

University of Groningen

The enzyme DXS as an anti-infective target

Masini, Tiziana

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Masini, T. (2015). The enzyme DXS as an anti-infective target: Exploiting multiple hit-identification strategies [Groningen]: University of Groningen

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

The enzyme DXS as an anti-infective target

Exploiting multiple hit-identification strategies

Tiziana Masini

The work described in this thesis was carried out at the Stratingh Institute for Chemistry, University of Groningen, The Netherlands.

This work was financially supported by the University of Groningen and the Netherlands Organisation for Scientific Research.

Printed by Ipskamp Drukkers BV, Enschede, The Netherlands.

The cover, inspired both by a lecture by Prof. Hugo Kubinyi and the wonderful countryside of Toscana, was drawn by Giacomo Callari, artist and friend.

ISBN: 978-90-367-8257-9 (printed version) ISBN: 978-90-367-8256-2 (digital version)

The enzyme DXS as an anti-infective target

Exploiting multiple hit-identification strategies

PhD Thesis

to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans.

This thesis will be defended in public on

Friday 13 November 2015 at 14.30 hours

by

Tiziana Masini

born on 6 September 1983 in Viareggio, Italy

Supervisors Prof. A.K.H. Hirsch Prof. ir. A.J. Minnaard

Assessment committee

Prof. F.J. Dekker Prof. W.R. Browne Prof. C.L. Freel Meyers

To my father and to myself

Table of contents

Chap	oter 1. Inti	roduction	1
1.1	Drug discovery for poverty-related diseases		
1.2	-	based approaches <i>vs</i> phenotypic screening for the development of gs for poverty-related diseases	3
1.3	Tubercu	losis	5
1.4	The 2C-methyl-D-erythritol 4-phosphate (MEP) pathway		
	1.4.1 1.4.2	Isoprenoids Biosynthesis of isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate: two distinct metabolic pathways	8 8
	1.4.3 1.4.4	Challenges in targeting the enzymes of the MEP pathway Mechanism of regulation of the MEP pathway and branch points with other metabolic pathways	10 13
1.5	Overviev	w of inhibitors of the enzymes of the MEP pathway	14
1.6	1-Deoxy-D-xylulose-5-phosphate synthase (DXS)		
	1.6.1	Known inhibitors of DXS	22
1.7	Project g	goals and outline	25
1.8	Referen	ces	26
Chap		<i>novo</i> fragment-based design of inhibitors of DXS guided by IR spectroscopy	31
2.1	Fragmer	nt-based drug design	32
2.2	Study of	the TDP-binding mode within <i>D. radiodurans</i> DXS	32
2.3	First ger	neration of fragment-like inhibitors for DXS	34
	2.3.1 2.3.2 2.3.3	Modeling studies and synthesis of fragments 4 and 5 Modeling studies and synthesis of fragments 13 and 14 Biochemical evaluation of the synthesized fragments against <i>D. radiodurans</i> and M. <i>tuberculosis</i> DXS	34 37 42
2.4	NMR spectroscopy in drug discovery		
	2.4.1	The STI methodology	44
2.5		Determination of the binding mode of fragments 13 and 14 in solution using the STI-NMR methodology	
2.6	Fragment growing and optimization of 13		
	2.6.1 2.6.2	Modeling of some derivatives of 13 Synthesis of 34–42	51 53

