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1 Introduction

1.1 Motivation and background

Sparse matrices arising from the numerical solution of systems of partial dif-
ferential equations often exhibit a perfect block structure, meaning that the
nonzero blocks in the sparsity pattern are fully dense (and typically small),
e.g., when several unknown quantities are associated with the same grid
point. Finite element and finite difference matrices have some degree of com-
pression if there is more than one solution component at a grid point. For
example, a plane elasticity problem has both x- and y-displacements at each
grid point; a Navier-Stokes system for turbulent compressible flows would
have five distinct variables (the density, the scaled energy, three compo-
nents of the scaled velocity, and the turbulence transport variable) assigned
to each node of the computational mesh; a bidomain system in cardiac elec-
trical dynamics couples the intra-and extra-cellular electric potential at each
ventricular cell of the heart; and so on. After numbering consecutively the `
distinct variables associated with the same grid point, the permuted matrix
has a sparse block structure with nonzero blocks of size ` × `. The blocks
are usually fully dense, as variables at the same node are mutually coupled.
Blocking can be sometimes unravelled on general sparse unstructured ma-
trices by numbering consecutively rows and columns having a resembling
pattern, and treating some zero entries in the reordered matrix as nonzero
elements, with a little sacrifice of memory.

Meanwhile, on today’s emerging computer platforms, the costs of moving
the data between fast and slow memory in the sequential case, or differ-
ent processors in the parallel case, are decreasing at a much slower rate
relatively to the costs of arithmetics. Minimizing the volume of these com-
munications is the key to obtain good performance of numerical algorithms
on modern cache-based architectures. Conventional linear algebra kernels
for dense matrices can achieve computational rates near the theoretical peak
by partitioning the matrix into small sub-blocks that fit the cache size, and
rethinking the computation blockwise [33, 1]. Sparse codes are more diffi-
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cult to optimize, as they typically perform only a few operations per datum.
Significant algorithmic modifications and highly-tuned data structures may
be required to exploit efficiently the sparsity of the matrix, and take full
advantage of the hardware of current top-class computer systems.

By finding symbiotic relationships between dense and sparse computa-
tion, e.g. using dense matrix kernels in both assembly and elimination op-
erations, abreast sparse direct codes can achieve high computational rates
without incurring a significant increase in arithmetic operations for large
scale realistic factorizations [34, p. 136]. Similar strategies are advocated
for the iterative solutions of large linear systems arising from the discretiza-
tion of three dimensional (3D) partial differential equations (PDEs). In this
case, efficient direct solvers may be applied to solve either a nearby problem
or a local problem defined on a sub-block of the matrix, or a sub-domain
of the underlying physical mesh, sometimes increasing the size of the solv-
able system by an order of magnitude or two [35]. Computational experi-
ence indicates that block methods often show better performance than their
pointwise analogues in the solution of many classes of 2D/3D PDEs (see
e.g. [27, 29, 63, 12, 61, 4, 13]). As a rule of thumb, if the underlying physical
problem has a natural block structure, it is often convenient to exploit this
structure in the design of numerical algorithms.

In this thesis, we present a variable block algebraic recursive multilevel
solver (called VBARMS) that takes advantage of these frequently occurring
structures in the iterative solution. The VBARMS method detects auto-
matically existing exact or approximate dense structures in the coefficient
matrix without any users prior knowledge of the underlying problem, achiev-
ing improved reliability and increased throughput during the computation
on realistic applications. We review and compare different block ordering
techniques and we introduce a novel graph compression algorithm to find
approximate dense blocks structures, which requires only one simple to use
parameter. As implementation details are always critical aspects to consider
in the design of sparse matrix algorithms, we present two implementation
strategies of the partial (block) factorization step and compared their per-
formance.

Moreover, we also develop a novel parallel MPI-based implementation of
VBARMS (called pVBARMS) for distributed memory computers based on
the block Jacobi, the additive Schwarz and the Schur-complement meth-
ods. We propose a study of the numerical and parallel scalability of the
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pVBARMS method on a set of general linear systems arising from different
application fields. A new graph partitioning strategy is also proposed to
optimize the distribution of the matrix in a parallel setting.

Finally, we assess the performance of the pVBARMS method for solving
the Navier-Stokes equations on a suite of two- and three-dimensional test
cases, among which the calculation of the turbulent flow past the DPW3-W1
wing configuration of the third AIAA Drag Prediction Workshop, which is
the application that motivated this study. The choice of linear solver and
preconditioner has a substantial effect on efficiency when the mean flow and
turbulence transport equations are solved in fully coupled form, like we do.
Our analyses in this thesis are carried out with coarse to medium-sized grids
featuring up to 2.5 million nodes at Reynolds number equal to 5 · 106.

The thesis is organized as follows1. In Chapter 2 we recall the classic angle-
based compression algorithm and present a novel graph-based compression
method for computing a suitable block ordering for a general sparse matrix.
In Chapter 3 we review some necessary background on Krylov subspace
methods and preconditioning technique for solving sparse linear systems
with a special focus on ILU and ILU based multi-level preconditioners. In
Chapter 4 we outline the main computational steps of the VBARMS method
and we illustrate the performance of VBARMS for solving a large set of ma-
trix problems arising from various applications. In the last section, we also
present comparative experiments on the performance between two different
implementations of VBARMS and also the comparison of the performances
of angle-based compression algorithm and our novel graph-based compres-
sion method. In Chapter 5 we move to parallel computing; first, we introduce
the basics which provides the framework that we use, and then we discuss
the parallel MPI-based implementation of the VBARMS code. Later, we
illustrate the parallel performance of VBARMS and numerical and parallel
scalability results. Finally, in Chapter 6 we test the performance of the new
solver on large block structured linear systems arising from Computational
Fluid Dynamics applications.

1Parts of the material presented have been published in journal papers [22, 24] and
conference proceedings [23, 20, 55, 56, 21].





2 Graph compression techniques

2.1 Matrix partitioning methods

Block iterative methods are attractive to use since they often show better
convergence rates and faster timings than their pointwise analogues in the
numerical solution of many classes of two- and three-dimensional partial dif-
ferential equations (PDEs). For PDEs discretized on regular cartesian grids,
a regular partition of the domain may provide an effective partitioning for
the matrix. E.g., for Poisson’s equation defined on a rectangle (0, `1)×(0, `2)
with Dirichlet boundary conditions, discretized uniformly by taking n1 + 2
points in the interval (0, `1) and n2 + 2 points in the interval (0, `2), after
numbering the interior points in the natural ordering from the bottom up,
one horizontal line at a time, one obtains a n2×n2 block tridiagonal structure
with square blocks having size n1 × n1. The diagonal blocks are tridiagonal
and the off-diagonal blocks are diagonal matrices. For large finite element
models, an obvious way to block the matrix is to use substructuring, since
each substructure of the underlying physical mesh corresponds to one sparse
block of the system. If the domain is highly irregular, or if the matrix does
not correspond to a differential equation, finding the best block partitioning
strategy is much less obvious. Several recent studies have shown the impor-
tance of exposing dense blocks during the factorization for achieving better
performance, see e.g. [22, 85, 43, 69].

In cases where no good partitioning of the matrix is known to the user,
graph reordering techniques are worth considering. The PArameterized
BLock Ordering (PABLO) algorithm proposed by O’Neil and Szyld is one
of the first graph partitioning algorithm especially designed for solving gen-
eral linear systems by block iterative methods [64]. The algorithm traverses
the adjacency graph of the matrix and selects groups of nodes so that the
corresponding diagonal blocks are either full or very dense, CuthillMcKee al-
gorithm also improves the density of the diagonal blocks [30]. Classical block
stationary iterative methods such as block Gauss-Seidel and SOR methods
combined with the ordering provided by PABLO require fewer operations
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than the point analogues for the finite element discretization of a Dirichlet
problem on a graded L-shaped region, and on the 9-point discretization of
the Laplacian operator on a square grid compared to the natural partitions
of the grid. The complexity of the PABLO algorithm is proportional to the
number of nodes and edges, i.e. the number of nonzeros in the matrix, in
both time and space.

One of the first compression methods especially designed to discover dense
blocks in a matrix was proposed by Ashcraft with the achieved objective of
reducing the ordering time of the minimum degree algorithm [3]. Ashcraft’s
method searches for sets of rows or columns of a matrix A having the exact
same pattern. In graph terminology, it looks for vertices u and v of the
adjacency graph (V,E) of A having the same adjacency list, that is adj(u) =
adj(v). Such nodes are also called indistinguishable nodes. The algorithm
assigns a checksum quantity to each vertex, e.g., using the function

chk(u) =
∑

(u,w)∈E

w, (2.1)

and then sorts the vertices by their checksums. This operation takes |E|+
|V | log |V | time. If u and v are indistinguishable, then

chk(u) ≡
∑

(u,w)∈E

w = chk(v) ≡
∑

(v,w)∈E

w.

Therefore, after sorting the vertices by their checksums, nodes having the
same checksum are examined. If |adj(u)| = |adj(v)|, then adj(u) and adj(v)
are explicitly compared to see if u and v are indeed indistinguishable. The
ideal checksum function would assign a different value for each different row
pattern that occurs, so that there is no need to compare patterns. Such a
perfect checksum function is not practical, though, because it leads to huge
numbers that may not even be machine-representable. Since the time cost
required by Ashcraft’s method is generally negligible relative to the time it
takes solving the system, simple checksum functions such as equation 2.1
are used in practice [3]. We recall the steps of the checksum algorithm
in Algorithm 2.1. We use the following notations: K(i) is the checksum
key for row i, K(u).key is the key value and K(i).row is the row number.
Group(i) = k means row i belongs to the group of row k, Group(i) = −1
means the row i is not selected yet.

The first step of Algorithm 2.1 calculates the checksum key for all rows,
and then it targets at one row and loops over the subsequent rows. If the
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checksum key are equal, then the pattern of the rows will be compared
exactly; if they are the same, add the row to the group.

Algorithm 2.1 Checksum algorithm.

Input: pattern matrix C
Output: set data structure for blocks

1: Initialize Group(i) = −1 for i, . . . , n
2: Compute all the keys of K(u) according to Eq. (2.1)
3: Sort the array K(u) in increasing K(u).key
4: for i = 1, 2, . . . , n do
5: row target = K(i).row; key target = K(i).key
6: for j = i+ 1, . . . , n do
7: row new = K(j).row; key new = K(j).key.
8: if key new 6= key target then
9: break.

10: else
11: if Group(i) = −1 and pattern(row new) ==

pattern(row target) then
12: Group(row new) = row target

Suppose now that the structurally symmetric matrix has an imperfect
block structure (imperfect block structure means there are some zero entires
in the nonzero blocks that are treated as nonzero entries). A simple example
of this situation is represented in Figure 2.1. As we described before, the
checksum algorithm only detects the rows having exactly the same pattern;
in this case, it will discover three nontrivial blocks on the left matrix (B1)
and only one nontrivial diagonal block on the right matrix (B2), which is
obtained by zeroing out the entry B1(7, 1) and, for symmetry, also B1(1, 7).
Clearly, we would prefer to apply the block structure of B1 to B2, by treating
B2(1, 7) and B2(7, 1) as nonzeros.

Sparse matrices with a relatively large number of nonzero elements per
row often show approximate dense structures, consisting mostly of nonzero
entries and only a few zeros. In this case the zeros in the blocks can be
treated as nonzero elements, with a little sacrifice of memory, and a more
efficient ordering may be generated for an iterative solver. These approx-
imate dense blocks can be discovered by numbering consecutively matrix
rows and columns having a similar sparsity pattern. However, extending
the checksum-based algorithm to handle this case would require to define
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B1 =



∗ ∗ 0 0 0 ∗ ∗
∗ ∗ 0 0 0 ∗ ∗
0 0 ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0 0

∗ ∗ 0 0 0 ∗ ∗
∗ ∗ 0 0 0 ∗ ∗


B2 =



∗ ∗ 0 0 0 ∗ 0

∗ ∗ 0 0 0 ∗ ∗
0 0 ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0 0

∗ ∗ 0 0 0 ∗ ∗
0 ∗ 0 0 0 ∗ ∗



Figure 2.1: Two examples of structurally symmetric matrices with a perfect
(on the left) and imperfect (on the right) block structure. We
denote by the symbol ”*” a nonzero entry and by solid lines
the block partitioning found by the checksum algorithm in both
cases.

a new checksum function that preserves the proximity of patterns, in the
sense that close patterns will result in close checksum values. This usually
does not hold for Ashcraft’s algorithm, at least in its original form.

Alternatively, Saad proposed in [69] to compare angles of rows (or columns)
of a matrix A to find approximate dense structures in the pattern of A. Let
C be the pattern matrix of A, having the same pattern as A and whose
nonzero values are equal to one. The idea of the method proposed by Saad
is to compute the upper triangular part of each row i of CCT . Entry (i, j) in
this row is the inner product, or cosine value, between row i and row j only
for j > i. If the cosine value is big enough, hence the corresponding angle, is
small enough, row j will be added to the same group of row i. The operation
is repeated for i = 1, . . . , n. Although it may appear expensive to compare
all the rows of a matrix with each other, as the algorithm progresses many
rows may already have been assigned so that the comparison can be skipped
leading to substantial savings. A first pass with the checksum-based algo-
rithm to detect any “exact” block structure may facilitate the search, as the
angle algorithm can be performed on the quotient graph which is typically
smaller. Then in the second pass the algorithm scans each non-assigned row
again to determine whether it can be added to an existing group. That is
the so-called Hybrid algorithm, we also recall it in Algorithm 2.2, further
details are found in [69]. The cost of Saad’s method is closer to that of
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checksum-based methods for cases in which a good blocking already exists,
and in most cases it still remains lower than the cost of the least expensive
block LU factorization [31, 59], i.e., block ILU(0).

Algorithm 2.2 Hybrid algorithm.

Input: pattern matrix C and tolerance τ
Output: set data structure for blocks

1: Run algorithm 2.1 to get an initial blocking Group0. Set Group0 =
Group

2: for i = 1, 2, . . . , n do
3: if Group(i) == −1 then
4: for {j|cij 6= 0} do
5: row = jth row; s = |Group0(j)|.
6: for k = nnzj , nnzj − 1, . . . , 1 do
7: col = row(k)
8: if col < i then
9: break.

10: else
11: if Group(col) == −1 then
12: Count(col) = Count(col) + s.
13: for {col|Count(col) 6= 0} do
14: if Count(col)2 > τ ∗ nnzi ∗ nnzcol then
15: Group(col) == i; update the size of Group(i)
16: Count(col) = 0.

A few notations used Algorithm 2.2 have to be explained here: Group0
is the initial blocking information computed by the checksum algorithm,
Group is the current blocking information, being updated during the proce-
dure. Their entries’ value equal -1 means the current row is the reference row
of a group, |Group0(j)| is the number of rows in this group, nnzj denotes
the number of nonzero elements in the jth row.

There are two main steps of Algorithm 2.2: one is the for loop at line 4, it
targets one reference row, and from bottom to top loops over all the subse-
quent rows; during the loop, it counts the number of same column indexes
for each row, and uses an array Count to store the number, Count(col) is
the number of same column indexes between row i and row col. The loop
at line 13 just simply traverses Count and calculates the angle between the
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current row and the reference row, then adds the current row to the refer-
ence row group if the angle is small enough. τ is a parameter applied by
the user, defining the maximum allowed angle in the calculation used for
merging two rows. τ ∈ [0, 1]. τ ’s value closer to 1 means the two rows’
pattern are closer.
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2.2 Experiments with angle-based compression
method

Next we want to show how to use the block ordering described in Algo-
rithm 2.2 to determine the block structure of general matrices.

We collected 13 matrix problems arising from different applications, they
are from University of Florida sparse matrix collection. In Table 2.1 we
report the size, application field, number of nonzero entries and percentage
of row/column diagonal dominance of the coefficient matrix.

Table 2.1: Set and characteristics of test matrix problems.

Name Size Application nnz(A)
row/colum
diag. dom.

RAE 52995 Turbulence analysis 1748266 2.95/6.02
STACOM 8415 Compressible flow 271936 3.01/8.75
BCSSTK35 30237 Automobile seat frame 1450163 1.29/1.29
BMW7ST 141347 Car body 7318399 0.32/0.32
CT20STIF 52329 Engine block 2600295 2.05/2.05
K3PLATES 11107 acoustics problem 378927 0.00/0.00
NASASRB 54870 Shuttle rocket booster 2677324 0.94/0.94
OILPAN 73752 Structural problem 2148558 23.67/23.67
OLAFU 16146 structural problem 1015156 0.12/0.12
PWTK 217918 Pressurized wind tunnel 11524432 0.42/0.42
RAEFSKY3 21200 Fluid structure interaction 1488768 27.64/27.62
S3DKQ4M2 90449 Finite element analysis 4427725 0.01/0.01
VENKAT01 62424 2D Euler solver 1717792 0.00/0.00

In Table 2.2 we report on the characteristics of the block ordering com-
puted by Algorithm 2.2. Before we start, some notations from Table 2.2
have to be explained. We already introduced the parameter τ . The column
b-size shows the average block size of A after the compression, and the col-
umn b-density shows the ratio of the number of nonzero entries in A before
and after the compression. It is b-density = 1 if the graph compression algo-
rithm finds a perfect block structure in A with fully dense nonzero blocks,
whereas b-density < 1 means that some zero entries in the blocks are treated
as nonzeros, regardless of their actual numerical value.

In our experiments, we initially set τ = 1 to find sets of rows and columns
having the same pattern and discover the presence of fully dense blocks in
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the matrix. The results are columns 2-4 of Table 2.2. For these results, we
do not include any extra zero entries into blocks, so the b-density is 100%,
The inherent block structure of the matrix can be detected. This is what
we call perfect blocking. However, we can also try to use a smaller value of
τ to enlarge the blocks by padding some zero entries.

Table 2.2: Block structure of test matrix problems, the highlighted matrices
are the ones that gained most from the τ value tuning.

Name τ b-size b-density (%) τ b-size b-density (%)

RAE 1.00 4.00 96.89 0.80 4.67 95.83
STACOM 1.00 4.11 97.10 0.80 4.36 95.97

BCSSTK35 1.00 4.57 100.00 0.90 5.07 99.29
BMW7ST 1.00 4.63 100.00 0.90 5.28 99.24
CT20STIF 1.00 2.61 100.00 0.90 3.47 96.61
K3PLATES 1.00 5.02 100.00 1.00 5.02 100.00
NASASRB 1.00 2.20 100.00 0.90 3.31 92.31
OILPAN 1.00 2.45 100.00 0.80 2.63 99.73
OLAFU 1.00 1.54 100.00 0.90 5.10 89.50
PWTK 1.00 4.67 100.00 0.90 5.48 99.04

RAEFSKY3 1.00 8.00 100.00 1.00 8.00 100.00
S3DKQ4M2 1.00 1.25 100.00 0.70 5.93 90.34
VENKAT01 1.00 4.00 100.00 1.00 4.00 100.00

Fig. 2.2 shows the difference between perfect and imperfect blocking on
one small matrix sample.

The compression algorithm exposed any existing (exact) block structure
fast and efficiently, without requiring any prior knowledge of the problem.
Some matrices were not detected as block matrices, e.g., the b-size param-
eter was approximately one for the S3DKQ4M2 and the OLAFU problems.
Choosing a different value for τ leaves the freedom to relax the similar-
ity pattern requirement in the rows/columns comparison, and enlarge the
nonzero blocks by treating some zero entries as nonzeros.

We tested different values for τ , ranging from 0.7 to 1 on these two prob-
lems; with very little sacrifice in memory, it was possible to obtain larger
blocks with still high density around 90%. By slightly decreasing the value
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Perfect blocking. Imperfect blocking.

Figure 2.2: An example of perfect and imperfect blocking computed by
the angle algorithm on a small sparse matrix using two different
values of τ . We can see in the right figure that large blocks may
be found by treating some zero entries as nonzeros.

of the dropping tolerance τ , we could increase the block size also for other
problems, like CT20STIF, NASASRB, OLAFU, S3DKQ4M2, as it is shown
in Table 2.2.

2.3 A new graph-based compression method 1

The angle-based compression depends on a parameter τ which determines
the proximity of row (or column) patterns. If the cosine of the angle be-
tween rows i and j is larger than τ , row j will be added to the group of
row i. For τ = 1, the method computes perfect dense blocks. Values of τ
smaller than one may produce larger blocks with some zeros entries padded
in the pattern. The use of approximate dense structures in the iterative so-
lution may clearly speed up BLAS3 operations, but also increases memory
costs and the probability to encounter singular blocks during the factoriza-
tion [22]. Therefore, tuning τ may be critical for performance. Finding the
best quality ordering, which minimizes the total solution time on a given
problem, may require performing several runs. For example, the b-density

1This method is proposed in [24]
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value may be sensitive to τ and much dependent on the matrix structure. In
the experiments reported in Table 2.3, we can see that a value of τ = 0.58
returns a b-density of 86.37% for the VENKAT01 matrix and a b-density of
45.06% for the STACOM matrix. In our experiments we found that values
of τ ≈ 0.6 are particularly critical.

