

 University of Groningen

Coordinating services embedded everywhere via hierarchical planning
Georgievski, Ilche

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Georgievski, I. (2015). Coordinating services embedded everywhere via hierarchical planning [Groningen]:
University of Groningen

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

https://www.rug.nl/research/portal/en/publications/coordinating-services-embedded-everywhere-via-hierarchical-planning(70d0f3ca-5811-4074-a872-3bd66eab370e).html

Coordinating services embedded everywhere
via hierarchical planning

Ilche Georgievski

Supported by the Netherlands Organisation for Scientific Research (NWO) under contract

number 647.000.004 within the scope of the Smart Energy Systems program.

ISBN: 978-90-367-8148-0 (book)

ISBN: 978-90-367-8147-3 (e-book)

Printed by NetzoDruk - www.netzodruk.nl - Groningen

© 2015 Ilche Georgievski

Cover drawing by Ana & Borche Georgievski. The cover is a rendition of an intelli-

gent system, which appears as a human head with a network holding and processing

information in hierarchical forms.

Coordinating services embedded
everywhere via hierarchical planning

Proefschrift

ter verkrijging van de graad van doctor aan de

Rijksuniversiteit Groningen

op gezag van de

rector magnificus prof. dr. E. Sterken

en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

vrijdag 9 oktober 2015 om 11.00 uur

door

Ilche Georgievski

geboren op 30 juli 1986

te Bitola, Macedonië

Promotor
Prof. dr. M. Aiello

Beoordelingscommissie
Prof. dr. C. Bettini
Prof. dr. H. G. Sol
Prof. dr. A. Tate

To Vangjel and Snezhana

Contents

Acknowledgements xi

1 Introduction 1

1.1 Coordination via AI planning . 3

1.1.1 Characterisation of planning for ubiquitous computing 3

1.1.2 Hierarchical task network planning 5

1.2 A closer look at HTN planning . 7

1.3 Establishing relationships with ubiquitous computing 9

1.4 Ubiquitous computing systems . 11

1.5 A way to compose applications automatically 14

1.6 Thesis scope, approach, and organisation 15

2 Systematisation of planning for ubiquitous computing 19

2.1 Classical planning . 20

2.2 Methodology . 22

2.3 Classes of properties . 24

2.3.1 Environments . 25

2.3.2 Planning . 42

2.3.3 Interpretation . 60

2.4 Remarks . 68

3 Model and complexity of planning for ubiquitous computing 69

3.1 Conceptual modelling . 70

3.2 Model specification . 72

3.3 Complexity . 78

3.3.1 Analysis of existing domains 79

vii

Contents

3.3.2 Ubiquitous computing task and domain 81

3.3.3 Results . 84

3.4 Summary . 86

4 Hierarchical planning revisited 87

4.1 Methodology . 88

4.2 Models . 89

4.2.1 Plan-based HTN planning . 92

4.2.2 State-based HTN planning . 94

4.3 Concepts . 95

4.3.1 Task decomposition . 96

4.3.2 Constraints . 97

4.3.3 Explicit conditions . 99

4.3.4 Overview of planners . 100

4.4 Properties . 105

4.4.1 Domain authoring . 105

4.4.2 Expressiveness . 106

4.4.3 Competence . 108

4.4.4 Computation . 110

4.4.5 Applicability . 111

4.4.6 Overview of planners . 111

4.5 Remarks . 121

5 Reinforcing state-based HTN planning 123

5.1 Numerically extended state-based HTN planning 124

5.2 Phantomisation . 126

5.2.1 Approach . 126

5.2.2 Example . 129

5.3 Utilities . 130

5.3.1 Utility theory . 131

5.3.2 Framework . 132

5.3.3 Algorithm . 134

5.4 Summary . 135

6 Planning as a service 137

6.1 Service-orientation . 138

6.2 Services . 144

6.2.1 Modelling services . 145

6.2.2 Problem-solving services . 146

6.2.3 Management and utility services 147

viii

Contents

6.3 Engineering SH . 147

6.3.1 Syntax processing . 149

6.3.2 User-friendly domain manipulation 150

6.3.3 Implementation and services 151

6.3.4 Discussion . 154

7 Modelling and realising ubiquitous computing environments 155

7.1 From environments to HTN planning 156

7.1.1 Model of ubiquitous computing environments 156

7.1.2 Ubiquitous-based HTN planning problem 158

7.2 Orchestration . 161

7.2.1 Model . 162

7.2.2 Algorithm . 163

7.3 Implementation . 165

7.4 Evaluation . 170

7.4.1 Energy savings . 172

7.4.2 Economic savings . 173

7.4.3 Usability . 175

7.4.4 Performance . 179

7.4.5 Remarks . 183

8 Coordinating cost-aware offices 185

8.1 Approach . 186

8.1.1 Model . 186

8.1.2 Architecture . 189

8.2 Coordination . 193

8.3 Implementation . 194

8.4 Evaluation . 198

8.4.1 Economic savings . 199

8.4.2 Energy savings . 201

8.4.3 Remarks . 203

9 Composing applications ready for deployment 205

9.1 Composition of Cloud applications . 206

9.1.1 Deployment model . 207

9.1.2 Hierarchical planning domain model 209

9.1.3 Deployment-based HTN planning problem 214

9.1.4 Evaluation . 214

9.1.5 Related work . 216

9.2 Web service composition . 218

ix

Contents

9.2.1 WSC via planning . 219

9.2.2 WSC problem as an HTN planning problem 221

9.2.3 Overview of planners . 222

10 Conclusions 225

10.1 Reflection on planning for ubiquitous computing 225

10.2 Reflection on HTN planning . 226

10.3 Reflection on the developed systems 229

10.4 Limitations . 230

10.5 Future directions . 232

Bibliography 235

Samenvatting 261

x

Acknowledgements

Reminiscing about the period when I joined the Distributed systems group back

in December 2010 until the present, I found myself smiling in satisfaction. I know

this is because of the contributions, assistance, and care of many people I have en-

countered during this period of my life. To all of you, my gratitude is great.

Prof. dr. Marco Aiello made this experience of mine possible in the first place

by taking me in as an intern and later on as a PhD student. Marco, you are one of

the most considerate people I have ever met. Thank you for your excellent guid-

ance and generous support during this whole period. Probably of most benefit to

me, you taught me to be critical and strive for excellence in science. I can only now

see how your advice help me grew proficient. Your open-door policy made a con-

venient way of supervision, making you quickly a voice of reason in my PhD. You

gave me freedom of work as no one would hope for, and you patiently and with

encouragement guided my work into the current shape. I will always treasure the

knowledge and habits acquired from you. I am truly honoured to have you as my

promotor.

Concerning the members of the reading committee, Prof. dr. Claudio Bettini,

Prof. dr. Henk G. Sol, and Prof. dr. Austin Tate, I thank you for the time and

effort you put into reading and reviewing my thesis. Prof. dr. Austin Tate showed

a proactive and attentive stance toward my work on HTN planning, and gave me

feedback on Nonlin and O-Plan2, for which I am deeply grateful. I am thankful for

the insights concerning graphical representations and conceptual models that Prof.

dr. Henk G. Sol relayed on me.

Two other academics gave me their time and insight to develop and improve my

work. I am grateful to Prof. dr. Luigia Carlucci Aiello for being attentive to details

on my work in Chapter 4. I thank Prof. dr. Luis Castillo Vidal for the openness and

feedback on SIADEX.

xi

To the ladies at the secretariat, Esmee, Ineke, Desiree and Helga, you were not

only helpful in handling all paperwork and resolving practical issues, but you also

made the environment more joyful with your stories and laughter. Thank you for

all that.

I shared unique, scientific and personal experiences with my current and former

colleagues: Eirini, Tuan, Ehsan, Viktoriya, Faris, Heerko, Fatimah, Frank, Ang,

Ando, Brian, Azkario, Pavel, Doina, Saleem, Mahir, Kerstin, George, and Gian-

nis. Some special thanks in order. Eirini, thank you for infecting me with AI plan-

ning, and the feedback on my work in Chapter 4. A thanks goes to the co-authors

with whom I have published papers in appreciation of sharing their knowledge and

putting effort to create something useful to all of us: Viktoriya, Tuan, Andrea, Faris,

Brian, Alexander, and Marco. Alexander, I am also thankful for making me use

new technologies in as shortest time as possible. Those technologies now realise an

important part of this thesis. Though sometimes it was not easy to get something

I needed from you, we still had several helpful discussions. Faris and Tuan, thank

you for considering me to be part of your Sustainable Buildings story. Best of luck

with creating a fascinating story! Fatimah, I was always delighted by your sincerity

in our conversations during lunch. A special thanks goes to Frank for translating

my lay abstract into Dutch! I thank Pieter Noordhuis for the initial implementation

of the SH planner.

I especially want to thank my colleagues that have been my office mates over

the years. Ehsan, in addition to the conversations about our countries and politics,

I tasted delicious Pakistani food and had many moments of laughter thanks to you.

Heerko, we had nice chats about films and series. I cannot but thank you that my

“free” time was dedicated to a new series almost always on your suggestion. I am

deeply grateful for the Dutch translation of the thesis summary. Tuan, thanks for

the agreeable conversations, the music we listen to together, the Vietnamese food

you shared with me. We have been office mates for the longest period, which is

quite some time to listen to my disappointments and ramblings. You deserved to

be my paranymph!

I have been fortunate to have met wonderful people in Groningen. Violeta and

Marija, I will be always grateful for all the attention, nice food, support and care

you have given to me. On top of this, we were an excellent dancing trio! Violeta,

our chats and loud кафе-муабети were the joining of two good friends to escape

from whatever was going on and to laugh. Therefore, you join my defence as my

paranymph! Marija, your dedication to people amazes me. I must also thank you

for all the drama you have brought in my life! Ena, the food, the laughter, the under-

standing we shared. Thanks for all the nice memories. Bibi and Viktor, we became

good friends on a fast track. Thank you for your kindness and hospitality. Mina,

thank you for your uplifting presence! Funda, I feel like I know you for long time.

Thank you for your cheerful spirit and Turkish experiences. A special note to Vlad

for being my cinema and beer buddy. Saba, thank you for the engaging conver-

sations, and watering my flowers while I was away. Finally, to everyone not per-

sonally mentioned but help me to keep my peace and made my time in Groningen

enjoyable, I am thankful, wholeheartedly.

To my friends in Macedonia, Maja, Marija, Andrijana, Ana (P) and Aleksandra:

I am grateful for your support and attention. Elena (Ѓ), we had exciting chats about

life, culture, and beyond. Thank you for the wonderful memories from my stay

in Belgium. Elena (B), we grew up together and we still share similar experiences.

Thank you for having me in Germany. Goran, despite you being in Greece, we

still found time and places to share thoughts on existential questions. Thank you

for your interest in my PhD! Anita, I am grateful for your devotion to me despite

your continuous cruising around the world. Viktor, you were updated daily about

whatever was happening in my life. You must have great patience and understand-

ing. Thank you! Tanja, you believed the most in me. I reminisce the past and I

cannot tell you how an extraordinary friend you are. Thank you for every moment

you spent on me! Ana (M), very special gratitude to you. Your effervescent person-

ality has a profound effect on me. Thank you for being empathetic and supportive

all these years!

I am grateful to all my relatives for the care and attention given to me. My energy

and spirit were regularly renewed during holidays at home. Oh, and my suitcases

were filled up too!

To my brother Borche and his wife Ana: Thank you for your love! Your ten-

derness and light-hearted nature help me stay upbeat. Thank you also for taking

the challenge and creating the artistic drawing that has adorned the outside of this

thesis.

Nothing would have been possible without my parents. It is to them that I ded-

icate my thesis. Тато и мама, не постојат зборови што можат да го изразат тоа

што го чувствувам, но еве, ќе се обидам. Ви благодарам за сета љубов што

ми да ја давате, за сета ваша пожртвуваност, што ми ја покажавте убавината

на светот, и што ме исполнивте со бесконечна надеж. Ви благодарам што

ме научивте сè што можевте и што ми верувавте да го научам останатото

самостојно. Без вас би бил никаде и ништо.

Ilche

Groningen

1 September 2015

Chapter 1

Introduction

Computing exists and takes place all around us. All the more so nowadays,

when devices are embedded and applications are present everywhere in our

environments. One such environment is the new home of Theodore, a writer. While

each room is equipped with various home appliances, such as a TV in the living

room, his home is enriched with numerous unobtrusive devices, such as radio-

frequency identification tags, temperature and gas-leakage sensors, actuators to

switch lamps, etc. As Theodore is an early adopter, he also bought Tars, a domestic

robot capable of performing diverse tasks, such as sensing human presence, clean-

ing rooms, moving around the home, picking up and dropping items, and helping

and supporting a user. All these devices, including the robot, provide various kinds

of information and means for operation using a wide range of communication and

integration technologies, typically seen through the prism of services. A service is

an abstraction of a software component from its implementation details in the form

of interfaces. These interfaces are most commonly accompanied with explicit func-

tional descriptions. Services are distributed over various types of networks, and

interoperate with each other by exchanging messages. A lamp, for example, has

services for both sensing and changing its state. The true benefits of such enriched

and abstracted environments appear however when the focus of computing is not

on the devices alone, but on their coordination for the purpose of greater good, such

as improving people’s experiences and quality of life, energy saving, or safety. Sup-

porting the activities and serving the needs of people in unobtrusively equipped en-

vironments is otherwise commonly referenced as ubiquitous computing or pervasive

computing or ambient intelligence (Weiser 1999).

Theodore now decides to purchase a system that will do such computing, that is,

deal with his needs and requests, anticipate his activities, process the information

from devices, coordinate all devices and appliances, cooperate with Tars, and take

care of the home. Samantha is named the system he obtains.1 Today, to build a sys-

tem like Samantha, one would have environment (home) adaptations programmed

1Theodore, Samantha and Tars are inspired by the eponymous characters in the films “Her” (Phoenix

and Johansson 2013) and “Interstellar” (Irwin 2014).

2 1. Introduction

or defined beforehand. This means that all requests and situations that may happen

in Theodore’s home need to be predicted and covered in the adaptations. Designing

such adaptations requires a strenuous mental and manual activity which usually

results in only a limited number of objectives or situations included. For example,

it is relatively easy for Samantha to instruct Tars to clean the home from dust in

such a way that he does not disturb Theodore using predefined instructions. But,

if we need Tars to clean the kitchen and the bedroom and to deliver some items to

Theodore also, what would be the (best) instruction for Tars to accomplish this?

While specifying adaptations or instructions, one assumes that involved services

are always available and executable in some ideal, or more precisely, predictable

setting. All environments, including Theodore’s home, are however characterised

by a certain degree of uncertainty. This means that if a change in an objective, ser-

vice availability or the environment itself occurs, it is most likely that some adapta-

tions will no longer be applicable, and the system will fail to react. Let us illustrate

this through a situation in Theodore’s home.

One day Theodore decides to prepare lunch. While he chooses a dish from the

home menu, Samantha takes into account the recipe for that dish and selects a set of

instructions for Theodore to follow. During computation, Samantha finds out that

an ingredient is missing that cannot be replaced with any of the available ones in

the kitchen. Unfortunately, Samantha has no predefined solution to this problem. If

she is intelligent, she will instruct Tars to go to the storage room and get the missing

ingredient, enabling Theodore to still cook his chosen dish. In the case of emergency

situations, the consequences of not knowing what to do could be worse, exemplified

as follows. While Theodore is preparing the lunch, Samantha detects a gas leak,

which is always a dangerous situation (Kaldeli et al. 2012). Samantha triggers a

predefined goal for dealing with such situations, and computes a safety solution.

It consists of instructions for Theodore to leave the home, actions to close all doors

leading to the kitchen so as to isolate spreading of the gas as much as possible. At the

same time, Samantha issues actions to pull up window blinds and open the window

in the kitchen. However, it happens that the blinds are stuck, which prevents the

window from opening. This situation has not been foreseen at the design time, and

therefore Samantha has no solution for it.

With the device proliferation, modifications of existing adaptations are required,

and most often, new adaptations are needed. If all these updates are performed

without any systematic steps, the outcome will be a cluttered system. At the end,

such a system is difficult to reuse across different types of environments, which is,

if nothing more, undesirable from a business perspective.

Samantha must be able to continuously find ways to transform the current state

of Theodore’s home into a state that satisfies his requests or deals with some newly

1.1. Coordination via AI planning 3

arisen situation. We need techniques that exhibit autonomous and intelligent be-

haviour in physical environments that goes beyond the knowledge predefined by

people.

1.1 Coordination via AI planning

The field of Artificial Intelligence (AI) deals with building systems that are cap-

able of intelligent behaviour, and AI planning provides means for automated and

dynamic coordination of services, for example, (Ranganathan and Campbell 2004,

Sirin et al. 2004, Berardi et al. 2008). Planning is the process of selecting and co-

ordinating actions by considering their outcomes in order to achieve a given object-

ive, and AI planning deals with this process computationally (Ghallab et al. 2004).

