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Abstract: In this paper, we study a Passivity-Based Control (PBC) design that solves asymptotic stability
with guaranteed safety problem via Interconnection and Damping Assignment (IDA) approach. Akin
to the classical IDA-PBC method, the original system is transformed via a state-feedback to a port-
Hamiltonian system where the corresponding interconnection and damping matrices and the energy
function are shaped according to the given set of unsafe states and to the desired equilibrium point. By
embedding it in a hybrid control framework, we show how the global results can also be obtained. We
illustrate the efficacy of our proposed method on a nonlinear second-order system.

Keywords: Passivity-based control, stabilization with guaranteed safety, hybrid control, interconnection
and damping assignment.

1. INTRODUCTION

Energy-based modeling and control design framework has be-
come an indispensable tool for analyzing and controlling com-
plex multi-domain physical systems. It enables one to gain
insight and to control such complex systems through the use
of the classical concept of energy and the exchange thereof
between different physical entities. For example, the analysis
and control of systems described by Euler-Lagrange equation
have been investigated and discussed thoroughly in Ortega et
al. (1998). The concept has found many control applications in
electro-mechanical systems, such as, robotics, and power sys-
tems (see e.g., Jayawardhana & Weiss (2008); Garcia-Canseco
et.al (2010); Ortega et al. (2001); Ortega & Garcia-Canseco
(2004); Kotyczka & Lohmann (2009)).

Another well-known energy-based modeling and control design
framework is the port-Hamiltonian framework which is closely
related to the Euler-Lagrange framework (through the use of
Legendre transformation) and has a nice structure in the state
equations. The energy exchange between physical elements and
the dissipated energy are encapsulated in the interconnection
and damping matrices in the vector field. We refer interested
readers on the port-Hamiltonian framework to the textbook of
van der Schaft (1999) and to the articles in Ortega et al. (2002);
Ortega & Garcia-Canseco (2004); Ortega et al. (2008). Con-
trol design methods that are based on port-Hamiltonian frame-
work have recently been proposed, such as, the Interconnection
and Damping Assignment Passivity-Based Control (IDA-PBC)
which will be the main focus of this paper, and the Energy-
Balancing Passivity-Based Control in Jeltsema et al. (2004).

Generally speaking, the IDA-PBC method concerns with the
design of a state feedback control law such that the closed-
loop system has a desirable port-Hamiltonian structure (i.e., it
has desired interconnection and damping matrices, as well as,
a desired energy function). By an appropriate design of these

interconnection and damping matrices and of the energy func-
tion, the stabilization of a desired equilibrium can be achieved.
A generalization of IDA-PBC method has appeared in Battle et
al. (2008) where the interconnection and damping matrices are
lumped.

In this paper, we investigate the generalization of IDA-PBC to
solve the problem of stabilization with guaranteed safety. Here,
safety means that all admissible state trajectories do not violate
system constraints or enter a set of unsafe states. In practical
applications, especially in advanced instrumentations, robotics
and complex systems, it is common that the system has state
constraints or set of unsafe states, i.e. the subset of state domain
that must be avoided. In this regards, the notion of safety must
be also considered as an integral part in the control design
process in addition to stability and robustness consideration.

The incorporation of safety aspect into the stabilization of
the closed-loop system has been considered before in Ngo
et al. (2005); Tee et al. (2009); Romdlony & Jayawardhana
(2014a,b); Ames et al. (2014). In Romdlony & Jayawardhana
(2014a,b); Ames et al. (2014), the well-known Control Lya-
punov Function-based control method is combined with the
Control Barrier Function-based control method which is pro-
posed in Wieland & Allgöwer (2007) to solve the problem. The
proposed control method does not impose unboundedness of
energy function on the boundary of the set of unsafe states as
imposed in Ngo et al. (2005); Tee et al. (2009).