Matrix τ = 0.56 τ = 0.57 τ = 0.58 τ = 0.59 τ = 0.60

STACOM 25.63 25.68 45.06 50.83 52.02

K3PLATES 37.78 38.73 58.62 58.70 59.16

OILPAN 50.08 50.09 50.23 50.23 90.65

VENKAT01 29.71 29.71 86.37 86.37 86.37

RAE 26.40 26.48 49.48 50.71 51.96

Matrix τ = 0.64 τ = 0.65 τ = 0.66 τ = 0.67 τ = 0.68

RAEFSKY3 63.32 63.32 63.32 95.23 95.23

BMW7ST 1 49.29 50.11 50.66 68.85 74.00

S3DKQ4M2 64.29 64.29 64.29 97.52 97.52

PWTK 57.05 57.31 57.48 94.23 94.75

Table 2.3: b-density (%) from the angle compression algorithm for different
values of τ .

Due to these problems, we have revisited Saad’s angle-based blocking
method and we have developed a new compression algorithm that computes
an ordering having an average b-density not smaller than a user-specified
value µ. The method works with the quotient graph G/B = (VB, EB). After
doing a first pass with the checksum-based Algorithm 2.1 to detect any
“exact” block structure in the matrix, it proceeds by merging nodes of VB,
also called supernodes or supervertices, provided that the b-density after
this operation does not drop below µ. Candidate supernodes for merging
are those having similar adjacent sets in V , that is supernodes Y and Z
such that adj(Y )∩ adj(Z) is largest, where we define the adjacency set of a
supernode Y as

adj(Y ) =
⋃
y∈Y

adj(y).

The rationale is to minimize the number of extra zeros padded after merging
the two blocks. Therefore the method calculates the b-density of Y ∪Z before
actually merging Y and Z. If this quantity is larger or equal than µ, the
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operation is performed and a new merging is attempted. Otherwise, the
algorithm will stop.

The total size of the rows and columns spanned by this new block is

T = 2 · |adj(Y ) ∪ adj(X)| · |Y ∪X| − |Y ∪X|2 ,

which is the amount of nonzero rows and columns times the size of the
supernode minus the square block on the diagonal which we count twice
since we count both columns and rows. The number of nonzeros spanned
by the new block is

N = 2 ·
∑

z∈Y ∪X
|adj(z)| −

∑
z∈Y ∪X

|adj(z) ∩ (Y ∪X)|,

which is the amount of adjacent nodes per node inside the supernode minus
the amount of nodes inside the diagonal block, which is again counted twice.
Algorithm 2.3 shows more details.

The for loop at line 5 also does the first pass of Hybrid algorithm, it
generates an initial block structure. The loop at line 15 performs the attempt
to merge the two blocks, it loops over the blocks (supernodes) generated by
the first, for each block, it traverses his neighbors and calculates the block
density after the merging, and then decides merging the two blocks or not.
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Algorithm 2.3 Graph based compression algorithm.

1: Compute the keys ki = chk(i) for all vertices i ∈ V = {1, . . . , n}
2: Set processed nodes pi = 0 ∀i = 1, . . . , n
3: Make a set of supernodes V = ∅
4: Set s to the indices V sorted by the corresponding value in k
5: for i = s1, . . . , sn do
6: if pi 6= 1 then
7: Add a new supernode Yi to V
8: for j = si+1, . . . , sn do
9: if ki 6= kj then

10: break
11: if adj(i) = adj(j) then
12: Add node j to Yi
13: Set pj = 1
14: Make a map M : i 7→ {Z ∈ V| i ∈ adj(Z)}
15: for X ∈ V do
16: for Z ∈

⋃
i∈XM(i) do

17: if b-density ≥ µ then
18: X = X ∪ Z
19: V = V\Z

The graph based algorithm depends on a parameter µ that is simple to use.
The output is an ordering with blocks having a minimum density value of µ.
For example, if we desire a b-density of around 60%, we simply set µ = 0.6
for every problem. In contrast, the b-density calculated by the angle-based
compression is an averaged value. This means that on highly irregularly
structured matrices, for some combinations of τ the computed orderings
may return some very sparse large blocks in addition to the dense blocks.
On the OILPAN matrix, using τ = 0.6, we obtained a block ordering having
an average density of 70% but some large blocks were only around 20% dense
(a region of this pattern is illustrated in Figure 2.3(a)). Therefore a correct
tuning of τ may require to run the full solver to see if a singular block is
encountered during the factorization. This problem is much less likely to
occur with the proposed graph-based compression algorithm. Section 4.3.3
shows detailed results of the performance of graph-based compression and
the comparison with angle-based compression algorithm.
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In this chapter, we recalled the angle-based compression algorithm and
introduced our new graph-based compression algorithm. These two methods
enable us to build a variable block structured matrix from the original point-
wise matrix, so using block solvers becomes possible and developing new and
more powerful block solver becomes necessary.
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(a) τ = 0.6

(b) τ = 1.0

Figure 2.3: Block pattern of the OILPAN matrix computed by the angle-
based compression method [24].



3 Krylov-subspace methods and
preconditioning

Before we introduce our new VBARMS solver, we would like to recall the
famous Krylov-subspace methods and preconditioning techniques for linear
systems which are the prerequisites for understanding VBARMS.

3.1 Solving linear systems with Krylov-subspace
methods

In many numerical simulations in science and engineering, solving the linear
systems:

Ax = b, (3.1)

where A is an large and sparse matrix and b is a given right-hand side vector,
is often the most time-consuming phase.

There are two popular types of methods for solving system (3.1), direct
methods and iterative methods. Direct methods [36] are based on the Gaus-
sian Elimination (GE) algorithm applied to the coefficient matrix A. Direct
solvers are very robust, but their computational cost is high. Moreover,
they also have very poor scalability in terms of operations and memory
cost, especially on matrices derived from 3D PDEs (see Chapter 6 of [34]).

The idea behind the basic iterative methods is to split the matrix A into
the sum of two matrices, one of which is easy to invert. For example, the well-
known Richardson iteration is based on the matrix splitting A = I−(I−A):

xi = b+ (I −A)xi−1 = xi−1 + ri−1, ri−1 = b−Axi−1 (3.2)

In contrast to direct solvers, normally, iterative methods require less mem-
ory cost and operation, especially when a high accuracy or absolute accurate
solution is not required. However, they are less robust than direct methods.

Normally, iterative methods involve improving the approximate solution
from one iterate to the next and updating a few components to achieve a
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better approximation like Eq. (3.2). The popular iterative methods are ba-
sic iterative methods like the classical Jacobi, Gauss-Seidel, and Successive
Over-Relaxation (SOR) method, see Chapter 4 of [70]. However, starting
from the mid-1970s, Krylov subspace methods got more and more popular.
The focus of this section is on Krylov subspace methods and basic precon-
ditioners.

The idea of the Krylov subspace methods is to search a solution in the
Krylov subspace Eq. (3.4), because the solution to a nonsingular linear sys-
tem lies in a Krylov space, see [48].

To introduce Krylov subspace methods, first we recall some basic concepts;
see Chapter 6 of [70]. A general projection method seeks an approximate
solution x in the affine subspace x0 +Km, so that the residual satisfies:

rm = b−Axm ⊥ Lm (3.3)

Lm is a subspace of dimension m, x0 is the initial guess to the solution.
This method is a Krylov subspace methods if the subspace Km is the Krylov
subspace

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0} (3.4)

There are different categories of Krylov subspace methods depending on
the choice of the subspace Lm.

1. Orthogonal projection methods

This corresponds to the choice Lm = Km(A, r0). Krylov subspace
methods belonging to this class are the full Orthogonalization Method
(FOM) [70] for general non-symmetric matrices, and the Conjugate
Gradient (CG) [47] method for symmetric, positive and definite (SPD)
matrices. CG is widely used in scientific computing. A combination
of CG and preconditioner (see Section 3.2) maybe considered as the
method of choice for solving large SPD sparse linear systems.

2. Orthogonal methods

This corresponds to the choice Lm = AKm(A, r0). The Generalized
Minimum Residual Method (GMRES) [72, 84] based on the Arnoldi
process [2] is the most popular algorithm in this class. Such a technique
minimizes the residual norm over all vectors in x0 + Km. Moreover,
GMRES has very good numerical stability. Several variants of GMRES



3.1. Solving linear systems with Krylov-subspace methods 21

have been developed, especially to try to reduce the computational
and memory cost of the original algorithm, like Restarted GMRES,
Quasi-GMRES and DQGMRES [70].

3. Bi-orthogonalization methods

This corresponds to the choice Lm = Km(AT , r0). The Bi-orthogonal
version of CG (BiCG) method belongs to this class. One drawback of
BiCG is that each step of the BiCG method requires a matrix-vector
product with both A and AT . Later research developed transpose
free variants of BiCG, such as the Conjugate Gradient Squared (CGS)
algorithm developed by Sonneveld in 1984 [78]. The CGS method
sometimes exhibits faster convergence than BiCG for roughly the same
computational and memory cost.

The CGS algorithm squares the residual polynomial, and this may give
rise to highly irregular residual norm convergence, and accumulation
of rounding errors in some cases. The Biconjugate Gradient Stabilized
(BICGSTAB) [83] method was developed to amend this.

4. Normal equation methods

The choice Lm = Km(ATA,AT r0), corresponds to apply CG to the
normal equations ATAx = AT b, methods in this class are CGNR (N
for “normal” and R for “Residual”) and CGNE (N for “normal” and
E for “Error”).

3.1.1 GMRES: The Generalized Minimum Residual Method

We will briefly recall the procedure of the GMRES method, since it is the
one we use in our numerical experiments.

The GMRES is an algorithm based on the Arnoldi process [2]. It com-
putes the orthonormal basis of the Krylov subspace as follows: start with
v1 = r0/‖r0‖2 (step 1 of Algorithm 3.1). Assuming that we already have
an orthonormal basis v1, v2, . . . , vj for subspace Kj(A, r0). At step j the
algorithm implements a modified Gram-Schmidt procedure [42] to find the
next basis vector vj+1. It computes wj = Avj (line 4 of Algorithm 3.1),
then it orthonormalizes wj with respect to v1, v2, . . . , vj (line 5-7 and 11 of
Algorithm 3.1).

It is obvious that v1, v2, . . . , vm forms an orthonormal basis of Km(A, r0).
If we denote by Vm the matrix with columns v1, v2, . . . , vm, then we have
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AVm = Vm+1Hm+1,m (3.5)

where Hm+1,m is a m + 1 by m Hessenberg matrix and its entries hi,j are
defined in Algorithm 3.1. Since any vector x in x0 +Km can be written as

x = x0 + Vmy (3.6)

with y the m-vector of coefficients of the linear expansion. Eq. (3.5) leads
to

b−Ax = b−A(x0 + Vmy)

= r0 −AVmy
= βv1 − Vm+1Hm+1,my

= Vm+1(βe1 −Hm+1,my)

(3.7)

The approximation computed by GMRES is the unique vector of the
Krylov space x0 +Km that minimizes Eq. (3.7). The minimizer ym is cheap
to compute because it solves a small (m+ 1) × m least-square problem.

Algorithm 3.1 GMRES

1: Choose x0, r0 = b−Ax0 and v1 = r0/‖r0‖2. β = ‖r0‖2
2: Define the (m+ 1)×m matrix Hm+1,m = {hij}. Set Hm+1,m = 0
3: for j = 1, 2, . . . ,m do
4: wj = Avj
5: for i = 1, 2, . . . , j do
6: hij = (wj , vi)
7: wj = wj − hijvi
8: hj+1,j = ‖wj‖2,
9: if hj+1,j = 0 then

10: goto step 12
11: vj+1 = wj/hj+1,j

12: xm = x0 + Vmym, where ym minimizes ‖βe1 −Hm+1,my‖2

But in the practical implementation, when m increases, each new itera-
tion costs more operation counts and memory than the one before it. To
improve this, we can restart the algorithm at every m steps, using the ap-
proximate solution xm as initial guess for a new GMRES process continuing
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and repeating this process until convergence. This idea leads to the restarted
GMRES method sketched in Algorithm 3.2.

Algorithm 3.2 GMRES(m), also called restarted GMRES

1: Choose x0, r0 = b−Ax0 and v1 = r0/‖r0‖2. β = ‖r0‖2
2: Define the (m+ 1)×m matrix Hm+1,m = {hij}. Set Hm+1,m = 0
3: for j = 1, 2, . . . ,m do
4: wj = Avj
5: for i = 1, 2, . . . , j do
6: hij = (wj , vi)
7: wj = wj − hijvi
8: hj+1,j = ‖wj‖2,
9: if hj+1,j = 0 then

10: goto step 12
11: vj+1 = wj/hj+1,j

12: xm = x0 + Vmym, where ym minimizes ‖βe1 −Hm+1,my‖2
13: Restart:
14: rm = b−Axm;
15: if satisfied then
16: stop
17: else
18: x0 = xm, v1 = rm/‖rm‖ and go to line 3

While the original GMRES is guaranteed to converge in at most n (the
matrix dimension) steps, the restarted GMRES [38] looses this optimality
property and it can stagnate when the matrix is not positive definite. The
restarted algorithm destroys the Krylov subspace and starts all over. It is
possible that the Krylov subspace may not be large enough to converge fast,
and the solution may not be found. In order to overcome this and to reduce
the number of iteration steps, an effective preconditioner can be used.

3.2 Preconditioning techniques

Lack of robustness is a widely recognized weakness of iterative methods
with respect to direct methods. Iterative methods may suffer from slow
convergence on problems arising from practical applications.

The use of preconditioning techniques is meant to improve the perfor-
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mance and reliability of Krylov subspace methods. It is widely recognized
that preconditioning plays a very vital role in developing efficient solvers for
difficult matrices in scientific computing.

The term preconditioning refers to transforming the original linear sys-
tem into another system in which the solution process has better properties
to converge. When the coefficient matrix A is highly nonsymmetric and/or
indefinite, iterative methods need the assistance of preconditioning to trans-
form system Eq. (3.1) into an equivalent system, more amenable to an iter-
ative solver. The transformed preconditioned system can be written in the
form

M−1Ax = M−1b (3.8)

when preconditioning is applied from the left, and

AM−1y = b, x = M−1y (3.9)

when preconditioning is applied from the right.

The matrix M is a nonsingular approximation to A, and is called the pre-
conditioner matrix. There are different types of preconditioners, like diag-
onal preconditioner (Jacobi preconditioner)[5], Symmetric Successive Over-
Relaxation (SSOR) preconditioner [4], the Sparse Approximate Inverse pre-
conditioner (SPAI) [57, 26] and Incomplete LU factorization preconditioner
(ILU). We will only briefly introduce ILU [28] in this thesis since that is the
one related to our research.

3.2.1 Incomplete LU factorization preconditioner

Triangular factors L̄ and Ū can be obtained if we factorize the coefficient
matrix A via Gaussian Elimination (GE). By discarding part of the fill-in
during the factorization process we can get simple and powerful precondi-
tioners M = L̄Ū , where L̄ and Ū are incomplete (approximate) LU factors.

Various strategies for selecting the sparsity patterns of L̄ and Ū lead to
different methods, see e.g. [70]. A stable ILU factorization is proved to exist
for arbitrary choices of the sparsity pattern of L̄ and Ū only for particular
classes of matrices, such as M-matrices [60] and H-matrices with positive
diagonal entries [86].

Let n = {1, 2, . . . , n}, we fix a subset S ⊆ n × n which contains a set
of positions in the matrix, which usually includes the diagonal line and all
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nonzero-element positions. Fill-in in the LU factors is allowed only in the
positions achieved by S. Formally, we can describe the key step of ILU
decomposition as follows

aij =

{
aij − aika−1kk akj , if(i, j) ∈ S

aij , otherwise
(3.10)

for each k and for i, j > k.
If S represents the set of nonzero-element positions of coefficient matrix A,

we obtain ILU(0) which does not allow any fill-in. It is easy to implement and
cheap to compute. It also shows good performance on easy problems such
as diagonally dominant matrices. However, for more realistic and difficult
problems, a more accurate and sophisticated preconditioner which allows
more fill-in in the construction is required to improve the accuracy.

A hierarchy of ILU preconditioners can be obtained based on the “levels
of fill-in” concept. The definition of initial level of fill-in of a matrix entry
aij is as follow:

levij =

{
0, if aij 6= 0 or i = j
∞, otherwise

(3.11)

This entry is modified at each step during the ILU process. Its value is
updated according to

levij = min{levij , levik + levkj + 1}. (3.12)

where the positive integer p denotes the level of fill, the p level ILU pre-
conditioner is referred to as ILU(p). All fill-ins whose level is greater than p
are dropped. The case p = 0, corresponds to ILU(0) introduced before. As
the level increases, the cost and accuracy grow. Normally, ILU(1) is a good
option for most problems. It is a considerable improvement over ILU(0), and
the computational and memory cost is still acceptable for many practical
problems.

However, ILU(p) is blind to the numerical values of the entries because the
dropping is only determined by the structure of A. Because of this, ILU(p)
may not be that effective on certain type of problems, especially for matrices
which are far away from being diagonally dominant. Many small absolute
value fill-ins are stored during the ILU(p) process. They only contribute
little to the preconditioner performance but increase the storage. To avoid
this situation, some other methods where new fill-in entries are accepted or
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dropped based on their magnitude rather than their locations are proposed.
With these techniques, the zero pattern S is determined dynamically.

Saad [70] has proposed the dual threshold based ILU preconditioner. The
basic idea is to fix a dropping tolerance τ and a number p which is the
maximal amount of fill-in in each row of the incomplete LU factors; at each
step of the elimination process, only p nonzero entries are computed in each
row with magnitude smaller than τ . This dual threshold ILU is denoted
as ILUT(τ , p). It allows more flexibility by tuning both parameters τ and
p. Lower values of τ and higher values of p increase the accuracy of the
computation. We mostly use ILUT in the following chapters.

Many techniques can help improve the quality of the preconditioner on
more general problems, such as reordering, scaling, diagonal shifting, piv-
oting and condition estimators [37, 74, 62, 15]. As a result of this active
development, in the past decade several successful computational experi-
ences have been reported using ILU preconditioners in areas that were the
exclusive domain of direct solution methods like, e.g., in circuits simulation,
power system networks, chemical engineering plants modeling, graphs and
other problems not governed by PDEs, or in areas where direct methods have
been traditionally preferred, such as structural analysis, and semiconductor
device modeling (see e.g. [71, 14, 12, 58, 73]).

Classic ILU preconditioners are designed to be a class of methods for
solving general sparse linear systems of equations. Algebraic MultiGrid
(AMG) [6, 7, 45] methods are a type of multilevel solvers for linear systems
introduced initially in 1970s by Ruge and Stuben [65]. Its performance
highly depends on the underling PDE problem. For some classes of PDEs,
AMG methods exhibit linear stability, meaning that the number of itera-
tions is linearly grid independent. ILU preconditioners are more general
than AMG and can work on many problems where AMG fails, but their
weakness is the poor scalability; the convergence rate normally deteriorates
as the matrix size grows. Nowadays, the computational problems tend to
be larger and larger, so it is attractive to develop methods which combine
the generality of the ILU method and the scalability of AMG.

Previous research already proposed some ILU based multilevel meth-
ods [8]. We will recall them in the next section.
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3.3 Multilevel Incomplete LU (ILU) decomposition
solvers

3.3.1 ILUM: A Multi-elimination ILU preconditioner

Graph theory is an ideal tool for representing the structure of sparse matrices
and for this reason it plays a major role in sparse matrix computation. Recall
that a graph can be defined by two sets: one is the set of vertices

V = {υ1, υ2 . . . , υn}, (3.13)

and a set of edges E which consists of pairs (υi, υj), where υi, υj are elements
of V , so we have:

E ⊆ V × V. (3.14)

This graph G = (V,E) is a way of representing a binary relation of a set
V . In the sparse matrix context, the adjacency graph of sparse matrix A is
a graph G = (V,E), whose n vertices in V represent the n unknowns and
whose edges represent the binary relations established by the linear system.
There is an edge from vertex j to vertex i when aij 6= 0. Here, the graph is
directed, unless the matrix A is structurally symmetric (aij = 0 iff aji = 0
for all 1 ≤ i, j ≤ n).

A multi-elimination ILU preconditioner (ILUM) is an incomplete factor-
ization technique based on independent set orderings [70, 68]. The idea is to
find the independent set, and then eliminate the unknowns associated with
it, then to obtain a smaller reduced linear system and solve it recursively.

During the Gaussian elimination process, parallelism can be exploited if
the unknowns xi and xj are independent from each other (aij = 0 and aji = 0
in the matrix A) during the factorization. So there are two extreme cases;
one is all the unknowns are all independent, i.e. the matrix is diagonal, the
other one is that the matrix is fully dense. Sparse matrices derived from
applications are somewhere in between these two extremes. To design this
multilevel Gaussian elimination process, we only need to find a permutation
matrix P to permute the input matrix A to a 2× 2 block matrix

PAP T =

(
D F
E C

)
, (3.15)

where D is diagonal and C is arbitrary. Different reordering schemes can be
used for this purpose, like independent set orderings, multicolor orderings;
see also [68]. Here, we only introduce the simple greedy algorithm.
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Definition 3.3.1. Let G = (V,E) denote the adjacency graph of the matrix
A, and let (x, y) denote an edge from node x to node y. We define an
independent set S as subset of the vertex set V , such that

if x ∈ S and { (x, y) ∈ E or (y, x) ∈ E } → y /∈ S. (3.16)

Simply speaking, the elements in S are not allowed to have couplings between
each other, either in forward or backward direction.

Throughout the thesis, we use the term independent set to always refer
to the maximal independent set.

The procedure of a greedy algorithm consists of traversing all the nodes in
S, starting from an empty set S, and visiting the nodes in increasing index
order. For every node, it marks the node itself and its neighbors, finds the
unmarked nodes which are not coupled with S, then adds them into S.