Henceforth, when we use the term ‘planning’, we refer strictly to AI planning. Con-

sidering the coordination of services, actions correspond to services and objectives

to requests. In addition to automation, we gain several more benefits by using plan-

ning. First, planning supports naturally the evolution of systems as the adaptation

of actions is relatively easy and flexible. Second, the provided knowledge can be

modified and maintained in an organised and conceptual way – the purpose of each

planning construct is always known. Third, the same knowledge with minor modi-

fications can be suitable to a wide range of ubiquitous computing environments.

Finally, planning can provide the means to maximise people’s comfort and energy

savings.

1.1.1 Characterisation of planning for ubiquitous computing

The basic and evident correspondence between planning and ubiquitous com-

puting environments is exploited in several existing studies, for example, (Kotso-

vinos and Vukovic 2005, Amigoni et al. 2005, Kaldeli et al. 2012, Rocco et al. 2014).

What appears to be less obvious is how ubiquitous computing environments are re-

lated to planning beyond device services and user requests. Through the example

of Theodore’s home, we see that the environments are associated with other attrib-

utes too, such as temporal and spatial relations, user preferences, human actions,

uncertainty, etc. Looking at the existing studies, the correspondence and the extent

to which planning corresponds to these attributes cannot be easily grasped. The

main obstacle to recognise and interpret these issues is planted into ambiguities of

planning-based approaches designed for and only little applied to ubiquitous com-

puting environments.

One way to address these concerns is to have a view of planning for ubiquitous

computing such that explains the entities constituting the field and presents the re-

lationships between them. The main benefit of such a view would be the better

4 1. Introduction

understanding of the field, independent of design and implementation concerns. A

stable view can then support subsequent and facilitated development of ubiquit-

ous computing solutions. This is necessary if the long-term objectives of ubiquitous

computing reach beyond just ideas or partially functioning prototypes. To the best

of our knowledge, there is no existing view that abstracts away planning for ubi-

quitous computing. We therefore deal with this issue and organise the aspects of

planning for ubiquitous computing in a specification that can be clearly compre-

hended, easily communicated, and used for subsequent design and development.

Ubiquitous computing is a domain in which systems are expected to react fast.

In many cases, such as the emergency situation in Theodore’s home, the speed of re-

action is crucial. This means that the speed of computing of all techniques involved

in the system’s life cycle is important for the overall system reaction. We have to be

particularly aware about the performance of computationally expensive tasks, such

as planning (Erol et al. 1995). In this context, little is known about how difficult it is

to coordinate ubiquitous computing environments via planning, or the amount of

resources such coordination requires. To begin with, one can gain some knowledge

on the upper bound of speed and length of solutions produced by some planning

techniques in ubiquitous computing. We can achieve this by analysing the complex-

ity of planning in specific domains (Helmert 2003). In order to have insights into

the complexity of planning for ubiquitous computing, we define a general ubiquit-

ous computing planning domain. This enables the characterisation of two decision

problems, one relating to the length of solutions for the planning problems, and the

other one involving the existence of solutions.

The classical approach to planning requires an initial state of an environment,

a goal state, and a set of actions (Ghallab et al. 2004). Classical planning tries to

find such sequence of actions that transforms the initial state into the goal one. This

approach implies at least two difficulties for ubiquitous computing environments.

One is the creation of the goal state, which specifies declaratively what has to be

achieved. This task might be easy for some specialised software, such as rule-based

engines (Degeler and Lazovik 2013), but it is a real challenge for users to conceive an

intended goal, one that is not in the list of predefined ones. The second difficulty lies

in specifying actions. An action typically consists of preconditions, defining when the

action can be applied, and effects, specifying the expected outcome of the action ap-

plication. Since actions correspond to services, it means that actions would contain

only simple prepositions to check whether corresponding services are executable

given the current state. However, this cannot be the case, as planning techniques

usually require knowledge that goes beyond such basic conditions. That is, actions

need to be annotated with semantics additional to the description provided in ser-

vices (Marquardt and Uhrmacher 2009a, Kaldeli et al. 2012). There are two pos-

1.1. Coordination via AI planning 5

sibilities to overcome this. One involves services to come along with appropriate

semantics, meaning that this would be a responsibility deferred to manufacturers

of devices. The other option would be to have a domain author or expert respons-

ible for maintaining and updating service descriptions accordingly and whenever

necessary. If, for example, a device is excluded from the environment, its services

and therefore actions must be removed from the domain too. This activity is far

from easy in practice, especially in more complex ubiquitous computing domains

where causal relations between actions can be easily lost.

The first difficulty can be overcome by having an objective which indicates that

something needs to be done or performed without specificities of what and how. We

can deal with the second difficulty by keeping services without specific knowledge.

It is useful when such knowledge is encoded and maintained independently from

services. Fortunately, there is a planning technique that provides these and many

more features for modelling and supporting ubiquitous computing environments.

1.1.2 Hierarchical task network planning

Hierarchical Task Network (HTN) planning, or hierarchical planning, is a planning

technique that breaks with the tradition of classical planning (Sacerdoti 1975a, Tate

1977, Erol et al. 1994a). The basic idea behind this technique includes an initial

state description, a task network as an objective to be accomplished, and domain

knowledge consisting of networks of primitive and compound tasks. A task net-

work represents a hierarchy of tasks each of which can be executed, if the task is

primitive, or decomposed through methods into refined subtasks, if the task is com-

pound. Planning starts by decomposing the initial task network and continues until

all compound tasks are decomposed, that is, a solution is found. The solution is a

plan which equates to a set of primitive tasks applicable to the initial world state.

HTN planning is a particularly useful technique due to its rich domain know-

ledge provided in task networks. It is generally well suited for domains in which

some hierarchical representation is desirable or known in advance, domains that

encourage complex and composite constructs, domains that involve structured

strategies, and domains that are naturally epistemic. HTNs enable encoding in-

formation about how to perform some task or strategy, or how to accomplish some-

thing. This is especially convenient for services describing some environment-

specific processes and strategies involving other services. In this context, HTNs

allow encoding knowledge at varying levels of abstraction, focusing thus on a par-

ticular level at a time (Sirin et al. 2004). With this modularity, services of different

granularity can be modelled as primitive and compound tasks.

Causal reasoning in more complex ubiquitous computing domains can be eas-

6 1. Introduction

ily lost if only planning actions are used. Hierarchical planning through modular-

ity can help here by allowing device services to be encoded at the bottom level of

the hierarchy. These services would then constitute the next more coarse-grained

level (Yordanova 2011). In addition, this structured causality supports and eases the

evolution of ubiquitous computing environments. If, for example, the evolution

means a change in the ubiquitous computing system so as to fulfil new user re-

quirements, then the causality of HTNs helps in determining which services have

been affected by the change. Once such services are identified, the flexibility of HTNs

makes it relatively easy to plug in new services as methods, or remove the obsolete

ones without drastically affecting the hierarchy.

HTN planning supports control flow. HTNs enable controlling the order in which

services are executed, e.g., partial order, or methods evaluated (in the if-then-else

manner). This provides a ground for modelling composite services with several

control constructs, such as sequence, unordered, choice, if-then-else, etc. (see (Sirin

et al. 2004) for examples). In this context, HTNs support recursion too. A compound

task that is applied within its own definition is called recursive. In most cases, re-

cursive tasks accomplish something by dividing it into smaller parts each of which

is addressed with a recursive call to the task until reaching the base case. Recursive

tasks aid the modelling of services that show a propensity for cycles.

The knowledge encoded in HTNs helps in reducing the search space of plan-

ners2 and therefore finding a solution reasonably fast, if one exists. This makes hier-

archical planners a “good compromise” between wide reusability and effectiveness

in comparison to classical, domain-independent planners (Marquardt et al. 2008).

The latter planners do not require domain-specific knowledge, and thus they are

widely applicable, however, they are characterised by weak efficiency. In ubiquit-

ous computing, domains usually contain a large and constantly increasing number

of services. HTN planning fits for such domains because it scales well to large num-

ber of tasks, and also generally to increasing size of planning problems.

The main shortcoming of using HTN planning is the lack of instructions or re-

commendations on how to model domain knowledge. Conceiving the knowledge

depends on the capabilities of the domain author, his expertise in the ubiquitous

computing domain, and his understanding of the underlying planning system and

modelling language. However, this is true for all kinds of planning, not just HTN

planning.

2We use a planner and a planning system interchangeably for the implementation of a planning tech-

nique.

1.2. A closer look at HTN planning 7

1.2 A closer look at HTN planning

Though long-standing and widely used, HTN planning is characterised by con-

troversy and lack of a common understanding (Georgievski and Aiello 2015a). This

situation cannot be effortlessly clarified because the current literature on HTN plan-

ning, despite being rich, reports little or noting at all on the issues, especially in a

consolidated form. We introduce a new viewpoint on HTN planning, where we

differentiate between plan-based HTN and state-based HTN planning, consider-

ing the kind of space the search is performed in. Both models can achieve a more

or less similar level of expressiveness, and one model would be more preferable

than the other one depending on the expressivity constructs needed for the plan-

ning domain at hand. For example, one can anticipate partially ordered plans eas-

ily with planners of the former model. The main shortcoming of resorting to plan-

based HTN planning is the necessity for complex and complicated problem-solving

mechanisms. These include resolution methods for task interactions, management

of constraints in task networks and those posted during planning, heuristics, etc. In

addition, the field of plan-based HTN has been dormant, the state-of-the-art plan-

ners have an ambiguously defined syntax, and their underlying systems are tightly

coupled (i.e., their components are highly dependent on one another), making them

difficult to extend and improve.

For practical reasons, we choose to work with state-based HTN planning. In

contrast to plan-based HTN planning, this model requires simpler mechanisms in

planners, which may provide the benefits of loosely coupled systems (i.e., easy to

extend and improve). Looking at the state-based HTN planners, little is known

about the internal architecture of SIADEX (Castillo et al. 2006). Also, the planner is

not publicly available, preventing us from inspecting its implementation character-

istics. On the other hand, SHOP2 is a state-based HTN planner distributed under

an open-source licence (Nau et al. 2003), whose most recent and modern version

is the Java implementation JSHOP2 (Ilghami 2006). JSHOP2 uses code generation

to transform an HTN planning problem specified in the SHOP2 syntax into execut-

able code. This approach introduces some inconvenience in the manipulation and

extension of the planner.

The main drawback of state-based HTN planners is their requirement for elab-

orate domain knowledge. In state-of-the-art planners, the domain knowledge may

even include constructs that provide behaviour of programming languages, some-

thing that goes beyond the expectations for AI planners. For example, lists and

operations on lists in the SHOP family of planners, or Python-based domain func-

tions in SIADEX. In addition, the syntax of SHOP2 is ‘liberal’ with respect to what

is allowed to appear in numerical expressions in both, preconditions and effects,

8 1. Introduction

arguments of predicates, and values of parameters in tasks. In SIADEX, the syn-

tax is mostly based on the Planning Domain Definition Language (PDDL) (McDer-

mott et al. 1998) (to be precise, on the 2.1 version of PDDL (Fox and Long 2003)),

which is a de facto standard language for AI planners. We refer to the hierarch-

ical syntax based on PDDL as Hierarchical Planning Definition Language (HPDL).

HPDL makes things much clearer for state-based HTN planning, as compared to

SHOP2 one, though the semantics underlying the language are left undefined.

Other reasons for the well-conceived knowledge provided to state-based HTN

planners can be found in the special encodings needed for achieving predicates,

modelling the base cases of recursive tasks, modelling the book-keeping primitive

tasks (used to track what needs to be done further during planning), etc. (Geor-

gievski and Aiello 2015a). The way of handling base cases of recursive tasks is by us-

ing additional methods, which represents one aspect of phantomisation. Phantom-

isation defines what happens after the process of inferring that some task is already

accomplished by some other tasks in the task network. As opposed to plan-based

HTN planners, the phantomisation in state-based HTN planners is achieved expli-

citly using the knowledge in the domain. Whether phantomisation situations will

be identiified and encoded appropriately depends directly on the abilities of the

domain author.

The last issue we focus on is of technical nature and refers to the ability of

planners to integrate in large software systems. To take the case of ubiquitous

computing, the systems need to consider scalability (e.g., with respect to devices

or software components), distribution, interoperability, evolution, and reusabil-

ity (Degeler et al. 2013). Most of these challenges are open issues for planners: as

part of complex and distributed systems, the planners need to provide computa-

tional power on demand and to support and guarantee location and distribution

transparency. This necessity arises from the complexity and diversity of planning

problems in real-world domains. In the case of ubiquitous computing, factors that

contribute towards complexity are: (1) the size of the planning problem which may

vary with the addition of, for example, new devices in the environment, (2) the plan-

ning implementation that can reside on different locations (e.g., in the home or in

the Cloud), (3) the distribution of the domain knowledge which might be centralised

or decentralised, and (4) the decision-making control which might lead to conflicts

between AI-based and user-based decisions. As for diversity, planning problems

may involve a wide range of scenarios, from homes, office buildings, to hospitals.

We set out to develop a new HTN planning system, one with a higher degree

of simplicity and flexibility than state-of-the-art state-based HTN planners. We call

it Scalable Hierarchical (SH) planner. We use HPDL for the planner because, first,

it paves the way to have a unified and clear representation for state-based HTN

1.3. Establishing relationships with ubiquitous computing 9

planners, and second, we want to have clearly defined syntax for numerical expres-

sions. Numeric-state variables and numerical expressions are convenient constructs

for ubiquitous computing environments (Kaldeli et al. 2012). In this context, we

formally extend state-based HTN planning to include numerical expressions. Un-

der this extension, we define a state to be a pair of sets of predicates and numerical

variables. The values of variables are updated through the application of primit-

ive tasks. So, we treat numbers only as values associated with objects, and not as

unique and independent objects in the environment (in the manner of PDDL (Fox

and Long 2003)). We further discharge authors from the responsibility to identify

and encode phantomisation situations and provide a way to perform phantomisa-

tion automatically. Finally, we propose the concept of planning as a service follow-

ing the principles of Service-Oriented Computing (SOC) (Papazoglou and Geor-

gakopoulos 2003, Erl 2007). This means that planning functionalities are offered

as services in order to support easy and efficient integration and development of

cooperative systems.

1.3 Establishing relationships with ubiquitous com-

puting

Many situations in real-world environments, including ubiquitous comput-

ing ones, may produce multiple alternative ways of accomplishing some object-

ive, where each such alternative is associated with some risk. Risk presents the

possibility to win or loose some wealth or resource, such as money, energy, time,

satisfaction, and sometimes humans (e.g., in emergency situations). The sensitivity

to risk can be analysed through utility theory, which deals with decision making

in accordance to some risk attitude of people (Neumann and Morgenstern 1947).

For example, for a risk-averse person loosing part of some resource means more

than winning a certain amount. Utility then expresses the preference over choices.

When making decisions, people or systems try to enhance their utility. If Theodore

expresses a preference for natural light over artificial light, it can be reasoned that

Theodore’s utility will be higher when blinds are pulled up than when they are

down and lamps are turned on.

Risk sensitivity has been considered in planning models conceptually different

than HTN planning, e.g., (Koenig and Simmons 1994). In the field of HTN planning,

there are approaches that deal only with user preferences (Sohrabi et al. 2009), costs

of primitive tasks (Nau et al. 2003, Luo et al. 2013), predefined costs of compound

tasks (Amigoni et al. 2005), and user ratings and trust associated with primitive

and compound tasks, respectively (Kuter and Golbeck 2009). We take an approach

similar to the one in (Kuter and Golbeck 2009), where user ratings are used to cal-

10 1. Introduction

culate backwards the trust in compound tasks. We assume non-positive costs for

primitive tasks, expressing some property of consumption, and we assign utilities

to compound tasks, indicating the attitude toward the risk of consuming the given

resource. Our approach, utility-based HTN planning, tries to find a plan that maxim-

ises some utility function given a resource.

Understanding ubiquitous computing problems clearly makes the formulation

of their corresponding planning problems (or reasoning counterparts) easier and

sound. The main reason for this necessity lies in the diversity and complexity of

the problems in ubiquitous computing (Bettini et al. 2010). Knowing the focus and

constituents of the addressed ubiquitous computing problem introduces a definite

way of creating a planning problem corresponding to it. The correspondence makes

a space to further concentrate on issues related exclusively to planning problems,

such as specification of the corresponding planning problem at the planning level,

the way of creating such specification in a sense whether it can be automatically in-

duced from the environment or it must depend on the expertise of the domain au-

thor, and finally, the need for expressivity constructs in order to master the problem

under consideration. We take this approach and model a specific problem of ubi-

quitous computing environments upon which we define the corresponding HTN

planning problem. This provides the means to declare that the plan computed for

the planning problem is indeed a solution to the initial ubiquitous computing prob-

lem.

The plans are computed off-line, meaning the planning state is assumed to be

updated only by the steps involved in the plans. In ubiquitous computing environ-

ments this represents a strong assumption given their dynamism and uncertainty.

