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Abstract. The automatic recognition of symbols can be used to au-
tomatically convert scanned drawings into digital representations com-
patible with computer aided design software. We propose a novel ap-
proach to automatically recognize architectural and electrical symbols.
The proposed method extends the existing trainable COSFIRE approach
by adding an inhibition mechanism that is inspired by shape-selective
TEO neurons in visual cortex. A COSFIRE filter with inhibition takes
as input excitatory and inhibitory responses from line and edge detec-
tors. The type (excitatory or inhibitory) and the spatial arrangement
of low level features are determined in an automatic configuration step
that analyzes two types of prototype pattern called positive and negative.
Excitatory features are extracted from a positive pattern and inhibitory
features are extracted from one or more negative patterns. In our ex-
periments we use four subsets of images with different noise levels from
the Graphics Recognition data set (GREC 2011) and demonstrate that
the inhibition mechanism that we introduce improves the effectiveness
of recognition substantially.

Keywords: COSFIRE, trainable filters, architectural and electrical sym-
bols, shape, inhibition, brain-inspired, visual cortex

1 Introduction

The recognition of symbols in sketches or scanned documents facilitates the au-
tomatic conversion to digital representations that can be processed by computer
aided design software. Examples of applications are the recognition of architec-
tural and electrical symbols, optical music notes, document analysis, logo and
mathematical expressions [13–15, 18]. In such applications, it is common to find
that a symbol is contained within another symbol that has a different meaning.
Fig. 1 shows four patterns presented in the top images that are contained in
the corresponding bottom images. The addition of extra strokes can radically
change the meaning of a symbol.

Existing symbol recognition algorithms can be categorized into statistical
and structural-based approaches. The former methods extract hand-crafted fea-
tures from symbols and use them to form feature vectors and train classification
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(a) (b) (c) (d)

Fig. 1. Examples of pairs of symbols with different meanings. (a) Two traffic signs
which give opposite instructions: permission and prohibition of turning right. (b) Two
music notes: quarter and eighth. (c) Two electrical symbols: a normal and a light-
emitting diode. (d) Two Chinese characters that are translated as “big” and “dog”.

models [19]. While such methods may be effective, they require large numbers
of training examples. Moreover, the selection of features is specific to the appli-
cation at hand and typically requires domain knowledge. The structural-based
approaches, which usually describe symbols by the geometrical relation between
their constituent parts [9], are not suitable to distinguish symbols with similar
shapes [17].

In this paper, we use inspiration from the function of shape-selective neu-
rons in area TEO in visual cortex to develop an inhibitory mechanism that we
add to the COSFIRE filters introduced in [3]. By means of single cell recordings
on macaque monkeys, Connor et al. [4] discovered that such a neuron responds
strongly for a certain arrangement of curvatures (Fig. 2a), but its response is
suppressed by the presence of a specific curvature element (Fig. 2b). The ef-
fectiveness of COSFIRE filters have already been shown in various applications
including detection of vascular bifurcations in retinal images [2], classification
of handwritten digits [1] and localization and recognition of traffic signs [3]. A
COSFIRE filter, as published in [3], can be configured to be selective for one of
the symbols in the top row of Fig. 1. It will, however, also respond to the symbol
underneath it, and thus it is not suitable to distinguish between such patterns.

The response of a COSFIRE filter with inhibition that we propose is com-
puted by subtracting a fraction of the combined responses of inhibitory part
detectors from the combined responses of excitatory part detectors. The excita-
tory and inhibitory parts together with their spatial arrangement are determined
in an automatic configuration procedure. A strong response by a COSFIRE fil-
ter indicates that the input pattern is similar to the positive prototype used to
configure that filter.

The rest of the paper is organized as follows. In Section 2 we explain how a
COSFIRE with inhibition is configured and applied. In Section 3 we describe our
experiments on four subsets of images from the Graphics Recognition (GREC
2011) data set [16]. We provide a discussion in Section 4 and draw conclusions
in Section 5.
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Fig. 2. Selectivity of a shape-selective neuron in posterior inferotemporal cortex [4].
(a) The contour segments marked with solid circles indicate curvatures that evoke
excitation of the concerned cell, while (b) the segment marked with a dashed circle
indicates a curvature that inhibits the activation of the cell. The bars specify the
strength of the response.