Algorithm 3.3 Greedy algorithm for independent set ordering.

1: Let S = ∅
2: for j = 1, 2, . . . , n do
3: if node j is not marked then
4: S = S ∪ {j}.
5: Mark j and all its nearest neighbors.

The idea of greedy algorithm was also used in the paper [32] to create
rank-k updates by having independent pivots.

The greedy algorithm compute the reordering matrix P , and the reorder-
ing matrix P permute the input matrix into the form in Eq. (3.15) 2×2 block
structure. At this stage, the actual multi-elimination factorization can be
computed.

The following block LU decomposition is performed to eliminate the un-
knowns of the independent set by performing this block LU decomposition(

D F
E C

)
=

(
I 0

ED−1 I

)
×
(
D F
0 A1

)
(3.17)

A1 is the Schur complement which is calculated via

A1 = C − ED−1F (3.18)
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Figure 3.1: Pattern of the one level factorization of ILUM.

where A1 is the Schur complement with respect to C. The reduction pro-
cess can be applied recursively to each reduced system, until the last Schur
complement is small enough to be solved with a standard method.

Fig 3.1 is an illustration for the permuted 2×2 block matrix except that we
replace the lower-right matrix C with the Schur complement A1 Eq. (3.18).
We can see that the Schur complement tends to be denser and denser as
the level grows, so the reduced system tends to be more and more expensive
to solve in terms of both computational and memory cost. Therefore, a
dropping strategy may be adopted during the process.

The solving phase consists of a backward and a forward solution. The last
level linear system, does not need to be solved accurately. For instance, a
Krylov-subspace method can be used to solve it within a given tolerance.

We describe the solving phase starting from the first level since it is a re-
cursive process. A forward solution process is applied to the right hand
side vector b. First use the global permutation array i.e., the product
Pnlev−1Pnlev−2 . . . P0 partitions b into



30 Chapter 3. Krylov-subspace methods and preconditioning

b0 =

(
f0
g0

)
according to Eq. (3.15). The forward step maps the right hand vector b to
the next level. It substitutes the second part of b0 with

g0 = g0 − E0D
−1
0 y0.

This holds for the first level. We can continue to apply this to g0 which is
also our b1 based on the second level partitioning. At step `, we obtain

b` =

(
f`
g`

)
We repeat this process until ` = nlev − 1. Then we can solve the last level
linear system and obtain the last level solution. The backward step proceeds
in a similar way. At the end, we apply the inverse global permutation to x0
to obtain the solution for the original linear system,

x` =

(
y`
z`

)
see also Algorithm 3.4 [68]

Algorithm 3.4 ILUM Solve(A0, b0). Forward and backward solutions.

1: Permute right hand vector b via global permutation array
2: for ` = 0, 1, . . . , nlev − 1 do
3: g` = g` − E`D−1` y`.
4: b`+1 = g`.
5: Solve the last linear system with a relative tolerance ε,

Anlevxnlev = bnlev,
znlev−1 = xnlev.

6: for ` = nlev − 1, . . . , 1, 0 do
7: y` = D−1` (y` − F`z`).

8: z`−1 = x` =

(
y`
z`

)
.

9: Permute the resulting solution vector back to the original ordering
to get the solution x0.
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3.3.2 BILUM: A block versions of the Multi-elimination and
Multilevel ILU Preconditioner

ILUM is an effective multilevel solver, but is also has some drawbacks. Our
problem is that the diagonal entries in D might be small at some steps of
the reduction process leading to an unstable factorization. Second, if the
matrix A is not sufficiently sparse, the size of D is small, which makes the
Schur complement linear system big. This may lead to high computational
complexity and poor convergence.

In order to avoid these problems, block versions of ILUM in [75] (BILUM)
were developed based on the concept of block independent sets. Recall the
definition of independent set in Section 3.3.1. In order to introduce BILUM,
we first generalize independent sets to block independent sets.

Greedy algorithm for block independent sets

Consider a group of non-empty subsets of vertex set V which are disjoint,
such that

Yj ∩ Yi = ∅, if j 6= i.

The quotient graph can be obtained by considering each subset as a super-
vertex Yi. There is an edge between supervertex Yi and Yj if there exists
an edge between one vertex in Yi and one vertex in Yj . Formally, we can
describe by symbols as

Yi → Yj , if ∃ki ∈ Yi, ∃kj ∈ Yj s.t aki,kj 6= 0.

A block independent set is an independent set [51] on this quotient graph.
According to the following definition

Definition 3.3.2. Let Y1, Y2, . . . , Ym be a collection of disjoint nonempty
subsets of V . The set S = {Y1, Y2, . . . , Ym} is called a block independent set
if any two subsets Yi and Yj in S are not adjacent in the quotient graph.

The family of sets Y1, Y2, . . . , Ym can have variable size, but in this section,
we only focus on a block independent set ordering which produces constant
block size.

To simplify the description of the block independent set ordering algo-
rithm, we assume a constant block size equals to 2; it can be easily general-
ized to arbitrary positive integer number k.
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If we couple a node with one of its neighbors, a block of size 2 will be
found. There are different ways of finding this coupling. One is to check
the absolute value of the nodes’ neighbors, and pick the one with the largest
absolute value; we call this approach as the strongest link. By doing so, we
can keep the 2×2 diagonal blocks away from singularity. This will lead to
a more stable inversion of the diagonal blocks. In the following algorithms,
adj(j) denotes the set of j node neighbors, i.e., all nodes i such that aj,i 6= 0.

Algorithm 3.5 Greedy algorithm for independent set ordering by strongest
links.

1: Let m = 0
2: for j = 1, 2, . . . , n do
3: if node j is not marked then
4: m = m+ 1, Bm = {j}
5: Choose s ∈ adj{j} such that |aj,i| = max{|aj,i|, i ∈ adj{j}}
6: Bm = Bm ∪ {s}
7: Mark j and all nodes in adj{j}.

The block-independent set from this algorithm will be S2 = {B1, B2, . . . , Bm}.
There are some other ways to pick vertex s to couple with j to form a set
Bm at line 5 in Algorithm 3.5.

Note that for a multilevel method, at each level it is very advantageous
for computational efficiency that the Schur complement size is small, which
means the size of the whole independent set should be big. This suggests
that we may try to couple the current node with the smallest degree node
to form a block of size 2.

Algorithm 3.6 Greedy algorithm for independent set ordering by minimal
degree.

1: Let m = 0
2: for j = 1, 2, . . . , n do
3: if node j is not marked then
4: m = m+ 1, Bm = {j}
5: Choose s ∈ adj{j} such that deg(s) = min{deg(i), i ∈ adj{j}}
6: Bm = Bm ∪ {s}
7: Mark j and all nodes in adj{j}.
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Block ILUM factorization

Since BILUM is just a variant of ILUM, the main frame is similar with
ILUM. Here we recall the main computational steps.

After the greedy algorithm, we will permute A into the form(
D F
E C

)
, (3.19)

where D is a block diagonal matrix

D = diag(D1, D2, . . . , Dl), (3.20)

and Di is a k × k matrix. The following procedure is the same as in ILUM,
we may eliminate the unknowns of the independent set to obtain a reduced
system, analogous to Eq. (3.17) and Eq. (3.18).

But the inverse of matrix D will be calculated differently. Since D is
block diagonal instead of diagonal, the inversion can be done by inverting
each small block. These small matrices can be factorized using Gaussian
Elimination (GE) and the factors can be stored instead of explicit inverses.
Another way of inverting small blocks is to compute the pseudo inverse
by a Truncated Singular Value Decomposition (SVD). These two strategies
are also used to invert diagonal blocks during the block ILU factorization
process; see [69].

The forward-backward solution process is similar to ILUM except that
the diagonal matrix D is replaced by the block diagonal matrix.

3.3.3 ARMS: The Algebraic Recursive Multilevel Solver

The ARMS solver proposed in [74] is a generalization of BILUM. The mul-
tilevel factorization processes are similar, but there are many different im-
plementation aspects.

Recall the greedy algorithms described in the previous sections. In ILUM,
it finds an independent set. In BILUM, it generates a block independent set
with constant block size k. The greedy algorithm variant used in ARMS is
more sophisticated. A criterion for detecting diagonally dominant rows is
added and a level set approach is used. Details of the procedure are shown
in Algorithm 3.7.

We recall the notations used in Algorithm 3.7: bsize is the upper bound
of block size of each independent set, adj(k) is the set of direct neighbors
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Algorithm 3.7 Independent set ordering with weights.

1: for j = 1, 2, . . . , n do
2: if node j is unmarked then
3: jcount = 0
4: if w(j) < tol then
5: Add to F (j)
6: else
7: Add to C(j); Level Set = {j}
8: while jcount < bsize and Level Set is not empty do
9: for k ∈ Level Set do

10: if w(k) < tol then
11: Add to F (k)
12: else
13: Add to C(k); jcount+ +;
14: for k ∈ Level Set do
15: for i ∈ adj(k) do
16: if i is unmarked then
17: Add to F (i)

of node k, and Level Set is updated by each Add to C operation. The
mechanism to compute Level Set is to start from one node to visit all his
neighbors, that gives the second Level Set, and then visit all these neigh-
bors’ neighbors, giving the third Level Set; w is the weight array, in which
each entry is defined as:

w(i) =
aii
n∑
j=1

aij

(3.21)

Obviously, the weight defined by Eq. (3.21) represents the relative diago-
nal dominance of each row. tol is the threshold belongs to [0, 1], defined by
user for the row weight. Eq. (3.21) calculates the degree of diagonal domi-
nance of a row and compare it with tol. The idea behind this strategy is to
move the diagonally dominant rows into the independent set, so it enhances
the stability of inverting diagonal block matrix D in Eq. (3.19). Add to C
and Add to F respectively add the current node into C-block unknowns cor-
responding to the independent blocks and add the current node into F -block
unknowns corresponding to Schur complement nodes. After that, Add to C
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and Add to F also mark the node.
The for loop line 14 of Algorithm 3.7, is executed in the case where the

independent set block reaches bsize but the Level Set is not empty. It moves
the last Level Set’s neighbors into unknowns corresponding to the block F ,
to make sure that the unknown candidates of the C block will not be coupled
with block F .

The main frame of ARMS is very similar to BILUM. The 2× 2 block ILU
process can be applied recursively to each consecutively reduced system until
the Schur complement is small enough to be solved with a standard method
such as a dense LAPACK solver or an ILU solver. The solution process
with the above factorization consists of a level-by-level forward elimination,
followed by an exact solution on the last reduced system, plus a suitable
inverse permutation.

Another major implementation difference is that full recursivity is im-
plemented by ARMS, and the calculation of the Schur complement A1 =
C − ED−1F is optimized.

Since implementation details are very important for numerical algorithms,
we would like to introduce the details of the Schur complement calculation
in ARMS. First the incomplete triangular factors L̄, Ū of D are computed
by one sweep of ILUT, and an approximation W̄ to L̄−1F is also computed.
In a second loop, an approximation Ḡ to EŪ−1 and an approximate Schur
complement matrix Ā1 are derived. This holds at each reduction level.
At the last level, another sweep of ILUT is applied to the (last) reduced
system. The blocks W̄ and Ḡ are stored temporarily, and then discarded
from the data structure after the Schur complement matrix is computed.
Only the incomplete factors of D at each level, those of the last level Schur
matrix, and the permutation arrays are needed for the solving phase. By this
implementation, dropping can be performed separately in the matrices L̄,
Ū , W̄ , Ḡ, Ā1. This in turns allows to factor D accurately without incurring
additional costs in Ḡ and W̄ , achieving high computational and memory
efficiency. Implementation details and careful selection of the parameters are
always critical aspects to consider in the design of sparse matrix algorithms.
See more details in [74].

Among the three multilevel ILU decomposition methods, ARMS is the
most recent and mature one. It also presents a very referable framework for
our new VBARMS solver.





4 The VBARMS solver

In this chapter, we will introduce the computational steps of our new solver
VBARMS [22] and present the numerical results. But before that, we would
like to introduce the block-wise operations which appear during solving lin-
ear systems, since they are the building blocks for VBARMS.

4.1 Building blocks for VBARMS

In general, a block-wise matrix can be represented as follows:

A =


n1 n2 nq

m1 A11 A12 . . . A1q

m2 A21 A22 . . . A2q
...

...
. . .

...
mp Ap1 Ap2 . . . Apq

 (4.1)

Here, we have m1 + m2 · · · + mp = m and n1 + n2 · · · + nq = n, Aij
denotes the (i, j)th block of A. So we say that above matrix has block-wise
dimension p× q.

Next we will introduce the basic operations for block matrices.

Matrix-matrix addition

Let us assume we have another matrix B which has has the same partition
as A.

B =


n1 n2 nq

m1 B11 B12 . . . B1q

m2 B21 B22 . . . B2q
...

...
. . .

...
mp Bp1 Bp2 . . . Bpq


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Then the sum C = A+B is p× q block matrix defined by

C =


C11 C12 · · · C1q

C21 C22 · · · C2q
...

...
. . .

...
Cp1 Cp2 · · · Cpq

 =


A11 +B11 A12 +B12 · · · A1q +B1q

A21 +B21 A22 +B22 · · · A2q +B2q
...

...
. . .

...
Ap1 +Bp1 Ap2 +Bp2 · · · Apq +Bpq


The addition of each couple of elements Cij = Aij + Bij can be imple-

mented by directly calling the BLAS level 1 routine (the blocks are assumed
to be dense) like DAXPY to execute, which is more efficient.

Matrix-matrix multiplication

Let us assume that:

A ∈ Rm×n, B ∈ Rn×k

A =


n1 n2 nq

m1 A11 A12 . . . A1q

m2 A21 A22 . . . A2q
...

...
. . .

...
mp Ap1 Ap2 . . . Apq

, B =


k1 k2 kr

n1 B11 B12 . . . B1r

n2 B21 B22 . . . B2r
...

...
. . .

...
nq Bq1 Bq2 . . . Bqr


We have k1+k2+· · ·+kr = k here, since B’s block structure is compatible

with A’s. The matrix product can be formed block-wise, yielding C as an
(m× k) matrix with (p× r) blocks.

C = A×B =


k1 k2 kr

m1 C11 C12 . . . C1r

m2 C21 C22 . . . C2r
...

...
. . .

...
mp Cp1 Cp2 . . . Cpr

, (4.2)

The blocks in matrix C are calculated by

Cij =

q∑
k=1

AikBkj , i = 1 : p, j = 1 : r.
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For each product, in the implementation, we can call BLAS 3 routine
DGEMM to compute AikBkj .

Matrix-vector product

One of the most important steps of solving linear systems is the matrix-
vector product Ax. It is also a special case of Eq. (4.2)

b = Ax =


n1 n2 nq

m1 A11 A12 . . . A1q

m2 A21 A22 . . . A2q
...

...
. . .

...
mp Ap1 Ap2 . . . Apq




x1
x2
...
xq

 =


∑q

k=1A1kxk∑q
k=1A2kxk

...∑q
k=1Apkxk



According to the partition of A, x also got split into small subvectors,
in this context xi denotes the i-th subvector of the vector x according to
the above partitioning. For each Aikxk, in the implementation, we can call
BLAS 2 routine DGEMV to perform this operation,

Block-wise ILU preconditioner

After the introduction of basic operations, we also recall the block-wise
ILU preconditioner which will be an important component of our VBARMS
method. First is block-wise ILU factorization, A = LU , see Eq. (4.3) and
Algorithm 4.1
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A =



m1 m2 mp

m1 A11 A12 . . . A1p

m2 A21 A22 . . . A2p

...
...

. . .
...

mp Ap1 Ap2 . . . App



=



m1 m2 mp

m1 L11 0 . . . 0

m2 L21 L22 . . . 0
...

...
. . .

...

mp Lp1 Lp2 . . . Lpp

×


m1 m2 mp

m1 U11 U12 . . . U1p

m2 0 U22 . . . U2p

...
...

. . .
...

mp 0 0 . . . Upp


= LU

(4.3)

Algorithm 4.1 General Static Pattern block ILU

Input: The block-wise square matrix A.
Output: Updated A which contains L,U factors.

1: for k = 1, 2, . . . , p− 1 do
2: for i = k + 1, . . . , p do
3: Aik = Aik ∗A−1kk ,
4: for j = k + 1, . . . , p do
5: Aij = Aij −Aik ∗Akj .

In Algorithm 4.1, the diagonal blocks in A are square and normally as-
sumed nonsingular. In step 3, the inverse of Akk is calculated via GE or
Singular Value Decomposition. Step 5 is performed via block operations.
The updated matrix A has lower triangular part L and upper triangular
part U . It is obvious that L and U also preserve the block-structure.

Once the L, U factors are computed, we can easily generalize the two
steps of LU solving phase to a block LU . The LU method contains the
following two triangular subproblems:

1. Solving y from Ly = b by block operations, see Algorithm 4.2
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Ly =


m1 m2 mp

m1 L11 0 . . . 0
m2 L21 L22 . . . 0

...
...

. . .
...

mp Lp1 Lp2 . . . Lpp

×


y1
y2
...
yp

 =


b1
b2
...
bp

 = b

2. Solving x from Ux = y by block operations, see Algorithm 4.3

Ux =


m1 m2 mp

m1 U11 U12 . . . U1p

m2 0 U22 . . . U2p
...

...
. . .

...
mp 0 0 . . . Upp

×


x1
x2
...
xp

 =


y1
y2
...
yp

 = y

Algorithm 4.2 Forward substitution

Input: Right hand vector b and a lower triangular block-wise matrix Lp×p.
Output: Intermediate solution y such that Ly = b holds.

1: y1 = b1 ∗ L−111

2: for i = 2, 3 . . . , p do
3: sum = {0, 0, ..., 0}T ,
4: for k = 1, . . . , i− 1 do
5: sum = sum+ Likyk,
6: yi = (bi − sum) ∗ L−1ii ,

In the Algorithm 4.2, there is no need to compute L−1ii since Lii is the
identity matrix. In the Algorithm 4.3, the inverse of Uii is calculated by GE
and SVD. All the block operations involved have been introduced already.

4.2 The variable block ARMS factorization

4.2.1 The mathematical process of VBARMS

With the previous two chapters setup, it is easy to design a variable block
ARMS factorization process that exploits this block structure and achieves
high performance.
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Algorithm 4.3 Backward substitution

Input: Intermediate solution y and a lower triangular block-wise matrix
Up×p.

Output: Final solution x from Ux = y.
1: xp = yp ∗ U−1pp
2: for i = p− 1, . . . , 1 do
3: sum = {0, 0, ..., 0}T ,
4: for k = i+ 1, . . . , p do
5: sum = sum+ Uikxk,
6: xi = (yi − sum) ∗ U−1ii ,

Before introducing the method, there are a few advantages described be-
low which we would like to emphasize when a block-wise multilevel solver is
used.

1. Memory. The usual Block Sparse Row format in SPARSKIT [77] uses
Block wise Compressed Sparse Row format. In ITSOL, there is also a
Variable Block Compressed Sparse Row (VBCSR) format.

A clear advantage is to store the matrix as a collection of blocks us-
ing VBCSR format instead of the traditional compressed sparse row
(CSR) format. We used the ones in ITSOL [52]. VBCSR saves column
indexes and pointers for the block entries. Their C code is as follows
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Listing 4.1: CSR

typede f s t r u c t SpaFmt {
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| C−s t y l e CSR format
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

i n t n ; /∗ the dimension o f the matrix ∗/
i n t ∗nzcount ; /∗ l ength o f each row ∗/
i n t ∗∗ j a ; /∗ pointer−to−po in t e r to s t o r e ∗/

/∗ column i n d i c e s ∗/
double ∗∗ma; /∗ pointer−to−po in t e r to s t o r e ∗/

/∗ nonzero e n t r i e s ∗/
} SparMat , ∗ c sp t r ;

In this format, the nzcount and ja arrays store the sparsity structure
of the blocks. ma is a two dimensional pointer, each entry stores the
value of the element.

Listing 4.2: VBCSR

typede f double ∗BData ;

typede f s t r u c t VBSpaFmt {
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| C−s t y l e VBCSR format −
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

i n t n ; /∗ the block dimension o f ∗/
/∗ the matrix ∗/

i n t ∗bsz ; /∗ the row/ c o l o f the f i r s t ∗/
/∗ element o f each d iagona l ∗/
/∗ block ∗/

i n t ∗nzcount ; /∗ l ength o f each row ∗/
i n t ∗∗ j a ; /∗ pointer−to−po in t e r to s t o r e ∗/

/∗ column i n d i c e s ∗/
BData ∗∗ba ; /∗ pointer−to−po in t e r to s t o r e ∗/

/∗ nonzero b locks ∗/
} VBSparMat , ∗ vbsptr ;

Similar to CSR format, the nzcount and ja arrays store the sparsity
structure of the entries. but ba is a two dimensional pointer where
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each entry points to one dense block. The entries of array bsz point
to the beginning of each diagonal block. To perform any operations,
as we introduced in Section 4.1, we pass each block as a small dense
matrix to a BLAS/LAPACK subprogram.

The best way to understand the VBCSR format is to view a point-wise
matrix as a block-wise matrix whose nonzero entries are dense blocks
(square or rectangular). Each block is treated as a dense block. If
there are entries in some blocks they must be taken as nonzero entries
with value zero.