Events, which usually represent environment changes, occur all the time during

execution, unexpectedly and asynchronously. As an example, recall the missing in-

gredient for Theodore’s dish or the window blinds getting stuck. The events affect

the plan computed off-line by making some of plan steps obsolete or the entire plan

invalid. Additionally, we may encounter unpredicted behaviour from services at

the time of execution. A service may fail executing, it may not respond at all, or it

may return a result different from the expected one (Lazovik 2006, Kaldeli 2013).

There are at least two ways to deal with these issues. One involves computing

a conditional plan with branches for all possible outcomes that may occur during

execution and affect the plan, for example, (Hoffmann and Brafman 2006). Given

the nature of ubiquitous computing environments, this seems inadequate: it is diffi-

cult to predict the outcomes and their number is potentially high and probably in-

creasing with the proliferation of devices. The other approach interleaves planning,

monitoring and execution, e.g., (Brenner and Nebel 2009, Kaldeli et al. 2011). Here,

a plan computed off-line is monitored while executing its actions. In case of unex-

1.4. Ubiquitous computing systems 11

pected behaviour coming from changes in the environment or action executions, a

planner is invoked to modify the plan. If the planner is unable to revise the plan, a

new plan is computed. The main drawback of this approach is the computational

burden it causes to the underlying system, especially in cases when the planner

spends time and resources on revising a plan and eventually ends up making a

new plan. Though the revision time can be constrained, it still affects the speed of

system reaction, which is crucial for most situations in ubiquitous computing en-

vironments.

Due to these reasons, we resort to a more pragmatic approach. In face of in-

consistencies, the plan execution continues only if the remainder of the plan is not

affected by the environment change or service failure. Otherwise, a new plan is

computed. We formalise the execution semantics using the concept of orchestration

in the manner of SOC. Orchestration is the process of coordinating and executing

services with the purpose to carry out the specified service composition (Erl 2007).

Most often, the orchestration process is assigned to a central component that in-

teracts with other components of the underlying system. Analogous to this, we

use orchestration to coordinate the receipt of events, planning for new HTN plan-

ning problems, and execution of their corresponding plans. The process creates and

maintains HTN planning domain and state, and upon each newly received event, it

updates the state and formulates an HTN planning problem. Afterwards, it invokes

the planner to solve the problem, and if plan is found, the orchestration executes it.

If an event is received that affects the execution or a service execution fails, the or-

chestration asks the planner to compute a new plan. Otherwise, the plan execution

continues.

1.4 Ubiquitous computing systems

Systems à la Samantha need to interact with the devices in the environment,

collect and interpret the data coming from them, maintain some additional inform-

ation about the environment, and take care of the coordination and execution of

services. We design an architecture suitable for such systems to which we refer

as Hierarchical Task Network Planning for Ubiquitous Computing (HTNPUC) ar-

chitecture. HTNPUC follows the principles of service-orientation on both the ubi-

quitous and application levels. This means that, in addition to devices providing

services, the capabilities of architecture components are offered as services too. We

refer to the former ones as ubiquitous services, and to the latter ones as application ser-

vices. Conceptualising everything as a service provides for a distributed, scalable

and dynamic infrastructure.

Figure 1.1 depicts the components of the HTNPUC architecture and their inter-

12 1. Introduction

Composition

Context

Repository

Orchestration

Services

Celing lamp PC Projector Reading lamp

S
to

ra
g

e

Processing

R
e
a

so
n

in
g

Gateway

Devices ...

Figure 1.1: High-level overview of HTNPUC.

action. The devices are represented by sensors, actuators, and appliances. Each

device has an interface that provides an access to device’s data and control. The

interfaces may use different protocols for communication. Devices are organised

in several types of networks providing a basic infrastructure for data manipula-

tion. The gateway is the point where a unified way of interaction with devices is

provided, that is, device functionalities are encapsulated as services and offered to

interested components of the architecture.

The repository component stores mainly two types of environment information.

One involves descriptions of devices deployed in the environment, their types and

locations within the environment, their data type and value ranges, the layout of the

environment, etc. The other type of information is dynamic and involves the data

coming periodically from devices directly or through the context component. The

context component accepts data arriving from devices and continuously monitors

the state of each device. This component collects data, aggregates it into meaning-

ful information, and provides it to interested components. The last functionality

is based on a publish and subscribe mechanism, enabling components to show in-

terest about specific information and get notifications when related events occur,

for example, environment changes.

Reasoning is accomplished through the use of two components, one that rep-

resents our orchestration process and the other one refers to the composition of

1.4. Ubiquitous computing systems 13

ubiquitous services via hierarchical planning. Since ubiquitous computing envir-

onments are expected to support continuous orchestration, we adopt a strategy

that enables long-running runtime activities. Thus, the orchestration component re-

ceives events from the context component through the publish and subscribe mech-

anism, and reacts immediately and accordingly. The composition component, on

the other hand, is represented by the SH planner. The component receives an HTN

planning problem and computes a plan whose execution ensures that the envir-

onment is adapted according to the initial task network and environment-specific

conditions.

We realise HTNPUC as a system prototype. We deploy the system and demon-

strate its applicability in an actual environment. We use the facilities of our

own building, Bernoulliborg, at the University of Groningen, The Netherlands.

Bernoulliborg is a building of more than 10000 m2 erected in 2008.3 We exploit

the space that is located on the ground floor and used as a restaurant between 11.30

a.m. and 2 p.m. every working day, and used for reading, working and other so-

cial activities the rest of the time. With the system, we want to see how automated

coordination of lamps brings benefits related to both, energy savings, and user ac-

ceptance and satisfaction.

With this system we may achieve reduction of energy use, and as a consequence,

monetary savings, in an implicit way thanks to the knowledge provided in HTNs.

What appears lately to be an explicit necessity for ubiquitous computing environ-

ments is the optimisation of the price paid for energy using the information com-

ing from the electricity system (Georgievski et al. 2012). The assumption here is

that the electricity system will evolve into a smart grid in which dynamic prices for

electricity are offered from competing providers (Pagani 2014). This means that we

can acquire amounts of energy from different providers in short-time intervals, say,

every hour. Optimality comes into perspective when the cheapest energy is bought

whenever possible considering the amount of energy needed to coordinate devices.

The devices are coordinated in a way to avoid peak tariffs as much as possible. In

order to explore this option, we build and deploy another prototype of a ubiquitous

computing system on the fifth floor of Bernoulliborg. The prototype involves com-

ponents for monitoring devices, storing data about devices and energy providers,

communicating with the smart grid, and scheduling and controlling devices. In

contrast to the previous system, here the coordination of the components is per-

formed in a centralised manner.

The main idea behind the second system is to create temporal plans optimised

with respect to the amount of energy bought from the cheapest provider. We may

refer to temporal planning as a way to create plans whose steps are temporally

3http://nl.wikipedia.org/wiki/Bernoulliborg

http://nl.wikipedia.org/wiki/Bernoulliborg

14 1. Introduction

annotated (Ghallab et al. 2004). However, temporal planning methods usually fo-

cus on optimising one dimension only, the one of minimising the plan duration,

e.g., (Smith and Weld 1999, Bacchus and Kabanza 2000, Do and Kambhampati 2003,

Gerevini et al. 2006), and more recent methods that additionally consider PDDL-

based preferences (Benton et al. 2012). An alternative approach, which we adopt,

uses techniques specialised for scheduling and optimisation problems (Nizamic

et al. 2012).

1.5 A way to compose applications automatically

Each of these systems offers its own specific capabilities appropriate for ubiquit-

ous computing environments. However, it may happen that a combination of the

capabilities of both systems suits better user needs. The outcome is a customised

system (or application) composed of components in a way that meets user require-

ments. We expect that the composition and purchase of such systems are possible in

the framework of cloud computing (Hayes 2008). The system would be then present

everywhere, meaning silently delivered to any infrastructure, place or device en-

abled with Internet. Irrespective of where the system is deployed and executed,

its composition will consist of possibly distributed software components of differ-

ent granularity, each offering one or more application services. The coordination

of these services creates values in systems and involved corporations that may go

beyond standard expectations, such as resource utilisation (e.g., servers) and eco-

nomics. The coordination of application services is usually achieved either manu-

ally, as in our cases, or with some predefined scripts. Both approaches make the

coordination difficult due to the high interrelation of components, ‘versioning’ of

components, including different requirements for communication and exchange of

messages, multiplication of component instances with the increase of the size of

environments, and, as a consequence, a varying number of application services.

We can address these issues by automating the process of coordinating ap-

plication services. One way to achieve this is to consider application services as

the ones accessible on the public Web, and use planning techniques to compose

them, e.g., (Aiello et al. 2002, Sirin et al. 2004, Lazovik et al. 2004, Medjahed and

Bouguettaya 2005, Klusch and Gerber 2005, Kaldeli et al. 2011). The main short-

coming of using Web services is the lack of consistent semantic descriptions des-

pite the existence of several notable specifications (e.g., SOAP, WSDL, OWL-S) (Fan

and Kambhampati 2005). This makes Web service composition highly infeasible

in practice. Another way is to see application services as Cloud services, that is,

those whose accessibility may not necessarily be public. Cloud services are usually

accessible within a limited number of corporations, ensuring greater service con-

1.6. Thesis scope, approach, and organisation 15

trol and privacy. Services in well-controlled environments are more structured and

annotated with semantics using a consistent (in-house) ontology. Indeed, corpora-

tions are willing to use standards and best practices gained from SOC to enable a

well-defined access to services. These observations anticipate the feasibility of com-

posing Cloud services. So, we take the challenge and automate the coordination of

application services using HTN planning.

1.6 Thesis scope, approach, and organisation

The research challenges that we tackle can be organised in three topics. The first

topic is concerned with the issues related to the characterisation and understanding

of two fields, planning for ubiquitous computing and HTN planning. The second

topic comprises the issues within the scope of state-based HTN planning, and the

third topic encompasses the challenges related to development and application of

solutions in ubiquitous computing environments and cloud computing environ-

ments.

The approach we adopt to deal with the challenges under the first topic is based

on qualitative research (Glaser and Strauss 2009, Corbin and Strauss 2008). All sci-

ences, including Computer Science, characterise the nature of phenomenons under

consideration qualitatively from which more detailed knowledge can be further

developed (Newell and Simon 1976). Among qualitative methodologies, groun-

ded theory enables developing artefacts, such as concepts, categories and a theory,

through an analysis of data (Corbin and Strauss 1990). The artefacts should offer an

explanation about the phenomenon under examination. In fact, the grounded the-

ory methodology provides a guidance for data collection and procedures for data

analysis.

We use the methodology of grounded theory to organise and analyse existing

studies on planning for ubiquitous computing. Our contribution represents a novel

overview of this field. In contrast to existing surveys on service composition in ubi-

quitous computing, where planning is subsumed as one approach to service com-

position (Urbieta et al. 2008, Stavropoulos et al. 2011, Brnsted et al. 2010), our over-

view deals extensively with planning only, and is performed rigorously and system-

atically using a wide range of factors, starting from those relevant to the environ-

ments, AI planning, to elements important for efficient demonstrations of ubiquit-

ous computing approaches. Using the artefacts resulting from the systematisation

and conceptual modelling (Mylopoulos 1992, Thalheim 2010), we introduce a con-

ceptual model that helps in explaining and communicating planning for ubiquitous

computing. In addition, using the systematisation too, we contribute theoretically

by defining a general planning domain for ubiquitous computing, and laying a basis

16 1. Introduction

for considering computational properties of planning problems within that domain.

We accomplish this following the approach taken by Helmert (2003).

The field of HTN planning is examined qualitatively too. Using the existing

planners and studies, information about formal models, concepts and properties

are extracted, analysed and interpreted in a consolidated form. To the best of our

knowledge, this is the first comprehensive viewpoint on HTN planning. Our main

contribution lies in the categorisations of the field, and clarifications of many mis-

conceptions associated with this planning technique.

The approach taken to address the issues under the second and third topics

includes identification of a problem, development of a solution to the problem,

and evaluation of the solution. This approach in fact is implicitly represented by

design science research, which is concerned with devising artefacts in order to attain

goals (Simon 1996, Iivari and Venable 2009). In other words, design science research

aims to develop artefacts, such as models, algorithms, and tools, and evaluate them

in order to ensure their usefulness within the domain of interest. So, our approach

can be reflected using the design science research methodology which consists of

six steps (Peffers et al. 2007). The first one involves the identification of a specific

problem and the motivation for its solution. The second step includes the definition

of the solution objectives. The third step involves designing new artefacts, followed

by the demonstration of the artefacts in solving instances of the specified problem.

The fifth step comprises the evaluation of the design in terms of efficiency, effect-

iveness, acceptance, etc. The last step concerns the communication of the problem

and design to an appropriate audience.

We follow mostly all six steps when dealing with each of the challenges in the

second and third topics. In the second topic, we address deficiencies, such as a lack

of well-defined semantics for numerical expressions and of automatic phantomisa-

tion, identified during the analysis of the field of HTN planning. On the other hand,

we also deal with problem-initiated challenges, such as the support for utilities and

service-orientation. The main contributions from the design and development un-

der this topic are the foundation of utility-based HTN planning, the concept of plan-

ning as a service, and SH, a new HTN planner that supports the syntax of HPDL,

which is based on the well-defined semantics, and offers its capabilities as services.

In the third topic, we consider issues initiated from the context of our research

problems. In the domain of ubiquitous computing, we design one solution based on

HTN planning to coordinate ubiquitous services. The main contributions include

an establishment of a correspondence between a ubiquitous computing environ-

ment and an HTN planning problem, execution semantics, and a demonstration of

the proposed solution in an actual environment, enabling us to prove the feasibility

of the solution. We construct another solution based on scheduling to control en-

1.6. Thesis scope, approach, and organisation 17

vironments connected to the smart grid. Our contributions include a way to control

devices considering dynamic energy prices that come from various providers, and

a demonstration of the solution in another actual environment. We prove the feas-

ibility of the proposed solution and we show the potential to monetary and energy

savings. In the domain of cloud computing, we design a solution for composing

application services using HTN planning. Our contributions are the formulation

of the relationship between the problem of creating applications ready for deploy-

ment and an HTN planning problem, and a demonstration of the feasibility of the

solution.

Following the topics, the organisation of the thesis begins with a broader per-

spective involving descriptions and analysis of planning for ubiquitous computing,

continues narrower by dealing with HTN planning, and finally, focuses specifically

on the application areas.

Chapter 2 introduces the systematisation of planning for ubiquitous computing.

We provide a formal description of classical planning which is useful for the discus-

sions throughout the thesis. We then present the methodology used to search for

and analyse existing studies in this field. The core part contains descriptions and

discussions organised in three sets of classes: ubiquitous computing environments,

AI planning, and interpretation of ubiquitous computing approaches.

Chapter 3 presents the conceptual model for planning in ubiquitous comput-

ing. We here also analyse planning domains, scenarios and descriptions within the

scope of the systematisation from Chapter 2, and define a general ubiquitous com-

puting planning domain. We introduce initial results on the complexity of solving

planning problems in this domain.

Chapter 4 revisits hierarchical planning. It contains definitions necessary for the

understanding of the two models of HTN planning. We then extract and describe

concepts essential to the search process of hierarchical planners, and we give an

overview of the state-of-the-art planners with respect to those concepts. We also

define a set of properties according to which we further analyse state-of-the-art

planners.

Chapter 5 contains the features advancing state-based HTN planning. We define

the numerically extended state-based HTN planning, we describe the basic concepts

and an algorithm needed for automatic phantomisation, and we propose the utility-

based HTN planning.

Chapter 6 provides details on the concept of planning as a service and on the

SH planner. We first discuss the service-orientation of planning systems and we

propose a few classes of planning services. We then give insights into the engineer-

ing and implementation of SH.

Chapter 7 goes into details of the use of HTN planning and orchestration in

18 1. Introduction

ubiquitous computing environments. We show how a ubiquitous computing en-

vironment is described and what does a ubiquitous computing problem consist of.

Based on this, we demonstrate the formulation of the corresponding HTN planning

problem. With the orchestration and its semantics, we are able to close the life cycle

of the ubiquitous computing system. We also provide details on the realisation of

the system deployed in the restaurant of Bernoulliborg. We evaluate the approach

with respect to energy and monetary savings, usability, and performance of SH.

Chapter 8 demonstrates the approach we propose for ubiquitous computing en-

vironments connected to the smart grid. We explain the model and the parameters

upon which the optimisation is performed. The system architecture is discussed

with an emphasis on the centralised coordination. We then detail the implementa-

tion and the results on monetary and energy savings we achieve by deploying the

system to the offices on the fifth floor of Bernoulliborg.

Chapter 9 introduces our approach for automated composition of Cloud services

into applications ready for deployment. We explain how the deployment model is

defined and how a relationship with HTN planning can be established. We then

demonstrate the applicability and feasibility of the approach on a set of experiments.

Finally, we analyse Web service composition especially when performed via HTN

planning as an alternative approach for composing applications. We review existing

approaches and discuss the current shortcomings.

