λ) the fold bifurcation set F which projects in parameter space to the set BPEF. Using the
implicit function theorem we find that F is a codimension-2 manifold that goes through the
origin, and is parameterized by (ν, γ, λ4, . . . , λm), since

det

(
ζ0y ζ0ρ
ζ0yy ζ0yρ

)
= −ζ0ρζ0yy = −σ(1 + ν2)ξ0 �= 0,

where we have computed that ζ0ρ = σ(1 + ν2) and ζ0yρ = a01 − νa02. Thus in a neighborhood of

{ρ = 0, γ = 0} there exist smooth functions Ψ(ν, γ, λ̄), R(ν, γ, λ̄) such that

ζ(Ψ(ν, γ, λ̄), R(ν, γ, λ̄);λ) = ζy(Ψ(ν, γ, λ̄), R(ν, γ, λ̄);λ) = 0,

where λ̄ = (λ4, . . . , λm).
We then compute that Ψ0

γ = −1/ξ, R0
γ = 0, R0

γγ = σ[ξ(1 + ν2)]−1. Thus BPEF can be
locally expressed as

ρ = R(ν, γ, λ̄) =
1

2σξ0
γ2

1 + ν2
+O(γ3);
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i.e., it has a quadratic tangency with the plane ρ = 0 along the line γ = 0. Furthermore, the
fold point is located at

y = Ψ(ν, γ, λ̄) = − 1

ξ0
γ +O(γ2).

Since the fold bifurcation of pseudoequilibria must take place inside the sliding set Σs, we
consider the expression (LXf)(LY f) which must be negative at y = Ψ(ν, γ, λ̄). Substitut-
ing R(ν, γ, λ̄) and Ψ(ν, γ, λ̄) for ρ and y, respectively, in (LXf)(LY f) we obtain a function
k(ν, γ, λ̄) which must be negative when the PEF takes place in Σs. We find that

k(ν, γ, λ̄) =
1

σξ0
γ +O(γ2).

Thus for τ = sgn ξ0 = 1 only the σγ ≤ 0 branch of BPEF is of interest while for τ = sgn ξ0 = −1
only the σγ ≥ 0 branch is kept.

4.2. Further simplification of bifurcation sets. In this section we show that the bifurca-
tion diagram of any HT system satisfying the assumptions of Theorems 3.2 and 4.1 can be
brought into one of eight standard forms depending on the value ±1 of the parameters κ, σ,
and τ = sgn(ξ) with a smooth reparameterization. Furthermore, we describe in detail these
standard forms.

Theorem 4.3 (bifurcation diagrams). For the system (3.1) a diffeomorphism ϕ : (ρ̃, ν̃, γ̃, λ̄) →
(ρ, ν, γ, λ̄) exists on a small neighborhood of the origin in parameter space that sends the bi-
furcation set described in Theorem 4.1 to the bifurcation diagram that consists of the following
sets expressed in new parameters (ρ̃, ν̃, γ̃):

(i) Hopf bifurcation set ν̃ = 0 for ρ̃ ≥ 0;
(ii) grazing bifurcation set at ν̃ = −κρ̃2 for ρ̃ ≥ 0 (cycle transition for κσ = 1, cycle fold

for κσ = −1);
(iii) PEF bifurcation set at ρ̃ = 1/(2στ)γ̃2 for στγ̃ ≤ 0;
(iv) ET set at ρ̃ = 0, γ̃ > 0;
(v) NSF bifurcation set at ρ̃ = 0, γ̃ < 0.
Proof of Theorem 4.3. Observe that the Hopf, ET, and NSF bifurcation subsets of the

system Z are already given in Theorem 4.1 in the form that is required here. Therefore, in
order to construct the required reparameterizing diffeomorphism ϕ we need to kill the higher
order terms in the description of the grazing bifurcation sets and the PEF bifurcation set.