As an alternative to the aforementioned methods for solving
stabilization with guaranteed safety problem, we propose in
this paper an energy-based method for solving this problem that
offers a nice energy interpretation. The main approach behind
our proposed method (as presented later in Proposition 2) is to
assign a desired energy function such that it has a minimum
at the desired equilibrium point and has local maxima in the
set of unsafe states. Thus with an appropriate interconnection
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and damping matrices, the closed-loop system will converge to
the minima (that includes the desired one) while avoiding the
region of concavity where the unsafe state belongs to.

Although the proposed method can ensure that all admissible
trajectories are safe, the method may not give a global stability
result. This is due to the existence of multiple minima in the
desired energy function.

In our second result (as given later in Proposition 4), we
propose a hybrid control strategy that combines the global
stability result of IDA-PBC with respect to the set of equilibria
and another state-feedback controller that can steer the system
from the set of undesired equilibria to the desired one. Hence,
global stability with guaranteed safety is achieved.

In Section II, we briefly review the stabilization via IDA-PBC
which is based on Ortega et al. (2002); Ortega & Garcia-
Canseco (2004); Ortega et al. (2008) and the notion of stabi-
lization with guaranteed safety as introduced in Romdlony &
Jayawardhana (2014a,b). In Section III, we propose methods
for (local) stabilization with guaranteed safety via IDA-PBC. In
Section IV, a hybrid control method for achieving global result
is discussed.

2. PRELIMINARIES

Throughout this paper, we consider a non-linear affine system
described by

ẋ = f (x)+g(x)u (1a)
y = h(x) (1b)

where x ∈ R
n denotes the state vector, u,y ∈ R

m denote the
control input and the output of the system, respectively. The
functions f (x), g(x) and h(x) are C 1, and g(x) and its left
annihilator g⊥(x) ∈ R

(n−m)×n are full rank for all x ∈ R
n. For

a ∈ R
n, we define Bε(a) := {x ∈ R

n|‖x−a‖< ε}.

2.1 Stabilization via IDA-PBC

Let us now recall the results on the IDA-PBC design method as
discussed in Ortega & Garcia-Canseco (2004).

The IDA-PBC method aims at stabilizing the system (1) at a
desired equilibrium x∗ by designing a feedback law u = β (x)
that transforms (1) into a port-Hamiltonian structure and has a
desirable damping component ensuring the asymptotic stability
of x∗ (which is the minimum of the desired energy function).
More precisely, suppose that we can design an energy function
Hd : Rn →R and interconnection and damping matrices Jd ,Rd :
R

n → R
n×n such that

g⊥(x) f (x) = g(x)⊥(Jd(x)−Rd(x))∇Hd (2a)

∇2Hd(x
∗)> 0 (2b)

Jd(x) =−J⊤d (x) (2c)

Rd(x) = R⊤
d (x)≥ 0. (2d)

where x∗ = argminHd(x) is the desired equilibrium. Then, the
stabilizing feedback law u = β (x) via IDA-PBC is given by

β (x) = (g⊤(x)g(x))−1g⊤(x)((Jd(x)−Rd(x))∇Hd(x)− f (x)).
(3)

Using this control law, the closed-loop system can be repre-
sented as a port-Hamiltonian system in the form of

ẋ = (Jd(x)−Rd(x))∇Hd(x) (4)
where x∗ is (locally) stable equilibrium point. Furthermore, x∗

is asymptotically stable if it is an isolated minimum, and is

globally stable if Hd is proper and x∗ is the largest invariant
set of (4) in {x ∈ R

n|−∇⊤Hd(x)Rd(x)∇Hd(x) = 0}.

We define E := {x | ∇Hd(x) = 0} as a set of equilibria which
contains also the desired equilibrium point x∗. As will be shown
later in Section III, our construction of Hd using IDA-PBC for
solving the stabilization with guaranteed safety problem (which
will be defined shortly) may result in E that is not a singleton.
Thus, the sole use of IDA-PBC may only stabilize x∗ locally
although the closed-loop system is globally safe. In Section IV,
we show how to modify the IDA-PBC approach for solving the
global stabilization case. In this regards, we denote Eu := E \x∗

as the set of undesired equilibria.