Chapter 10 concludes the thesis. We discuss the main achievements, and we

present some directions for further considerations.

Chapter 2

Systematisation of planning for ubiquitous
computing

P lanning is generally accepted as a relevant technique to achieve goal-oriented

behaviour of ubiquitous computing environments. Its acceptance is by vir-

tue of its supposed suitability to address many issues that the environments face.

These include dynamism and uncertainty, reasoning about time and parallelism of

actions, distribution of devices, modelling of the domain knowledge, and so forth.

In this context, there are numerous planning techniques envisioned, defined and

applied to ubiquitous computing. While the matchmaking may be evident, it is

not clear how planning is actually designed for, used, and integrated in ubiquit-

ous computing environments. This is symptomatic especially because many of the

proposed approaches have unclear premises and differ in too many extents. These

issues relate to, first, the characteristics of the many domains in ubiquitous com-

puting, such as homes, hospitals, and offices; second, the capabilities of planning

techniques; then, the models and languages used to define the environments as

planning problems; and, finally, the purpose of planning. If we exemplify the last

point, one can notice that many of the scenarios for which planning is envisioned

are rather simplistic. For instance, planning is regarded as appropriate to provide

a step-by-step guidance when a home inhabitant performs some activity, such as to

remind, let’s say, Theodore, to turn off the tap when brushing his teeth in the bath-

room (Simpson et al. 2006). A slightly more complex scenario involves planning in

order to achieve partial or complete automation of a specific activity – the under-

lying system performs actions on behalf of Theodore. In other words, the system

offloads tasks from Theodore because it takes responsibility for activities that are

“repetitive, highly predictable, or require little judgement”, and of activities related

to the safety of Theodore and the home itself. For instance, Samantha may turn off

the air conditioner when Theodore leaves his home. Planning is also thought as

useful for identifying emergencies when the behaviour of inhabitants deteriorates

and deviates from some predefined patterns.

We find exactly these issues as a reason to make a systematisation of existing

studies employing planning for ubiquitous computing environments. We start by

20 2. Systematisation of planning for ubiquitous computing

defining what planning is. We then describe the methodology used for the sys-

tematisation of planning for ubiquitous computing. More specifically, we employ

a systematic review to select existing studies, and a qualitative analysis to extract

information from them. By using that information, we derive a set of classes that

enable us to focus and discuss specific topics related to planning and ubiquitous

computing. Finally, we provide some implications of the analysis and challenges

for the research in this area.

2.1 Classical planning

Usually, planning relies on the concept of a state model, which is defined over a

state space and associated with a single initial state, a non-empty set of goal states,

and a set of actions that deterministically map each state to another (Bonet and

Geffner 2000).

₂.₁ Definition (State model). A state modelM is a tuple 〈S, s0, SG, A, δ〉, where

• S is the finite and discrete set of states,

• s0 ∈ S is the initial state,

• SG ⊆ S is the set of goal states,

• A is the finite set of actions,

• δ : S ×A→ S is the deterministic transition function.

The set of applicable actions in a state s ∈ S is defined over all actions a ∈ A

such that (s, a) is in the domain of δ.

The application of an action a to a state s results in state s′ = δ(s, a), or equi-

valently s′ = s[a]. The application of a sequence of actions a1, . . . , an to a state s is

defined as

s[] = s

s[a1, . . . , a2] = (s[a1, . . . , an−1])[an]

This state model is the one determining classical planning. A classical planning

problem concerns finding a sequence of actions that maps a specified initial state

to some goal state. The sequence of actions a1, . . . , an that results in a sequence of

states s0, . . . , sn+1 such that ai is applicable in si, its application results in si+1 =

si[ai], and sn+1 ∈ SG is called a solution to the classical planning problem, or a plan.

2.1. Classical planning 21

₂.₂ Definition (Plan). LetM = 〈S, s0, SG, A, δ〉 be a state model. The sequence of actions
π = a1, . . . , an is a plan forM if and only if s0[π] ∈ SG.

With the increase of the size and complexity of planning problems, which hap-

pens often, the state space grows exponentially, and thus, its enumeration becomes

infeasible. To circumvent this, states can consist only of a set of values for variables

with finite and discrete domains. The actions, their applicability and the transition

function are then defined in terms of these variables.

In planning, the most common way of representing such states is based on pro-

positional variables (also facts, atoms or fluents). A propositional variable has a do-

main of two values, true or false, which determine whether some proposition about

the world holds in a given state. In fact, this is known as STRIPS representation,1

and the corresponding problem as STRIPS planning problem (Fikes and Nilsson

1971).

₂.₃ Definition (STRIPS planning problem). A STRIPS planning problem PS is a tuple

〈F,O, I,G〉, where

• F is the set of propositional variables,

• O is the set of operators each of which is of the form 〈pre(o), add(o), del(o)〉, where
pre(o), add(o), del(o) ⊆ F ,

• I ⊆ F is the initial state,

• G ⊆ F is the goal state.

The STRIPS planning problem captures the state model determining the classical

planning problem implicitly. A state s ∈ S is a subset of F such that variables v ∈ s
have value true. An assumption is that the variables v′ ∈ F \shave value false. This is

in fact the closed-world assumption in which all and only the propositions that are true

are specified in the state. Further, I corresponds to the initial state s0, whileG to a set

of goal states SG = {s | G ⊆ s}. The set of applicable actions in state s corresponds

to the actions whose preconditions evaluate to true, that is, {o ∈ O | pre(o) ⊆ s}.
The transition function progresses a state swith operator o by adding propositions

add(o) to s and subtracting del(o) from s, that is, δ(s, o) = (s ∪ add(o)) \ del(o). A

sequence of actions a1, . . . , an is a plan π if each action ai is applicable in si, that is,

pre(ai) ⊆ si, and the state resulting from the application of π from the initial state

s0 = I contains the goal state G, that is, G ⊆ s[π] ∈ SG.

1The original representation was in first-order logic, but due to technical difficulties, it was reduced

to propositional logic (Nilsson 1980).

22 2. Systematisation of planning for ubiquitous computing

A successor of the STRIPS representation is the Planning Domain Definition Lan-

guage (PDDL) (McDermott et al. 1998), nowadays a standard in planning. PDDL

extends STRIPS to first-order logic with a finite sets of constants, variables and pre-

dicates. Since for the discussions in this chapter and further in the thesis a clear un-

derstanding of the STRIPS planning problem suffices, we avoid providing a formal

model of a PDDL planning problem, while we refer for PDDL-related definitions

to (Helmert 2009).

2.2 Methodology

We adopt a mixed approach to find and classify existing studies on planning for

ubiquitous computing. It consists of (1) a comprehensive search for studies relevant

to the particular subject based on a systematic method (Klassen et al. 1998, Kitchen-

ham and Charters 2007, Petticrew and Roberts 2006), and (2) an identification of

classes and classification of relevant studies based on qualitative analysis (Corbin

and Strauss 2008, Glaser and Strauss 2009). While here we describe our approach

briefly, we provide the whole procedure in (Georgievski and Aiello 2015b).

We reduce the potential for research bias by employing a review protocol foun-

ded upon the one provided in (Kitchenham and Charters 2007). Our modified re-

view protocol consists of the following main steps: formulation of research ques-

tions, search for studies in two phases, and selection of studies. We formulate our

research questions by using the Population, Intervention, Outcome, Context struc-

ture (Pai et al. 2004, Petticrew and Roberts 2006, Kitchenham and Charters 2007).

The population is represented by ubiquitous computing environments, while the

intervention is planning as a technique to achieve automation within these envir-

onments. The outcomes refer to capabilities of planning to address the points of

question in ubiquitous computing environments, such as requests and user pref-

erences, temporal aspect of automation, uncertainty and dynamism, the degree of

formality of planning problems, and the characterisation of how well planning tech-

niques operate within ubiquitous computing environments.

We perform the search for relevant studies in two phases. In the first phase, we

look at published surveys on service composition in ubiquitous computing (Urbieta

et al. 2008, Stavropoulos et al. 2011), and we also include several studies we knew

about before starting the review process. In the second phase, we search for relevant

papers in several electronic databases.

Our selection strategy has two steps, called screens. In the first screen, we check

the titles and abstracts of all found papers, and we include a paper only if several

criteria are satisfied. In this screen, we exclude non-English studies, master or doc-

toral theses, surveys, and proceeding reports or workshop reports. In the second

2.2. Methodology 23

Table 2.1: List of primary studies.

ID Study ID Study

S1 (Qasem et al. 2004) S20 (Sánchez-Garzón et al. 2012)

S2 (Ranganathan and Campbell 2004) S21 (Pajares Ferrando and Onaindia 2013)

S3 (Kotsovinos and Vukovic 2005) S22 (Fraile et al. 2013)

S4 (Amigoni et al. 2005) S23 (Ha et al. 2005)

S5 (Ding et al. 2006) S24 (Krüger et al. 2011)

S6 (Vukovic et al. 2007) S25 (Grześ et al. 2014)

S7 (Carolis and Cozzolongo 2007) S26 (Marquardt et al. 2008)

S8 (Courtemanche et al. 2008) S27 (Heider 2003)

S9 (Bajo et al. 2009) S28 (Rocco et al. 2014)

S10 (Liang et al. 2010) S29 (Cirillo et al. 2012)

S11 (Masellis et al. 2010) S30 (Madkour et al. 2013)

S12 (Mastrogiovanni et al. 2010) S31 (Ortiz et al. 2013)

S13 (Santofimia et al. 2010) S32 (Milani and Poggioni 2007)

S14 (Bidot et al. 2011) S33 (Georgievski et al. 2013)

S15 (Yordanova 2011) S34 (Garro et al. 2008)

S16 (Sando and Hishiyama 2011) S35 (Marquardt and Uhrmacher 2009a)

S17 (Hidalgo et al. 2011) S36 (Jih, Hsu, Lee and Chen 2007)

S18 (Kaldeli et al. 2012) S37 (Harrington and Cahill 2011)

S19 (Song and Lee 2013)

screen, we read entirely the studies resulted from the first screen, and we exclude

a paper if it represents a proceedings version of a journal article appearing among

the selected studies.

We collect nineteen unique papers from the first phase. We find however only

40% of them relevant for this treatment. Further, we collect 1150 candidate stud-

ies from six databases in the second phase. Among these, we identify 50 relevant

studies in the first screen. We perform the second screen on these 50 studies, and

we exclude 26% of the papers. We therefore have a total number of 37 studies to

which we refer as primary studies and upon which we perform the qualitative ana-

lysis. Table 2.1 shows the primary studies.

We derive a set of classes by using a class identification process founded upon

the one provided in (Smidts et al. 2014) and based on qualitative analysis (Saldana

2009). The qualitative analysis enables us to review the primary studies and identify

summative and silent attributes, and repeating patterns from their text. We use such

attributes and patterns to segregate and organise data into classes. Once we identify

classes out of the text from the primary studies, we use a classification process to

systematically arrange the primary studies into these classes. Hence, the studies

belonging to the same class share some characteristics, and therefore we can con-

solidate meaning and explanation effectively.

24 2. Systematisation of planning for ubiquitous computing

2.3 Classes of properties

We organise classes into three main perspectives, namely environments, plan-

ning, and interpretation. The first perspective focuses on ubiquitous computing

environments, where we regard a ubiquitous computing environment as the state

model defined in Definition 2.1. The information contained within a state of a ubi-

quitous computing environment is naturally spatial and temporal (Cook and Das

2004, Guesgen and Marsland 2010, Bettini and Riboni 2015). The spatial notion de-

scribes the relationship that a person or an object has with the space it occupies

or acts upon, but it also defines the layout of the environment – the relationships

between spaces and the arrangement of an individual space into locations. The tem-

poral notion expresses simultaneity or ordering in time of events and actions.

A ubiquitous computing environment, in essence, aims at improving the exper-

ience, comfort and productivity of its inhabitants. Every person basically should be

empowered to express personal preferences for, for example, events, actions and ad-

aptations occurring in the environment. In addition to preferring specific states of

the environment, a request can be either issued explicitly by a person or inferred by

other software components. These preferences and requests represent goal states

of the ubiquitous computing environment. Further, the adaptation of the envir-

onments is enabled by the use of actions that represent various entities, such as

actuators, sensors, appliances, etc. These actions have the power to change the be-

haviour of an environment when they act collectively in it. By being dynamic state

models, ubiquitous computing environments are inherently characterised by uncer-

tainty. Uncertainty concerns all problems and contingencies occurring throughout

the whole life cycle of an environment.

This first perspective gives a basis for the second one, which looks at AI plan-

ning. We identify two important issues related to planning problems. The first one

concerns the modelling of planning problems in such a way that they capture ubi-

quitous computing environments. In this context, the modelling language and its

expressive power have an important role. A modelling language enables expressing

the physical properties of an environment and advice about how to handle specific

situations that may occur in it. We have to be aware that any model of the physics

makes simplifying assumptions and abstracts behaviours, so this is the case with

the models of ubiquitous computing environments too. Given the fact that these

environments are associated with a variety of properties, such as time, space, object

types, preferences, etc., the power of the modelling language to express constructs

that encapsulate such properties is crucial.

The second issue is related to the representation of planning problems. Problem

representation must reflect the model of the environment as accurately as possible,

2.3. Classes of properties 25

and it also provides a computational framework. Given a model of an environ-

ment, the question that arises is how to generate the problem definition out of such

a model. Moreover, how accurate will that definition be?

In addition to these issues, a point in question are the reasoning capabilities of

planning with respect to the different properties of ubiquitous computing environ-

ments (space, time, preferences, etc.). Another concern for planning and related to

ubiquitous computing is uncertainty which planning systems traditionally handle

by monitoring the execution of actions and taking recovery steps to solve any poten-

tial contingency (Musliner et al. 1991, Veloso et al. 1998, Lazovik et al. 2003, Kaldeli

2013).

The third perspective unites the other two and represents the development of

planning applications, their use in real ubiquitous computing environments, and

evaluation of their performance in terms of responsiveness and stability under

different loads. This practical perspective also encapsulates the evaluation of the

level of usability of planning systems by users.

We use these three perspectives of planning for ubiquitous computing to organ-

ise the set of classes we identify in the classification process as the hierarchy shown

in Figure 2.1. Each of the three top-level classes represents one of the perspectives.

In the following, we discuss each class separately.

2.3.1 Environments

The class of Environments focuses on several dimensions of ubiquitous comput-

ing environments, such as user intentions, sources of environment changes, phys-

ics of the surrounding, and uncertainty. We therefore analyse the Environments

class by dividing it in the following subclasses: Behavioural inputs, Behavioural out-

puts, Physical properties, and Uncertainty. The Behavioural inputs class deals with

requests and preferences of the people in environments, while the Behavioural out-

puts class focuses on the types of actions that transform the state of an environment.

The Physical properties class defines an environment with respect to the spatial and

temporal dimensions. Finally, the Uncertainty class characterise the sources of con-

tingencies in these environments. The classification of primary studies with respect

to these classes is provided in Table 2.2.

Behavioural inputs classes

We define behavioural input as the information representing someone’s desires

according to which a ubiquitous computing environment should behave. The be-

havioural input is transformed into a convenient form for a planning system, and

given as a part of the system’s input. In the following, we discuss two classes of

26 2. Systematisation of planning for ubiquitous computing

�
�
��
�
����

	

���

�
�
�

�
���

�
�
�

�
�
�
��

�
�
��
�

��
���

������
�

�
��
��
�
�
���	�

�
�

�
��
��
�
�
���	�

�
�

�
�

�
�
�
��
	����

�

�
��
��	�

�����

�

�
�
�
�
�	����

�

�

�����

�
	����

��

�
�
�
����	

��

����

�

����	

��

����

�
��

�
���	

��

����

�
�
������

���
�
�

�����

	��
��
�

�
���

�
	��

�
��

�
��
��

�
�����	�

�
����

��
���

�
��
���

�
���	�

�
��

�
��������

�	�
�
���

��!����
��

�
�"
�
���

��
!�
��

���
�
	����

��

�
��

�
�
������

�
#
�
��
�����

�	
��
���

���
�

#
�
������

�	

��
���

���
�

�
���

���
	��

���
���

�

�
���

���

�

��

��

�
���$�!�	�����

�

�
���

�
�
�
	

��
�
���

�
��
�
���

	

��

�����

����
�

%
�
�
����

�

%
�
�
��

��
�
	��

�
	

����
�
���

�
��
���

�
��
�

&
!�	��

���

�
���

�
	��

�
	

�

���

��
����

�

��
���

����
�
	

����
�����

��

�
���

�
$��

�	

���

�
�
�

'
�
�

��$��

�	

���

�
�
�

�
�
�
��

�	

���

�
�
�

�
�
�
��

	�
�
�
��

�
��
�
���

	�
�!�

��
�

�

�����

��
���	

��
�
����

���

&
��
�
�
��
�

'
�������

�
����$�

����
��

�
���

�
�
�
	����

�
"
�
�

�
�
�

�
��

'
�
�
���

�

�
������

��

(
��
��
����

�

F
ig
u
re
2
.1

:
H

ierarch
y

o
f
classes

o
f
p
lan

n
in

g
fo

r
u
b
iq

u
ito

u
s

co
m

p
u
tin

g
.