Write the asymptotic expressions for the grazing bifurcation set in Theorem 4.1 as

ν = −κρ2 +O(ρ3) = −κρ2(1 + ρn1(ρ, γ, λ̄)),

where n1(ν, γ, λ̄) is smooth in its arguments. For the PEF bifurcation set similarly write

ρ =
1

2σξ0(ν, λ̄)

γ2

1 + ν2
+O(γ3) =

1

2στ
γ2[r0(ν, λ̄) + γ r1(ν, γ, λ̄)],

where

r0(ν, λ̄) =
1

(1 + ν2)|ξ0(ν, λ̄)| ,D
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and r1(ν, γ, λ̄) is smooth in its arguments. Note that r0(0, λ̄) = |ξ(0, 0, 0, λ̄)|−1 �= 0.
Define the transformation ϕ : (ρ̃, ν, γ̃, λ̄) �→ (ρ, ν, γ, λ̄) given by

ρ̃ = ρ [1 + ρn1(ρ, γ, λ̄)]
1/2, γ̃ = γ [r0(ν, λ̄) + γ r1(ν, γ, λ̄)]

1/2[1 + ρn1(ρ, γ, λ̄)]
1/4.

The map ϕ sends the bifurcation diagram of Z to that described in the present theorem.
Evaluating the derivative of the transformation at ρ = ν = γ = 0 we find that the value of its
determinant is

detDϕ(0, λ̄) = [r0(0, λ̄)]
1/2 = |ξ(0, 0, 0, λ̄)|−1/2 �= 0.

Therefore ϕ is a diffeomorphism in an open neighborhood of ρ = ν = γ = 0.

5. Dynamics of the truncated normal form. In this section we describe the dynamics of
the truncated formal normal form Z in (3.1). In particular, we consider the system

(5.1a) Z0(x, y, ρ, ν, γ) =

{
X0(x, y, ν) for f0(x, y, ν) < ρ,

Y0(x, y, ν, γ) for f0(x, y, ν) > ρ,

with

(5.1b) X0(x, y, ν) =

(
ν −1
1 ν

)(
x
y

)
+ κ(x2 + y2)

(
x
y

)

and

(5.1c) Y0(x, y, ν, γ) =

(
σ

γ − σν + 1
2ξy

)
,

where f(x, y, ρ) = x− ρ and ξ is constant; cf. the full normal form in (3.1).
Note that for the vertical component of Y0, which we denote by Y0,2, truncating the formal

normal form Y at linear terms would give

Y0,2 = γ − σν + a1(λ)x+ a2(λ)y,

instead of the form in (5.1c). Since we consider a straight boundary, we have ξ = 2a2(0).
Furthermore, we ignore higher order terms in a2(λ) = a2(0) +O(λ) since, for λ small enough,
they do not induce any bifurcations of Y or in the sliding vector field Zs. The term a1(λ)x is
similarly omitted since it does not affect the bifurcations as determined in Theorem 4.1.

We now describe in detail the phase portraits of Z0 for the four cases of bifurcation
diagrams with κ = −1 discussed in the previous section and shown in Figure 5. As a further
motivation for restricting only to the case κ = −1, note that Z0 is invariant under the discrete
transformation

R′ : (κ, σ, ξ; ρ, ν, γ;x, y, t) �→ (−κ,−σ,−ξ; ρ,−ν, γ;x,−y,−t),
which in parameter space corresponds exactly to the symmetry of the bifurcation diagram
discussed in the previous section. For this reason for the study of the the dynamics of Z0 it
is enough to consider only the case κ = −1 and distinguish the four cases determined by the
value of σ = ±1 and τ = sgn(ξ) = ±1.
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5.1. Case A1: κ = −1, σ = −1, τ = −1. In this case the codimension-1 bifurcation
sets separate the parameter space into seven open connected sets. Recall that since κ = −1, we
have that νG = ρ2 +O(ρ3) for ρ ≥ 0 determines the grazing bifurcation set BG. Furthermore,
recall that the PEF set is given by BPEF = {ρ = (2σξ)−1μ2 + O((ν, μ)3), μ ≤ 0}, where we
have taken into account that σξ > 0. Solving the defining equation of BPEF for μ we obtain
for ρ ≥ 0 the solution μPEF that depends on ρ and ν and is, to the lowest order, (2σξρ)1/2.
With these definitions for νG and μPEF we denote the seven regions of the bifurcation diagram
as follows:

I. ρ < 0
II. ρ > 0, μ < μPEF, ν < 0
III. ρ > 0, μ < μPEF, 0 < ν < νG
IV. ρ > 0, μ < μPEF, ν > νG
V. ρ > 0, μ > μPEF, ν < 0
VI. ρ > 0, μ > μPEF, 0 < ν < νG
VII. ρ > 0, μ > μPEF, ν > νG