VBCSR format can save a lot of column and row indexes storage.
For example, if matrix A is an n × n matrix with block size l × l,
the block-wise matrix dimension will be (n/l)× (n/l) (to simplify the
description here, we assume the matrix has constant block size) so we
store much less column indexes. In this matrix, each entry is a block;
in the VBCSR format, it is an array of size l × l.

2. Stability.

On indefinite problems, during the ILU factorization, small pivots of-
ten lead to unstable and therefore inaccurate factorization. Using
blocks instead of single elements enables a better control of pivot
breakdowns, near singularities, and other possible sources of numerical
instabilities. Because the unstable factors like zeros and small values
on the diagonal line will be moved into blocks. The diagonal blocks
have less chance to be singular or near-singular, and also approximate
inverse techniques can be used to invert diagonal small blocks. Block
ILU solvers may be used instead of pointwise ILU methods.

3. Complexity.

Since we generate the independent set ordering based on the quotient
graph G/B = {VB, EB}, then instead of permuting the point-wise en-
tries of the matrix, we switch the block rows and columns. Therefore,
normally the obtained block diagonal matrix D in Eq. (4.6) is bigger
than the one in ARMS and consequently, the Schur complement is
smaller. This is very advantageous for a multi-level solver.

Besides that, a better conditioned last reduced system is obtained and
it will be easily solved.
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4. Efficiency.

Every operation will be done on blocks after Eq. (4.4). Higher level
optimized BLAS routines will be used as computational kernels. This
design will lead to better flops to memory ratios on modern cache-
based computer architectures.

The Table 4.1 illustrates the advantage of the level 3 BLAS. The ratio
of floating-point operations to the amount of data movement of BLAS
1, 2, 3 routines is displayed respectively [34].

Table 4.1: Advantage of the Level 3 BLAS.

BLAS routines
Loads and

Stores
Floating-Point

Operation
Ratio

n = m = k

Level 1 DAXPY
y = y + αx

3n 2n 3:2

Level 2 DGEMV
y = βy + αAx

mn+ n+ 2m 2mn 1:2

Level 3 DGEMM
C = βC + αAB

2mn+mk + kn 2mnk 2:n

In Table 4.1, the dimension of y, x is n, A is a m × n matrix, B is a
n× k matrix and C is a m× k matrix. The Loads and Stores column
gives the amount of data movement, and the Ratio colum shows that
BLAS level 2 routine DGEMV is able to perform three times more
operations than DAXPY with the same amount of data movement.
And BLAS level 3 routine DGEMM is even more operation-intensive
than DAXPY.

5. Cache effects. Cache is a form of storage that is automatically filled
and emptied according to a fixed scheme defined by the hardware
system. Caches work on the assumption that data that is accessed
once will usually be accessed soon again. This kind of behavior is
known as data locality. High performance can be achieved by using
data locality.

Better cache reuse is possible for block algorithms since the computa-
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tional unit is stored in an array.

It is simpler to describe VBARMS from a graph point of view. Suppose
to permute A in block form as

Ã = PBAP
T
B =


Ã11 Ã12 · · · Ã1p

Ã21 Ã22 · · · Ã2p
...

...
. . .

...

Ãp1 Ãp2 · · · Ãpp

 , (4.4)

where the diagonal blocks Ãii, i = 1, . . . , p are ni × ni and the off-diagonal
blocks Ãij are ni × nj . We may represent the adjacency graph of Ã by the
quotient graph of A+AT [40]. Calling B the partition into blocks Eq. (4.4),
we denote by G/B = {VB, EB} the quotient graph obtained by coalescing
all the vertices assigned to the block Ãii (i = 1, . . . , p), into a supervertex
Yi. An edge connects any supervertex Yi to another supervertex Yj if there
exists an edge from a vertex in Aii to a vertex in Ajj in the graph {V,E}
of A. In other words, we consider that the entry in position (i, j) of Ã is a
(usually dense) block of dimension |Yi|× |Yj |, where |X| is the cardinality of
the set X. Formally, we may define the quotient graph G/B = {VB, EB} as

VB = {Y1, . . . , Yp} , EB = {(Yi, Yj) |∃v ∈ Yi, w ∈ Yjs.t.(v, w) ∈ E} .

The complete pre-processing and factorization process of VBARMS con-
sists of the following steps.

1. PREORDERING Find the block ordering PB of A such that, upon per-
mutation, the matrix Ã = PBAP

T
B has fairly dense nonzero blocks;

see Eq. (4.4). We use a graph compression algorithm proposed by
Saad, described in [69], for discovering any perfect or imperfect block
structure in A.

2. SCALING Scale the matrix at step 1 in the form S1ÃS2, with two di-
agonal matrices S1 and S2, so that the 1-norm of the largest entry in
each row and column is smaller or equal than one.

3. ORDERING Find the block independent sets ordering PI of the quotient
graph G/B = {VB, EB}. Apply the permutation to the matrix obtained
at step 2 as

PIS1ÃS2P
T
I =

(
D F
E C

)
. (4.5)
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We use a simple form of the weighted greedy algorithm for computing
the ordering PI . The algorithm is the same as the one used in ARMS,
and described in [74]. But it traverses the vertices of the quotient graph
G/B in the natural order 1, 2, . . . , n, marking each visited vertex v and
all of its nearest neighbors connected to v by an edge and adding v
and each visited node that is not already marked to the independent
set. We assign the weight ‖Y ‖F to each supervertex Y .

In the 2×2 partitioning Eq. (4.5), the matrix D is still block diagonal
as in other forms of multi-elimination ILU [75, 76, 74], but now each
diagonal block of D is additionally a sparse block, as D is obtained
upon permutation of Ã. For the same reasoning, the matrices F , E,
C also have a block representation.

4. FACTORIZATION Factorize the matrix (4.5) in the form(
D F
E C

)
=

(
L 0

EU−1 I

)
×
(
U L−1F
0 A1

)
, (4.6)

where I is the identity matrix of appropriate size, and form the reduced
system with the Schur complement

A1 = C − ED−1F. (4.7)

Based on the block-wise operations and ILU decomposition intro-
duced in Section 4.1, A1 can be easily calculated via block compu-
tational units. According to the block structure and the dimension of
D,E, F,C, the Schur complement A1 is also block sparse and has the
same block partitioning of C.

Steps 2-4 can be repeated on the reduced system a few times until the
Schur complement is small enough. E.g., after one additional level, we obtain

P
(1)
I S

(1)
1 A1S

(1)
2 (P

(1)
I )T =

 D F1 F2

E1 C11 C12

E2 C21 C22

 ,
which can be factored as LD 0 0

LE1 I 0

LE2 LC21 I

 D 0 0
0 DC11 0

0 0 A2

 UD UF1 UF2

0 I UC12

0 0 I

 .
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In Figure 4.1, we depict the pattern of the recursive factorization after
three levels of reduction on a setup matrix. We can see the shape of the
matrix diagonal matrix D, and also the Schur complement gets denser and
denser. Moreover, each submatrix still preserves the block structure.

Figure 4.1: Pattern of the recursive factorization of VBARMS after three
levels of reduction on a setup matrix.

Denote by A` the reduced Schur complement matrix at level `, for ` > 1.
After scaling and preordering A`, a system with the matrix

P
(`)
I D

(`)
1 A`D

(`)
2 (P

(`)
I )T =

(
D` F`
E` C`

)
=

(
L` 0

E`U
−1
` I

)
×
(
U` L−1` F`
0 A`+1

)
(4.8)

needs to be solved, with

A`+1 = C` − E`D−1` F`. (4.9)

Calling

x` =

(
y`
z`

)
, b` =

(
f`
g`

)
the unknown solution vector and the right-hand side vector of system Eq. (4.8),
the solution process with the above multilevel VBARMS factorization con-
sists of level-by-level forward elimination followed by an exact solution on
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the last reduced system and suitable inverse permutation. The solving phase
is sketched in Algorithm 4.4.

Algorithm 4.4 VBARMS Solve(A`, b`). The solving phase of the VBARMS.

Input: ` ∈ N∗, `max ∈ N∗, b` = (f`, g`)
T , the preconditioning system which

contains all the submatrices needed,
Output: the solution y`.

1: Solve L`y = f`
2: Compute g′` = g` − E`U−1` y
3: if ` = `max then
4: Solve A`+1z` = g′`
5: else
6: Call VBARMS Solve(A`+1, g

′
`)

7: Solve U`y` =
[
y − L−1` F`z`

]
The Algorithm 4.4 is the standard V-cycle process, it aims at solving

this linear system A`x` = b`. The input is the preconditioning system
starting from level ` and right hand vector b`; output is the solution x`.
The algorithm is a recursive process: Step 1 and 2 map the b` to the next
level, and then it continues to go to next level until we reach the last level.
Then solve the last level linear system by an approximate LU factorization
and get the solution. Following the operators, the last step is to map the
solution level by level back to level `. All the matrix-vector products and
LU solves are block-wise operations, which are introduced in Section 4.1.

There are two different implementations we have tested. The first imple-
mentation we will introduce is based on the explicit calculation of E`Ū

−1
`

and L̄−1` Fl appearing in Eq. (4.8). The second one is based on the im-
plicit calculation of E`Ū

−1
` and L̄−1` Fl, both of them will be introduced in

Section 4.2.2.

4.2.2 Computational aspects of the method

Explicit Schur complement calculation

The implementation of the VBARMS method is developed in the C lan-
guage and is based upon the implementation of ARMS available in the
ITSOL package [52]. The compressed sparse storage format (listing 4.1)
of ARMS is adapted to store block vectors and matrices as a collection of
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contiguous nonzero dense blocks. In our implementation, the approximate
transformation matrices E`Ū

−1
` and L̄−1` Fl appearing in Eq. (4.8), at step

`, are temporarily stored in the VBCSR (listing 4.2) format, but they are
discarded from the memory after assembling A`+1. We only store the fac-
tors L̄`, Ū` and sub-matrices E`, F` at each reduction `, and L̄S , ŪS , because
these are the matrices needed in the solving phase, as it can be seen in Al-
gorithm 4.4. We explicitly permute the matrix after step 1 at the first level
as well as the matrices involved in the factorization at each new reordering
step.

In the numerical experiments reported in Chapter 4, we use a simple
form of weighted greedy algorithm (Algorithm 3.7) on the quotient graph
of G/B = {VB, EB} for finding block independent sets in step 2. However,
other options are possible such as the nested dissection ordering [41] or mesh
partitioning[18]. The nested dissection technique repeatedly splits the graph
of A into two separate subgraphs, such that there is no coupling between
nodes of the two subgraphs. The process is repeated recursively on each
of the two subgraphs until a desirable block-size is reached. The last level
subgraphs computed represent the block independent sets.

Step 3 of the complete VBARMS process describes an exact factorization
process. Due to fill-in caused by the elimination procedure, the reduced
systems become denser when the number of levels increases. Therefore, we
perform the factorization in VBARMS approximately. After each reduction,
we drop small blocks Bij ∈ Rmi×nj in Schur complement whenever ‖B‖Fmi·nj

< t,

for a given user-defined threshold t. We use incomplete LU factorization to
invert the matrix D. The same threshold is applied in all these operations.

By exploiting the block structure of D, F , E, C and A1 in Eq. (4.5-4.6),
we use block ILU factorization Algorithm 4.1 to invert both the upper left-
most matrix D at each level and the last-level Schur complement, and we
use high-level BLAS operations to assemble the Schur complement. This im-
plementation aspect is key to performance and differs from other standard
multilevel ILU methods. Clearly, the option to solve the reduced system
directly would be too expensive both in terms of computation and memory
because the reduced system is likely to be large. Pivoting is not performed
during the factorization. The transformation matrices ElŪ

−1
l and L̄−1l Fl,

where we denote by L̄l and Ūl the lower and upper approximate block trian-
gular factors of Dl, are temporarily stored as a succession of sparse matrices
in the VBCSR format, but they are not kept. We need not save the in-



4.2. The variable block ARMS factorization 51

termediate Schur complements, except only the last one that is assembled.
Finally, VBARMS explicitly permutes the matrix after step 1 at the first
level as well as the matrices involved in the factorization at each new re-
ordering step and stores the global permutation which is the product of all
these successive permutations.

Implicit Schur complement calculation

This implementation of the 2× 2 block ILU factorization is different as we
describe below. The major advantage of the implicit implementation is that
it calculates E`Ū

−1
` L̄−1` Fl and Schur complement implicitly, which enables

the code to avoid to store a lot of temporary matrices.

Algorithm 4.5 General ILU Factorization, IKJ Version.

Input: A nonzero pattern set P
1: for i = 2, . . . , n do
2: for k = 1, . . . , i− 1 do
3: if (i, k) /∈ P then
4: aik = aik/akk
5: for j = k + 1, . . . , n do
6: if (i, j) /∈ P then
7: aij = aij − aikakj

As we mentioned before, the implementation of the VBARMS method is
written in the C language and is derived from the ARMS code. The com-
pressed sparse storage format of ARMS is modified to store block vectors
and matrices of variable size as a collection of contiguous nonzero dense
blocks (the VBCSR data storage format). However, the implementation in-
troduced here differs from the one described in the previous section and is
noticeably faster. In our explicit implementation, the approximate trans-
formation matrices E`Ū

−1
` and L̄−1` Fl appearing in Eq. (4.8) at step ` were

explicitly computed and temporarily stored in the VBCSR format. They
were discarded from the memory immediately after assembling A`+1.

In the implicit implementation, we first compute the factors L̄`, Ū` and
L̄−1` F` by performing a variant of the IKJ version of the GE algorithm
(Algorithm 4.5), where index I runs from 2 to m` (the size of D`), index K
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from 1 to (I − 1) and index J from (K + 1) to n` (the size of A`). This loop
applies implicitly L̄−1` to the block row [D` , F`] to produce

[
U` , L̄

−1
` F`

]
.

In the second loop, GE is performed on the block row [E` , C`] using the
multipliers computed in the first loop to give E`Ū

−1
` and an approximation

of the Schur complement A`+1. We explicitly permute the matrix after
the graph compression algorithm at the first level as well as the matrices
involved in the factorization at each new reordering step.

4.3 Numerical experiments on a sequential computer

4.3.1 The performance of VBARMS on block structured matrices

Let us use Table 4.2 to recall the matrices and their block structure intro-
duced in Section 2.2. With the help of the angle-based compression algo-
rithm, we are able to build a perfect block structure or an imperfect block
structure on these matrices.

Table 4.2: Block structure of test matrix problems.

Name τ b-size b-density (%) τ b-size b-density (%)

RAE 1.00 4.00 96.89 0.80 4.67 95.83
STACOM 1.00 4.11 97.10 0.80 4.36 95.97

BCSSTK35 1.00 4.57 100.00 0.90 5.07 99.29
BMW7ST 1.00 4.63 100.00 0.90 5.28 99.24
CT20STIF 1.00 2.61 100.00 0.90 3.47 96.61
K3PLATES 1.00 5.02 100.00 1.00 5.02 100.00
NASASRB 1.00 2.20 100.00 0.90 3.31 92.31
OILPAN 1.00 2.45 100.00 0.80 2.63 99.73
OLAFU 1.00 1.54 100.00 0.90 5.10 89.50
PWTK 1.00 4.67 100.00 0.90 5.48 99.04

RAEFSKY3 1.00 8.00 100.00 1.00 8.00 100.00
S3DKQ4M2 1.00 1.25 100.00 0.70 5.93 90.34
VENKAT01 1.00 4.00 100.00 1.00 4.00 100.00

After building blocks in the matrix, we can run block solvers upon that. In
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our experiments, we compared the VBARMS preconditioner with the orig-
inal ARMS code [74], the standard ILUT methods [67] and variable block
ILUT (Algorithm 4.1 and [69]). For these methods, we used the implemen-
tations available in the ITSOL package [52]. We applied the VBARMS and
block ILUT preconditioners to the compressed matrix Ã Eq. (4.4), while
ARMS and ILUT were applied to A, as they do not exploit explicitly any
block structure of the matrix. No special ordering was used in the computa-
tion of ILUT. We chose not to apply ILUT to Ã, because earlier studies have
clearly illustrated the better performance of block versions over point ver-
sions of incomplete factorization preconditioners for solving block structured
systems, see, e.g., [25, 69].

To reduce the condition number, we scaled the system by rows and columns
prior to the iterative solution so that the modulus of each entry of the scaled
coefficient matrix was smaller than one. We solved S1AS2y = S1b, x = S2y
where S1 and S2 are the diagonal matrices

S1(i, j) =


1

‖A(i,:)‖1
, if i = j

0 , if i 6= j

, S2(i, j) =


1

‖A(:,j)‖1
, if i = j

0 , if i 6= j

,

We used physical right-hand sides b when these were available, otherwise we
set b = Ae where e = [1, . . . , 1]T .

For every run, we recorded the solution time from the start of the solve
until either the initial residual was reduced by six orders of magnitude or
the process failed. We declared a solver failure when no convergence was
achieved after 1,000 iterations of the flexible GMRES (FGMRES) method [66]
restarted every 60 inner iterations, or when there was a breakdown during
the factorization. We selected the parameters carefully to have a fair com-
parison in our experiments. In this chapter, the implementation we used for
Section 4.3.1 and 4.3.2 is the implementation of explicit Schur complement
calculation, for the rest is the implementation of implicit Schur complement
calculation.

For each matrix problem, we tested different values for the dropping pa-
rameter t in VBARMS, starting from t = 0.1 and decrementing it by a factor
of 10 in each run; we selected the value of t which gave the best convergence
result for the given problem. The maximum number of nonzero entries per
row/column of the preconditioner was uniformly set equal to the dimension
of the problem. We chose the value of the dropping threshold in the ARMS
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and in the ILUT codes which led to roughly the same number of nonzeros as
in the VBARMS preconditioner. Finally, the number of levels of recursive
factorization in VBARMS and ARMS were calculated automatically by the
two codes, which stop when the Schur complement becomes too small to
continue reducing the matrix. The maximum allowed size for the last level
Schur complement matrix was set to 300. This value also determines the
minimum size of the independent sets in the greedy algorithm. The com-
puted block ordering was used in our experiments with the VBARMS and
the block ILUT method (denoted shortly as BILUT).

For each experiment shown in Table 4.3, we report the following perfor-
mance measures:

1. the time cost for computing the factorization (column “P-T”) and
for solving the linear system (column “I-T”), the unit is second. The
construction time for VBARMS and BILUT includes the cost for com-
puting the block ordering (“B-T”).

2. the memory burden (column “M-cost”), computed as the ratio of the
total number of nonzeros in the preconditioning system to the number
of nonzeros in the coefficient matrix A;

3. the number of iterations (column “Its”) required by the FGMRES
method to reduce the initial residual by six orders of magnitude;

The results highlight the robustness of the VBARMS preconditioner. It
is remarkable that fast and stable convergence was obtained using a simple
greedy algorithm for finding the independent sets and without the need
of monitoring the growth in the factors during the factorization. This is
probably due to the better control of near-singularities of block ILU solvers,
and to the better conditioning of the Schur complement matrices that are
smaller and easier to invert.

We also used nonsymmetric permutations aimed at improving the diag-
onal dominance of the local matrices, namely the ”ddPQ” [71] algorithm
available in the ITSOL package [52], but in our tests the greedy algorithm
performed decidedly better than the ”ddPQ” ordering, see Table 4.4. We
selected the matrices where ARMS is able to converge on a reasonable mem-
ory cost, and use the same parameter setting to perform greedy algorithm +
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Table 4.3
Performance comparison of the three methods. The symbol “†” in the “P-
T” column means that a breakdown occurred during the factorization. The
symbol “‡” in the “I-T” column means that the iterative solution was not
started because the preconditioner was ill-conditioned.

Matrix Method P-T(B-T) I-T M-cost Its

RAE

VBARMS
BILUT
ARMS
ILUT

4.250 (0.050)
2.690 (0.050)

5.800
†

2.530
>46.090
>46.010
‡

2.430
3.886
3.750
–

46
>1000
>1000

–

STACOM

VBARMS
BILUT
ARMS
ILUT

0.600 (0.000)
0.170 (0.000)

1.010
0.320

0.250
1.730
‡
‡

2.707
2.930
3.112
2.899

28
287
–
–

BCSSTK35

VBARMS
BILUT
ARMS
ILUT

6.930 (0.020)
1.710 (0.020)

7.040
5.410

8.440
>32.420
>34.760
>32.950

3.160
3.721
3.430
3.328

175
>1000
>1000
>1000

BMW7ST

VBARMS
BILUT
ARMS
ILUT

42.020 (0.130)
9.480 (0.130)

49.230
34.940

0.930
>146.100
>172.750
‡

3.079
3.076
3.112
3.085

4
>1000
>1000

–

CT20STIF

VBARMS
BILUT
ARMS
ILUT

6.920 (0.070)
0.860 (0.070)

2.610
3.300

1.640
>52.500
>43.250
‡

1.265
1.374
1.392
1.455

22
>1000
>1000

–

K3PLATES

VBARMS
BILUT
ARMS
ILUT

0.760 (0.000)
0.180 (0.000)

0.540
0.560

0.450
>7.170
>11.600
>6.840

2.388
2.476
2.528
2.464

38
>1000
>1000
>1000

NASASRB

VBARMS
BILUT
ARMS
ILUT

13.940 (0.080)
3.080 (0.080)

18.950
7.080

11.030
>76.760
>74.240
>69.250

2.412
2.827
3.026
4.014

94
>1000
>1000
>1000

OILPAN

VBARMS
BILUT
ARMS
ILUT

10.270 (0.050)
2.020 (0.050)

13.830
6.200

1.790
>51.470
>48.250
>47.040

2.825
3.230
2.925
2.954

21
>1000
>1000
>1000

OLAFU

VBARMS
BILUT
ARMS
ILUT

2.670 (0.030)
0.730 (0.030)

2.110
1.240

0.900
3.700
‡

>16.280

2.109
2.381
2.230
2.335

34
208
–

>1000

PWTK

VBARMS
BILUT
ARMS
ILUT

50.590 (0.180)
9.870 (0.180)

39.370
44.540

32.790
37.500
>260.880
‡

2.669
3.013
2.963
3.038

93
164
>1000

–

RAEFSKY3

VBARMS
BILUT
ARMS
ILUT

2.930 (0.020)
1.010 (0.020)

2.050
1.960

0.260
0.230
25.190
0.210

1.906
2.452
2.529
2.051

10
13

>1000
10

S3DKQ4M2

VBARMS
BILUT
ARMS
ILUT

14.660 (0.150)
3.970 (0.150)

14.850
5.080

7.160
8.950

>100.570
>82.020

2.667
3.350
2.781
2.664

55
104
>1000
>1000

VENKAT01

VBARMS
BILUT
ARMS
ILUT

0.810 (0.040)
0.170 (0.040)

0.340
0.190

1.040
1.100
0.590
0.510

0.493
0.577
0.456
0.469

40
46
28
32
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ARMS and ddPQ + ARMS respectively. We can see from the table, ddPQ
can not improve ARMS performance on these matrices.