A straightforward generalization of IDA-PBC has recently been
proposed in Battle et al. (2008) where, instead of restricting the
closed-loop system to a particular structure with the intercon-
nection and damping matrices Jd(x) and Rd(x), we can lumped
both matrices into a single matrix Fd(x) which satisfies

Fd(x)+F⊤
d (x)≤ 0. (5)

The new PDE that has to be solved is
g⊥(x) f (x) = g⊥(x)Fd(x)∇Hd(x) (6)

and its corresponding control input is given by

u = β (x) =
(

g⊤(x)g(x)
)−1

g⊤(x)
(

Fd(x)∇Hd(x)− f (x)
)

(7)

In this case, the resulting port-Hamiltonian closed-loop system
is given by

ẋ = Fd(x)∇Hd(x) (8)
and this control design is often referred to as the Simultaneous
IDA-PBC approach.

2.2 Stabilization with guaranteed safety

As can be seen above, the IDA-PBC is mainly focused on the
stabilization of a point without taking into account the safety of
the closed-loop system.

Before we discuss the inclusion of the safety aspect into
the IDA-PBC design, let us first recall the problem of sta-
bilization with guaranteed safety which has been studied re-
cently in Romdlony & Jayawardhana (2014a) and Romdlony &
Jayawardhana (2014b).

We denote X0 ⊂ R
n as the set of initial conditions, D ⊂ R

n

as the set of unsafe states where D ∩X0 = /0. Moreover, we
always assume that x∗ ∈ X0.
Definition 1. (Safety). Consider an autonomous system

ẋ = f (x), x(0) ∈ X0, (9)
where x(t) ∈ R

n, the system is called safe if for all x(0) ∈ X0

and for all t ∈ R+, x(t) /∈ D .

Stabilization with guaranteed safety control problem: Consider
the system in (1) with a given set of initial conditions X0 ⊂R

n

and set of unsafe state D ⊂R
n, design a feedback law u = β (x)

such that the closed loop system is safe and x∗ is asymptotically
stable, i.e. for all x(0) ∈ X0, we have that x(t) /∈ D for all t and
lim
t→∞

‖x(t)‖= x∗. Moreover, when X0 = R
n \D we call it the

global stabilization with guaranteed safety control problem.

Note that in the latter definition, there is a slight modification to
the one used in Romdlony & Jayawardhana (2014a,b). Instead
of stabilizing the origin as considered in these papers, we
consider here the stabilization of arbitrary admissible equilibra
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x∗. Here, the set of admissible equilibria is given by E = {x ∈
R

n|g⊥(x) f (x) = 0}.

Let us now recall the result of stabilization of the origin with
guaranteed safety as discussed in (Romdlony & Jayawardhana,
2014a, Proposition 1).

Proposition 1. Consider the autonomous system (9) with a
given set of unsafe state D which is assumed to be open.
Suppose that there exists a proper and lower-bounded C 1

function W : Rn → R such that

W (x)> 0 ∀x ∈ D (10a)
L fW (x)< 0 ∀x ∈ R

n \ (D ∪{0}) (10b)
U := {x ∈ R

n|W (x)≤ 0} 6= /0 (10c)

Rn \ (D ∪U )∩D = /0 (10d)

then the system is safe with X0 = R
n \D and the origin is

asymptotically stable.

The function W that satisfies the hypotheses in Proposition
1 is called Lyapunov-Barrier function. In comparison to the
related barrier function as used in Ngo et al. (2005) and Tee
et al. (2009), the Lyapunov-Barrier function is not necessarily
unbounded on the boundary of the unsafe state set.

3. STABILIZATION WITH GUARANTEED SAFETY VIA
IDA-PBC

As a first step towards the inclusion of safety aspect into the
IDA-PBC design, we consider the problem of stabilization of a
desired equilibrium x∗ with guaranteed safety by combining the
standard IDA-PBC with the result in Proposition 1 as follows.