The phase portraits for systems in each of these regions together with the transitions
between them are shown in Figure 6. Passing from region II or IV to region I the system
goes through an NSF bifurcation where a real equilibrium and a pseudoequilibrium collide
and disappear. On the other hand, passing from region V or VII to region I the system goes
through an ET where a real equilibrium gives its place to a pseudoequilibrium. In particular,
in regions II, III, and IV the system has two pseudoequilibria, in region I it has one, and in
regions V, VI, and VII it has no pseudoequilibria. Subsequently, the transitions II → V, III
→ VI, and IV → VII are PEF (saddle-node) bifurcations.

Passing from region II to III or from region V to VI the system goes through a Hopf bifur-
cation. The only difference between the two cases is related to the number of pseudoequilibria
and not to the Hopf bifurcation itself. Finally, going from region III to IV or from region VI
to VII we have a cycle transition grazing bifurcation.

5.2. Case A2: κ = −1, σ = 1, τ = 1. This case has the same bifurcation diagram
as case A1, so we adopt the same notation to refer to the seven regions. The phase portraits
for systems in each of these regions together with the transitions between them are shown in
Figure 7.

The types of bifurcations that we meet here are very similar to those in case A1. The main
difference from case A1 is that the grazing bifurcation in this case is a cycle fold. Note that
in regions III and VI a limit cycle coexists with a sliding cycle and when passing to regions
IV and VII, respectively, these cycles collide and disappear.

5.3. Case B1: κ = −1, σ = 1, τ = −1. In this case the codimension-1 bifurcation
sets separate the parameter space into five open connected sets. We denote these regions as
follows:

I. ρ < 0, μ < μPEF
II. ρ < 0, μ > μPEF
III. ρ > 0, ν < 0
IV. ρ > 0, 0 < ν < νG
V. ρ > 0, ν > νGD
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PEF
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ET
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PEF

PEF

II V

IIII

VIIIV

Figure 6. Phase portraits corresponding to the open regions and codimension-1 bifurcations for case A1.

Recall that since in this case we have σξ < 0, to lowest order it is μPEF = (2σξρ)1/2

for ρ ≤ 0. The phase portraits for systems in each of the five regions together with the
transitions between them are shown in Figure 8. Passing from region III or V, where the
system has one pseudoequilibrium and one real equilibrium, to region I, where there are no
real or pseudoequilibria, we have an NSF bifurcation. Passing to region II, where there are
two pseudoequilibria and no real equilibria, we find an ET. Regions I and II are consequently
connected by a PEF. The transition III → IV is a Hopf bifurcation. Finally, going from region
IV to V we have a cycle fold grazing bifurcation. Note that the sliding cycle in region IV is
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THE BHF BIFURCATION IN FILIPPOV SYSTEMS 933

Figure 7. Phase portraits corresponding to the open regions and codimension-1 bifurcations for case A2.

a reverse sliding cycle, i.e., it becomes a sliding cycle if we follow the Filippov flow backward
in time.

5.4. Case B2: κ = −1, σ = −1, τ = 1. The bifurcation diagram is in this case very
similar to that in case B1. The phase portraits for systems in each of the five regions together
with the transitions between them are shown in Figure 9. The main difference between cases
B2 and B1 is that in the present case the grazing bifurcation passing from region IV to V is
a cycle transition.
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Figure 8. Phase portraits corresponding to the open regions and codimension-1 bifurcations for case B1.

6. An example from population dynamics. As an example of an HT system that has a
BHF point we consider a model from population dynamics. Different aspects of this model
have been considered in [11, 24]. In [11], in particular, a parameter p is introduced in order to
change the slope of the discontinuity boundary in such a way to avoid the degeneracy δ = 0
associated to the BHF point. From this point of view the parameter p plays the role of the
parameter γ − σν in the normal form of Theorem 3.2 that determines the slope of the vector
field Y with respect to the discontinuity boundary.