	2.6.3 2.6.4	Biochemical evaluation of 34_42 Validation of the binding mode of 41 using the STI methodology	55 57		
2.7	Conclusions and outlook				
2.8	Experimental				
2.9	Referen	ces	75		
Chap		velopment of peptidic inhibitors of the anti-infective target S by phage display	79		
3.1	Peptides	s as therapeutic agents	80		
3.2	Phage display as a powerful tool for the identification of potential peptide- based drugs		81		
3.3	Exploitin of DXS	g phage display as a tool for the identification of peptidic inhibitors	83		
3.4	The pha	ge display protocol	84		
3.5	First pha	age display	86		
3.6	Second	phage display	87		
3.7	Rational	ization of the binding mode – Ala scan	90		
3.8	In vitro assays	activity against Mycobacterium tuberculosis DXS and cell-based	92		
3.9	Conclus	ions and outlook	92		
3.10	Experim	ental	93		
3.11	Referen	ces	96		
Chapter 4. Rationalization of observed activities of thiamine and thiamine diphosphate derivatives as inhibitors of two orthologues of DXS					
4.1	Thiamin	e and thiamine diphosphate analogues	100		
4.2	Synthes	is and biochemical evaluation of thiamine and TDP derivatives	102		
4.3		ison of the TDP- and substrate-binding pocket in <i>D. radiodurans</i> d <i>M. tuberculosis</i> DXS	105		
4.4		nent of docking accuracy and rationalization of the differences in between the two DXS orthologues	107		
4.5	Phospha	ate and diphosphate bioisosteres	108		
4.6	Sugars a	as diphosphate mimics	108		

	4.6.1 4.6.2	Synthesis of the sugar derivatives Biochemical evaluation of the sugar derivatives	110 111		
4.7	Conclus	sions and outlook	113		
4.8	Experim	nental	114		
4.9	Referer	ices	116		
Chap		PQuery-based design of potential inhibitors of DXS and their Inthesis via multicomponent reactions	119		
5.1	Multicor	mponent reactions in medicinal chemistry	120		
5.2	Anchor	Query and TPPQuery	121		
5.3	Workflo	w in <i>TPPQuery</i>	123		
5.4	TPPQu	ery with Deinococcus radiodurans DXS	124		
5.5	Scaffold 5.5.1 5.5.2 5.5.3 5.5.4 5.5.5	 1: Zhu reaction Problems and limitations associated with the isocyanide building block in the Zhu reaction Selection of the Zhu scaffold Retrosynthesis of 8 Synthesis of the starting materials for the Zhu reaction Screening of conditions for the Zhu reaction 	124 125 127 128 129 131		
5.6	Scaffold 2: Van Leusen reaction		132		
	5.6.2	Retrosynthesis of 28–30 Synthesis of the starting materials for the Van Leusen reaction Screening of conditions for the Van Leusen reaction	134 135 136		
5.7	Scaffold 3: the Groebke reaction				
	5.7.1 5.7.2	Retrosynthetic scheme of 45 and 46 Synthesis of the starting materials for the Groebke reaction	141 142		
5.8	Conclus	sions and outlook	144		
5.9	Experimental		146		
5.10	Referen	nces	150		
Chap	Chapter 6. Ligand-based virtual screening as a powerful tool for the discovery of DXS inhibitors with potent antituberculotic activity				
6.1	High-th	roughput screening and virtual screening in drug discovery	156		
6.2	Ligand-based virtual screening		157		
6.3	First rou	und of LBVS based on known inhibitors for DXS	158		

Ackno	Acknowledgments		
Same	Samenvatting		
Sumn	Summary		
6.14	References	185	
6.13	Experimental	181	
	6.12.1 General approaches for the synthesis of derivatives of the best hits	180	
6.12	Conclusions and outlook	179	
6.11	Cytotoxicity assays and preliminary cell-based assays against <i>Plasmodium falciparum</i> 3D7	178	
6.10	Cell-based assays against multiple strains of <i>M. tuberculosis</i>	175	
6.9	Biochemical evaluation of the most potent hits against a mammalian TDP- dependent enzyme: pyruvate dehydrogenase	174	
6.8	Distribution of molecular weight and cLogP among all hits of our LBVS project	172	
6.7	Discussion of structure-activity relationships (SARs)	169	
6.6	Third and fourth round of LBVS	165	
6.5	Second round of LBVS	164	
6.4	First round of LBVS based on three novel scaffolds	160	