Proposition 2. Given a set of unsafe state D which is open,
suppose that there exist Hd ,Jd ,Rd such that (2) holds and satisfy

Hd(x)> 0 ∀x ∈ D (11a)
U := {x ∈ R

n|Hd(x)≤ 0} 6= /0 (11b)

Rn \ (D ∪U )∩D = /0. (11c)

Then the control law u = β (x) where β as in (3) solves
stabilization of x∗ with guaranteed safety control problem.
Moreover, if x∗ is the unique minimum of Hd and Hd is proper,
then the result holds globally (i.e., X0 = R

n \D).

Proof. By the assumption of (2a), the substitution of control
law (3) into the system (1) results in a closed-loop system that
is in the port-Hamiltonian structure as in (4). For the sake of
simplicity, we denote the right hand side of (4) by F(x).

It is easy to verify that

Ḣd = ∇⊤Hd(x(t))(Jd(x(t))−Rd(x(t)))∇Hd(x(t))≤ 0. (12)

for all x(t) ∈ R
n \D .

First, we prove that the closed-loop system is globally safe, i.e.,
for all x(0) ∈ R

n \D , the corresponding state trajectory x(t)
never enters D .

If x(0) ∈ U (i.e. Hd(x(0)) ≤ 0 by the definition of U ) then it
follows from (12), that Hd is non-increasing along the trajectory
x(t) satisfying ẋ = F(x), thus Hd(x(t))−Hd(x(0)) ≤ 0 for all
t ∈ R+. Hence, it implies that Hd(x(t)) ≤ 0 for all t ∈ R+. In
other words, the set U is forward invariant and lim

t→∞
x(t) ∈ U .

Moreover by (11a) and the fact that D ∩ U = /0, the state
trajectory x(t) /∈ D for all t ∈ R+.

It remains now to show that for all x(0) ∈ R
n \ (D ∪U ), we

also have the property that x(t) /∈ D for all t ∈R+. In this case,
we note that Hd(x(0))> 0 and, as before, Hd is non-increasing
along the trajectory of x for all t.

Since the set Rn \ (D ∪U ) does not intersect with the set D ,
it implies that the trajectory x(t) will not enter D before it first
reach the boundary of Rn \ (D ∪U ), in which case, Hd(x) = 0.
Once the trajectory x(t) is on the boundary of Rn \ (D ∪U ),
by the fact that Hd(x(t))− Hd(x(0)) ≤ 0, the state trajectory
x(t) will remain in U for the remaining t. Thus the closed-
loop system is globally safe with the admissible set of initial
conditions X0 = R

n \D .

We will now prove the asymptotic stability of x∗. By the local
convexity of Hd in the neighborhood of x∗ (c.f. the assumption
(2b)) and by (12) we can use Hd as a Lyapunov function to show
the stability of x∗.

In this case, we define X0 as the largest domain of convexity of
Hd around x∗ excluding D . By the convexity of Hd in X0 and
by (12), it follows that X0 is forward invariant.

In particular, for all x(0) = X0, x(t) is bounded for all t
and by the application of La-Salle invariance principle, x(t)
converges to the largest invariance set contained in M := {x ∈
X0|∇⊤Hd(x)Rd(x)∇Hd(x) = 0}. By the strict convexity of Hd
in X0, such an invariant set is given by {x∗}. In combination
with the global safety property as proven above, we achieve the
(local) stability of x∗ with guaranteed safety.

Finally, if x∗ is the unique minimum of Hd and Hd is proper
then the global results holds by the use of La-Salle invariance
principle. ✷

It is easy to observe that instead of finding Jd and Rd separately
as in Proposition 2, we can simultaneously design them as
pursued in Battle et al. (2008) where we need to find Fd(x)
such that (5) and (6) hold. Note that this relaxed condition does
not change our previous result on the stability, neither on the
safety of the closed-loop system. It only relaxes the solvability
of the PDE in the expense of port-Hamiltonian structure. More
precisely, we state it in the following corollary.

