

University of Groningen

Spectroscopic signatures of excited state dynamics in organic materials

Tempelaar, Roel

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Tempelaar, R. (2015). Spectroscopic signatures of excited state dynamics in organic materials [Groningen]: University of Groningen

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Spectroscopic signatures of excited state dynamics in organic materials

Zernike Institute PhD thesis series 2015-18

ISSN: 1570-1530 ISBN: 978-90-367-8208-1 (printed version) ISBN: 978-90-367-8207-4 (electronic version)

The work described in this thesis was performed at the Zernike Institute for Advanced Materials, University of Groningen, The Netherlands.

Cover design contains porphyrin structure retreived from https://commons.wikimedia.org/wiki/File:Porphyrin-3D-balls.png. The background protein structure is taken from the RSCB Protein Data Bank, file 3ENI.

Printed by Grafimedia, University of Groningen.

Copyright © 2015 Roel Tempelaar

Spectroscopic signatures of excited state dynamics in organic materials

Proefschrift

ter verkrijging van de graad van doctor aan de Rijksuniversiteit Groningen op gezag van de rector magnificus prof. dr. E. Sterken, en volgens besluit van het College van Promoties.

De openbare verdediging zal plaatsvinden op

vrijdag 30 oktober 2015 om 14.30 uur

door

Roel Tempelaar

geboren op 2 juni 1985 te Hengelo

Promotor

Prof. dr. J. Knoester

Copromotor

Dr. T.L.C. Jansen

Beoordelingscommissie

Prof. dr. G. Stock Prof. dr. R. van Grondelle Prof. dr. R. Broer

Contents

1	Prelude: Classical and quantum dynamics	11
	1.1 Random walk 1.2 Quantum walk	11 14
	1.3 Coherence and dephasing	15
2	General introduction	19
	2.1 Natural light harvesting	19
	2.2 Organic solar cells	22
	2.3 Excitations in organic materials	23
	2.3.1 Frenkel exciton	23
	2.3.2 Vibronic coupling	25
	2.4 Femtosecond dynamics	27
	2.4.1 Ultrafast spectroscopy	27
	2.4.2 Dynamical models	30
	2.5 Aim and outline of this thesis	32
3	Surface hopping modeling of two-dimensional spectra	35
	3.1 Introduction	36
	3.2 Theory and numerical methods	39
	3.2.1 Mixed quantum-classical dynamics	39

	3.2.2 Surface hopping	42
	3.2.3 Two-dimensional spectroscopy	43
	3.3 Application to a dimer system	47
	3.4 Discussion and conclusion	53
	3.5 Appendix: 2D response functions	55
4	Vibrational beatings conceal evidence of electronic coherence in	
	the FMO light-harvesting complex	57
	4.1 Introduction	58
	4.2 Model	60
	4.3 Results and discussion	66
	4.4 Conclusion	71
5	Two-dimensional spectroscopy of a dimer unveils the effects of	
•	vibronic coupling on exciton coherences	73
	5.1 Introduction	74
	5.2 Results and discussion	77
	5.2.1 Vibronic excitons of a cyanine dimer	77
	5.2.2 Two-dimensional spectroscopy	80
	5.2.3 Spectral signatures of inter-exciton coherence	83
	5.3 Conclusion	86
	5.4 Appendix: Numerical methods	87
6	Laser-limited signatures of quantum coherence	95
	6.1 Introduction	96
	6.2 Results and discussion	98
	6.3 Conclusion	107
	6.4 Appendix: Numerical methods	107
7	Mapping the evolution of spatial coherence through time-resolved	
	fluorescence	111
	7.1 Introduction	112
	7.2 Results and discussion	113
	7.3 Conclusion	121

	7.4 Appendix: Numerical methods	121
8	Coherent dynamics under high-temperature quantum thermalization	125
	8.1 Introduction	125
	8.2 Theory and numerical methods	127
	8.3 Results and discussion	. 128
	8.3.1 Weakly coupled dimer	. 128
	8.3.2 FMO-inspired dimer	129
	8.3.3 Strongly coupled dimer	. 131
	8.4 Conclusions	. 132
	Bibliography	133
	Publication list	153
	Samenvatting	155
	Klassieke en kwantummechanische toevalsbewegingen	. 155
	Van fotosynthese naar zonnecellen	158
	Het ontrafelen van ultrasnelle dynamica	160
	Dit proefschrift	. 162
	Tot slot	. 164
	Acknowledgements	165

Note: Throughout this thesis, $\hbar = 1$ is taken. Hence, optical frequency and energy are considered to be equivalent.