Table 4.4
Performance comparison of greedy algorithm (GA) and ddPQ.

Matrix Method P-T I-T M-cost Its

OILPAN
ARMS+GA

ARMS+ddPQ
17.24
13.77

7.95
10.63

5.45
7.05

154
179

K3PLATES
ARMS+GA

ARMS+ddPQ
0.43
0.59

0.76
0.90

4.69
8.73

106
111

OLAFU
ARMS+GA

ARMS+ddPQ
3.26
3.90

5.58
7.86

6.93
7.84

302
403

RAEFSKY3
ARMS+GA

ARMS+ddPQ
5.07
10.38

0.05
>29.40

4.01
8.99

3
>1000

VENKAT01
ARMS+GA

ARMS+ddPQ
2.51
4.75

0.15
0.20

5.00
12.31

4
4

In Table 4.5, we particularly showed the comparison between VBARMS
and ARMS on “r-ratio” and “MFlops”, their definitions are beneath:

1. the reduction factor (column “r-ratio”), it gives the ratio of the sum
of the number of unknowns at all levels of the factorization to the
number of unknowns in the original system. Clearly, this performance
metric only applies to the multilevel methods VBARMS and ARMS;

2. the megaflop rate (column “MFlops”) achieved by the three codes
for the construction of the preconditioner, estimated by the PAPI li-
brary [82] on a PC with Intel Core i3 processor with a clock speed of
2.53 GHz and 2 GB of main memory.

The VBARMS code achieved higher MFlops than ILUT and ARMS. This
is due to the use of the level-3 BLAS operations in the local solvers and
in computing the Schur complement. And the advantage of level-3 BLAS
routines are displayed in the Table 4.1. On the problem BCSSTK35, using
PAPI we obtained 236.863 MFlops for VBARMS against 94.597 for ARMS,
and 394.92 MFlops for the optimized sparse direct solver SuperLU [53].

A lower “r-ratio” means VBARMS or ARMS generate a smaller Schur
complement which shows better performance as a multi-level method. The
results from Table 4.5 confirm better complexity. That is because we work
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Table 4.5
The column “MFlops” refers to the megaflop rate for the construction of
the preconditioner.

Matrix Method r-ratio MFlops

RAE
VBARMS

ARMS
1.270
3.210

208.742
67.087

STACOM
VBARMS

ARMS
1.220
2.551

208.169
80.755

BCSSTK35
VBARMS

ARMS
1.424
2.438

236.863
94.597

BMW7ST
VBARMS

ARMS
1.503
2.442

238.262
59.179

CT20STIF
VBARMS

ARMS
1.550
1.774

129.593
83.356

K3PLATES
VBARMS

ARMS
1.221
1.263

213.257
98.711

NASASRB
VBARMS

ARMS
1.481
1.633

156.265
58.844

OILPAN
VBARMS

ARMS
1.279
1.547

222.714
96.078

OLAFU
VBARMS

ARMS
1.351
1.563

220.436
122.646

PWTK
VBARMS

ARMS
1.399
2.569

245.025
82.735

RAEFSKY3
VBARMS

ARMS
1.262
2.867

281.705
80.353

S3DKQ4M2
VBARMS

ARMS
1.286
1.519

254.218
104.323

VENKAT01
VBARMS

ARMS
1.197
1.203

258.346
18.4576

on the blocks. The block independent set ordering is built upon the quotient
graph, which generates bigger B and smaller C in Eq. 4.5.
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Figure 4.2: Sparsity patterns of the recursive multilevel factorization using
the VBARMS method (on the left) and the ARMS method after
three levels of reduction on the STACOM problem. We observe
that the Schur complement is considerably smaller for VBARMS
than for ARMS.

In Figure 4.2 we plot the sparsity pattern of the recursive multilevel fac-
torization for the STACOM problem after three levels of reduction; we can
see that the Schur complement is considerably smaller for VBARMS (on
the left) than for ARMS (on the right). In our experiments, we observed
that the triangular factors computed by VBARMS were well conditioned;
consequently, the triangular solves were numerically stable.

4.3.2 Experiments on unstructured matrices

Up to now, we only computed and applied the block ordering to the original
system A. This strategy works on the naturally block structured matrices.
For unstructured ones, alternatively, we also tried to block only the Schur
complement matrix, which is significantly denser than A and therefore has
a higher chance to be compressed satisfactorily. Therefore, after one step
of reduction with ARMS we switched to VBARMS. The results show that
this hybrid approach may improve the performance of ARMS in terms of
convergence and/or the memory/construction costs to some extent. The
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first three matrices of Table 4.6 do not have any block structure. The
XENON1 problem revealed fully dense blocks of average size equal to 2.45; by
applying the block ordering to A, at roughly equal memory costs VBARMS
converged in 26 iterations and 2.310 seconds, but the construction was twice
more expensive (21.850 seconds).

However, we encountered systems where the Schur complement matrix
after one level of factorization was still quite sparse and/or irregularly struc-
tured, and the graph compression algorithm produced inefficient block or-
derings with low density. It would be natural to compress the Schur com-
plement matrix at further levels, as it tends to fill-in. However, for this
approach to work it is necessary that the factors computed by ARMS are
stable and accurate, because VBARMS cannot cure the pathology of an ill-
conditioned factorization. For instance, this approach may require to run
ARMS with non-symmetric permutations and/or condition estimators. This
strategy can be investigated in detail in the future.

Table 4.6: Experiments for general unstructured matrices compressing the
Schur complement matrix.

Matrix Method P-T I-T M-cost Its

KIM1
VBARMS

ARMS
16.330
62.450

1.360
1.480

8.909
18.401

18
19

CKT11752
VBARMS

ARMS
12.390
8.370

0.370
85.380

11.791
13.731

9
2000

TORSO1
VBARMS

ARMS
53.680
66.450

6.420
5.360

2.086
2.673

41
37

XENON1
VBARMS

ARMS
10.510
37.210

12.230
121.370

4.415
9.801

220
2000
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4.3.3 Performance of the graph-based compression method

We introduced the graph-based compression method in Section 2.3. In this
section, we combine it with Variable Block ILU method (VBILUT) and show
the performance with respect to the angle-based compression method.

Some comparative figures of performance between the angle-based and the
graph-based techniques are presented in Tables 4.7-4.9. In Table 4.7, we first
tried to find an optimal value of τ that minimizes the number of GMRES
iterations required to reduce the initial residual by 6 orders of magnitude
using a block incomplete LU factorization as a preconditioner for GMRES.
The optimal value of τ was calculated by performing several runs, each using
a different value of τ in the range [0.5, 1.0] by increments of 0.1 at every run.
Then, for every problem we set µ equal to the b-density corresponding to
the optimal value of τ that we found. As we can see in Table 4.7, both
methods perform similarly, with the angle method generally doing slightly
better probably because the parameters were optimally selected for that
method. Once again, the results show that the optimal value for τ may be
very problem-dependent.

In the experiments reported in Table 4.8 we use optimal values for both τ
and µ, which were computed as explained above. The performance of the two
methods is again very similar. Finally, in the results reported in Table 4.9 we
set µ = 0.7 for the graph compression method, giving a minimum b-density
of 70% for every problem. A quick comparison with the results obtained by
selecting the optimal τ in the angle method reveals that the new compression
algorithm still remains very competitive. The set of problems being fairly
large, we may conclude that µ = 0.7 may be an overall good choice for most
problems in our method.

In Tables 4.7-4.9, we also report on the timings to compute the block
ordering by both compression techniques, and for solving the linear system.
The compression time is considerably smaller than the total solution time.
On the other hand, the graph method is in most cases up to three times
slower than the angle method. However, this is not a big downside because
computing the optimal value of τ may require several runs as we explained.
We also see from the tables that the compression time increases when µ
decreases, which is obvious since we merge more supernodes.
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Matrix Method τ/µ Block
density
(%)

Block
size

Blocking
time (s)

Total
(s)

M-
cost

Its

OILPAN
Angle 0.70 95.94 7.36 0.03 4.18 0.26 198
Graph 0.80 99.78 7.02 0.08 4.23 0.24 200

K3PLATES
Angle 0.60 59.16 7.90 0.00 0.7 0.3 239
Graph 0.55 61.67 8.20 0.01 0.62 0.27 226

VENKAT01
Angle 0.70 99.94 4.00 0.02 0.43 1.33 9
Graph 1.00 99.38 4.01 0.08 0.43 1.33 9

PWTK
Angle 0.60 56.95 12.17 0.09 26.38 6.85 117
Graph 0.54 59.94 10.96 0.38 29.84 5.3 157

S3DKQ4M2
Angle 1.00 100.00 5.93 0.03 9.57 1.09 214
Graph 0.86 100.00 5.93 0.10 9.59 1.09 213

OLAFU
Angle 0.80 81.75 6.47 0.02 1.2 3.14 54
Graph 0.73 82.84 6.14 0.11 1.5 3.14 65

RAE
Angle 0.80 95.83 4.67 0.03 8.85 9.53 49
Graph 0.80 95.70 4.65 0.12 10.31 9.77 63

BMW7ST 1
Angle 0.70 77.16 7.28 0.08 0.35 0.18 5
Graph 0.67 76.80 6.90 0.29 0.47 0.17 9

NASASRB
Angle 0.80 90.87 4.24 0.05 7.51 5.23 30
Graph 0.77 90.97 4.15 0.17 14.05 6.8 40

CT20STIF
Angle 0.70 66.05 6.55 0.04 0.69 0.18 44
Graph 0.60 66.16 5.69 0.17 1.15 0.17 59

RAEFSKY3
Angle 0.70 95.23 8.63 0.01 0.08 0.13 13
Graph 0.80 96.86 8.40 0.02 0.08 0.12 14

BCSSTK35
Angle 0.60 51.95 11.03 0.01 2.1 0.29 209
Graph 0.48 51.72 10.46 0.05 2.38 0.29 224

STACOM
Angle 0.90 97.00 4.36 0.00 0.97 9.86 1
Graph 0.82 96.60 4.36 0.01 0.97 9.87 1

Table 4.7: Experiments with the angle-based and the graph-based compres-
sion methods [24]. The optimal value of τ is used for the angle-
based algorithm. The value of µ in the graph-based algorithm is
selected to give a similar b-density as in the angle-based method.
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Matrix Method τ/µ Block
density
(%)

Block
size

Blocking
time (s)

Total
(s)

M-
cost

Its

OILPAN
Angle 0.70 95.94 7.36 0.03 4.18 0.26 198
Graph 0.60 65.72 9.95 0.09 4.01 0.38 186

K3PLATES
Angle 0.60 59.16 7.90 0.00 0.7 0.3 239
Graph 0.70 89.50 5.65 0.01 0.71 0.18 241

VENKAT01
Angle 0.70 99.94 4.00 0.02 0.43 1.33 9
Graph 0.90 99.38 4.01 0.08 0.44 1.33 9

PWTK
Angle 0.60 56.95 12.17 0.09 26.38 6.85 117
Graph 0.60 62.58 10.11 0.37 29.91 5.66 144

S3DKQ4M2
Angle 1.00 100.00 5.93 0.03 9.57 1.09 214
Graph 0.90 100.00 5.93 0.10 9.57 1.09 214

OLAFU
Angle 0.80 81.75 6.47 0.02 1.2 3.14 54
Graph 0.70 79.66 6.58 0.11 1.62 3.75 57

RAE
Angle 0.80 95.83 4.67 0.03 8.85 9.53 49
Graph 0.80 95.70 4.65 0.12 10.61 11.2 38

BMW7ST 1
Angle 0.70 77.16 7.28 0.08 0.35 0.18 5
Graph 0.60 67.04 7.98 0.30 0.44 0.2 8

NASASRB
Angle 0.80 90.87 4.24 0.05 7.51 5.23 30
Graph 0.60 62.57 5.29 0.23 10.71 7.84 26

CT20STIF
Angle 0.70 66.05 6.55 0.04 0.69 0.18 44
Graph 0.60 66.16 5.69 0.17 1.15 0.17 59

RAEFSKY3
Angle 0.70 95.23 8.63 0.01 0.08 0.13 13
Graph 0.90 100.00 8.00 0.02 0.08 0.11 15

BCSSTK35
Angle 0.60 51.95 11.03 0.01 2.1 0.29 209
Graph 0.60 65.61 8.15 0.05 2.49 0.22 231

STACOM
Angle 0.90 97.00 4.36 0.00 0.97 9.86 1
Graph 0.90 96.93 4.23 0.01 0.99 9.74 2

Means of ratio 1.01 1.03 0.26 0.86 1.01 0.89

Table 4.8: Experiments with the angle-based and the graph-based compres-
sion methods [24]. Optimal value are used for the parameters τ
and µ in the angle-based method and in the graph-based method,
respectively. The last row reports the geometric means of the ra-
tio between Angle vs Graph of each performance metric.
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Matrix Method τ/µ Block
density
(%)

Block
size

Blocking
time (s)

Total
(s)

M-
cost

Its

OILPAN
Angle 0.70 95.94 7.36 0.03 4.18 0.26 198
Graph 0.70 95.02 7.42 0.08 4.17 0.27 198

K3PLATES
Angle 0.60 59.16 7.90 0.00 0.7 0.3 239
Graph 0.70 89.50 5.65 0.01 0.7 0.18 241

VENKAT01
Angle 0.70 99.94 4.00 0.02 0.43 1.33 9
Graph 0.70 94.05 4.28 0.08 0.48 1.58 9

PWTK
Angle 0.60 56.95 12.17 0.09 26.38 6.85 117
Graph 0.70 78.16 7.31 0.35 32.64 4.5 137

S3DKQ4M2
Angle 1.00 100.00 5.93 0.03 9.57 1.09 214
Graph 0.70 77.92 7.81 0.12 15.1 1.42 309

OLAFU
Angle 0.80 81.75 6.47 0.02 1.2 3.14 54
Graph 0.70 79.66 6.58 0.11 1.63 3.75 57

RAE
Angle 0.80 95.83 4.67 0.03 8.85 9.53 49
Graph 0.70 86.21 4.64 0.13 15.74 13.8 42

BMW7ST 1
Angle 0.70 77.16 7.28 0.08 0.35 0.18 5
Graph 0.70 79.54 6.65 0.29 0.48 0.17 9

NASASRB
Angle 0.80 90.87 4.24 0.05 7.51 5.23 30
Graph 0.70 77.62 4.20 0.20 12.39 7.46 16

CT20STIF
Angle 0.70 66.05 6.55 0.04 0.69 0.18 44
Graph 0.70 78.42 4.76 0.16 1.18 0.14 56

RAEFSKY3
Angle 0.70 95.23 8.63 0.01 0.08 0.13 13
Graph 0.70 77.67 10.56 0.02 0.09 0.17 15

BCSSTK35
Angle 0.60 51.95 11.03 0.01 2.1 0.29 209
Graph 0.70 78.72 6.57 0.05 2.66 0.18 235

STACOM
Angle 0.90 97.00 4.36 0.00 0.97 9.86 1
Graph 0.70 84.51 4.47 0.01 1.39 11.9 2

Table 4.9: Experiments with the angle-based and the graph-based compres-
sion methods [24]. The optimal value of τ is used for the angle-
based algorithm. The value µ = 0.7 is used for the graph-based
algorithm in all our runs.

4.3.4 Performance comparison of the two implementations

The improvement of efficiency obtained with the implicit implementation is
remarkable as shown in Table 4.10. Implicit implementation gains a lot on
time cost (the highlighted colum “P-T”) of preconditioner setup. That is
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because it saves the storage of temporary matrices during the calculation of
Schur complement, and avoids a lot of memory traffic, especially when the
matrix gets bigger like PWTK and BMW7ST.



4.3. Numerical experiments on a sequential computer 65

Matrix Method P-T I-T Total (s) M-cost Its

STACOM
Implicit 0.56 0.06 0.62 4.62 9
Explicit 0.54 0.09 0.63 4.63 7

NASASRB
Implicit 2.34 4.64 6.98 1.97 85
Explicit 12.12 5.36 17.48 2.22 92

OILPAN
Implicit 0.72 0.67 1.39 3.28 23
Explicit 4.59 0.66 5.25 3.43 19

BCSSTK35
Implicit 0.63 3.26 3.89 2.43 156
Explicit 5.78 1.39 7.18 2.53 72

K3PLATES
Implicit 0.21 0.71 0.92 2.57 133
Explicit 0.40 0.48 0.89 2.61 75

RAE
Implicit 2.48 0.50 2.99 3.84 14
Explicit 9.43 0.41 9.84 4.00 10

VENKAT01
Implicit 1.09 0.17 1.25 2.56 5
Explicit 3.85 0.38 4.24 2.85 4

RAEFSKY3
Implicit 0.32 0.05 0.38 1.95 5
Explicit 1.28 0.13 1.41 2.02 2

CT20STIF
Implicit 1.46 1.42 2.88 2.08 31
Explicit 24.24 0.86 25.10 2.33 17

OLAFU
Implicit 0.38 1.09 1.46 1.88 99
Explicit 1.41 1.16 2.57 2.02 92

BMW7ST 1
Implicit 4.63 0.13 4.75 2.94 1
Explicit 49.64 1.75 51.39 3.22 1

S3DKQ4M2
Implicit 2.22 10.18 12.39 2.46 178
Explicit 6.51 7.42 13.93 2.60 128

PWTK
Implicit 5.23 31.75 36.98 2.40 196
Explicit 36.92 24.50 61.42 2.63 153

Table 4.10: Comparative experiments [24] with implementing a different
partial (block) factorization step in VBARMS. Implicit is the
implementations of implicit Schur compliment calculation and
explicit implementations of explicit Schur compliment calcula-
tion





5 Parallelization strategy and
experiments

5.1 Introduction to parallel computing

In the past decades, the world went through a very exciting phase on com-
puter hardware, passing from single core Central Processing Unit (CPU) to
multiple-core CPU, and from CPU to Graphics Processing Unit (GPU). This
transition has led to dramatic performance improvements. Trends indicate
that the progress will continue in the coming decades. The boost for these
progress is the emergence of microprocessor technology. Microprocessors are
smaller, and one chip can contain multiple CPUs. Thus, this microprocessor
technology led to the evolution of the larger parallel computer.

Today, even our office desktops start to have a parallel computer archi-
tecture. Because of the advent of dual-core and quad-core computers and
the expected increase in the number of cores, this may change the way of
software design, such as the mathematical software we use in scientific com-
putations. Moreover, the paper [81] points out that concurrency will be even
a next revolution in how we write software, just like how Object Oriented
Programming influenced the software industry.

Unfortunately, the software development has not kept pace with the hard-
ware advances yet. In order to solve a problem efficiently on a parallel ma-
chine, it is usually necessary to design an algorithm that specifies multiple
operations on each step, i.e., a parallel algorithm.

Traditionally, computer software was designed for serial computing, where
an algorithm is composed by a serial stream of instructions. These instruc-
tions are executed on one processing unit on one computer. Moreover, one
instruction only can be executed at a time, and one after another, see also [9].

Parallel computing uses multiple processing elements simultaneously to
solve a problem. We break the whole process into independent parts, and
instructions from each part executes concurrently on different processors. In
order to utilize parallel computing techniques, there are some requirements
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Figure 5.1: A typical serial process [9].

for the problem and compute resource.

The computational problem must be parallelizable, which means it should
be amenable to be broken apart into discrete pieces of work that can be com-
puted simultaneously; the compute resources are typically a single computer
with multiple processors/cores or a cluster composed by several such com-
puters connected by a network.

It is important to recall Flynn’s taxonomy [44] to help understand the
parallel workflow of a computer program. The taxonomy of computer sys-
tems proposed by M. J. Flynn in 1966 is the most widely used classification
for parallel computers. Flynn introduced the concept of instruction and
data streams for categorizing of computers. So it can also be considered as
a classification of parallel software workflow.

1. SISD

• Single Instruction Stream, Single Data Stream.

• Conventional sequential computer (von Neumann architecture)
i.e. uniprocessor

• The software that matches this type of computer is the traditional
serial software, see Fig 5.3 for a serial workflow.