2 Method

Let us consider the two symbols shown in Fig. 3a and Fig. 3b, which we refer to as
a positive and a negative prototype, respectively. The configuration procedure,
that we explain below, automatically determines the excitatory and inhibitory
parts, and results in a filter which is able to respond selectively only to patterns
similar to Fig. 3a and not to Fig. 3b.

(a) (b)

Fig. 3. Example of (a) a symbol that is contained within (b) another one. We use the
former pattern as a positive example and the latter one as a negative example.

2.1 Configuration of a COSFIRE filter with inhibition

First, we use the publicly available implementation1 to configure two COSFIRE
filters of the type proposed in [3], one to be selective for the positive pattern
in Fig. 3a and the other for the negative pattern in Fig. 3b. Such a filter uses
a representation of the line segments and their mutual geometrical arrange-
ment. A line segment i is described by the preferred scale λi and preferred
orientation θi of a symmetric Gabor filter together with the polar coordinates
(ρi, φi) of the position of the segment with respect to the center of the con-
cerned COSFIRE filter. We denote by Pf = {(λi, θi, ρi, φi) | i ∈ 1 . . . n1} and

1 Matlab scripts: http://mathworks.com/matlabcentral/fileexchange/37395
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Nf = {(λj , θj , ρj , φj) | j ∈ 1 . . . n2} the configured COSFIRE filters for the
positive and negative prototypes, respectively. The parameters n1 and n2 de-
note the number of tuples in the corresponding sets. Fig. 4a and Fig. 4b show
the structures of the resulting two COSFIRE filters. For more technical details
about the Gabor filters and the COSFIRE configuration method, we refer the
reader to [3, 5–8, 10–12] and to an online implementation2. We only mention
that the configuration of a COSFIRE filter takes as input three parameters,
a set of wavelengths λ and a set of orientations θ that characterize a bank of
Gabor filters, together with a set of radius values ρ that represent a number of
concentric circles around the center of the filter along which the Gabor filter
responses are considered. Fig. 4 illustrates the structure of the COSFIRE filter
with inhibition that is configured by the positive and negative images in Fig. 3.
The configuration uses λ ∈ {18, 36}, θ ∈ {πi8 | i = 0...7} and ρ ∈ {0, 40, ..., 200}.

Second, we form a new set Sf by taking tuples from the two sets Pf and
Nf and marking them with tags that represent the type of contribution (i.e.
excitatory or inhibitory). We include all the tuples in Pf into the set Sf and
mark them with a tag δ = +1 to indicate that the involved Gabor responses
provide excitatory input to the resulting filter. Then we compute the minimum
distance d(N j

f , Pf ) between the spatial coordinates of one tuple from Nf and
the spatial coordinates of all the tuples from Pf :

d(N j
f , Pf ) = min

i∈{1,...,|Pf |}

{√
(ρi cosφi − ρj cosφj)2 + (ρi sinφi − ρj sinφj)2

}
If this distance d(N j

f , Pf ) is larger than a threshold ζ, we conclude that the tuple

N j
f is sufficiently different from the tuples in Pf and we include the tuple N j

f into
the new set Sf and mark it with a tag δ = −1 indicating that the corresponding
Gabor response provides inhibitory input. We repeat this procedure for each
tuple in set Nf . In this way we obtain a new set Sf = {(λk, θk, ρk, φk, δk) | k ∈
1 . . . n3} of labeled excitatory and inhibitory tuples. The parameter n3 denotes
the number of tuples in set Sf . In Section 3, we provide the value of the parameter
ζ that we use in our experiments. With this procedure we ensure that a line
segment that is present in both the positive and negative prototypes in roughly
the same positions is considered to give excitatory input. On the other hand, a
line segment that is only present in the negative prototype is considered to give
inhibitory input.