Corollary 3. Given a set of unsafe state D which is open,
suppose that there exist Hd and Fd such that (2b), (5), (6) hold
and satisfy (11). Then the control law u = β (x) as in (7) solves
stabilization of x∗ with guaranteed safety control problem. △

Example 1. In order to illustrate the main result in Proposition
2, let us consider the following system.

ẋ1 =−x3
1 +2.25x1x2

2 +3.5x3
2 −1500x2 (13)

ẋ2 = u.

It can be shown that the origin can be made globally-
asymptotically stable (GAS) using a simple control law u =
−kx2 with k > 0. First, we note that the x1-subsystem is input-
to-state stable (ISS) with respect to x2 (for example, using
V (x1) =

1
2 x2

1 as the ISS Lyapunov function). Hence, if we let
u = −kx2, the x2-subsystem converges exponentially to zero,
and this implies that, by the ISS property of x1-subsystem, x1(t)
converges also to zero.

We will now consider the problem of stabilization of (13) with
guaranteed safety via IDA-PBC. Assume that the set of unsafe
state is defined by D = {x ∈ R

n|(x1 − 2)2 +(x1 − 2)x2 + x2
2 <
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Fig. 1. The contour of the desired energy function Hd as used in Example 1.
The function Hd has four minima, one maximum, and four saddle-points.

10}. For simplicity, we consider the following Hd : R2 → R

Hd =
(

x2
1 x1x2 x2

2

)

(

1 0.5 −0.125
0.5 1 0.5

−0.125 0.5 1

)





x2
1

x1x2

x2
2





−1000(x1 −2 x2)

(

1 0.5
0.5 1

)(

x1 −2
x2

)

+10000

which is proper and has minima at the desired equilib-
rium x∗ = (−18.6467,−17.8454)⊤ and at other equilibria
xu1 = (−26.948,25.532)⊤, xu2 = (16.7688,17.7117)⊤, xu3 =
(24.3953,−26.0258)⊤. The contour plot of this Hd is shown in
Figure 1.

Now, in order to design the controller as in Corollary 3, we need
to solve the PDE (6) where in this case, g⊥(x) = (g1(x) 0),

with g1 : R2 →R and Fd(x) =
(

a(x) b(x)
c(x) d(x)

)

that must be designed

and also satisfy (5). It follows directly from (6) that we need to
satisfy

− x3
1 +2.25x1x2

2 +3.5x3
2 −1500x2

= a(x)∇x1Hd(x)+b(x)∇x2Hd(x). (14)

A possible solution to this equation is to let a(x) = −0.5
and b(x) = 1. In order to fulfill (5), we can take c(x) = −1
and d(x) = c1 with c1 ≤ 0. Using these numerical values,
the simulation results of the closed-loop system with several
different initial conditions are shown in Figure 2. It can be
seen from this figure that we achieve the (local) stabilization
with guaranteed safety at the desired equilibrium point x∗.
One can also notice from the simulation that there exists other
attractive equilibrium points xu1,xu2,xu3. Moreover, we achieve
global stabilization with guaranteed safety with respect to E =
{x∗,xu1,xu2,xu3}. △

As shown in Example 1, the region-of-attraction of the desired
equilibrium point can rather be restrictive. For this example, we
plot in Figure 3 the numerically-estimated region-of-attraction
(RoA) for every equilibria in E . In this plot, the RoA for x∗ is
shown in yellow, while that for the other equilibria xu1,xu2 and
xu3 are shown in red, blue, and green, respectively.

In fact, the region-of-attraction is influenced by the choice of
Fd , particularly, the damping part. In Figure 4 we show the

x
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-40 -30 -20 -10 0 10 20 30 40

x
2

-40
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Fig. 2. The numerical simulation result of the closed-loop system using IDA-
PBC method in Example 1 from eight different initial conditions. The
desired equilibrium is shown in triangle while the other equilibria are
shown in circle. The set of unsafe states D is shown in the red elliptic-
parabolic. All trajectories converge to the equilibria and avoid D

x
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Fig. 3. The numerical estimation of region-of-attraction (RoA) of the closed-
loop system in Example 1 for every equilibria with c1 = −1. The RoA
of the desired equilibrium point x∗ is shown in yellow, while that for
the other equilibria xu1,xu2 and xu3 are shown in red, blue, and green,
respectively. The boundary of D is shown in red line.

different region-of-attraction for different damping element by
varying the value of c1. In this figure, the RoA of x∗ has gained
additional area on the upper side, as well as on the lower-right
side. However, the RoA near the set of unsafe state is reduced.