2. SIMD
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Figure 5.2: A typical parallel process [9].

Figure 5.3: A SISD workflow [9].

• Single Instruction Stream, Multiple Data Stream.

• Most modern computers, particularly those with graphics proces-
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sor units (GPUs) employ the SIMD architecture.

• All processing elements are concurrently executing the same in-
struction but on a different data stream at the same time; hence
the name SIMD.

• Synchronous (lockstep) execution.

• Analogy in the life: multiple students in a dance class carry out
the instructor’s instruction one by one simultaneously.

Figure 5.4: A SIMD workflow [9].

3. MIMD

• Multiple Instruction Stream, Multiple Data Stream.

• Execution can be synchronous or asynchronous.

• A MIMD is a true multiprocessor.

• Currently, the most common type of parallel computer - most
modern supercomputers belong to this category.

• Many MIMD architectures also include SIMD execution sub-
components.

4. MISD

• Multiple Instruction Stream, Single Data Stream.
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Figure 5.5: A MIMD workflow [9].

• Few actual examples of this category of parallel computer have
ever existed.

• Some examples could be pipeline-wise computation, like multi-
ple frequency filters operating on a single signal stream, multiple
cryptography algorithms attempting to crack a single coded mes-
sage..

Figure 5.6: A MISD workflow [9].
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Corresponding to the parallel computer architecture used, there are also
different types of programming model for parallel software. In this thesis,
we only introduce the most widely used models; the thread model and the
distributed memory programming model.

1. Thread model

• Thread model is a type of shared memory programming.

• A thread is the smallest processing unit that can be performed in
an OS. In most modern operating systems, a thread exists within
a process - that is, a single process may contain multiple threads.

• Threads communicate with each other via shared global memory.
This requires synchronization constructs to ensure that more than
one thread is not updating the same global address at any time.

• From a programming perspective, there are two popular imple-
mentations of threads: POSIX Threads (Pthreads) and OpenMP.

• POSIX Threads is a standardized C/C++ language threads pro-
gramming interface. It is a library based module that can only
be called in parallel source code. See more details in [11].

• OpenMP is a compiler directive based Application Program In-
terface (API). The API supports C/C++ and Fortran on a wide
variety of architectures. It can be easy and simple to use from
programmers perspective, see also [10].

• Normally, POSIX Threads and OpenMP parallel programs have
both SIMD and MIMD workflow.

2. Distributed memory model

• A set of computational tasks can have their own local memory
during operations. The computer should be either a multicore
machine or a group of computers connected by a network.

• Tasks exchange data through communications by sending and
receiving messages.

• From a programming perspective, message passing implementa-
tions usually comprise a library of subroutines. It is due to the
programmer to use these subroutines and to determine the par-
allelism in the source code.
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• Message Passing Interface (MPI) is an interface specification
for the developers and users of message passing libraries.

• It supports several different computer programming languages
such as Fortran, C/C++ and Java.

For the distributed memory computing model, the matrix computation soft-
ware package we have been working on is a MPI-based library, Parallel Al-
gebraic Recursive Multilevel Solver (pARMS) [54]. MPI-based program is
also a type of SIMD model, that is single program performs multi-tasks on
multi-cores. We will introduce this software in the next section.

5.2 Parallel implementation of VBARMS

pARMS is a MPI-based library of parallel solvers for distributed sparse sys-
tems of linear equations. It adopts a distributed sparse parallel framework.
This viewpoint generalizes domain decomposition approach to partition an
irregularly structured sparse matrix into submatrices. It is common to par-
tition a physical mesh by a graph partitioner like METIS [49] and assign a
group of elements which represent a physical subdomain to each processor.
Every processor only assembles the equations attached to the local elements,
it will eventually end up with a set of equations (rows of the linear system)
and a vector of the variables associated with these rows. This is the classic
way of distributing a sparse linear system. If the graph form is a matrix,
then it will be sending rows of the matrix and the corresponding right hand
side variables to each processor.

Following the parallel framework described in [54], in this study we distin-
guish the local nodes of the quotient graph into interior nodes; those coupled
only with local variables by the equations, and interface nodes, those that
may be coupled with local variables stored on processor i and those with
remote variables stored on other processors (see Figure 5.7).

In our case, the integration of VBARMS within this parallel framework
generate a block wise distributed sparse linear system by distributing block
rows and corresponding variables in parallel. So from graph viewpoint, it
is natural to split the quotient graph G/B into separate subdomains, each
assigned to a different processing unit.

The vector of the local unknowns xi and the right-hand side bi are also split
in two separate components: the subvector corresponding to the internal
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Figure 5.7: Local domain from a physical viewpoint.

nodes followed by the subvector of the local interface variables

xi =

(
ui
yi

)
, bi =

(
fi
gi

)
.

Figure 5.8: A partitioned local sparse matrix.

As can be seen in Figure 5.8, the rows of the matrix assigned to the ith
processor are separated into a local matrix Ai acting on the local variables
xi = (ui, yi)

T , and an interface matrix Ui acting on the remotely stored
subvectors of the external interface variables yi,ext. Hence the local equations
on processor i write as

Aixi + Ui,extyi,ext = bi

or, in expanded form, as

Ai =

(
Bi Fi
Ei Ci

)
(5.1)
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(
Bi Fi
Ei Ci

)(
ui
yi

)
+

(
0∑

j∈Ni
Eijyj

)
=

(
fi
gi

)
, (5.2)

where Ni is the set of subdomains that are neighbors to subdomain i and the
submatrix Eijyj accounts for the contribution to the local equation from the
jth neighboring subdomain. Notice that matrices Bi, Ci, Ei and Fi continue
to possess the finest block structure imposed by the block ordering PB.

In its simplest parallel implementation, we apply the sequential VBARMS
method to invert approximately each matrix Ai without subdomain overlap-
ping (Block-Jacobi preconditioner) or with overlapping (Restricted Additive
Schwarz preconditioner). The Jacobi iteration for solving Ax = b is defined
as

xn+1 = xn +D−1 (b−Axn) = D−1 (Nxn + b)

where D is the diagonal of A, N = D − A and x0 is some initial approx-
imation. In case we have a graph partitioned matrix, we may define a
block-Jacobi iteration in a similar way with D block diagonal. This is the
case of our parallel implementation of the Block-Jacobi preconditioner that
writes as Algorithm 5.1. Clearly, there is high degree of parallelism in this
approach since the solves with the matrices Ai are performed independently
on all processors.

Algorithm 5.1 Block-Jacobi preconditioning.

1: Obtain the remote variables yi,ext
2: Compute ri = (b−Ax)i
3: Solve Aiδi = ri approximately using the sequential VBARMS method
4: Update xi = xi + δi

If the subdomains are allowed to overlap, the resulting preconditioner is
called Schwarz preconditioner. Again consider we have a graph partitioned
matrix, and say the graph partitioning resulted in N nonoverlapping sets
W 0
i with i = 1, . . . , N and W0 =

⋃N
i=1W

i
0. We define a k-overlap partition

W k =
N⋃
i=1

W k
i

where W k
i = adj

(
W k−1
i

)
with k > 0 the levels of overlap with neighboring

domains. Associated with each subdomain we define a restriction operator
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Figure 5.9: The block-Jacobi matrix without overlapping blocks.

Rki , which is an n× n matrix with the (j, j)th element equal to 1 if j ∈W k
i

and zero elsewhere. We now denote

Ai = RkiAR
Tk
i .

The preconditioning matrix MRAS is defined as

M−1RAS =
s∑
i=1

RTi A
−1
i Ri.

and the Restricted Additive Schwarz preconditioner (RAS) [19, 70, 39] writes
as Algorithm 5.2.
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Algorithm 5.2 Restricted Additive Schwarz preconditioning.

1: Obtain the remote variables yi,ext
2: Compute ri = (b−Ax)i
3: Solve RTi A

−1
i Riδi = ri using the sequential VBARMS method to invert

approximately Ai
4: Update xi = xi + δi

Figure 5.10: The block-Jacobi matrix with overlapping blocks.

Note that the preconditioning step is still parallel and consists of forming
the different components of the error update. However, in this case of the
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overlapping, the components are added up from the different results obtained
in each subdomain. Therefore some communication is required.

We also consider a parallel implementation of VBARMS based on the
Schur complement approach [89]. In Eq. (5.2), we can eliminate the vector
of interior unknowns ui from the first equations to obtain the local Schur
complement system:

Siyi +
∑
j∈Ni

Eijyj = gi − EiB−1i fi ≡ g′i,

where Si is the local Schur complement matrix

Si = Ci − EiB−1i Fi.

Writing all the local Schur complement equations together results in the
global Schur complement system:

S1 E12 . . . E1p

E21 S2 . . . E2p
...

. . .
...

Ep1 Ep−1,2 . . . Sp




y1
y2
...
yp

 =


g′1
g′2
...
g′p

 , (5.3)

where the off-diagonal matrices Eij are already available from the data struc-
ture of the distributed sparse linear system. One preconditioning step con-
sists in solving the global system Eq. (5.3) approximately, and computing
the ui variables from the local equations as

ui = B−1i [fi − Fiyi]. (5.4)

This operation requires only a local solve. In our study we solve the global
system Eq. (5.3) approximately by performing a few steps of GMRES pre-
conditioned by block Jacobi, where the diagonal blocks are the local Schur
complements Si. The factorization

Si = LSiUSi

is obtained as by-product of the LU factorization of the local matrix Ai,

Ai =

(
LBi 0

EiU
−1
Bi

LSi

)(
UBi L−1Bi

Fi
0 USi

)
.

which is by the way required to compute the ui variables in (5.4).

In the next section, we report on numerical experiments to illustrate the
performance of the VBARMS code for solving realistic applications.



5.3. Parallel results with PVBARMS 79

5.3 Parallel results with PVBARMS

5.3.1 Performance of VBARMS in a parallel package

We applied the VBARMS method on a set of sparse linear systems Ax = b
arising from different application areas. For each linear system, we give
in Table 5.1 the size, application field, number of nonzero entries and the
characteristics of the block ordering computed by the compression algorithm.
We recall again that the column b-size shows the average block size of A after
the compression, and the column b-density shows the ratio of the number of
nonzero entries in A before and after the compression. It is b-density=1 if the
graph compression algorithm finds a perfect block structure in A with fully
dense nonzero blocks, whereas b-density<1 means that some zero entries in
the blocks are treated as nonzeros in VBARMS.

Table 5.1: Set and characteristics of test matrix problems.

Name Size Application nnz(A) b-size b-density (%)
RAE 52995 Turbulence analysis 1748266 4.00 97
CT20STIF 52329 Engine block 2600295 2.61 100
RAEFSKY3 21200 Fluid structure interaction 1488768 8.00 100
VENKAT01 62424 2D Euler solver 1717792 4.00 100
BMW7ST 141347 Car body 7318399 4.63 100

We use the graph compression algorithm described in Chapter 2 that
discovers perfect or imperfect block structures in the system by comparing
the sparsity patterns of consecutive rows. In our experiments, we initially
set the parameter τ = 1 to find sets of rows and columns having the same
pattern, and discover the presence of fully dense blocks in the matrix. We
tested different values for τ , ranging from 0.7 to 1 on these two problems;
with very little sacrifice in memory, it was possible to obtain larger blocks
with still high density around 90%. The computed block ordering was used
in our experiments with the VBARMS.

We compared the sequential and parallel VBARMS preconditioners with
the original ARMS code [74] and the standard ILUT methods [67]. For
the sequential version of ARMS and ILUT, we used the implementations
available in the ITSOL package [52]; for the parallel version we used the
pARMS package [52]. Prior to the iterative solution, we scaled the system by
rows and columns so that the modulus of each entry of the scaled coefficient
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matrix was smaller than one. By an abuse of notation we continue denoting
by A the compressed matrix in the experiments with VBARMS. We used
physical right-hand sides b when these were available, otherwise we set b =
Ae with e = [1, . . . , 1]T . For every run, we recorded the solution time from
the start of the solve until either the initial residual was reduced by six orders
of magnitude or no convergence was achieved after the prescribed maximum
number of iterations of the flexible GMRES (FGMRES) method [66]. In
this set of experiments, we restarted FGMRES every 20 inner iterations on
the small problems (Table 5.2- 5.3), and every 100 inner iterations on the
larger problems (Table 5.5). One important parameter to tune in VBARMS
is the dropping threshold t. Just like we described in Chapter 4 small blocks
Bij ∈ Rmi×nj are dropped in the incomplete factors L̄`, Ū`, L̄S , ŪS , E`Ū

−1
` ,

L̄−1` Fl and in the last level Scur complement matrix A`max whenever ‖B‖Fmi·nj
<

t.
The parameter settings are similar to the one in Chapter 4. For each

matrix problem, we tested different values for the dropping parameter t in
VBARMS, starting from t = 0.1 and decrementing it by a factor of 10 in
each run; we selected the value of t which gave the best convergence result for
the given problem. Finally, the number of levels of recursive factorization in
VBARMS and ARMS were calculated automatically by the two codes, which
stop when the Schur complement becomes too small to continue reducing
the matrix. The maximum allowed size for the last level Schur complement
matrix was set to 300. This value also determines the minimum size of the
independent sets in the greedy algorithm.

The notations are the same, the time cost for computing the factorization
(column “P-T”) and for solving the linear system (column “I-T”), the ratio
of the total number of nonzeros in the factors to the number of nonzeros in
the coefficient matrix A (column “M-cost”), and the number of FGMRES
iterations (column “Its”).

First we conducted the experiments on small matrices (Table 5.2- 5.3) on
a desktop computer. In Table 5.2 we report comparative results from our
sequential runs. The results highlight the robustness of the VBARMS pre-
conditioner. This is probably due to the better control of near-singularities
of block ILU solvers, and to the better conditioning of the Schur comple-
ment matrices that are smaller and easier to invert. In our experiments on
the small problems, we observed that the triangular factors computed by
VBARMS were well conditioned; consequently, the triangular solves were
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numerically stable.

Table 5.2: Performance comparison of VBARMS versus ARMS on one pro-
cessor.

Matrix Method P-T I-T Total Its M-cost

RAE
VBARMS
ARMS
ILUT

4.51
68.95
132.06

0.62
>73.36
>106.12

5.13
142.30
238.18

15
>1000
>1000

4.62
29.26
49.99

CT20STIF
VBARMS
ARMS
ILUT

1.51
18.63
90.60

1.68
>40.81
>49.13

3.19
59.44
139.73

39
>1000
>1000

2.42
8.27
11.86

RAEFSKY3
VBARMS
ARMS
ILUT

0.77
5.07
1.81

0.04
0.05
0.06

0.81
5.12
1.87

3
3
6

2.00
4.01
2.39

VENKAT01
VBARMS
ARMS
ILUT

1.74
0.72
1.18

0.21
0.16
0.09

1.96
0.88
1.27

5
6
4

2.56
2.32
4.18

BMW7ST
VBARMS
ARMS
ILUT

6.54
22.65
48.13

0.23
>73.44
>103.97

6.77
96.10
152.10

2
>1000
>1000

3.67
3.73
8.37
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In Table 5.3 we show the parallel performance of VBARMS, also against
parallel ARMS and ILUT on the same problems. In these experiments, we
compare the block Jacobi preconditioner (denoted as BJ) with VBARMS,
ARMS and ILUT as local solvers. If we focus on the three subrows, we can
see that VBARMS can be more efficient and numerically more stable than
ARMS and ILUT in the parallel preconditioner on the same matrices. The
conclusion would be the same; combined with the parallel preconditioner,
VBARMS normally outperforms ARMS on solving the block structured ma-
trices. The results also show good scalability on a modern desktop with
multicore CPU.

In the one-level Schur complement method (denoted as Schur), we use
VBARMS as a local solver and a fews steps of inner GMRES iterations for
solving the global Schur complement system; precisely, the inner iterations
are stopped after 100 steps or when the norm of the relative residual is
decreased by two orders of magnitude. We refer the reader to Section 5.2
for a description of these preconditioners.
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Table 5.3: Performance analysis of parallel VBARMS on 8 processors.

Matrix Method P-T I-T Total Its M-cost

RAE

SCHUR+VBARMS
RAS+VBARMS
BJ+VBARMS
BJ+ARMS
BJ+ILUT

1.56
1.38
1.25
2.43
3.30

98.00
1.84
3.79
>22.14
>27.85

99.56
3.22
5.03
24.57
31.15

714
117
251
>1000
>1000

7.19
3.50
3.46
9.81
13.36

CT20STIF

SCHUR+VBARMS
RAS+VBARMS
BJ+VBARMS
BJ+ARMS
BJ+ILUT

0.38
0.29
0.20
0.80
0.54

1.82
1.07
0.62
>28.59
>18.73

2.20
1.36
0.82
29.39
19.26

40
38
37

>1000
>1000

2.59
2.04
1.96
6.93
3.70

RAEFSKY3

SCHUR+VBARMS
RAS+VBARMS
BJ+VBARMS
BJ+ARMS
BJ+ILUT

0.21
0.15
0.09
0.13
0.08

0.03
0.05
0.04
0.24
0.32

0.23
0.20
0.13
0.37
0.40

4
3
3
6
8

1.85
1.64
1.70
2.45
1.80

VENKAT01

SCHUR+VBARMS
RAS+VBARMS
BJ+VBARMS
BJ+ARMS
BJ+ILUT

0.40
0.33
0.29
0.45
0.20

2.60
0.21
0.30
2.70
0.24

3.01
0.54
0.59
3.15
0.44

131
8
13
14
13

2.64
2.42
2.43
10.78
3.96

BMW7ST

SCHUR+VBARMS
RAS+VBARMS
BJ+VBARMS
BJ+ARMS
BJ+ILUT

12.18
1.04
0.90
3.95
24.12

14.09
0.79
0.51
>57.47
>88.36

26.27
1.83
1.41
61.41
112.48

58
9
5

>1000
>1000

4.00
2.42
2.63
4.34
9.75

In our experiments, Table 5.3 and 5.5 also show the comparison between
the three parallel preconditioners; block Jacobi, restricted additive Schwarz
and Schur complement method. As we can see, block Jacobi and restricted
additive Schwarz are more robust than the one-level Schur complement-
based preconditioner.

The results reported in Table 5.5 on larger problems confirm this trend.
Table 5.4 shows the characteristics of these new larger matrices. For each
linear system, we give in Table 5.1 the size, application field, number of
nonzero entries and the characteristics of the block ordering computed by
the compression algorithm.
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Table 5.4: Set and characteristics of test matrix problems.

Name Size Application nnz(A)

AUDIKW 1 943695 Structural problem 77651847
LDOOR 952203 Structural problem 42493817
STA004 891815 Fluid Dynamics 55902989
STA004 891815 Fluid Dynamics 55902989

Table 5.5: Performance comparison of BJ + VBARMS and ARMS on larger
matices.

Matrix Method P-T I-T Total Its M-cost

AUDIKW 1

BJ+VBARMS
RAS+VBARMS

SCHUR+VBARMS
BJ+ARMS

84.23
77.44
126.39
114.43

308.18
57.45

2545.24
>1785.02

392.42
134.88
2671.63
1899.45

331
32
63

>3000

3.46
3.31
5.51
5.24

LDOOR

BJ+VBARMS
RAS+VBARMS

SCHUR+VBARMS
BJ+ARMS

18.43
23.75
10.64
48.59

99.12
23.64
63.28

>1194.43

117.55
47.39
73.91

1243.01

340
47
29

>3000

3.90
4.26
3.76
7.66

STA004

BJ+VBARMS
RAS+VBARMS

SCHUR+VBARMS
BJ+ARMS

19.14
19.88
8.17
9.36

81.14
42.70
446.88
65.92

100.27
62.58
455.05
75.28

92
34
256
145

3.88
4.12
1.80
2.87

STA008

BJ+VBARMS
RAS+VBARMS

SCHUR+VBARMS
BJ+ARMS

44.82
56.40
824.44
151.64

195.89
108.23
3643.82
>7740.94

240.71
164.63
4468.26
7892.57

256
98
862
>3000

5.27
5.52
2.06
11.83

Scalability study

We also conducted several experiments to study the parallel scalability of
our VBARMS method. Table 5.6 shows more details. We fix the matrix
AUDIKW 1 and double the processor number repeatedly from 8 to 256, and
analyze the time cost and iteration steps. First let us focus on the strong
parallel scalability. As we can see in the table, the “P-T” column, the time
cost is halved as the processor number doubles, which confirms a strong
parallel scalability for both BJ and RAS. Numerical scalability is also very
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good, since the “Its” column also shows that the iteration steps increases
slowly as the processor number grows.

Compression Method P-N P-T I-T Total Its M-cost

τ = 0.80,
b-density=96.40%,

b-size=3.16.
BJ+VBARMS

8
16
32
64
128
256

86.71
44.34
19.44
7.35
2.22
1.31

169.96
85.75
98.02
32.44
18.67
49.07

256.66
129.91
117.46
39.79
20.89
50.37

116
131
279
208
223
725

3.55
3.50
3.29
3.08
2.88
2.72

τ = 0.80,
b-density=96.40%,

b-size=3.16.
RAS+VBARMS

8
16
32
64
128
256

104.64
52.19
27.92
11.47
5.82
3.82

69.76
39.44
19.79
21.30
13.87
8.65

174.41
91.64
47.71
32.76
19.69
12.47

28
35
39
59
78
90

3.39
3.38
3.16
3.08
2.93
2.77

Table 5.6: Numerical and parallel scalability experiments on the AUDIKW 1
problem.