Fig. 4c shows the structure of the resulting COSFIRE filter with inhibition.
The white ellipses indicate the line segments that provide excitatory input and
the black ellipses indicate the ones that provide inhibitory input.

In order to extract as much detail as possible from a given prototype symbol,
in our experiments we use a large set of radii values (ρ = {i | i = 0, 1, ..., 362})3.
Subsequently, we remove any redundant tuples from the resulting filter by com-
puting the distances between the spatial coordinates of all pairs of tuples. For

2 http://matlabserver.cs.rug.nl
3 The maximum ρ value 362 is the largest diagonal distance with respect to the center

of the image.
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(a) (b) (c)

Fig. 4. (a-b) The structures of COSFIRE filters configured with the positive and neg-
ative prototype in Fig. 3a and Fig. 3b, respectively. (c) The structure of the resulting
filter with inhibition. The ellipses illustrate the wavelengths and orientations of the se-
lected Gabor filters and their positions indicate the locations at which their responses
are used as input to the concerned COSFIRE filter. The blobs within the ellipses repre-
sent blurring functions that are used to provide some tolerance regarding the preferred
positions. White and black ellipses and blobs indicate Gabor responses that provide
respectively positive and negative inputs to the COSFIRE filter with inhibition.

any pair that has a distance lower than 12 pixels we delete one of the tuples
randomly.

This configuration procedure is also applicable when multiple negative ex-
amples are used. In that case we have one COSFIRE filter Pf selective for the
positive prototype and a number of COSFIRE filters (Nf1 , Nf2 , . . . ) selective for
the negative prototypes. Then we apply the above procedure to determine the
inhibitory tuples from each of the Nfi sets. Each set of inhibitory tuples has a
unique tag. For instance, the inhibitory tuples determined from the set Nf1 are
assigned a tag δ = −1, the inhibitory tuples determined from the set Nf2 are
assigned the tag δ = −2, and so forth.

2.2 Response of a COSFIRE filter with inhibition

The response of a COSFIRE filter with inhibition is computed as follows. First
we compute the weighted geometric mean as defined in [3] for each group of
tuples that share the same tag value. The intermediate representation defined
by a tuple (λi, θi, ρi, φi, δi) is computed by blurring the response map obtained
by a Gabor filter (with parameter values λi and θi) with a Gaussian function4.
The blurred response is then shifted by ρi pixels in the direction opposite to
φi. In this way, all the Gabor responses described by different tuples meet at
the same location. We denote by rS+

f
(x, y) the output of the group of excitatory

tuples with tag δ = +1. Similarly, we denote by rS−1
f

(x, y) the output of the

group of inhibitory tuples with tag δ = −1.
Finally, we denote by rSf

(x, y) the filter response, which we compute by
subtracting a factor of the maximum response of all groups of inhibitory tuples

4 For the blurring function we use a fixed standard deviation of 4, which we found
empirically.
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from the response of the group of excitatory tuples:

rSf
(x, y)

def
= |rS+

f
(x, y)− η n

max
j=1
{rS−j

f
(x, y)}|t3 (1)

where S+
f = {(λi, θi, ρi, φi) | ∀ (λi, θi, ρi, φi, δi) ∈ Sf , δi = +1},

S−jf = {(λi, θi, ρi, φi) | ∀ (λi, θi, ρi, φi, δi) ∈ Sf , δi = −j}, n = max |δi|, η
is a coefficient that we call inhibition factor and |.|t3 represents the threshold-
ing operation of the response at a fraction t3 of its maximum across all image
coordinates (x, y).

2.3 Tolerance to geometric transformations

The proposed COSFIRE filters with inhibition can achieve tolerance to scale,
rotation and reflection by similar manipulation of parameters as proposed for
the original COSFIRE filters [3]. We do not elaborate on these aspects here as
we do not use them in our experiments. We refer the reader to [3] for a thorough
explanation.

3 Experiments

3.1 Data sets

We use the GREC 2011 data set [16] that contains 150 model architectural and
electrical symbols, and three data sets (called NoiseA, NoiseB and NoiseE) of
images with different levels of degradation. In each of the three noisy data sets,
there are 25 degraded images for every symbol class.