In the following section we will discuss a hybrid strategy for
achieving global stabilization with guaranteed safety.

4. GLOBAL STABILIZATION WITH GUARANTEED
SAFETY

As has been shown before in Section III, the IDA-PBC ap-
proach has allowed us to achieve local stabilization of a de-
sired equilibrium with guaranteed safety. At the same time, it
may also introduce undesired equilibrium points that prevent
us from achieving a global stabilization with guaranteed safety.
Despite this, if one is interested only in the safety aspect, the
aforementioned proposed control can, in fact, guarantee the
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Fig. 4. The numerical estimation of the region-of-attraction (RoA) of the
closed-loop system in Example 1 for every equilibria with c1 = 0. The
rest of the information is the same as that in Fig.3.

global safety, i.e., for all admissible initial condition R
n\D ,

the state trajectory will never enter the set of unsafe state D .
Indeed, in our previous example, we have shown that the state
trajectory from any initial condition converges to the set of
equilibrium points E without entering D .

In this section, we propose a simple hybrid control strategy
where we combine the IDA-PBC based state feedback that
achieves set asymptotic stabilization with guaranteed global
safety and other feedback controllers that can steer the system
trajectories from the neighborhood of Eu to the desired equi-
librium point x∗. As will be shown later, this hybrid strategy
provides a simple solution to the global stabilization with guar-
anteed safety.

Prior to describing our proposed hybrid controller, let us recall
the following definitions on hybrid automaton as discussed in
Lygeros et al. (2003).

Let a hybrid automaton be described by the tuple (Q,X ,F,Q0×
X0,Dom,E,G ,R) where Q ⊂ Z+ is a finite set of discrete
variables, X ∈ R

n is the set of continuous variables, F : Q×
X → X defines the vector field of the continuous variables,
Q0×X0 is the set of initial conditions, Dom : Q → X defines the
domain of each discrete variable q ∈ Q, E ⊂ Q×Q denotes the
set of edges that describe different transitions/jumps between
different discrete state. The set G : E → X defines the guard
conditions that can initiate the transition or jump to another
discrete state. The maps R : E ×X → X defines the resetting
of the continuous variables following a transition/jump.

Using the above notion of hybrid automaton, we consider
hybrid automaton as shown in Figure 5 as our proposed hybrid
strategy. In this setting, Q = {1,2}, X = R

n, the set of initial
condition is given by Q0×X0 = {1}×R

n\D . For q= 1, F(1,x)
is a vector field of the closed-loop system using the IDA-
PBC method, i.e., F(1,x) = (Jd(x)−Rd(x))∇Hd(x). On the
other hand, F(2,x) is a vector field of the closed-loop system
using another state-feedback control law u = k(x) that can steer
the system trajectories from the neighborhood of Eu to the
desired one x∗ without entering D . If the latter state-feedback
controller exists then the global stabilization with guaranteed
safety problem is solvable by combining it with the IDA-PBC
control via hybrid automaton as in Figure 5. In this case, the

ẋ = f(x) + g(x)β(x)
q = 1
X0 = R

n \ D
q = 2
X0 ⊂ Eu + Bε(0)

ẋ = f(x) + g(x)k(x)

IDA-PBC Other controller

x ∈ G(1, 2) = Eu + Bε(0)

x ∈ G(2, 1)

Fig. 5. Hybrid automaton used in Proposition 4 for solving global stabilization
with guaranteed safety by using IDA-PBC and another local stabilizing
feedback controller.
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Fig. 6. The plot of positively invariant set Ω(x(0)) for the system in Example
1 using a state feedback u =−Kx, with K = [1339.0 4673.4]. The plot
of Ω(Eu +B5(0)) is shown in green while the plot of Ω(Eu +B0.1(0)) is
shown in blue.

guards G (1,2) and G (2,1) are defined by the neighborhood
of Eu and the boundary of the positive invariant set due to the
application of u = k(x) that contains the neighborhood of Eu,
respectively. The jump map R is simply given by an identity.