Figure 5.11: Speedup achieved on Millipede from University of Groningen,
plot for BJ and RAS methods

Figure 5.11 also shows the plot of the scalability. Restricted Additive
Schwarz achieved very good parallel and numerical scalability due to inher-
ent parallelism and good convergence. On the other hand, the scalability of
Block Jabobi suffers from the bad convergence on higher processor number.
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Global and local graph compression strategy

Let us recall the implementation framework we introduced in Section 5.2, in
order to interface it with VBARMS. Recall that the graph partition strategy
we adopt consist of distributing the quotient graph and assigning the data
to different processors. From a matrix viewpoint, block rows are assigned
to different processors instead of point rows. Figure 5.12 and 5.13 illustrate
this process. We take the input matrix A and convert it to a block matrix
Ã and assign the block rows. The advantage of this implementation is
that the block structure of the matrix will not be destroyed by the data
distribution, so each processor will hold a well block-structured rectangular
matrix. Since we perform the block matrix conversion on the global input
matrix, we denote this implementation strategy as global graph compression.

Figure 5.12: point rows distribution.

Besides this one, we also implemented a local graph compression approach.
The process is as follows: we distribute the point-wise global matrix to
processors, then each processor will hold a point-wise rectangular matrix.
After that we generate the local square matrix corresponding to the local
solver by calling parallel preconditioner. The last step is to convert the local
square matrix into a block matrix and solve it via VBARMS. So the block
matrix convertion is done on the local square matrix instead of the global
matrix. Table 5.7 and 5.8 show the performance comparison between the
two implementation strategies.

As we can see from Table 5.7 and 5.8, there are a few cases where the
local graph compression strategy works better in terms of total time cost,
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Figure 5.13: block rows distribution.

Table 5.7: Performance comparison of global and local graph compression.

Matrix Method C-Type P-T I-T Total Its M-cost

RAE
BJ+VBARMS

RAS+VBARMS

global
local
global
local

1.25
4.09
1.38
4.26

3.79
>33.05
1.84
18.27

5.03
37.14
3.22
22.53

251
>1000
117
480

3.46
3.50
3.50
3.55

CT20STIF
BJ+VBARMS

RAS+VBARMS

global
local
global
local

0.20
0.31
0.29
0.46

0.62
0.56
1.07
1.17

0.82
0.87
1.36
1.63

37
37
38
57

1.96
2.06
2.04
2.10

RAEFSKY3
BJ+VBARMS

RAS+VBARMS

global
local
global
local

0.09
0.06
0.15
0.13

0.04
0.10
0.05
0.16

0.13
0.16
0.20
0.29

3
6
3
3

1.70
1.72
1.64
1.59

VENKAT01
BJ+VBARMS

RAS+VBARMS

global
local
global
local

0.29
0.29
0.33
0.32

0.30
0.26
0.21
0.27

0.59
0.55
0.54
0.59

13
14
8
9

2.43
2.45
2.42
2.44

BMW7ST
BJ+VBARMS

RAS+VBARMS

global
local
global
local

0.90
0.99
1.04
1.14

0.51
0.77
0.79
0.90

1.41
1.76
1.83
2.04

5
10
9
11

2.63
2.28
2.42
2.30

memory cost and iteration steps, but the global approach is generally more
effective. Besides, the local graph compression has a big drawback, that is its
performance is sometimes unpredictable. For instance, on the RAE matrix
in Table 5.7, the local graph compression strategy can not even converge.



88 Chapter 5. Parallelization strategy and experiments

Table 5.8: Performance comparison of global and local graph compression.

Matrix Method C-Type P-T I-T Total Its M-cost

AUDIKW 1
BJ+VBARMS

RAS+VBARMS

global
local
global
local

84.23
70.52
77.44
78.95

308.18
141.07
57.45
43.86

392.42
211.59
134.88
122.81

331
203
32
34

3.46
3.55
3.31
3.31

LDOOR
BJ+VBARMS

RAS+VBARMS

global
local
global
local

18.43
20.31
23.75
20.33

99.12
65.41
23.64
14.39

117.55
85.71
47.39
34.72

340
175
47
38

3.90
3.84
4.26
3.97

STA004
BJ+VBARMS

RAS+VBARMS

global
local
global
local

19.14
10.64
19.88
14.17

81.14
61.59
42.70
40.59

100.27
72.24
62.58
54.76

92
90
34
46

3.88
3.89
4.12
4.07

STA008
BJ+VBARMS

RAS+VBARMS

global
local
global
local

44.82
15.48
56.40
19.81

195.89
176.40
108.23
131.79

240.71
191.88
164.63
151.59

256
246
98
125

5.27
5.35
5.52
5.35

The reason is that the local graph compression may destroy the original
block structure of the matrix since it distributes a point-wise matrix. When
this occurs, the local block solvers will not be able to perform well.

5.3.2 A Zoltan-based graph partitioning strategy and
experiments

We report on numerical experiments to illustrate the performance of the
parallel VBARMS code on a set of selected matrix problem of larger size.
The set and the characteristics of the test matrix problems considered in
this section are shown in Table 5.4. The parallel experiments were run on
the TACC Stampede system located at the University of Texas at Austin.
TACC Stampede is a 10 PFLOPS (PF) Dell Linux Cluster based on 6,400+
Dell PowerEdge server nodes, each outfitted with 2 Intel Xeon E5 (Sandy
Bridge) processors and an Intel Xeon Phi Coprocessor (MIC Architecture).
For our runs we used large-memory nodes with 32 cores/node and 1TB of
memory.

We investigated two different graph partitioning strategies in a parallel
context. The first one applies a sequential graph partitioner on the quo-
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tient graph G/B [49] on one processor and then it assigns each resulting
partition to a different processor. Once other processors receive the parti-
tion, they load their local data from the matrix file. This strategy is the
graph partitioning approach also adopted in Trilinos [46], and is denoted
as “serial” in the tables. Its advantage is the low memory cost, since only
one processor processes the global data. But it does have its disadvantage,
that is the partition distribution is time-consuming because it is a one to all
communication process.

load A

compute block ordering and permute A

partition A by contiguous block rows

A→ Ai

Ai → Ãi

Zoltan refines partition

Ãi → Ãnewi

next instruct

Pi

Zoltan-based graph partition strategy.

Notations: A is the global point-wise matrix.
i = 1, 2, · · · , n.
Pi means the workflow on i-th processor.
Ai is the local point-wise matrix on i-th processor.
Ãi is the local block-wise matrix on i-th processor.
Ãnewi is the updated local block-wise matrix on i-th
processor.

The second strategy applies a parallel partitioner available in the Zoltan
package [16] to the distributed quotient graph over the available processors.
This strategy is denoted as “parallel” in the tables. The computational steps
of the process can be summarized as follows:

STEP 1 Every processor loads the global matrix A.
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STEP 2 Compute the block ordering via Algorithm 2.2 and permute the
pointwise matrix A.

STEP 3 Partitions the pointwise matrix A by contiguous block rows, and
create a map based on this partition.

STEP 4 Based on the map, each processor delete the non-local data from
memory, after that it holds Ai the rectangular pointwise local matrix.

STEP 5 Each processor performs the data structure conversion, that is con-
verting the pointwise local matrixAi to blockwise local matrixAi, after
that we obtain a distributed block-wise linear system.

STEP 6 The distributed quotient graph can be extracted from this dis-
tributed block-wise linear system, and it can be passed to Zoltan rou-
tines to optimize; optimization means the new distributed graph has
less couplings between processors.

STEP 7 Based on this new distributed graph, we perform the global data
exchange, from each processor’s viewpoint, it get a import and export
list which tells which unknown should be received from which pro-
cessor and which unknown on this processor should be sent to which
processor. And it sends and receives data according the list. That is
Ãi → Ãnewi step

At the end we will get a refined distributed system. The advantage of this
Zoltan-based graph partition strategy is that it performs all to all commu-
nication, so it is supposed to be more time-saving. Our later experiments
will show more details on this.

The build-in parallel hyper-graph partitioning in Zoltan is used because
of better performance. The results reported in Tables 5.9-5.10 show that
the parallel partitioning approach scales well with respect to the number
of unknowns of the linear system. The two tables also highlight the per-
formance of the two graph partition approaches, we could notice that the
Zoltan-based graph partitioning strategy performs slightly better in terms
of the convergence in most cases; also the time cost is much lower than the
serial graph partitioning strategy since the step Ai → Ãi in the diagram
requires all to all data communication which is more efficient than one to
all communication.
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Finally, in Table 5.11 we illustrate the scalability results obtained with our
parallel implementation of the Block Jacobi, Restricted Additive Schwarz,
and Schur-complement preconditioners. This table can be considered as a
extension of Table 5.6 because we also included the time cost of the graph
compression strategy and the with the Schur-complement method. We ob-
served that the Schur-complement preconditioner does not scale as well as
the Block Jacobi and the Restricted Additive Schwarz methods because its
solving phase needs to solve the global communication system. Another
observation from this table is that the time cost of graph partitioning does
scale very well.

Matrix Method G-Type G-time (s) Total (s) Its M-cost

AUDIKW 1

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial
parallel
serial
parallel

54.5
5.2
54.2
5.3
54.4
5.3

70.23
55.26
46.22
44.99
377.83
493.15

136
117
46
52
69
59

3.13
2.74
2.93
2.87
6.21
4.60

LDOOR

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial
parallel
serial
parallel

30.0
1.1
29.0
1.1
29.0
1.1

26.40
19.12
14.95
13.85
22.56
10.42

345
273
200
196
54
37

1.95
1.95
2.00
1.99
3.63
3.32

STA004

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial
parallel
serial
parallel

79.4
2.5
81.7
2.6
81.4
2.5

50.08
29.23
43.82
30.99
153.04
129.28

90
72
42
34
90
88

3.61
3.61
3.85
3.31
5.29
5.40

STA008

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial
parallel
serial
parallel

81.9
2.3
81.8
2.4
81.2
2.4

97.14
59.62
82.99
59.42
620.94
556.67

227
170
101
97
188
201

4.77
4.78
5.10
5.07
8.94
9.83

Table 5.9: Performance comparison of serial and parallel graph partition on
16 processors. Notation: P-N means number of processors, G-
Type means graph partitioning strategy, G-time means partition-
ing timing cost, Total (s) means the time cost of preconditioning
construction time cost plus iterative solution time cost, M-cost
means memory costs.
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Matrix Method G-Type G-time (s) Total (s) Its M-cost

AUDIKW 1

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial
parallel
serial
parallel

55.7
4.0
56.9
4.1
54.6
4.0

67.47
42.55
27.53
22.65
219.69
3153.95

285
204
64
52
82

>1000

2.89
2.63
2.72
2.87
5.73
5.84

LDOOR

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial
parallel
serial
parallel

31.2
1.1
30.6
1.1
30.5
1.2

11.03
11.91
8.90
9.20
6.43
7.69

246
260
190
198
37
54

1.94
1.97
1.98
2.00
3.53
3.31

STA004

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial
parallel
serial
parallel

87.5
2.0
82.6
2.0
82.4
2.2

23.14
20.53
25.38
24.16
86.03
64.68

89
73
39
37
89
90

3.28
3.25
3.46
3.43
5.67
5.10

STA008

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial
parallel
serial
parallel

86.2
2.1
82.5
2.0
83.3
2.1

65.84
49.50
58.06
47.30
721.01
360.30

213
217
118
117
362
293

4.22
4.20
4.46
4.47
8.71
8.21

Table 5.10: Performance comparison of serial and parallel graph partition
on 32 processors.
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Solver P-N G-T (s) P-T (s) I-T (s) Total (s) Its M-cost

BJ

8
16
32
64
128

54.3
54.6
55.7
56.7
56.5

33.75
18.88
7.80
2.75
1.03

91.46
51.35
59.66
19.78
20.95

125.21
70.23
67.47
22.52
21.98

119
136
285
219
426

3.19
3.13
2.89
2.69
2.50

RAS

8
16
32
64
128

54.4
54.2
56.9
55.4
57.8

36.12
19.54
10.30
4.49
2.38

46.29
26.68
17.23
12.45
7.26

82.41
46.22
27.53
16.94
9.64

45
46
64
83
86

2.96
2.93
2.72
2.63
2.47

SCHUR

8
16
32
64
128

54.6
54.4
54.6
56.0
56.8

164.91
82.72
42.94
18.73
7.97

526.78
295.11
176.75
959.26
441.73

691.69
377.83
219.69
977.99
449.76

61
69
82
-
-

5.35
6.21
5.73
5.42
5.15

Table 5.11: Scalability study of serial graph partition on AUDIKW 1 matrix.
The dash symbol in the table means that the FGMRES method
did not converge after 1000 iterations. P-T is the time cost of
preconditioner construction, I-T is the iterative solution time.





6 Case study in large-scale turbulent
flows simulation

We finally get back to the starting point that has motivated this study on
parallel block multilevel incomplete LU factorization methods. In this sec-
tion we illustrate a performance analysis for solving large block structured
linear systems arising from an implicit formulation of the Reynolds Aver-
aged Navier Stokes equations (briefly, RANS), using preconditioned Newton-
Krylov methods. Although explicit multigrid techniques have dominated
the Computational Fluid Dynamics (CFD) area for a long time, implicit
methods based on Newton’s rootfinding algorithm are recently receiving in-
creasing attention because of their potential to converge in a very small
number of iterations. Practical implicit CFD solvers, though, need to be
combined with well-suited convergence acceleration techniques in order to
be competitive with more conventional solvers in terms of CPU cost [87].
Critical feature is the choice of the preconditioning strategy for inverting the
large nonsymmetric linear system at each step of the Newton’s algorithm.
This can have a strong impact on the computational efficiency especially
when the mean flow and turbulence transport equations are solved in fully
coupled form, like we do.

6.1 Definition of the problem

Throughout this section we use standard notation for the kinematic and
thermodynamic variables: ~u is the flow velocity, ρ is the density, p is the
pressure, T is the temperature, e and h are respectively the specific total
energy and enthalpy, ν is the laminar kinematic viscosity and ν̃ is a scalar
variable related to the turbulent eddy viscosity via a damping function. The
quantity a denotes the sound speed or the square root of the artificial com-
pressibility constant in case of the compressible, respectively incompressible
flow equations.

In the case of high Reynolds number flows, we account for turbulence
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effects by the RANS equations that are obtained from the Navier-Stokes
(NS) equations by means of a time averaging procedure. The RANS equa-
tions have the same structure as the NS equations with an additional term,
the Reynolds’ stress tensor, that accounts for the effects of the turbulent
scales on the mean field. Using Boussinesq’s approximation the Reynolds’
stress tensor is linked to the mean velocity gradient through the turbulent
(or eddy) viscosity. In our study, the turbulent viscosity is modeled using
the Spalart-Allmaras one-equation model [79].

The mesh is partitioned into nonoverlapping control volumes drawn around
each gridpoint by joining in two space dimensions the centroids of gravity of
the surrounding cells with the midpoints of all the edges that connect that
gridpoint with its nearest neighbors, as shown in Figure 6.1.

(a) The flux balance of cell T is scattered
among its vertices.

(b) Gridpoint i gathers the fractions of cell
residuals from the surrounding cells.

Figure 6.1: Residual distribution concept.

Given a control volume Ci, fixed in space and bounded by the control
surface ∂Ci with inward normal ~n, we write the governing conservation laws
of mass, momentum, energy and turbulence transport equations as∫

Ci

∂~qi
∂t

dV =

∮
∂Ci

~n · F dS −
∮
∂Ci

~n ·GdS +

∫
Ci

~s dV, (6.1)

where we denote by ~q the vector of conserved variables. For compressible
flows, we have ~q = (ρ, ρe, ρ~u, ν̃)T , and for incompressible, constant density
flows, ~q = (p, ~u, ν̃)T . In (6.1), the operators F and G represent the inviscid
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and viscous fluxes, respectively. For compressible flows, we have

F =


ρ~u
ρ~uh

ρ~u~u+ pI
ν̃~u

 , G =
1

Re∞


0

~u · τ +∇q
τ

1
σ [(ν + ν̃)∇ν̃]

 ,

and for incompressible, constant density flows,

F =

 a2~u
~u~u+ pI
ν̃~u

 , G =
1

Re∞

 0
τ

1
σ [(ν + ν̃)∇ν̃]

 ,

where τ is the Newtonian stress tensor. The source term vector ~s has a
non-zero entry only in the row corresponding to the turbulence transport
equation, which takes the form

cb1 [1− ft2] S̃ν̃ +
1

σRe

[
cb2 (∇ν̃)2

]
+ − 1

Re

[
cw1fw −

cb1
κ2
ft2

] [ ν̃
d

]2
. (6.2)

For a description of the various functions and constants involved in (6.2)
we refer the reader to [79].

In the fluctuation splitting space discretization approach that we use, the
integral form of the governing equations (6.1) is discretized over each control
volume Ci evaluating the flux integral over each triangle (or tetrahedron)
in the mesh, and then splitting it among its vertices [17] (see Figure 6.1).
Therefore, we may write Eq. (6.1) as∫

Ci

∂~qi
∂t

dV =
∑
T3i

~φTi

where
~φT =

∮
∂T
~n · F dS −

∮
∂T
~n ·GdS +

∫
T
~s dV

is the flux balance evaluated over cell T and ~φTi is the fraction of cell residual
scattered to vertex i.

Upon discretization of the governing equations, we obtain a system of
ordinary differential equations of the form

M
d~q

dt
= ~r(~q), (6.3)
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where t denotes the pseudo time variable, M is the mass matrix and ~r(~q)
represents the nodal residual vector of the spatial discretization operator,
which vanishes at steady state. The residual vector is a (block) array of
dimension equal to the number of meshpoints times the number of dependent
variables, m; for a one-equation turbulence model, m = d+3 for compressible
flows and m = d+ 2 for incompressible flows, d being the spatial dimension.
If the time derivative in equation (6.3) is approximated using a two-point
one-sided finite difference (FD) formula we obtain the following implicit
scheme: (

1

∆tn
V − J

)(
~qn+1 − ~qn

)
= ~r(~qn), (6.4)

where we denote by J the Jacobian of the residual
∂~r

∂~q
. We use a finite

difference approximation of the Jacobian, where the individual entries of the
vector of nodal unknowns are perturbed by a small amount ε and the nodal
residual is then recomputed for the perturbed state. Eq. (6.4) represents a
large nonsymmetric sparse linear system of equations to be solved at each
pseudo-time step for the update of the vector of the conserved variables.
The nonzero pattern of the sparse coefficient matrix is symmetric, i.e. entry
(i, j) is nonzero if and only if entry (j, i) is nonzero as well; on average,
the number of non-zero (block) entries per row in our discretization scheme
equals 7 in 2D and 14 in 3D.

6.2 The results of the experiments

We present the turbulent incompressible flow analysis of a three-dimensional
wing. The geometry, illustrated in Figure 6.2, was proposed in the 3rd AIAA
Drag Prediction Workshop [88]; we refer to this geometry as the “DPW3
Wing-1”. Flow conditions are 0.5◦ angle of attack and Reynolds number
based on the reference chord equal to 5 · 106. The freestream turbulent
viscosity is set to ten percent of its laminar value.

In Table 6.1 we show experiments with parallel VBARMS on the four
meshes of the DPW3 Wing-1 problem, and in Table 6.2 we also report on
comparative results against other popular solvers. Finally in Table 6.3-6.4
we perform a scalability study on the Mesh2 case using both parallel and
sequential graph partitioning. The results of our experiments confirm the
trend of performance shown on general problems, and seem to indicate that
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Ref. Area, S = 290322 mm2 = 450 in2

Ref. Chord, c = 197.556 mm = 7.778 in
Ref. Span, b = 1524 mm = 60 in

RANS1 : n = 4918165 nnz = 318, 370, 485
RANS2 : n = 4918165 nnz = 318, 370, 485
RANS3 : n = 9032110 nnz = 670, 075, 950
RANS4 : n = 12085410 nnz = 893, 964, 000

Figure 6.2: Geometry and mesh characteristics of the DPW3 Wing-1 prob-
lem. Problems RANS1 and RANS2 correspond to the same
mesh.

the proposed parallel method is efficient and useful for solving large-scale
problems in different application areas.
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Matrix Method G-Type G-time (s) Total (s) Its M-cost

RANS1

n = 4918165

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial

parallel
serial

parallel

501.0
17.3
498.4
17.4
501.8
17.6

60.70
50.13
51.09
52.37
102.68
67.93

49
34
16
19
43
35

2.89
2.98
2.97
3.06
2.68
2.57

RANS2

n = 4918165

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial

parallel
serial

parallel

501.2
17.0
499.0
16.8
497.6
17.5

112.04
86.86
120.2
101.89
1294.60
342.39

51
47
39
39
143
24

4.02
4.35
4.23
4.49
7.01
6.47

RANS3

n = 9032110

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial

parallel
serial

parallel

2480.3
27.2

2523.2
25.2

2440.3
22.0

204.24
287.36
280.39
209.79
728.63
774.31

180
154
119
71
131
140

4.03
4.40
4.20
4.48
4.11
4.39

RANS4

n = 12085410

BJ+VBARMS

RAS+VBARMS

SCHUR+VBARMS

serial
parallel
serial

parallel
serial

parallel

632.6
51.5
637.4
43.9
610.2
39.3

145.27
117.94
124.46
105.58
342.39
305.03

335
223
200
143
161
179

3.75
3.91
3.99
4.12
3.79
3.76

Table 6.1: Experiments on the DPW3 Wing-1 problem. The RANS1,
RANS2 and RANS3 test cases are solved on 32 processors,
whereas the RANS4 problem on 128 processors.
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Matrix G-Type Method Total (s) Its M-cost

RANS3

n = 9032110

serial

parallel

BJ+VBARMS
BJ+VBILUT
BJ+ARMS

BJ+VBARMS
BJ+VBILUT

204.24
1575.32

-
287.36
9018.27

180
729

-
154
979

4.03
7.34
6.63
4.40
13.81

RANS4

n = 12085410

serial

parallel

BJ+VBARMS
BJ+VBILUT
BJ+ARMS

BJ+VBARMS
BJ+VBILUT

145.27
261.16

-
117.94
296.35

335
494

-
223
472

3.75
4.56
5.38
3.91
5.26

Table 6.2: Experiments on the DPW3 Wing-1 problem. The RANS3 test
case is solved on 32 processors and the RANS4 problem on 128
processors. The dash symbol − in the table means that in the
GMRES iteration the residual norm is very large and the program
is aborted.