In this population dynamics model there are two communities, a predator and a prey,
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PEF
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I IV

Figure 9. Phase portraits corresponding to the open regions and codimension-1 bifurcations for case B2.

with densities x and y, respectively. In the original model, when the prey density goes over
a threshold r an extra harvesting term for the prey is introduced, proportional to the prey
density. In the modified model, introduced in [11] and used here, the discontinuity boundary
is given by the zero-set of

f(x, y; p, r) = x+ py − r.(6.1a)
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For f(x, y; p, r) < 0 the equations of motion are given by

X =

(
ψ(y)x− dx

y(1− y)− ψ(y)x

)
,(6.1b)

where

ψ(y) =
ay

b+ y
.(6.1c)

Meanwhile, for f(x, y; p, r) > 0 we have

Y =

(
ψ(y)x− dx− ex
y(1− y)− ψ(y)x

)
= X −

(
ex
0

)
.(6.1d)

We assume that a > d > 0 and e > 0. For the numerical computations, following [11], we
fix the parameter values a = 0.3556, d = 0.04444, e = 0.2067. Then the vector field X has a
1-parameter family of equilibria given by

x0 =
b

a− d

(
1− db

a− d

)
= b (3.21378 − 0.458993 b), y0 =

db

a− d
= 0.14282b.

This family goes through a Hopf bifurcation at

b0 =
a− d

a+ d
= 0.777822.

In particular, the eigenvalues of DX are equal to

α± iω � − d

2ab0
(b− b0)± i

[
ω0 − d2

2aω0
(b− b0)

]
= −0.080334(b − b0)± i [0.185920 − 0.014935(b − b0)],

where the expression for the real part is exact (up to the precise value of the numerical
coefficient) while the expression for the imaginary part is given up to first order terms in
b− b0. Here

ω0 = ω(b0) =

(
d(a− d)

a+ d

)1/2

= (db0)
1/2.

We now verify that the conditions of having a BHF point in Definition 3.1 are satisfied
for the point (x0, y0) at the parameter values

b = b0, p = p0 = 0, r = r0 = x0(b0) =
a

(a+ d)2
= 2.22206.

Denoting by μ = (b, p, r) the system parameters we first find that

∇(x,y)f(x0, y0;μ0) = (1, 0) �= 0.
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Then define g(μ) = x0(b) + py0(b)− r giving

∇μg(μ0) =

(
1

a+ d
,

d

a+ d
, −1

)
= (2.49975, 0.111089, −1) �= 0.

Therefore, condition (i) of Definition 3.1 is satisfied. For condition (ii) we have already seen
that α(b0) = 0 and ω(b0) = 0.185920 �= 0. Furthermore,

∇μα(μ0) =

(
− d(a+ d)

2a(a− d)
, 0, 0

)
= (−0.080334, 0, 0) �= 0.

The value of the first Lyapunov coefficient is determined during the normalization of the vector
field X. We find that

�1(μ0) = −(a+ d)d2

4aω3
0

= −0.0864268 < 0,

and therefore X goes through a supercritical Hopf bifurcation so that in the normal form we
will have κ = −1.

For condition (iii) we compute that

LY f(x0, y0;μ0) = − ae

(a+ d)2
= −0.459299 < 0.

This also shows that in the normal form we will have that σ = −1. For condition (iv) we find
that the expression for δ for this system, evaluated at the equilibrium, is

δ =
eb(a+ d)

(a− d)3

(
b− b0 − a(a− d)

a+ d
p

)
= 2.74469b(b − b0 − 0.276594p).

Therefore, for b = b0 and p = 0 we find that δ = 0. Furthermore,

∇μδ(μ0) =

(
e

(a− d)2
, − ae

a2 − d2
, 0

)
= (2.13488, −0.590493, 0) �= 0.

Finally, for condition (v) we can see from the expressions for ∇μg(μ0), ∇μα(μ0), and ∇μδ(μ0)
that they are linearly independent.

It follows that all conditions of Definition 3.1 are satisfied, and therefore Theorem 3.2 can
be applied in order to bring the system into normal form. Nevertheless, we still have to check
the condition of Theorem 4.1 concerning the bifurcation diagram, namely check the sign of
ξ. In order to do this we need to bring the system in (6.1) into normal form by retracing the
steps in the proof of Theorem 3.2.