We configure 150 COSFIRE filters to be selective for the 150 models. Subse-
quently, we apply each resulting filter to the remaining 149 symbols that have
different meaning than the symbol used for its configuration. It turns out that
26 COSFIRE filters give strong responses also to non-preferred symbols. In our
experiments we only use test images that come from the 26 problematic symbol
classes, Fig. 5. In practice, we form three subsets of test images, namely sub-
NoiseA, sub-NoiseB and sub-NoiseE of (25× 26 =) 650 images each. The model
symbol images are of size 512× 512 pixels, while the noisy images in the subsets
are of size 256 × 256 pixels. The lines in the ideal models have a thickness of 9
or 18 pixels.

Fig. 6a shows a model symbol and Fig. 6(c-d) show three symbols of the same
class from the subsets sub-NoiseA, sub-NoiseB and sub-NoiseE, respectively.

3.2 Pre-processing

We resize by a factor of 2 the degraded images in the sets sub-NoiseA, sub-NoiseB
and sub-NoiseE in order to bring them to the same size of the model images.
For the images in sub-NoiseA and sub-NoiseB we apply some morphological
operations, which we explain below, so that the thickness of their lines becomes

Shi
Underline
should be '14'
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Fig. 5. A set of 26 symbols from the GREC 2011 data set. [16]. The symbol in the top
left corner is contained within the symbol below it, which in turn is contained within
the symbol in the bottom left corner. The top two symbols in the second column are
both contained within the symbol in the third row of the same column. The symbols in
the first row of the remaining columns are contained within the corresponding symbols
of the second row.

(a) (b) (c) (d)

Fig. 6. Examples from the GREC 2011 data set [16]. (a) A model symbol image. (b-d)
Degraded symbols of the same class from the data sets of noisy images; (a) sub-NoiseA,
(b) sub-NoiseB and (c) sub-NoiseE.

similar to those of the model symbols. Since the images in sub-NoiseE have
roughly the preferred line thicknesses, we do not apply any pre-processing.

For the images in sub-NoiseA, we first dilate them by six line-shaped struc-
turing elements of 6 pixel length with different orientations ({0, π6 ,

π
3 , . . . ,

5π
6 }).

After that, we take the maximum value in every location across these six dila-
tion maps. Then we perform a thinning operation followed by six dilations using
line-shaped structuring elements of 4 pixel length with equidistant orientations.
The final preprocessed image is obtained by taking the maximum value in every
pixel location among the resulting dilation maps.

For the images in sub-NoiseB, we perform opening and thinning followed by
a dilation operation using a series of line-shaped structuring elements of 4 pixels
length in six orientations. Finally, we superimpose these six dilation maps by
taking the maximum value in each location.

Fig. 7a and Fig. 7b show the preprocessed images corresponding to the noisy
images in Fig. 6b and Fig. 6c.

3.3 Implementation

We configure 26 COSFIRE filters with inhibition to be exclusively selective for
the 26 model symbols. For the configuration we apply the following approach.
We configure a COSFIRE filter without inhibition for a given model symbol,
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(a) (b)

Fig. 7. Examples of the preprocessed images. (a) The improved image of Fig. 6b in
sub-NoiseA and (b) the preprocessed image of Fig. 6c in sub-NoiseB.

apply the resulting filter to the remaining 25 model symbols and threshold the
maximum values of each response map at a given threshold ε. The value of the
threshold parameter ε is a fraction of the maximum response that the filter
achieves when it is applied to its preferred model symbol. The symbol images
that evoke responses greater than (ε =) 0.3 are considered as negative proto-
type patterns. Then we use these automatically selected negative patterns to
determine the inhibitory line segments and configure a COSFIRE filter with in-
hibition (ζ = 12 pixels) that is exclusively selective for patterns similar to the
positive prototype symbol (of size 512× 512 pixels). We perform this procedure
for each of the 26 symbols.