2.3. Classes of properties 27

Table 2.2: Classification of the primary studies with respect to the Environments classes.

Behavioural inputs
Behavioural outputs

Physical properties
Uncertainty

Requests Spatial Temporal

S
tu
d
y

D
e
cl
a
ra
ti
v
e
g
o
a
ls

P
ro
ce
d
u
ra
l
g
o
a
ls

P
re
fe
re
n
ce
s

D
e
v
ic
e
o
p
e
ra
ti
o
n
s

H
u
m
a
n
a
ct
io
n
s

R
o
b
o
t
a
ct
io
n
s

In
fo
rm

a
ti
o
n
se
rv
ic
e
s

A
p
p
li
ca
ti
o
n
se
rv
ic
e
s

O
b
je
ct
lo
ca
ti
o
n
s

H
u
m
a
n
lo
ca
ti
o
n
s

Q
u
a
li
ta
ti
v
e
re
la
ti
o
n
s

M
e
tr
ic
co
n
st
ra
in
ts

U
n
e
x
p
e
ct
e
d
ch
a
n
g
e
s

A
ct
io
n
co
n
ti
n
g
e
n
ci
e
s

P
a
rt
ia
l
o
b
se
rv
a
b
il
it
y

S1 8 8 8

S2 8 8 8 8 8 8 8

S3 8 8 8 8 8 8

S4 8 8

S5 8 8 8 8 8

S6 8 8 8 8 8

S7 8 8

S8 8 8 8

S9 8 8 8 8 8 8

S10 8 8 8

S11 8 8

S12 8 8 8 8

S13 8 8

S14 8 8 8 8 8 8 8 8 8

S15 8 8

S16 8 8 8

S17 8 8 8

S18 8 8 8 8 8 8 8

S19 8 8 8 8 8 8 8

S20 8 8 8 8 8

S21 8 8 8 8 8 8 8

S22 8 8 8 8 8 8 8

S23 8 8 8 8

S24 8 8 8

S25 8 8 8

S26 8 8

S17 8 8 8

S28 8 8 8 8 8

S29 8 8 8 8 8 8 8

S30 8 8 8 8

S31 8 8 8 8

S32 8 8 8 8 8

S33 8 8 8

S34 8 8 8 8

S35 8 8 8 8 8

S36 8 8 8 8

S37 8 8 8

28 2. Systematisation of planning for ubiquitous computing

achieve-maint(kitchenV entilator = ON ∧
TvState = ALARM ∧ kitchenWindow = OPEN) ∧

achieve-final(doorsLeadTo(KITCHEN) = CLOSED) under_cond_or_not
achieve-maint(personRoom 6= KITCHEN)

Figure 2.2: Example of an extended goal (Kaldeli et al. 2012).

behavioural input, namely Requests and Preferences.

Requests

Request is the model of a desired result issued by a person or a software compon-

ent for the purpose of achieving an explicit and specific behaviour, adaptation or

organisation of a ubiquitous computing environment. The request therefore reflects

directly the model of goals in a planning problem.

The notion of a declarative goal is well established in the planning community.

Generally, a declarative goal specifies the state of an environment that needs to be

established. Declarative goals are usually related to the question of what has to be

achieved in a given setting. The majority of primary studies have a traditional and

straightforward approach towards the understanding of a declarative goal, that is, a

description of a final (goal) state (Ranganathan and Campbell 2004, Kotsovinos and

Vukovic 2005, Pajares Ferrando and Onaindia 2013, Bidot et al. 2011, Song and Lee

2013, Krüger et al. 2011, Grześ et al. 2014, Heider 2003, Ortiz et al. 2013, Milani and

Poggioni 2007, Garro et al. 2008, Marquardt and Uhrmacher 2009a). The remainder

of classified studies incorporate extended forms of a declarative goal. Masellis et al.

(2010) use so-called planning programs that include a finite set of maintenance and

achievement goals expressed through propositional formulae. In (Kaldeli et al.

2012), an extended goal is a declarative and powerful expression on numerical vari-

ables, temporal constructs and maintainability properties. As an example, recall the

gas leakage scenario in Theodore’s home. An extended goal for such a situation is

shown in Figure 2.2. It means that the kitchen ventilator must be turned on, the TV

must show a warning and the window in the kitchen needs to be opened in some in-

termediate state and stay satisfied until the final state. The expressive power of the

goal comes from its additional constructs. The proposition under achieve-final
must be satisfied in the final state, but it may hold or not during the execution of

the plan. On the other hand, the specification under_cond_or_not indicates that the

doors should be closed only if the person is outside of the kitchen room, otherwise

only the rest of conjunctions of sub-goals is considered.

Rocco et al. (2014) interpret a declarative goal through a constraint network that

may include diverse types of constraints, such as temporal, resource, symbolical

2.3. Classes of properties 29

and information dependencies. Further, declarative and constraint-based goals are

proposed in (Cirillo et al. 2012). The goal, which is represented as logical formulae

over the state, consists of several sub-goals. Each sub-goal is associated with a value

denoting its importance of achievement. For example, if the goal of Tars is to clean

the kitchen and bedroom, while more important is to clean the kitchen, it can be

represented as (dirt(kitchen) = 0, 0.6) ∧ (dirt(bedroom) = 0, 0.4). The flexibility

of such a goal can be understood as the goal can be violated in some cases at the

expense of a less efficient but valid solution. In addition to these reachability goals,

maintenance goals are supported too (cf. interaction constraints). If maintenance

goals are violated in all states, there cannot exist a valid solution. An example is

to instruct Tars to never execute an action where Theodore is also present: always
(forall r : (not (exists h : robot− in = randhuman− in(h) = r))).

Fraile et al. (2013) provide an approach that is supposed to reach, maintain and

carry out objectives. Reaching an objective denotes the conventional establishment

of a final state. However, the maintenance of objective might be misleading as it

refers to a function of the system and not to the power of expressing maintenance

goals. Maintaining an objective means that a particular state will be re-established

whenever it does not hold, which usually happens at the monitoring and execution

phase, and not at planning time. Carrying out an objective refers to the planning

process itself.

The second model of request is a procedural goal. A procedural goal basically spe-

cifies a set of procedures which are performed in order to satisfy an objective. Pro-

cedural goals are usually related to the question of how to accomplish something

in a given setting. In contrast to the studies classified in the category of declar-

ative goal, we observe that the studies in the current class adopt an exceptionally

conventional approach towards using and implementing a procedural goal. The

goal is either a single task (Ding et al. 2006, Sánchez-Garzón et al. 2012, Ha et al.

2005, Marquardt et al. 2008, Madkour et al. 2013, Jih, Hsu, Lee and Chen 2007), or

a list of tasks (Qasem et al. 2004, Amigoni et al. 2005, Courtemanche et al. 2008,

Bajo et al. 2009, Liang et al. 2010, Santofimia et al. 2010, Bidot et al. 2011, Hidalgo

et al. 2011, Song and Lee 2013, Georgievski et al. 2013). In most of these studies, a

task and a list of tasks are interpreted analogously to the definitions of a task and

task network, respectively, within Hierarchical Task Network (HTN) planning (see

Chapter 4). Amigoni et al. (2005) enhance a goal task with additional information on

the performance, cost and probability of success for each decomposition of the task.

The performance parameter expresses the expected effectiveness of a decomposi-

tion, the cost parameter indicates the amount of resource that would be consumed

if the decomposition is applied, and the last parameter gives the expectation that no

failures will occur when the decomposition is applied. While these parameters can

30 2. Systematisation of planning for ubiquitous computing

be indeed useful to ubiquitous computing environments, the drawbacks are that

their semantics are not defined, and their values should be provided manually by a

domain author.

Preferences

Preferences model individual attitudes or desires towards the behaviour or or-

ganisation of an environment. In contrast to a request, which must be achieved

by the final solution, preferences are satisfied in the planning process as much as

possible. A user may specify personal utilities for domain predicates (Ranganathan

and Campbell 2004), select and customise a recipe (Kotsovinos and Vukovic 2005),

choose different layouts on different presentation devices (Ding et al. 2006), spe-

cify preferred timetable (Bajo et al. 2009), indicate preferences on services (Liang

et al. 2010), establish preferences on daily activities (Mastrogiovanni et al. 2010), en-

code preferences with respect to the current planning domain (Bidot et al. 2011),

personalise services (Song and Lee 2013), define treatment preferences (Sánchez-

Garzón et al. 2012), and indicate a personalised choice on various devices (Fraile

et al. 2013). In (Ranganathan and Campbell 2004), each user preference is in a form

of utility u for each predicate in different contexts, where u ∈ [−10, 10]. If a partic-

ular predicate does not have a preference value, then u = 0. Therefore, each user

has a utility for each state of the environment, whereas the utility of the goal state

is a linear combination of the utilities of all entities relevant to the goal. The utility

of the environment is defined as a linear combination of individual utilities of the

states of all entities present in the environment. However, the incorporation, main-

tenance and handling of such preferences becomes cumbersome when the number

of predicates and the number of users increase.

Behavioural outputs

We use the term behavioural output to refer to the particular way in which the

information that changes the state of an environment is represented and produced.

Practically, the behavioural output is used to encode the domain knowledge for a

planning system. We identify five classes of behavioural outputs, namely Device

operations, Human actions, Robot actions, Application services, and Information services.

The classes, which are mutually exclusive, are defined as follows.

Device operations

We define a device operation as a functionality that a specific device can perform.

By device we mean a piece of equipment deployed in ubiquitous computing envir-

onments that has limited capabilities to interact autonomously with (other devices

2.3. Classes of properties 31

(:action turn-on-device
:parameters (?d - device)
:preconditions (and (not (turned-on ?d)) (other_cond))
:effects (turned-on ?d))

Figure 2.3: Template action for turning on a device represented in PDDL.

in) the environment. Examples of devices include a laptop, projector, smoke alarm,

gas extractor, air conditioner, canvas, automatic blind, TV set, lights, screen, heating

system, computer, printer, etc.

We identify two groups of primary studies with respect to their conception of

a device operation. In the first group, a device provides its operation in the form

of an action with preconditions and effects (Ranganathan and Campbell 2004, Ami-

goni et al. 2005, Ding et al. 2006, Fraile et al. 2013, Krüger et al. 2011, Heider 2003,

Rocco et al. 2014, Milani and Poggioni 2007, Georgievski et al. 2013, Garro et al. 2008,

Harrington and Cahill 2011). As an example, in Figure 2.3, we provide a template

action for turning on a device encoded in PDDL. Preconditions usually represent

the state in which the device must be so as to achieve the desired behaviour. In

addition to the device state, preconditions may encode other environment proper-

ties. For example, a device’s spatial attribute, which includes the device location

and the region of the environment over which the action has effects, can be used to

annotate the preconditions with additional semantics (Harrington and Cahill 2011).

Such preconditions must hold in the current state of the environment in order that

the action can execute its effects and modify the environment in a future state. A

template action for turning off a device can be modelled similarly.

Ding et al. (2006) find it necessary to describe each device with a pair of action

and schemata. The action corresponds to a planning action, while schemata con-

tains a set of instructions that are sent to the respective devices after the planning

process has finished and under the assumption that the action is part of the solution.

In addition to planning actions, Milani and Poggioni (2007) make use of a reactive

operator. A reactive operator has a set of triggering conditions that activate the

operator and a set of effects that are applied as a result of the reactive behaviour.

Reactive operators are used to represent reactive devices, that is, devices with “stim-

ulus response behaviour”.

In the second group, the notion of service is used to represent and execute device

operations, while a single device may offer one or more services (Qasem et al. 2004,

Kotsovinos and Vukovic 2005, Liang et al. 2010, Masellis et al. 2010, Santofimia et al.

2010, Bidot et al. 2011, Kaldeli et al. 2012, Ha et al. 2005, Marquardt et al. 2008,

Marquardt and Uhrmacher 2009a, Jih, Hsu, Lee and Chen 2007). Santofimia et al.

(2010) propose a semantic model for the relationships between devices, actions and

32 2. Systematisation of planning for ubiquitous computing

Device Service Action Object

...

provides performs on

Figure 2.4: The relationship between devices, actions and services (Santofimia et al. 2010).

services.2 Figure 2.4 illustrates the model and relationships between respective en-

tities. From our point of interest, a device provides a service that performs an action

on one or more objects. An object is an artefact found in a ubiquitous computing

environment.

Kaldeli et al. (2012) require each device to expose its functionalities as one or

more Universal Plug and Play (UPnP)3 services. UPnP services provide a set of

method calls that constitute the set of UPnP actions, where a UPnP action can have

several input and output parameters. For the purpose of planning, UPnP services

are translated into planning actions and augmented with additional semantics in

the preconditions and effects. Marquardt and Uhrmacher (2009a) encode a service

as a PDDL action directly.

Human actions

We define a human action as a behaviour to be achieved by a person within an

environment. Human actions are used to assist or guide people on the path to ac-

complish their goals or activities. Human actions may be part of the domain model,

and therefore, they can be used by planning systems to create human-aware plans.

Plan actions then serve as notifications or help advice to individuals accomplishing

their tasks. Human actions are used in the domain of assisted cooking (Kotsovi-

nos and Vukovic 2005, Sando and Hishiyama 2011, Ortiz et al. 2013), and assisted

daily living (or assisted care giving) (Mastrogiovanni et al. 2010, Yordanova 2011,

Cirillo et al. 2012, Courtemanche et al. 2008, Bajo et al. 2009, Hidalgo et al. 2011,

Sánchez-Garzón et al. 2012, Pajares Ferrando and Onaindia 2013, Grześ et al. 2014).

While in Figure 2.5 we show a template human action for picking up an object con-

tained in some place as provided in (Ortiz et al. 2013), Yordanova (2011) extracts

and generalise sixteen template human actions from a set of domains. One specific

representation of human actions is through the use of affordances and capabilities,

which are regions in a proper space characterised with a set of attributes (Mastrogio-

vanni et al. 2010). For example, an object affording a capability “to take” is a region

2An extended and formalised version of the model can be found in (Santofimia et al. 2011).
3www.upnp.org

www.upnp.org

2.3. Classes of properties 33

(:action pick-up
:parameters (?param1 - moveable ?param2 - surface)
:precondition (and (in ?param2 ?param1))
:effect (and (not (in ?param2 ?param1)) (holding ?param1)))

Figure 2.5: Template action for picking up an object by a human encoded in PDDL (Ortiz et al. 2013).

in the respective affordance space characterised by the weight and grasp size attrib-

utes. In the planning context, people have initial capabilities and can acquire new

capabilities by using object affordances. Say that the object is a vacuum cleaner

and Theodore has the initial capability to take it. By taking the vacuum cleaner,

Theodore acquires new capabilities such as “to clean”.

Given a state s of a ubiquitous computing environment, a human action is a tuple

〈pre, t, φ〉, where pre ⊆ S are preconditions, t ∈ R+ is action duration, and φ :

S × S → [0, 1] is a transition relation such that φ(s, s′) indicates the probability of

transition from state s to state s′ by performing the action. In (Cirillo et al. 2012),

this definition is successful under the assumption that the duration of an action

is fixed, and the action cannot be interrupted once started. Preconditions are not

required, but if they are considered, then they are verified only at fixed points in

time. Therefore, human actions with preconditions are always instantaneous.

Robot actions

We define a robot action as a behaviour of a robot performed within a ubiquitous

computing environment intended to achieve some goal. Robot actions can be cat-

egorised in two groups, namely, actions that transform the environment and actions

that are communicated to people. Since basically robots are devices, their actions

can be considered as device operations. In contrast to what we consider a device, a

robot is autonomous and intelligent to a certain degree, hence robot actions repres-

ent a separate class.

Carolis and Cozzolongo (2007) describe a robot action by sets of preconditions

and possibly non-deterministic effects. Both sets are associated with probability

values. The value of preconditions indicates the probability that preconditions will

hold in the current state, while the value of effects demonstrates the probability that

the action will have the effect in the current state. In addition, effects may include

values about expected social utility and expected task utility of an action. Rocco

et al. (2014) represent robot actions (cf. functionalities) as state variables whose in-

stantiation either produces information or modifies the environment. A robot func-

tionality may require some information input and may consume resources. The

interactions and dependencies of functionalities with respect to information and

34 2. Systematisation of planning for ubiquitous computing

name: robot-clean(r)
precond: room(r) and dirt(r) > 0
results: dirt(r):=(dirt(r) - 1) and cost:=2
time: 10

Figure 2.6: Example of a robot action (Cirillo et al. 2012).