Solver P-N G-T (s) Total-T (s) Its M-cost

BJ

8
16
32
64
128

39.3
28.0
16.6
14.2
17.3

421.18
202.10
86.89
44.17
21.55

39
47
47
58
69

5.46
4.95
4.35
3.65
3.21

RAS

8
16
32
64
128

38.9
28.0
17.0
16.0
18.2

388.37
219.48
101.49
54.19
28.59

27
35
39
47
55

5.70
5.22
4.49
3.91
3.39

Table 6.3: Scalability study on the RANS2 problem using parallel graph
partitioning.
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Solver P-N G-T (s) Total-T (s) Its M-cost

BJ

8
16
32
64
128

494.0
493.0
501.7
500.2
506.6

337.34
211.88
111.78
48.63
26.86

53
48
51
68
86

4.74
4.63
4.02
3.49
3.11

RAS

8
16
32
64
128

495.4
495.1
500.2
507.7
502.5

310.06
230.03
120.58
57.75
30.58

29
29
39
45
54

4.71
5.02
4.23
3.78
3.35

Table 6.4: Scalability study on the RANS2 problem using sequential graph
partitioning.
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7.1 Conclusions

Sparse matrices arising from the discretization of partial differential equa-
tions often preserve a perfect block structure when several variables are
associated with the same grid point. Meanwhile, on today’s modern com-
puter platform, the data movement inside the memory hierarchy is a cru-
cial factor which determines the performance of numerical algorithms. For
sparse matrix codes, highly-tuned data structures may be useful to exploit
the sparsity of the matrix and minimize the data movement and achieve
high performance on the hardware of modern computer systems. Given the
above reasons, developing an efficient block solver to take advantage of the
special structure is an interesting research topic.

In Chapter 2, we recalled the angle-based graph compression method [69]
which is able to build an imperfect block structure upon the matrix. An
imperfect block structure is also called an approximate dense structure; for
each nonzero block, it contains a lot of nonzero entries and only a few zeros.
Since we store the whole nonzero block, the zero elements in this block are
also stored, they are treated as nonzero elements. This approach sacrifices a
little memory, but it can enlarge the block size and improve the performance
of the block solver. Figure 7.1 shows an example of imperfect blocking.

However, there is an issue of this angle-based graph compression method.
For some matrices, the b-density (the ratio of the number of nonzero en-
tries in the matrix before and after the compression) may be sensitive to
τ (τ is the input parameter, also the angle value to measure the pattern
similarity of two rows) as we showed in Table 2.3. For example, for the
matrix VENKAT01, the τ value shifts from 0.57 to 0.58 results in the ma-
trix b-density changes from 29.71% to 86.37%. In order to avoid this issue,
we proposed a new graph-based compression method, which is based on
merging two small blocks into one bigger block and it provides a more user-
friendly parameter µ (µ is the lower bound of b-density you can accept).
We presented a comparison between the two methods in Section 4.3.3, the
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Perfect blocking. Imperfect blocking.

Figure 7.1: An example of perfect and imperfect blocking.

results showed similar performance, but the graph-based method is more
user-friendly.

Chapter 3 recalls Krylov subspace methods and preconditioning tech-
niques [70] which are the preliminary of our new solver. A few classic
multilevel ILU-based preconditioners were also recalled. ARMS (Algebraic
Recursive Multilevel Solver) [74] is one of them. In Chapter 4, we com-
bine ARMS with the graph compression methods introduced in Chapter 2
and designed the new solver VBARMS (Variable Block Algebraic Recur-
sive Multilevel Solver). We also presented the exact steps of VBARMS in
this chapter, here we use the graph compression method to build a block
structure (either perfect or imperfect block structure). Then we perform
the multilevel LU factorization on blocks. From the implementation per-
spective, we convert the matrix data structure CSR (listing 4.1) format to
VBCSR (listing 4.2) format, such that higher level BLAS routines can be
used. Due to the design of VBARMS and the results we presented, it has a
few advantages with respect to ARMS.

1. The VBCSR format uses much less column index storage with respect
to CSR format, which results in less memory cost [69].

2. Performing calculations on blocks, decreases the chance of breakdown
in the ILU process greatly, the diagonal blocks have much less chance
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to be singular than diagonal entries to be zero. This means better
stability [28].

3. For multilevel solvers, a smaller Schur complement always improves
the performance. As VBARMS generates an independent set order-
ing based on a quotient graph, it is able to produce a smaller Schur
complement than ARMS.

4. BLAS 3 and 2 routines are used for most of the operations. Table 4.1
showed that higher level BLAS routines are able to execute more op-
erations with the same amount of data movement (Chapter 5 of [34]),
which means better efficiency.

5. A computational unit is an array instead of a single entry. The array
can be reused in the cache, which leads to less data movement inside
the memory hierarchy. Hence the better cache reuse is better.

Furthermore, two implementations of calculating the Schur complement
were presented. During the calculation, all the submatrices are stored in
VBCSR format. One implementation is called explicit Schur complement
calculation. It calculates LU factors and applies them to columns of the
upper right matrix, which results in more intermediate data storage. The
other one is called implicit Schur complement calculation. The implicit
implementation contains two major loops which work on the whole row of
the matrix. The first one generates LU by performing a variant of GE
(Algorithm 4.5), during the loop it also applies L factors to the upper right
matrix. The second loop uses the multipliers computed in the first loop to
calculate an approximation of the Schur complement.

Since implicit Schur complement calculation has a well-designed and ef-
ficient loop, it is supposed to be more time-saving. Table 4.10 compares
the performance of two implementations on a set of matrices. The results
confirm this point, the time cost of the preconditioner setup for the im-
plicit Schur complement calculation is much less. So it is a more mature
implementation than explicit Schur complement calculation.

In Chapter 5, a parallelization of VBARMS based on a block version
of Block Jacobi (BJ), the Restricted Additive Schwarz and (RAS) Schur-
complement methods [54] for distributed memory computers is proposed.
The results of numerical experiments were also presented in this chapter.
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The trend continues also in the parallel implementation, VBARMS outper-
forms ARMS when solving block structured matrices. A scalability study
also showed very good results of the BJ and RAS methods. Moreover, in
Section 5.3.1, we proposed a new local graph compression strategy which
converts the local diagonal matrix (in the distributed matrix context, each
processor holds a local rectangular submatrix, the diagonal square matrix is
the local diagonal matrix) into a block matrix and then calls VBARMS. It
was shown that the local one works well for some cases but may diverge be-
cause of possible damage of the block structure during the point-wise matrix
distribution.

Furthermore, in the context of distributed parallel computing, the graph
partitioning strategy plays a very important role. So two strategies were
proposed: one uses Zoltan library [16] to refine the distributed graph and
we call it parallel graph partitioning, the other one partitions the serial
graph on one processor and broadcasts to other processors. We call this one
serial graph partitioning. The results of the experiments were reported in
Tables 5.9-5.10, which highlight the performances of the two graph partition
approaches. We could notice that the parallel graph partitioning strategy
performs slightly better in most cases in terms of the time cost of the graph
partitioning process. Table 5.11 exhibited good scalability for the two ap-
proaches in combination with BJ and RAS.

7.2 Perspectives

There are still a few topics for future research that should be addressed:

• The graph-based compression method introduced in Chapter 2 pro-
vides a more user friendly parameter, but is still not able to totally
outperform the angle-based graph compression method. Therefore,
refining the graph-based compression method to obtain better block
structure and achieve better performance of the solver can be a promis-
ing research topic.

• Both VBARMS and pVBARMS are restricted to block structured ma-
trices. So generalizing to unstructured matrices is a very attractive
research direction. In Section 4.3.2, we tried to block only the Schur
complement matrix which is much denser than the original matrix.
However, this strategy works only when Schur complements and the
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factors computed by ARMS are stable and accurate. According to
the results, for the cases this strategy worked, the improvement is still
small. That is because the time and memory cost of the first level
factorization are a big portion of the time and memory cost of the
whole process. VBARMS only improved on a small portion of the
whole process. Improvement of this strategy can be investigated in
the future.

• In Chapter 5, we proposed a block version of the three popular global
preconditioners (block Jacobi, restricted additive Schwarz and Schur
complement method). Block Jacobi and restricted additive Schwarz
showed robust and stable performance and good scalability. But the
performance of the Schur complement method is not as stable as we
expected; it is also sensitive to scaling parameters. Refining the design
of the Schur complement method and improving its performance can
be an interesting research topic.

• pVBARMS is the parallel implementation of VBARMS in a distributed
computing framework and it showed very impressive performance. To-
day GPU (graphics processing unit)-accelerated computing technology
is getting more and more popular and mature in scientific computing.
GPU-accelerated computing pioneered in 2007 by NVIDIA, is the use
of a GPU together with a CPU to accelerate the calculations performed
on data. Based on the pVBARMS framework, a GPU-implementation
of VBARMS also is a promising research topic for future.

• VBARMS combines multilevel method with a block-wise solver. This
combination reduces the multilevel method complexity effectively (see
Table 4.5). So it is natural to apply this strategy to a multigrid
method [80], and in this way improve the multigrid performance for
block structured matrices.
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[13] M. Benzi, R. Kouhia, and M. Tůma. Stabilized and block approxi-
mate inverse preconditioners for problems in solid and structural me-
chanics. Computer Methods in Applied Mechanics and Engineering,
190(4950):6533 – 6554, 2001.
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Summary

In the first chapter, we address the objective for this thesis: Solving linear
system is the most time-consuming part of the whole simulation. The linear
systems we obtained often possess a block structure. Therefore, taking ad-
vantage of the block structure of these matrices, developing a novel powerful
multi-level solver to solve these matrices effectively becomes necessary.

Let us focus on how to exploit the matrix block structure first. Note that
there are two types of block structured matrices.

1. the constant block size matrix

2. the variable block size matrix

For the first type, there is already a mature implementation in Trilinos [46]
and PETSc [50]; but the second type is still a subject for ongoing research.
In Chapter 2, we recalled the classic checksum method which can detect
the inherent variable block structure, also recalled the angle-based graph
compression method which enables us to build an imperfect block structure.
The experiments showed the user how to tune parameters to get the desired
block structure. Furthermore, we introduced a new graph-based compres-
sion method which attempts to build an imperfect block structure based on
merging two initial blocks into a bigger block.

So after Chapter 2, the first part of the challenge is resolved. Then we
move to the second part: developing a block-wise multi-level solver. Before
that, it is essential to recall the basics of solving large sparse linear system.
So in Chapter 3, we recalled the popular Krylov subspace methods and
preconditioning techniques which play a very important role in developing
powerful solvers. Particularly, we also reviewed several ILU-based multilevel
solvers which exhibit a very beneficial framework for the design of our new
solver.

With all the preliminary introduction, the design of our block-wise mul-
tilevel solver comes naturally. We follow the ARMS (Algebraic Recursive
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Multilevel Solver) framework, the novelty of our work is using graph com-
pression algorithms to build the block structure, then we perform all the
operations on blocks during the whole process of ARMS. In Chapter 4, we
started with basic block operations for block structured matrices, and then
move to detailed steps of VBARMS (Variable Block Algebraic Recursive
Multilevel Solver). In our experiments, we use VABRMS as a preconditioner
in a Krylov subspace method. Results of numerical experiments showed the
effectiveness and stability of VBARMS on block structured matrices. More-
over, we also displayed the results of the comparison between the classic
angle-based graph compression method and our new graph-based compres-
sion. The results confirm that the graph-based compression method has
more user friendly parameter tuning with similar performance. The results
of the two VBARMS implementation strategies (implementation of explicit
Schur complement calculation and implementation of implicit Schur com-
plement calculation) were also exhibited, Implementation of implicit Schur
complement calculation showed better performance in terms of time cost.

Up to now, VBARMS showed very good performance on small test prob-
lems. This motivates us to reach the end of the challenge we set: solve
the real application problems. That requires incorporating VBARMS into
a parallel implementation. Therefore in Chapter 5, we recalled the basics
of parallel computing, and two parallel block solvers were presented: one
based on the additive Schwarz method and the other one based on the Schur
complement method. The distributed parallel implementation of VBARMS
(pVBARMS) were also introduced; pVBARMS also showed robust perfor-
mance and good scalability. Furthermore, a new Zoltan-based graph parti-
tioning strategy was introduced and its performance was presented.

At the end, for a specific application, large-scale turbulent Navier-Stokes
equations, the derived matrices also possess a block structure. Here our
experiments confirm the trend of performance shown on general problems.

Sparse matrices arising from the solution of systems of partial differential
equations often exhibit a perfect block structure, meaning that the nonzero
blocks in the sparsity pattern are fully dense (and typically small), e.g.,
when several unknown quantities are associated with the same grid point.
However, similar block orderings can be sometimes unravelled also on general
unstructured matrices, by ordering consecutively rows and columns with
a similar sparsity pattern, and treating some zero entries of the reordered
matrix as nonzero elements, and the nonzero blocks as dense. The reordering
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results in linear systems with blocks of variable size in general.
Our recently developed parallel package pVBARMS (parallel variable

block algebraic recursive multilevel solver) for distributed memory comput-
ers takes advantage of these frequently occurring structures in the design of
the multilevel incomplete LU factorization preconditioner, and maximizes
computational efficiency achieving increased throughput during the compu-
tation and improved reliability on realistic applications. The method detects
automatically any existing block structure in the matrix without any users
prior knowledge of the underlying problem, and exploits it to maximize
computational efficiency.

Furthermore, in the context of distributed parallel computing, two graph
partitioning strategies were proposed: one uses Zoltan library to refine the
distributed graph, the other one partitions the serial graph on one pro-
cessor and broadcasts to other processors. The two strategies combine with
pVBARMS show very good performance on solving the unsteady, turbulent,
Reynolds-averaged, Navier-Stokes equations.





Samenvatting

In het eerste hoofdstuk richten we ons op de doelstelling van dit proefschrift:
het oplossen van lineaire systemen is het meest tijdrovende deel van de gehele
simulatie. De lineaire systemen die wij verkregen hebben hebben vaak een
blok structuur. Derhalve is het uitbuiten van de blokstructuur van deze
matrices, het ontwikkelen van een nieuwe krachtige multilevel oplossers voor
deze matrices daadwerkelijk nodig.

Laten we ons concentreren op hoe de matrix blokstructuur te exploiteren.
Merk op dat er twee soorten blokgestructureerde matrices zijn.

1. De constante blokgrootte matrix

2. De variabele blokgrootte matrix

Voor het eerste type is er al een volwassen implementatie in Trilinos [46] en
PETSc [50]; maar de tweede soort nog een onderwerp wat onderhevig is aan
onderzoek. In Hoofdstuk 2, kijken we terug op de klassieke checksum meth-
ode die de inherente variabele blokstructuur kan detecteren, kijken we terug
op de hoek gebaseerde graafcompressiemethode die ons in staat stelt om een
onvolmaakte blok structuur op te bouwen. De experimenten toonden aan
de gebruiker hoe de parameters afgestemd moeten worden om de gewenste
blokstructuur te krijgen. Verder bekijken we een nieuwe compressiemeth-
ode gebaseerd op grafen die probeert een onvolmaakte blok structuur op te
bouwen gebaseerd op het samenvoegen van twee blokken in een groter blok.

Dus na hoofdstuk 2, wordt het eerste deel van de uitdaging opgelost. Dan
gaan we naar het tweede deel: het ontwikkelen van een bloksgewijze mul-
tilevel oplosser. Daarvoor is het noodzakelijk om de basis van het oplossen
van grote ijle lineair systeem te herhalen. Dus in hoofdstuk 3, bekijken we
de populaire Krylov deelruimte methoden en preconditionering technieken
die een zeer belangrijke rol in de ontwikkeling van krachtige oplossers spelen.
Vooral ook kijken we naar verschillende ILU-gebaseerde multilevel oplossers
die een zeer gunstig kader voor het ontwerp van nieuwe solver vertonen.
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Met alle voorbereidende introductie, komt het ontwerp van onze bloks-
gewijszen multilevel solver als vanzelf. We volgen het ARMS (Algebraic
Recursive Multilevel Solver) kader, de nieuwheid van ons werk is het ge-
bruik van het graaf gebaseerd compressie algoritme om de blokstructuur op
te bouwen, en verder doen we exact hetzelfde als ARMS maar dan voor
een blokstructuur. In Hoofdstuk 4 beginnen we met basis blokhandelin-
gen voor blok gestructureerde matrices, en dan gaan we verder met gede-
tailleerde stappen van VBARMS (Variable Block Algebraic Recursive Mul-
tilevel Solver). In onze experimenten gebruiken we VABRMS als precondi-
tioner in een Krylov deelruimte methode. Resultaten van numerieke experi-
menten toonden de effectiviteit en stabiliteit van VBARMS op blokgestruc-
tureerde matrices. Bovendien hebben we ook de resultaten weergegeven van
de vergelijking tussen de klassieke hoek gebaseerde graafcompressiemethode
en onze nieuwe graafgebaseerde compressie. De resultaten bevestigen dat
de graafgebaseerde compressiemethode een gebruiksvriendelijker parameter
tuning met vergelijkbare prestaties heeft. De resultaten van twee imple-
mentatiestrategieën voor VBARMS (uitvoering van expliciete Schurcomple-
mentberekening en uitvoering van impliciete Schurcomplementberekening)
werden ook tentoongesteld. Implementatie van impliciete Schurcomplement-
berekening toonde betere prestaties in termen van tijd.

Tot nu vertoonde VBARMS zeer goede prestaties op kleine testproblemen.
Dit motiveert ons om het einde van de uitdaging te bereiken: de echte real-
istische problemen op te lossen. Dat vereist de integratie van VBARMS in
een parallelle implementatie. Daarom wordt in hoofdstuk 5 terug geblikt op
de basisprincipes van parallel rekenen, en twee parallelle blok solvers werden
gepresenteerd: een op basis van de additieve Schwarz methode en de andere
op basis van de Schur complement methode. De gedistribueerde parallelle
uitvoering van VBARMS (pVBARMS) werden gëıntroduceerd; pVBARMS
toonde ook sterke prestaties en goede schaalbaarheid. Bovendien werd een
nieuw Zoltan-gebaseerde graafpartitioneringsstrategie gëıntroduceerd samen
met zijn prestaties.

Tenslotte, voor een specifieke toepassing, grootschalige turbulent Navier-
Stokes vergelijkingen, bezitten afgeleide matrices ook een blokstructuur.
Hier bevestigen onze experimenten de trend van de prestaties die op al-
gemene problemen.

Ijle matrices die voorkomen in het oplossen van systemen van partiele
differentiaalvergelijkingen en hebben vaak een perfecte blokstructuur. Dit
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betekent dat de niet-nul blokken in het ijlheidspatroon vol zijn (en meestal
klein), dus dat er verschillende onbekenden geassocieerd zijn met dezelfde
gridpunten. Echter, soortgelijke blokorderingen kunnen soms gevonden wor-
den in een matrix zonder enige evidente blokstructuur door rijen en kolom-
men met een soortgelijke structuur achter elkaar te zetten in de matrix en
door vervolgens sommige nul elementen als niet-nul elementen te beschouwen
en deze als volle blokken op te slaan zonder dat dit veel geheugen kost. De
herordening geeft lineaire systemen met blokken van variabele grootte.

Ons recent ontwikkelde parallelle softwarepakket pVBARMS (parallel Vari-
able Block Algebraic Recursive Multilevel Solver) voor computers met gedis-
tribueerd geheugen buit deze blokstructuren uit bij het ontwikkelen onze
multilevel incomplete LU factorisatie preconditioner. Het maximaliseert de
computationele efficiëntie en heeft een verhoogde doorvoer tijdens het reke-
nen en een verbeterde betrouwbaarheid op realistische applicaties. De meth-
ode detecteert automatisch bestaande blokstructuren in de matrix zonder
enige kennis van de gebruiker van het onderliggende probleem en buit het
uit voor maximale computationele efficiëntie.

Bovendien, in de context van gedistribueerde parallelle gegevensverw-
erking, worden twee graafpartitioneringsstrategieën voorgesteld: men ge-
bruikt Zoltan bibliotheek om de gedistribueerde graaf te verfijnen, de an-
dere verdeelt de seriële graaf op één processor en zendt deze uit naar andere
processors. Beide strategieën combineren met pVBARMS blijkt zeer goede
resultaten te hebben op het oplossen van instabiele, turbulente, Reynolds-
averaged, Navier-Stokes vergelijkingen.
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