Finally, we compute that

a2(0) =
e(a2 − d2 − 2d)

3(a− d)[d(a2 − d2)]1/2
= 0.105977

and

fyy(0) = − 4(a2 − d2 + d)

3a1/2[d(a2 − d2)]1/4
= −1.38489
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Figure 10. Bifurcation diagrams near the BHF bifurcation point. (a) p = −0.1, (b) p = 0, (c) p = 0.1. The
solid lines represent numerically computed bifurcation curves while the dashed lines represent the theoretically
predicted bifurcation curves for the grazing bifurcation and the PEF bifurcation. Note the excellent match
between numerically computed and theoretically predicted bifurcation curves.

so that

ξ = 2a2(0) + fyy(0) = −1.17293 < 0.

This implies that this system is of type A1. Furthermore, the previous analysis shows that ξ
changes sign, and therefore the system changes type from A1 to B2, when e increases above
the critical value

ec =
2(a− d)(a2 − d2 + d)[d(a2 − d2)]1/4

a1/2(a2 − d2 − 2d)
= 1.35056,

provided that the values of a and d are kept constant.
In Figure 10 we show the bifurcation diagram of the system close to the point (r0, b0) in

the parameter subspace (r, b) where p is fixed and we consider three cases p = 0, ±0.1. The
codimension-1 surface containing the ET and NSF bifurcations and the codimension-2 BH
and BF points is given by

r = R(b, p) = x0(b) + py0(b).

More precisely, the codimension-2 BH family is parameterized by p as

rBH = R(b0, p) = x0(b0) + py0(b0), bBH = b0.

The codimension-2 BF family is parameterized by p as

rBF = R(b0 + 0.276594p, p), bBF = b0 + 0.276594p.

In order to complete the bifurcation diagram we computed the bifurcation curves for
the grazing bifurcation and the PEF bifurcation. We computed these in two ways. First,
we numerically computed the bifurcation curves by directly checking the conditions for the
occurrence of those bifurcations. Second, we used the reparameterization (r, b, p) �→ (ρ, ν, γ)
and the theoretic asymptotic expressions of Theorem 4.1, namely

ν = ρ2, ρ ≥ 0,
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for the grazing bifurcation and

ρ = − 1

2ξ
γ2, γ ≤ 0,

for the PEF bifurcation. We plotted both numerical and theoretical curves in Figure 10, the
former with solid curves and the latter with dashed curves. Because the agreement between
the two curves is very good, only the dashed curves are for the most part visible in Figure 10.

Finally, we give the asymptotic expressions for the grazing bifurcation and the PEF bi-
furcation. For the grazing bifurcation we have

4.9995bs + (6.65038 + 0.714031p)b2s − (4.9995 + 0.285641p)bsrs + r2s = 0,

where rs = r − rBH and bs = b− bBH. For the PEF bifurcation we have

(−2.42016 + 0.551217p)bs + (1− 3.57883p)b2s

+ (0.968162 − 0.177484p)rs + (−0.641676 + 1.35193p)bsrs = 0,

where rs = r − rBF and bs = b− bBF.

7. Conclusions and discussion. This paper considered the boundary-Hopf-fold (BHF)
bifurcation. This is a codimension-3 bifurcation of Hopf-transversal (HT) Filippov systems.
We derived a smooth formal normal form and gave a detailed description of its bifurcations
and the phase portraits. Furthermore, we demonstrated the BHF bifurcation in an example
from population dynamics. A further extension of the present work is the study of HT systems
using regularization techniques and singular perturbation theory; cf. [7, 27].

In section 6 we analyzed in detail how the BHF bifurcation manifests in a well-studied
predator-prey model. Our analytical calculations showed in particular that we expect to find
the BHF bifurcation for a very wide range of choices for the parameters a, d, e of the system.
The conditions of Theorem 4.1 ask that the vector field X go through a Hopf bifurcation,
and at the same time that Y be transversal to the boundary, while imposing some rather
mild nondegeneracy conditions. For this reason we expect that almost all Filippov systems
where an equilibrium of one of the vector fields goes through a Hopf bifurcation while at the
discontinuity boundary will also have a BHF point, provided that the slope of the other vector
field can sufficiently vary.

A further interesting question is how the BHF bifurcation manifests in higher-dimensional
systems. We believe that a reduction to the center manifold will show that the extra dimen-
sions do not affect the bifurcations described in the present work. This is currently a work in
progress.
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