(:action set-file-ppt
:parameters (?id - string ?file - pptfile)
:vars (?mac - machine ?slide - number)
:precondition (and (ppt ?id ?mac started ?file1 ?slide)

(not (= ?file ?file1)))
:effect (ppt ?id ?mac started ?file 1)
:check ((= (get-file-ppt ?id) ?file) (failure non-retryable)))

Figure 2.7: Example of an application service (Ranganathan and Campbell 2004).

resource requirements are represented with temporal relations using Allen’s inter-

val algebra (Allen 1983). Further, similarly to human actions, Cirillo et al. (2012)

encode a robot action through the use of preconditions, effects, cost and a fixed

duration. A robot may move to a specific location, sleep for a certain period, stay

in some position, clean a room, and remind a person to take medication. Figure 2.6

demonstrates the action a robot should take in order to clean a room specified at

planning time. Finally, Ha et al. (2005) represents robot actions as (Web) services,

that is, atomic processes in the Semantic Markup for Web Services (OWL-S) termin-

ology (Martin et al. 2007). At the planning level however, a robot action (an atomic

process) is encoded as a primitive task in the scope of HTN planning.

Application services

We define an application service as a purposeful behaviour of a piece of software,

that is, an application, installed on a machine deployed in a ubiquitous computing

environment. Applications might be commercial, such as Microsoft Power Point,

Adobe Acrobat and Apple Keynote, or developed specifically for the needs of the

respective environment.

Four primary studies fall in the class of application services. Ranganathan and

Campbell (2004) define an application service as an invocation of a method on an

application. The application service is represented as a PDDL action with precondi-

tions and effects. Figure 2.7 shows a service that sets a file on a particular machine

for the purpose of presentation by using the Microsoft Power Point application. Pre-

conditions state that the application should be started on some machine and the file

displayed on that machine should be different from the one in the input parameter.

The effect ensures that the current file is started on slide number 1.

2.3. Classes of properties 35

(def-adl-operator (make_restaurant_booking ?r ?ppl ?t)
(pre (restaurant ?r) (rest_found ?r)(rest_booking_online ?r ?e)

(rest_has_space ?r ?ppl)(persons ?ppl) (time ?t)
(and (not (rest_booking_made ?ppl ?t))(not (rest_booked ?r))

(restaurant ?r) (persons ?ppl)(time ?t)))
(add (rest_booking_made ?ppl ?t)(rest_booked ?r)))
Figure 2.8: Example of an information service encoded in Action Description Language (ADL) (Vukovic

et al. 2007).

Information services

We define an information service as a knowledgeable behaviour built by collect-

ing, managing and reasoning over possibly distributed data, and showed to users.

Although not necessarily, such information service is usually represented as a Web

service. The Web service is then translated into a planning action suitable for the

respective planning system.

Ranganathan and Campbell (2004) identify a service as a way of acting in

an environment, however, the notion of service is neither defined nor exempli-

fied. Vukovic et al. (2007) do not define the notion of a service, but they make use

of Web services to provide information delivered to mobile phones. In the scen-

ario described, information services include things like a restaurant finder, which

provides a list of available restaurants, a direction finder, which navigates a user

to a given restaurant, a translator service, which translates a specific content from

one language to another, and a speech-synthesizer service, which converts text to

speech. The planning action shown in Figure 2.8 encodes an information service

that can be used by Samantha to book a restaurant for Theodore and his friends in

a particular time slot of the day.

Song and Lee (2013) provide a rather general description of what a service does,

that is, a “service performs tasks using its own functions”, where examples of tasks

are converting currency and getting weather information. It also remains undefined

how services are represented at the planning level. Madkour et al. (2013) describe

a service as a function provided by the middleware and invoked by a mobile ap-

plication. A service is associated with several policies each of which represents a

method used to deliver a service under specific resource requirements and quality-

of-service conditions. Marquardt and Uhrmacher (2009a) incorporate information

services represented by Web services. At the planning level, information services

are encoded as PDDL operators. Jih, Chen and Hsu (2007) employ information ser-

vices in form of Web services. An example provided is a service that access Google

Calendar and provides information about the schedule of a person. Generally, a

service functionality is semantically annotated with its purpose and functionally

36 2. Systematisation of planning for ubiquitous computing

described with its way of operating. A service (profile) is translated into an operator

associated with preconditions and effects. Finally, Pajares Ferrando and Onaindia

(2013) use information services through the functionality of Google Maps.

Physical properties

We define physical properties as the information used to characterise a situation

of a person, object or a place with respect to space and time. Practically, physical

properties are subsumed under the context information of a ubiquitous comput-

ing environment where people, objects and places are the entities of the environ-

ment (Abowd et al. 1999). Context information, which is encoded within domain

and problem specifications, is used by planning systems to search for solutions that

support context-aware behaviour of the environment. The respective subclasses of

the Physical properties class are Spatial properties and Temporal properties.

Spatial properties

The term ubiquitous in ubiquitous computing refers to the computation being

available everywhere. People, sensors, and actuators have a physical extension that

relates them to one another and with space. A spatial property qualifies the relation

among components of the system and their environment. Most planning systems

include a – more or less elaborate – form of spatial representation which defines the

types and qualities of the spatial properties, in turn, allowing for proper reasoning

over these (Aiello et al. 2007a). There are two major categories of spatial representa-

tions, those that respect the spatial characteristics of the underlying spatial models

and those which treat space simply as a set of symbols without considering any

geometrical or physical laws (Aiello et al. 2007b). We call the first type purely spatial

representation while the second ones are abstract spatial representations. For instance,

consider a sphere containing n actuators α1, . . . αn of the same radius so that they

all touch the same spheric unit actuator α0. In an abstract representation, where the

actuators are represented as a set of points, the number n can be arbitrary – some-

thing that is not physically realisable (Pfender and Ziegler 2004). On the other hand,

if space is properly represented, one would require that actuators do not overlap

and at most 12 can be arranged in such a physical configuration. The issue becomes

yet more interesting when time and space are represented together in the planning

system.

Consider Theodore moving from his bedroom to the kitchen. In a purely ab-

stract representation, one can represent the move as instantaneous. In a ‘pure’ rep-

resentation, this would not be possible and the fact that the locations have to be

topologically connected and that nothing can travel at infinite speed would have

2.3. Classes of properties 37

to be taken into account. There is thus an issue related to spatial arrangements in

plans elsewhere known as spatial realisability (Lemon and Pratt 1997, Kontchakov

et al. 2014), and at times also the need for the consideration of spatio-temporal prop-

erties (Andréka et al. 2007).

In performing the analysis, we notice that the abstract approach is often the one

taken. Typically, some form of structure is given to the spatial concepts, such as a

hierarchy of locations that represents the being-part-of relation (mereology (White-

head 2010)), and, at times, also includes connectedness information (mereotopo-

logy (Casati and Varzi 1999)). Though, these models are weak from the realizability

point of view, they can already offer sufficient domain knowledge for proper plan-

ning in ubiquitous computing.

The class Spatial properties is divided in two subclasses. Object locations class

comprises primary studies that consider locations of objects, such as devices and

sensors, for the purpose of planning. In most cases, the locations of objects rep-

resent static information predefined in the calibration phase of the environment.

Although all these studies claim to take spatial properties of objects into account,

it is extremely difficult to interpret the way in which these properties are repres-

ented at the planning level. Several studies use abstract (relative) models to de-

scribe spatial properties of objects (Kaldeli et al. 2012, Pajares Ferrando and On-

aindia 2013, Ortiz et al. 2013, Milani and Poggioni 2007, Georgievski et al. 2013,

Jih, Hsu, Lee and Chen 2007). A general form of a spatial property for objects is

a simple predicate op(p1,...,pN), where op is a spatial operator and p1,...,pN
are parameters, both objects and locations. As for the operator, it can take one of

the values: at (Pajares Ferrando and Onaindia 2013, Milani and Poggioni 2007),

pos (Pajares Ferrando and Onaindia 2013), in (Ortiz et al. 2013, Georgievski et al.

2013, Jih, Hsu, Lee and Chen 2007), distance, near-by, etc. An example is the pre-

dicate in(TV,living-room) meaning that the TV is in the living room. Another

example is a typified predicate pos(?a - ambulance) - address that represents

the position of an ambulance as an address. These spatial-related predicates are

usually used to model the domain knowledge, including preconditions of actions

(e.g., to check whether a necessary object is present in the right location), effects of

actions (e.g., if the action enables displacement of an appropriate object), and other

domain-specific knowledge. In many cases, it is not the only requirement that ob-

jects, or more specifically, devices are at a specific location, but also the knowledge

about how they affect the objects at or near by the device location (Milani and Pog-

gioni 2007, Harrington and Cahill 2011). An example of such a device is a lamp.

Mastrogiovanni et al. (2010) use capabilities and affordances to represent the fact

that an object is in a particular location. A representation scale is used in which level

one corresponds to furniture and containers inside rooms, while different rooms

38 2. Systematisation of planning for ubiquitous computing

represent the second level of the scale, which corresponds to the building interior.

Finally, Harrington and Cahill (2011) use a geometric model to represent spatial

relationships of sensor and actuators.

Human location defines the position of a person within a ubiquitous computing

environment. Human location, as dynamic information, is an important factor in

many situations: to adjust the environment as people move around, to maximise

safety of people, to generate better medical plans, (robots) to respect the presence

of people in particular places, etc. The location of people can be tracked to the level

of some predefined areas, such as rooms. More fine-grained information about the

human location can include the posture and orientation of the human. The human

location specifying the human posture possibly in some orientation is important

for many scenarios such as those concerning the safety of people (e.g., fall detection

and appropriate reaction). However, more fine-grained spatial information may

become a subject to privacy concerns, which have to be taken into account when

gathering and reasoning over that information (Bettini and Riboni 2015).

The primary studies take the former approach. A general form of a simple pre-

dicate denoting a location occupied by a person is human-in(human,location).

Similarly to object locations, a human location may be given in the form of an ad-

dress, say, in a predicate whose type is address. A human location can be extrac-

ted from Radio Frequency Identification (RFID) tags attached to people (Bajo et al.

2009, Fraile et al. 2013, Ha et al. 2005, Ortiz et al. 2013), people’s mobile phone loca-

tions (Song and Lee 2013), Global Positioning System (GPS) (Sando and Hishiyama

2011, Fraile et al. 2013), Ubisense system (Krüger et al. 2011), and other location

tracking systems (Kaldeli et al. 2012, Rocco et al. 2014, Jih, Hsu, Lee and Chen 2007).

Temporal properties

Time is an important dimension in ubiquitous computing environments given

that the duration of people’s activities can be personalised, the environment may

take shifts of staff and their scheduled activities into account, better response time

of the environment can be achieved due to potential of high parallelism of inde-

pendent actions, and so forth. Here, a temporal property refers to the way of repres-

enting and organising activities with respect to time (Benthem 1983). At the plan-

ning level, one way to model temporal properties in ubiquitous computing envir-

onments is to use the notion of durative actions. The primary studies that employ

this notion are classified under the Metric constraints subclass. Generally, temporal

properties can be expressed through annotations of all preconditions and effects in

durative actions. Although it is difficult to extract meaningful information from

the primary studies, the temporal annotation of preconditions indicates explicitly

when the associated fact must hold: at the start of the interval (e.g., starting time of

2.3. Classes of properties 39

tasks (Bajo et al. 2009), start interval for tasks (Sánchez-Garzón et al. 2012), and early

start time of activities (Fraile et al. 2013)), at the end of the interval (e.g., ending time

of tasks (Bajo et al. 2009), end interval for tasks (Sánchez-Garzón et al. 2012), late

end time (Fraile et al. 2013)), or over the interval. The temporal annotation of effects

signifies that the effect is immediate, when it happens at the start of the interval, or

delayed, when it happens at the end of the interval. Thus, two actions are simultan-

eous if they are completely or partially executed within the same interval of time.

A simplified case is when only the duration of an action is modelled and taken into

account during the planning process. An example of such durative action is shown

in Figure 2.6.

Another way, which is represented by the Qualitative relations subclass, is to use

qualitative constraints to express temporal relationships between various activit-

ies. Rocco et al. (2014) model qualitative constraints by using the relations of Allen’s

interval algebra, such as before,meets, overlaps, etc.An example relation is a2meets a1
which represents that actions a2 ends as soon as action a1 starts.

Temporal properties modelled in planning domains provide a possibility for

planning techniques to create plans with concurrent actions naturally. Even if such

explicit encoding of temporal properties is not provided in a domain model, an

automated planner may induce that the order of actions in the final plan can be

partial. The latter case, which can be identified in several primary studies (Mas-

trogiovanni et al. 2010, Bidot et al. 2011, Kaldeli et al. 2012, Pajares Ferrando and

Onaindia 2013, Heider 2003, Milani and Poggioni 2007), is also classified within

the class of Qualitative relations. A partially ordered plan could be defined as a

tuple 〈A,≺, CL, SC〉, where A is a set of actions, ≺ is a set of ordering constraints

between actions inA,CL is a set of casual links between actions inA, and SC is a set

of supportive constraints, such as variable constraints (Bidot et al. 2011) or support

links (Pajares Ferrando and Onaindia 2013).

Uncertainty

Uncertainty is a broad concept, but it can be perceived as a three-dimensional

property of ubiquitous computing environments: a dimension of capacity, com-

plexity and dynamism. The capacity defines the potential of environments to con-

stantly expand, for example, new devices are deployed. The complexity refers to

the heterogeneity of entities (for example, devices) present and activities happen-

ing in the environment, while the dynamism comprises predicted and unexpected

events, changes or failures of sensors and devices, and people behaviour over time.

We focus here on the issues closely related to the third dimension and we divide

the Uncertainty class in three subclasses: Unexpected events,Action contingencies, and

Partial observability.

40 2. Systematisation of planning for ubiquitous computing

Unexpected events

The context of ubiquitous computing environments is characterised by diverse

and continuous events. An event that happens in an exceptional situation within

an environment is considered as an unexpected event. For example, unavailability of

resources, changes in patient condition, a person choking, a patient’s unexpected

visit, or a user lowering the radio volume just before the system is supposed to do

it. At the planning level, unexpected events may satisfy effects of already planned

(scheduled) actions (Vukovic et al. 2007, Madkour et al. 2013), or invalidate precon-

ditions that were true during planning or action instantiation (Vukovic et al. 2007,

Bidot et al. 2011). Such unexpected events basically interrupt the execution of a plan.

For example, if a necessary ingredient is no longer available in Theodore’s home, the

plan, which is in form of a recipe, cannot be further executed, and requires appropri-

ate adaptations (Kotsovinos and Vukovic 2005). An adaptation may be achieved by

using manually encoded conditional statements (Sando and Hishiyama 2011), a re-

pair of the current plan given some predefined knowledge (Bajo et al. 2009, Sánchez-

Garzón et al. 2012, Fraile et al. 2013), and replanning (Kotsovinos and Vukovic 2005,

Vukovic et al. 2007, Bidot et al. 2011, Sánchez-Garzón et al. 2012, Fraile et al. 2013,

Madkour et al. 2013).

Action contingencies

It is not a rare situation when the execution of plans does not proceed as expected

(during the planning process) due to the non-determinism concerning the actual

output of plan actions. We define an action contingency as the state of an action in

which the action does not work correctly during execution.

There are two types of action contingencies, namely action failure and action

timeout. The former one happens when an action invocation returns an erroneous

response (Ranganathan and Campbell 2004, Vukovic et al. 2007, Bidot et al. 2011,

Kaldeli et al. 2012, Madkour et al. 2013). In practice, an erroneous response may in-

dicate a simple failure, permanent failure, or Byzantine behaviour – an action com-

pletes successfully without providing the expected result. Timeout occurs when an

action invocation does not provide a response after a certain amount of time within

which, for instance, an average fast action is expected to respond (Vukovic et al.

2007, Bidot et al. 2011, Kaldeli et al. 2012, Madkour et al. 2013). Most primary stud-

ies identify that action timeouts are due to the disconnection of the network which

devices providing the actions are part of. A timeout is interpreted as an erroneous

behaviour, and it is therefore handled the same way as action failures.

Action failures and action timeouts can be handled depending on the type of

faulty action (Ranganathan and Campbell 2004, Vukovic et al. 2007), availability

2.3. Classes of properties 41

of alternative action instantiations (Vukovic et al. 2007, Bidot et al. 2011, Madkour

et al. 2013), and the severity of reported failure (Kaldeli et al. 2012). Ranganathan

and Campbell (2004) use additional information encoded in specific actions. One

piece of additional information is the return value of an action invocation to indicate

whether the action has failed. Another piece of information indicates whether the

planning system can try to execute the action again, but only if it has failed once

before. The most common approach to handle simple action failures is to retry the

execution of the same action a specific number of times, and in case of reaching that

limit, to initiate replanning. Section 2.3.2 provides more details on the approaches

taken to handle uncertainty. Finally, timeout conditions may differ depending on

the type of actions (Kaldeli et al. 2012). For example, an action invoked to close a

door may respond in orders of seconds faster than an action to pull down window

blinds.

Partial observability

Partial observability refers to the imperfectness and incompleteness of inform-

ation that a planning system has about the state of a ubiquitous computing en-

vironment. This means that the planner cannot make the closed-world assump-

tions (Ghallab et al. 2004). First, state constituents, say, variables may have differ-

ent possible actual values, and second, planning operators can no longer depend

directly on such uncertain state. We identify two major approaches to solve these

issues. One approach is to use sensing so as to gather the actual values of un-

known variables, while the other one is to express values as probabilities rather

than certain observations. The former approach implies a use of sensing actions

(also information-gathering actions or observational actions), while the latter one

relies on belief states.