We note that the existence of the second state-feedback control
law u = k(x) is a mild assumption. For this controller to exist,
we need only to assume that x∗ is reachable from any point in
the neighborhood of Eu without entering D .

Proposition 4. Assume the system as in Proposition 2 with the
given control law u = β (x) and a proper Hd . Suppose that there
exist a constant δ > 0 and a control law u= k(x) such that for all
x0 ∈ Eu +Bδ (0) the corresponding state trajectory converges to
x∗ and is safe, i.e., the positive invariant set Ω

(

Eu +Bδ (0)
)

=:
Φ does not intersect D . Then the global stabilization with
guaranteed safety problem is solvable using hybrid control as in
Figure 5 with G (1,2) = Eu +Bε(0), 0 < ε < δ , G (2,1) = ∂Φ
and R = Id.

Proof. As assumed in the proposition, the hybrid automaton is
initialized with the first mode q = 1.

Following the same proof as in Proposition 2, the properness of
Hd along with inequality (12) implies that the state trajectories
x asymptotically converges to E . It has also been proven in
Proposition 2 that the control law u = β (x) with a proper Hd
guarantees global safety property of the closed-loop system. It
remains to show that x(t)→ x∗ for the hybrid system.
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Fig. 7. The numerical simulation result of the closed-loop system in Example
1 using hybrid control method as in Proposition 4. The closed-loop
trajectories are based on the same initial conditions as those used in Fig.
2 and all trajectories converge to x∗ without entering D (shown in red).

By the global attractivity of E , x converges to x∗ or to Eu. If for
some x(0), x converges to x∗ then the transition to q = 2 will
never happen and we obtain our result. Otherwise, there exists
T > 0 such that x(T ) ∈ ∂ (Eu +Bε(0)) which will initiate the
jump to q = 2. During the jump, we have x+(T ) = x(T ) =: xT
by our assumption and the closed-loop system will be described
by

ẋ = f (x)+g(x)k(x), x(T ) = xT ∈ Eu +Bε(0).

By our assumption on k(x), the state trajectory x will remain
in the positively invariant set Ω(Eu +Bε(0)) and in particular,
will never jump to q = 1. Thus x converges to x∗ as desired.
This proves our claim. ✷

The proposed approach provides a practical solution to the
global stabilization with guaranteed safety. In this case, in
addition to the IDA-PBC conditions, we need to find stabilizing
controllers for only a finite and arbitrary small set of initial
conditions. Hence, we may not need to design a large number
of switched controllers defined on different polytope/manifold
which can be numerically intractable for higher-order systems.

Let us now consider again the same system as in Example 1
where the IDA-PBC based controller is designed with c1 =−1.
One can evaluate directly that by applying u = −Kx where
K = [1339.0 4673.4], it can steer the system trajectories from
any initial condition in Eu + B5(0). Indeed, Figure 6 shows
the positively invariant set of the closed-loop system for initial
condition in Eu +B5(0) (shown in green) and in Eu +B0.1(0)
(shown in blue). Equip with this simple controller, we imple-
ment the hybrid control strategy as described in Proposition
4 and the simulation results are shown in Figure 7 where we
use the same initial conditions as those used in Figure 2. In
comparison to the results in Figure 2, we have now the global
convergence of x to x∗ using the hybrid control.

5. CONCLUSIONS

The use of energy-based control design has been shown to
be applicable for solving the problem of stabilization with
guaranteed safety. The avoidance of unsafe state is achieved by
an appropriate design of the energy function which may result

into the existence of attractive undesired equilibria. By adopting
a hybrid control framework, we can obtain the global result with
less restrictive conditions on the other mode.
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