Next, we apply the 26 filters with inhibition to each model symbol by using
the method in Section 2.3. We investigate the inhibition factor by systematically
varying the value of parameter η between 0 and 3 in intervals of 0.2. For η = 1.4
the filters give responses only to the preferred positive prototype patterns.

Then we apply these 26 inhibition-based COSFIRE filters with η = 1.4 to
the preprocessed images in sets sub-NoiseA and sub-NoiseB and to the non pre-
processed images of sub-NoiseE.

3.4 Evaluation and results

In the first experiment we only use the 26 model images. Fig. 8 shows a com-
parison between the results obtained by the COSFIRE filters in their basic form
and COSFIRE filters with the proposed inhibition mechanism. The results are
shown in the form of a confusion matrix where the value at location (i, j) is the
maximum response of the filter Sfi (that was configured by model i) to a model
image j. Fig. 8a shows the results of the COSFIRE filters without inhibition,
the matrix of which is less sparse than that in Fig. 8b that is achieved by COS-
FIRE filters with inhibition. The off-diagonal non-zero elements in the left panel
indicate that the corresponding COSFIRE filters without inhibition respond to
more than one symbol. The absence of such elements in the right pannel means
that each of the COSFIRE filters with inhibition responds only to one symbol,
the positive pattern with which it was configured.

A given image is classified to the class of the positive prototype symbol by
which the inhibition-based COSFIRE filter that achieves the maximum response
was configured. The proposed inhibition-based approach achieves 100% accuracy
while the one without inhibition achieves 97.78% accuracy.
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Fig. 8. Results of COSFIRE filters (a) without and (b) with inhibition. The matrices
are of size 26×26; the columns represent model images and the rows represent configured
COSFIRE filters. The elements of the matrices are the maximum responses of the filters
to the 26 images.

In Table. 1 we report the results that we achieve for the three noisy subsets
of test images.

Table 1. Accuracy (%) on three sub sets of (26 × 25 =) 650 noisy images each taken
from the GREC data set [16]

sub-NoiseA sub-NoiseB sub-NoiseE Average

Inhibition-based COSFIRE 99.85 99.35 99.92 99.71

Original COSFIRE 97.83 97.46 91.51 95.60

4 Discussion

We propose an inhibition mechanism to the COSFIRE filters in order to increase
their discimination ability. The inhibition mechanism involves the determination of
line segments from training examples whose presence is used to suppress the response
of the filter. This was inspired by the functionality of shape-selective TEO neurons in
visual cortex. The firing rate of such a neuron can be suppressed by certain contour
parts in specific positions within its receptive field [4].

The way we perform classification follows what is known as the grandmother cell
hypothesis in neuroscience, in that the label of an input image is determined from one
filter, the one that gives the strongest response. As already shown in [3], COSFIRE
filters can be used in what is known as population coding in neuroscience, whereby
a feature vector is formed by their maximum responses to an input image. In this
technique COSFIRE filters are configured with small parts of patterns of interest and
it is suitable for applications where the involved patterns are more deformable, such as
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handwritten digits [1]. In future work we aim to investigate the effectiveness of feature
vectors formed by the responses of the proposed COSFIRE filters with inhibition in
classification tasks. Our speculation is that the resulting sparser vectors will improve
the discriminating power. In principle, sparseness is a desirable feature as it increases
storage capacity and allows the discrimination of more patterns.

Besides the recognition of architectural and electrical symbols the proposed method-
ology can be considered as a general framework for the classification of any sketched
symbols. It first configures a number of COSFIRE filters, then it learns inhibitory input
for each filter. At application stage it applies them simultaneously to a test image and
classifies the image with the label of the filter that achieves the maximum response.

5 Conclusions

The proposed COSFIRE filters with inhibition mechanism are highly effective. In our
experiments on architectural and electrical symbols we demonstrated that COSFIRE
filters with inhibition improve the classification performance significantly on symbol
classes that are contained within other classes. We achieve a recognition rate of 100%
for the subset of 26 models and an average rate of 99.71% for the three subsets of noisy
images.
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