Qasem et al. (2004) gather information based on local completeness of informa-

tion and the relevance of information sources. Completeness is represented through

description logic expressions over classes of objects with similar characteristics. For

some device associated with knowledge base belonging to some class, the complete-

ness indicates that if some entity is included in the knowledge base, it is not an in-

stance of the respective class, but it is in the complement of that class. When there

is insufficient information to validate conditions, information must be sensed from

relevant information sources. Kaldeli et al. (2012) represent a smart home through

a dynamic constraint network which provides naturally the possibility to update

the current state of the home (without reloading the planning domain). Since the

planner is informed about the changes of the home state, it searches for a plan given

the initial state for which it has complete knowledge. Two main assumptions are

made, namely (1) continual sensing is performed – sensors check and publish their

42 2. Systematisation of planning for ubiquitous computing

status in regular time intervals; and (2) information is persistent – sensed informa-

tion involved in actions to be executed is valid until the execution finishes.

Several primary studies deal with partial observability using belief states based

on observations (Carolis and Cozzolongo 2007, Cirillo et al. 2012, Harrington and

Cahill 2011). An observation o can be perceived as a set of literals, while the probab-

ility of having owhen some action a is performed and the resulting state is s is given

by fa : S × O → [0, 1] such that o ∈ O and O is a set of observations (Cirillo et al.

2012, Harrington and Cahill 2011). For instance, Cirillo et al. (2012) define a belief

situation as a probability distribution over a number of situations, and observations

as results of actions. If a is a robot action, then o is considered as a sensing action

(e.g., check the status of a door). If a is a human action, then o is considered as an

indirect observation of a by a robot (e.g., if the radio is turned off, Tars can observe

that the listenToRadio action has finished).

2.3.2 Planning

The class of Planning encompasses the core concepts and aspects of AI planning.

It deals with the purpose of using planning, the types of planning techniques, the

definition and representation of planning problems, modelling aspects, design and

implementation of planning systems, integration of such systems into ubiquitous

computing architectures, and the use of planning systems at a particular stage of

the life cycle of ubiquitous computing systems. Each such concept and aspect is

represented by its own class. The classification of the primary studies with respect

to the Purpose class and the Planning technique class can be found in (Georgievski

and Aiello 2015b), while the classification of the studies with respect to the rest of

classes is shown in Table 2.3. We identify that about 60% of the studies mention

the planning problem being addressed, and that only half of the studies provide

information about the problem representation. Only four studies focus on domain

modelling, and half of the studies describe the actual problem definition. Moreover,

only six studies pay attention to expressiveness constructs potentially useful for

ubiquitous computing, and about 60% of the primary studies reveal the language

used to model the domain, state, and goal. Furthermore, about 45% of the studies

deal with monitoring of the plan execution and recovery in the case of contingencies.

As shown in Table 2.3, a small number of the primary studies fall into the classes

of Life cycle and Integration architecture, but, on the other hand, about 70% of the

studies are classified within the Design and implementation class.

2.3. Classes of properties 43

Table 2.3: Classification of the primary studies with respect to the Planning classes.

Prob. rep.
Modelling

Life cycle
Development

Languages Integ. arch.

S
tu
d
y

P
la
n
n
in
g
p
ro
b
le
m
s

C
la
ss
ic
a
l

S
ta
te
-v
a
ri
a
b
le

D
o
m
a
in

m
o
d
e
ls

P
ro
b
le
m
d
e
fi
n
it
io
n
s

E
x
p
re
ss
iv
e
n
e
ss
co
n
st
ru
ct
s

K
n
o
w
le
d
g
e

G
o
a
ls

S
ta
te
s

M
o
n
it
o
ri
n
g
a
n
d
re
co
v
e
ry

D
e
si
g
n
-t
im

e
p
la
n
n
in
g

C
o
m
p
il
e
-t
im

e
p
la
n
n
in
g

R
u
n
ti
m
e
p
la
n
n
in
g

D
e
si
g
n
a
n
d
im

p
le
m
e
n
ta
ti
o
n

M
u
lt
i-
a
g
e
n
t

M
o
d
u
la
r

S
e
rv
ic
e
-o
ri
e
n
te
d

S1 8 8 8 8

S2 8 8 8 8 8 8 8 8

S3 8 8 8 8 8 8 8 8 8 8

S4 8 8 8 8

S5 8 8 8 8

S6 8 8 8 8 8 8 8 8 8

S7 8 8

S8 8 8

S9 8 8 8 8 8

S10 8

S11 8 8

S12 8 8

S13 8 8 8 8

S14 8 8 8 8 8 8 8 8 8

S15 8 8

S16 8

S17 8 8 8 8 8

S18 8 8 8 8 8 8 8 8 8 8 8

S19 8 8 8 8 8

S20 8 8 8 8 8

S21 8 8 8 8 8 8

S22 8 8 8 8 8

S23 8 8 8 8

S24 8 8 8

S25 8 8 8 8 8

S26 8

S27 8 8 8 8 8 8 8

S28 8 8 8 8

S29 8 8 8 8

S30 8 8 8 8 8

S31 8 8 8 8 8

S32 8 8 8 8 8 8 8

S33 8 8 8 8 8 8 8 8 8 8

S34 8 8

S35 8 8 8 8 8 8 8 8

S36 8 8 8 8 8 8

S37 8 8 8 8 8

44 2. Systematisation of planning for ubiquitous computing

Purposes

The Purposes class defines what planning is used for in an environment specific

to the study under examination. We identify three types of purpose, namely con-

trol, assistance, and organisation.TheControl class specifies that AI planning is used to

create a sequence of actions whose execution does not involve human intervention.

More than half of the primary studies employ planning to produce a control se-

quence. Several of these studies include control of robots (Carolis and Cozzolongo

2007, Cirillo et al. 2012), or an interoperation between robot and device actions (Ha

et al. 2005, Rocco et al. 2014), while the rest of the studies deal with coordination of

device actions.

In contrast to the Control class, the Assistance class indicates that planning pro-

duces a sequence of actions that either is aware of people’s activities, or provides

help and guidance to people during the process of goal accomplishment. This class

considers direct human interaction. About one third of the primary studies adopt

planning in order to create solutions that are human centred. One study creates a

so-called human-aware plan, which does not include human actions, but only ro-

bot actions. However, the human-aware plan is generated based on a forecast of

human actions and constraints on human interaction. The rest of classified primary

studies include human actions in the solution plan that enables to alert people (Kot-

sovinos and Vukovic 2005, Sando and Hishiyama 2011, Grześ et al. 2014, Marquardt

and Uhrmacher 2009a), or to guide them (Vukovic et al. 2007, Courtemanche et al.

2008, Mastrogiovanni et al. 2010, Yordanova 2011, Hidalgo et al. 2011, Sánchez-

Garzón et al. 2012, Pajares Ferrando and Onaindia 2013, Fraile et al. 2013, Ortiz

et al. 2013). These studies create a solution plan as a list of daily activities that eld-

erly people should follow (Courtemanche et al. 2008, Mastrogiovanni et al. 2010),

or as a care plan for patients that is performed by the patients themselves (Sánchez-

Garzón et al. 2012, Fraile et al. 2013, Grześ et al. 2014), caregivers (Yordanova 2011),

or both (Hidalgo et al. 2011, Pajares Ferrando and Onaindia 2013). Marquardt and

Uhrmacher (2009a) advocate imperceptibly the exclusivity of plans either only to ac-

tions directly executable by the planner or only to human actions, which are expec-

ted to be executed by humans. Considering that authors use planning to compose

services, then modelling and implementing human actions as services becomes a

problem that cannot be solved under the umbrella of service composition.

TheOrganisation class indicates that planning outputs a sequence of tasks used to

manage specific resources within a ubiquitous computing environment. Bajo et al.

(2009) use plans to improve the management in a hospital. The plans are used to

organise dynamically nurses’ working time, to manage standard working reports

about the activities of nurses, and to guarantee that patients assigned to particular

nurses receive proper care. Similarly, Yordanova (2011) uses an organisational plan

2.3. Classes of properties 45

to arrange the activities of a nurse for the purpose of taking care of a patient. The

scenario illustrated in the study envisions also other support for the care personnel,

such as automated management of documentation. Besides the plan with activ-

ities for a patient, Hidalgo et al. (2011) provide an organisational plan for a care

centre based on the current context, available resources (for instance, rooms and

timetables) and staff, and the organisation rules of the centre. An organisational

plan is communicated to caregivers, such as nurses.

Planning techniques

The class of Planning techniques analyses techniques used to realise planning.

A straightforward observation is that HTN planning is frequently adopted. Ding

et al. (2006) find HTN planning “suitable for writing and solving presentation plan-

ning problems” because a task corresponds directly to creating a presentation,

while Amigoni et al. (2005) use HTN planning as it is “considered as the most

suitable for real-world applications”, including ubiquitous computing applications.

Several other primary studies offer more fair and elaborated reasons for the suitab-

ility of hierarchical planning, such as causality (Yordanova 2011), flexibility (Qasem

et al. 2004), and effectiveness (Marquardt et al. 2008). On the other hand, Kaldeli

et al. (2012) criticise HTN planning due to the requirement for a set of predefined

methods that cannot be easily reconfigured when changes in the context, domain,

or user requirements occur. Similarly, Marquardt et al. (2008) recognise a critical

point in the use of hierarchical planning due to its need for methods. The problem

with this necessity comes to light in real-life applications of hierarchical planning,

when someone needs to be responsible for providing reasonable knowledge.

Probabilistic planning uses probabilities associated to non-deterministic events

to search for a plan. Since actions are non-deterministic, probabilities are used to

quantify the costs and successes of plans. A plan would be efficient if its cost does

not surpass the benefit of reaching a goal. In cases when there is no plan to reach a

goal, action probabilities are particularly useful in order to maximise the probabil-

ity of reaching the goal. While probability planning is computationally complex as

probabilities create a belief state that is continuous and infinite, there are still sev-

eral primary studies that take advantage of it. Carolis and Cozzolongo (2007) use

a simplified probabilistic planning and associate probabilities to goals of a robot.

Their probabilistic model is based on Bayesian Networks (BNs) and captures the

uncertainty and partial observability of a ubiquitous computing environment. The

plan selected to achieve the goals maximises the expected utility giving the prob-

ability outcomes of the variables as computed in the goal BN. Courtemanche et al.

(2008) use a Markov decision process (MDP) (Puterman 1994) to represent a prob-

abilistic planning problem. Given such planning problem, the planner searches for

46 2. Systematisation of planning for ubiquitous computing

a plan that maximises the expected reward accumulated over some horizon of in-

terest. Grześ et al. (2014) employ probabilistic planning by using a temporal probab-

ility model based on partially observable MDPs (POMDPs). Their POMDP model is

based on environmental observations in order to deal with the uncertainty coming

from unpredictability of human behaviour, and noise and inconsistency of sensor

readings. Cirillo et al. (2012) base their approach on probabilistic planning that gen-

erates plans conditional on observations related to the actions of humans within

a ubiquitous computing environment. This probabilistic and partially observable

planning approach is an extension of the PTLplan planner (Karlsson 2001) to reason

over belief situations and reach a situation in which a plan with satisfactory value is

found. Finally, Harrington and Cahill (2011) envision probabilistic planning to be

used in their models. The objects modelled in actions are associated with a probab-

ility value that indicates the confidence of a successful state transition of an action.

CSP-based planning assumes that a planning problem can be encoded as a con-

straint network which in turn represents a Constraint Satisfaction Problem (CSP)

whose inconsistencies are to be solved by a constraint solver. A CSP consists of

three finite sets, specifically, V is a set of variables,D is a set of domains of the vari-

ables in V such that v ∈ Dv , and C is a set of constraints over the variables in V . A

constraint involving variables from V represents a restriction over the values that

can be assigned to those variables. The solution to a CSP is a valuation of each vari-

able v ∈ V with a value from Dv such that all constraints in C are satisfied. Kaldeli

et al. (2012) adopt the approach we just described. Rocco et al. (2014) represent a

goal as a constraint network that needs to be refined into a consistent and feasible

one. To that end, a so-called meta-CSP approach is adopted: the problem of refining

the goal constraint network is cast as a high-level CSP, which builds on lower-level

CSPs (each for a particular feature, such as temporal, causal, resource inconsisten-

cies). CSP-based planning can be particularly useful for ubiquitous computing due

for the following peculiarities (Kaldeli et al. 2012, Rocco et al. 2014).

• Numerical variables – CSP-based planners are able to handle variables that

range over large domains efficiently. Such variables are common in ubiquit-

ous computing environments. For instance, variables for temperature meas-

urements, TV channels, locations, etc.

• On-line sensing – since a constraint network naturally supports adding and re-

moving constraints on the fly, updates of the current state of an environment

can be performed efficiently. The updates, that is, sensed information, can

have varying levels of abstraction: low-level observations, such as on(stove),

filtered state estimates, such as at(user, location), or high-level interpret-

ations, such as cooking(user).

2.3. Classes of properties 47

• Continual planning – a constraint network that supports adding and removing

constraints dynamically fosters the interleaving of planning and execution.

• Various interrelationships – CSP-based planners support modelling of casual,

temporal, resource and information dependencies between objects and ac-

tions taking part of an environment. For instance, actions may be subject to

deadlines, or they may include spatial information and resources, which may

be crucial to reasoning.

Partial-order planning in combination with defeasible argumentation is pro-

posed in (Pajares Ferrando and Onaindia 2013). Partial-order planning, which is

based on the least-commitment strategy (Weld 1994), postpones commitments of

ordering among plan actions until these commitments become necessary. A plan

therefore represents a set of actions and a set of constraints defining the order among

actions. Two reasons can be identified to prefer partial-order planning over other

planning techniques, namely (1) partial-order planning offers “a more promising

approach” to deal with durative actions, temporal and resource constraints (Pa-

jares Ferrando and Onaindia 2013, Smith et al. 2000); and (2) it offers a high degree

of execution flexibility due to its support for parallelism.

Case-based planning is considered as planning supported by a changing dy-

namic memory (Hammond 1989). A case is a past experience consisting of an initial

problem, a sequence of actions that solves the problem, and the final state achieved

after the solution is applied. A case-based planner creates and modifies plans based

on planner’s past experiences which represent memory of effects (rather than causal

rules). For instance, Bajo et al. (2009) consider tasks, resources and time as memor-

ies. Generally, memories of past successes are used by the planner when creating

new plans, memories of past failures are used to inform the planner about poten-

tial problems, and memories of past repairs are used to instruct the planner how to

handle repairs. Given a planning problem, case-based planning searches for a solu-

tion by taking into account cases, that is, plans created to solve similar problems

in the past. Bajo et al. (2009) use case-based planning for the purpose of creating

efficient working schedules in hospital environments. Fraile et al. (2013) employ

case-based reasoning together with a belief, desire, and intentions model to solve

new planning problems by adapting solutions of previous similar problems, and

to learn by building upon initial knowledge. Case-based planning can be useful

for ubiquitous computing due to the following reasons (Bajo et al. 2009, Fraile et al.

2013).

• Learning ability – case-based planning can handle dynamic environments due

to its ability to learn from initial knowledge and past experiences.

48 2. Systematisation of planning for ubiquitous computing

• Adaptive capacity – the learning ability together with planner’s capability to

interact autonomously with an environment provides the case-based planner

with a large capacity for adaptation to the needs of the environment.

• Improve planning – learning and adaptive abilities enable case-based planners

to increase their ability to solve problems over time.

Bajo et al. (2009), however, indicate that case-based reasoning can be “highly

affected” by context changes. In addition to past experiences, the success of finding

a plan depends on the changes that may happen at execution time, which in turn

may lead to contingencies and replanning.

Bidot et al. (2011) as well as Yordanova (2011) find the hybrid between HTN

planning and Partial-Order Causal-Link (POCL) planning advantageous over ap-

proaches employing only hierarchical planning. Their hybrid planning is “more

flexible” and does not require additional control knowledge. Moreover, the hybrid

approach is “particularly advantageous” for real-world planning problems as it al-

lows “to easily encode and efficiently deal with procedural knowledge” supported

by the methods and task networks in HTN planning, and to reason about causal

dependencies between tasks provided by the POCL planning. Milani and Poggioni

(2007) use mixed integer programming (MIP) solver to search for a solution of a

planning problem. The planning problem is first encoded as a plan graph, then the

plan-graph relationships are translated into a mixed logical and numerical formula,

and finally the formula is converted to a set of mixed integer linear programming

constraints.

Several primary studies model only a planning problem and use state-of-the-art

planners to search for a solution. A graph-based planner is employed in (Heider

2003, Marquardt and Uhrmacher 2009a), a heuristic-based planner is used in (Yord-

anova 2011, Heider 2003), a temporal planner in (Kotsovinos and Vukovic 2005,

Vukovic et al. 2007), and a partial-order planner in (Heider 2003). Ranganathan

and Campbell (2004) adopt a hybrid between graph-based planning and SAT-based

planning. Masellis et al. (2010) mix planning with programming, while Mastrogio-

vanni et al. (2010) propose affordance-based planning.

Planning problems

The focus of the Planning problems class is to discover whether the primary stud-

ies define explicitly the planning problems they aim to solve. Less than half primary

studies are precise about the problem they are trying to solve within ubiquitous

computing. In several studies, we can extrapolate the planning problem inspecting

the input provided to a given algorithm. A planning technique practically requires

as input an explicit description of a problem for which a solution is to be synthes-

2.3. Classes of properties 49

ised. Same number of studies provide only informative descriptions of what auto-

mated planning consists without an explicit suggestion of the potential for using

planning in the particular environment. A few studies only make a reference to AI

planning and mention its use superficially.

Problem representations

The Problem representations class is concerned with the ways to represent plan-

ning problems. We discuss two ways that we identify during the qualitative ana-

lysis, namely classical and state-variable representation. Both representation mod-

els are equivalent in expressive power, meaning that a planning problem rep-

resented in one representation can also be encoded using the other representa-

tion (Ghallab et al. 2004).

Classical representations The class of Classical representation encapsulates ap-

proaches in which the state of the environment is a set of ground logical atoms that

can be true or false. Further, the actions are expressions that specify which logical

atoms should be in the state so that the action is applicable, and which logical atoms

should change their values after the action application. There are several primary

studies we are able to identify that take advantage of this classical representation.

State-variable representations The class of State-variable representation encom-

passes approaches that represent a state as a set of values of a finite set of state

variables. Actions represent functions that change the values of those variables. A

few primary studies employ the state-variable representation. For studies based on

constraint satisfaction (Kaldeli et al. 2012, Courtemanche et al. 2008), state variables

that range over finite domains is a natural representation. Pairs of variables and val-

ues are incorporated as well in (Pajares Ferrando and Onaindia 2013, Cirillo et al.

2012, Harrington and Cahill 2011), while Grześ et al. (2014) take rather classical ap-

proach and assume that all variables are Boolean only. Milani and Poggioni (2007)

define a state as a pair of a set of logical atoms and a set of state variables (cf. nu-

merical fluents). As for the actions, some studies represent actions as Boolean vari-

ables (Kaldeli et al. 2012, Courtemanche et al. 2008, Milani and Poggioni 2007), while

preconditions and effects are encoded as constrains on the state variables (Kaldeli

et al. 2012), or as a system of linear inequalities (Milani and Poggioni 2007).

Modelling classes

Modelling focuses on approaches, constructs and languages used to define a

planning problem. Modelling a planning problem includes definitions of a domain

50 2. Systematisation of planning for ubiquitous computing

model and problem. An approach to model a planning problem defines the way

of creating the domain model and problem, constructs define the expressions, and

languages define the syntax used to create the planning problem.

Domain models

The class ofDomainmodels deals with the process of defining domain knowledge

for the purpose of solving planning problems. The term ‘domain model’ denotes a

representation that portrays behaviours as found in the real domain, and provides

semantics for the constructs in the domain (McCluskey 2002). Given only a planning

theory, it is tedious and often impractical for designer to manually define planning

domain models. A more practical approach would be to use tools that support the

engineering of domain knowledge. Grześ et al. (2014) propose a probabilistic rela-

tional model to knowledge engineering of planning problems. A designer, possibly

a domain expert, uses standard database tools, such as forms and Web interfaces, to

perform a “psychological IU analysis”,4 and to populate a database with the results.

Based on this probabilistic relational model, a POMDP specification is automatic-

ally generated (recall that this represents a planning problem). What is particularly

interesting is that the domain designer does not have to be necessarily aware that

the population of the database in practice represents a planning problem. On the

other hand, Ortiz et al. (2013) propose an approach that does not require explicit in-

puts from people to generate domain models. The approach segments sensor time

series in order to recognise actions performed by users, and states produced by such

actions. Preconditions and effects of actions are learned from those sensor readings.

Using this information, a domain model represented in PDDL is automatically gen-

erated.

Two studies provide simplified ways to generate domain knowledge as com-

pared to the studies just discussed. Hidalgo et al. (2011) realise a tool that sup-

ports modelling of knowledge that consists of skills and experiences gathered from

human experts in solving known problems. We propose a domain modeller that

provides intuitive guidance to users for creation, viewing and modification of do-

main knowledge (see Section 6.3.2). The tool abstracts the way of modelling the

domain and verification of the correctness of the knowledge entered with respect

to the syntax of the input language of the supported planning system.

Problem definitions

The class of Problem definitions is concerned with the process of generating and

composing a planning problem. In this class, we assume that a domain model is

4A method for transcoding interactions relevant to fulfil a specific task.

2.3. Classes of properties 51

manually encoded, but it may be automatically translated, if necessary, into a rep-

resentation understandable to the respective planning system. The other compon-

ents of a planning problem, the initial state and goal, are generated automatically

from the current state of the environment. Domain models are usually stored in

some knowledge base and queried by the planning system upon its initialisation or

when necessary (Bidot et al. 2011, Hidalgo et al. 2011, Kaldeli et al. 2012, Sánchez-

Garzón et al. 2012, Fraile et al. 2013, Ha et al. 2005, Madkour et al. 2013, Georgievski

et al. 2013, Jih, Hsu, Lee and Chen 2007). Domain models are enriched with ad-

ditional semantic annotations needed during the planning process (Vukovic et al.

2007, Kaldeli et al. 2012, Madkour et al. 2013), or after planning and during the in-

stantiation of a plan (Bidot et al. 2011).

The current values of environment objects are supplied to planning systems by

other context-aware components (Ranganathan and Campbell 2004, Ding et al. 2006,

Hidalgo et al. 2011, Kaldeli et al. 2012, Sánchez-Garzón et al. 2012, Fraile et al. 2013,

Heider 2003, Georgievski et al. 2013). The initial state, which is represented in a

standardised form acceptable by the respective planner, is automatically generated

from such context information. Once generated, the initial state, which can be fur-

ther maintained by the planning system, may automatically and dynamically incor-

porate future context changes (Kaldeli et al. 2012, Courtemanche et al. 2008). Finally,

the goal is generated automatically from the request coming from a human (Ran-

ganathan and Campbell 2004, Kotsovinos and Vukovic 2005, Ding et al. 2006, Bidot

et al. 2011, Kaldeli et al. 2012, Ha et al. 2005), or another component that senses and

reasons over the changes in the environment (Carolis and Cozzolongo 2007, Kaldeli

et al. 2012, Courtemanche et al. 2008, Georgievski et al. 2013).

Expressiveness constructs

The class of Expressiveness constructs defines a critical aspect of planning. It refers

to the required or preferred expressive power of a planning model adopted to rep-

resent a ubiquitous computing environment. Our vision is to have AI planning

able to cover a wide spectrum of properties of ubiquitous computing. As a result of

the qualitative analysis, we identify the following collection of expressiveness con-

structs suggested by several primary studies as needed to capture the semantics of

these environments.

• Conditional effects are needed to efficiently coordinate environments and

to provide a compact representation of device semantics (Kotsovinos and

Vukovic 2005, Heider 2003), and they are also required to solve problems that

involve moving objects (e.g., Tars possesses some object) (Marquardt and Uhr-

macher 2009a).

52 2. Systematisation of planning for ubiquitous computing

• Multi-type elements can be used to reduce the number of actions needed to be

modelled. For instance, two actions, one for type object and another for type

human, can be modelled as one if multi-typing is supported (Yordanova 2011).

• Numeric-valued fluents are common in ubiquitous computing environ-

ments (Kaldeli et al. 2012). The fluents are used to model variables with large

domains, such as the temperature measure.

• Extended goals are desirable and “well suited” for adaptive and user-centric

environments as ubiquitous computing environments are (Vukovic et al. 2007,

Kaldeli et al. 2012).

• Disjunction in preconditions is particularly useful for a compact representation

of device operations (Heider 2003).

• Universal quantification in preconditions and effects enables to represent actions

that can cover an arbitrary number of objects, such as lamps, screens, win-

dows, etc. This construct appears to be convenient in ubiquitous computing

environments due to their constant evolution and dynamic extension (Heider

2003).

• Time and resource constraints can be useful in many cases (Vukovic et al. 2007,

Heider 2003, Marquardt and Uhrmacher 2009a). We cover temporal proper-

ties in Section 2.3.1. On the other hand, discrete and continuous resources are

identified as important for specific domains (Heider 2003).

• Axioms are a useful way to separate the domain-specific knowledge from the

semantics of actions (Marquardt and Uhrmacher 2009a). For instance, an ax-

iom can be used to derive that the brightness of a TV increases when the

brightness of the surrounding environment decreases.

Languages

The Languages class focuses on the syntax used to express the physical proper-

ties and specific knowledge of ubiquitous computing environments. In particular,

this class explores the modelling languages employed to define a domain model,

including actions and domain-specific knowledge, such as compound tasks in hier-

archical planning; the current state of an environment, such as predicates, variables

or functions; and the goal given as an input to a respective planning system. The

Language class could give suggestions about the preference of primary studies for

planning languages used to define ubiquitous computing environments.

A majority of the primary studies use PDDL as a modelling syntax for

their domain models, several studies make use of hierarchical-based languages,

2.3. Classes of properties 53

such as SHOP2 (Nau et al. 2003) and Hierarchical Planning Definition Lan-

guage (HPDL) (Castillo et al. 2006, Georgievski et al. 2013), two studies employ

ADL (Pednault 1989), and the rest of them use non-planning modelling languages,

such as Synchronized Multimedia Integration Language (SMIL) (Bulterman 2001),

Scone (Santofimia et al. 2010), Extensible Markup Language (XML) (Bray et al. 2008),

and OWL-S. As expected, a common way among the primary studies is to use the

same modelling language for the state and goal as for the domain model.

Monitoring and recovery

The Monitoring and recovery class is concerned with the way planning systems

deal with uncertainty in ubiquitous computing. Generally, two processes are

defined and interleaved in order to circumvent deviations. The first one observes

the changes in the state of an environment and the execution of plan actions. The

second process handles unexpected context information and environment-specific

contingencies that occur during the execution of the plan.

The monitoring process may consist of two tasks, namely sensing and execution

monitoring. Sensing observes and provides an up-to-date view of the current state

of an environment at planning time and/or execution time. Qasem et al. (2004) per-

form sensing by using local closed-world statements and the concept of “source

relevance” to search for an appropriate information source and to update the know-

ledge base whenever there is insufficient information to validate conditions. In con-

trast to traditional approaches, the authors avoid using planning actions to model

the sensing due to the fact that the search space is reduced as a consequence of the

reduced number of possible actions; and each type of (query to) an information

source should be modelled as a separate planning action, which may be imprac-

tical considering the complexity of ubiquitous computing environments. Similarly,

sensing tasks are not considered as planning actions in (Kaldeli et al. 2012, Rocco

et al. 2014). Instead, the values that sensing tasks provide, either periodically or

when some condition is detected in the environment, are automatically updated

and incorporated in the constraint network by adding or removing constraints. In-

terestingly, Kaldeli et al. (2012) provide support for sensing in goals through the

use of the find_out construct.

Execution monitoring executes plan actions, monitors and verifies that they are

executed as expected. We show the most commons steps performed by the primary

studies in Algorithm 1. The execution of actions involves low-level invocations (of

device operations or services) in right order (Bidot et al. 2011, Kaldeli et al. 2012)

and time (Kotsovinos and Vukovic 2005). Monitoring and verification is usually

performed before and after action execution.

The recovery process may include several tasks, such as precondition delay, ac-

54 2. Systematisation of planning for ubiquitous computing

Algorithm 1 Execution monitoring

Input: Plan

1: for each action in plan do

2: Query the action to check its availability in the list of currently available

actions (Ranganathan and Campbell 2004)

3: if action not available then

4: Call recovery process

5: Check the validity of preconditions of the action (Vukovic et al. 2007,

Sánchez-Garzón et al. 2012, Rocco et al. 2014, Madkour et al. 2013)

6: if precondition cannot be satisfied then

7: Call recovery process . Once all preconditions are satisfied, observe

action effects

8: else if effects are unexpectedly satisfied then . due some exogenous event

9: Avoid action execution (Kotsovinos and Vukovic 2005)

10: Execute the action and analyse its outcome (Vukovic et al. 2007, Ding

et al. 2006, Sánchez-Garzón et al. 2012, Fraile et al. 2013, Rocco et al. 2014,

Madkour et al. 2013)

11: if outcome is not expected then

12: Call recovery process

13: end for

tion retrying, action replacement, and replanning. If a precondition cannot be veri-

fied (due to unexpected context changes), it is delayed by inserting a temporal con-

straint and re-evaluating the precondition later (Rocco et al. 2014), or replanning

is invoked (Vukovic et al. 2007, Bidot et al. 2011, Fraile et al. 2013, Madkour et al.

2013, Garro et al. 2008). If the outcome of action execution is a permanent failure, the

plan is terminated and replanning for the same goal (Kaldeli et al. 2012, Ding et al.

2006) or a new goal state is invoked (Ranganathan and Campbell 2004, Kotsovinos

and Vukovic 2005, Vukovic et al. 2007, Madkour et al. 2013). If the outcome rep-

resents an erroneous behaviour, such as disconnection or timeout, the action can be

re-invoked (Ranganathan and Campbell 2004, Kaldeli et al. 2012) or replaced with

another instance of the same type (Vukovic et al. 2007, Bidot et al. 2011, Madkour

et al. 2013), and if a failure is observed again, replanning is invoked (Ranganathan

and Campbell 2004, Kaldeli et al. 2012, Madkour et al. 2013).

Sánchez-Garzón et al. (2012) use the domain knowledge to handle contingencies

such that, depending on the context arisen, several alternatives represented as ap-

plicability conditions of compound tasks are possible during replanning. In (Cirillo

et al. 2012), the execution of the current plan is terminated and replanning is invoked

2.3. Classes of properties 55

when the human behaviour, which is predicted before planning, has been changed

during the plan execution. Finally, case-based planners naturally support replan-

ning in the reuse stage (Bajo et al. 2009, Fraile et al. 2013). When some contingency

happens, a new planning cycle is initiated taking into account already executed ac-

tions.

Replanning in ubiquitous computing is a computationally expensive task (Bidot

et al. 2011, Rocco et al. 2014). However, the primary studies, which build abstract

plans and whose services are bound to specific instances later in the system’s life

cycle, can avoid replanning for cases when services appear or disappear from the

environment by using only rebinding of services to other instances (Vukovic et al.

2007, Bidot et al. 2011, Madkour et al. 2013). Moreover, Rocco et al. (2014) reduce

the impact of replanning by using several strategies on the constraint network de-

pending on the situations, such as temporal propagation, resource and state variable

scheduling, or action application.

Life cycle

The class of Life cycle defines the phase of the life cycle of a ubiquitous comput-

ing system in which a planning system is executed. The choice of a phase in which

planning is used generally depends on the type of decisions we want to make in the

environment. A strategic decision would answer the question of what basic tasks

are to be executed and in which order, while an operational decision would answer

the question of what devices should execute the tasks (Bidot et al. 2011). At design

time or compile time, planning can provide only a strategic decision, while both

types of decisions can be supported if planning is used at the time of the system’s

run.

Design-time planning Planning at design time is used primarily to make stra-

tegic decisions and create a solution in the form of a plan with abstract actions.

Once such abstract plan is found, it is handled by another component at runtime,

that is, abstract actions are instantiated by device operations actually present in an

environment (Bidot et al. 2011, Vukovic et al. 2007). Given a user goal and a set of

services available in the environment, both studies create sequences with abstract

services that cannot be directly invoked. At runtime, available service instances are

discovered and used to bind abstract services.

Compile-time planning One justification for this approach is given in (Krüger

et al. 2011). A necessary requirement might be to have a time-bounded system able

to react in real time to every possible situation in the environment. Operations that

56 2. Systematisation of planning for ubiquitous computing

are computationally complex, such as planning, are therefore shifted to run at com-

pile time. Compile-time planning may be useful if, for instance, a pre-generation

of action sequences, or an early identification of modelling problems, such as dead-

locks, is needed.

Runtime planning This approach involves selecting and synthesising devices or

services during runtime. For instance, recipes are build and adapted at runtime

in (Kotsovinos and Vukovic 2005), working schedules are created at execution time

in (Bajo et al. 2009), composition is calculated by reasoning on the most up-to-date

services at runtime in (Kaldeli et al. 2012), office adaptations are produced during

runtime in (Georgievski et al. 2013), or a user is provided with solutions to plan-

ning problems in (Fraile et al. 2013, Marquardt and Uhrmacher 2009a). Runtime

planning enables a real-time approach to planning, and encapsulates also cases

where domain-specific knowledge is added to a planner during runtime, as found

in (Marquardt et al. 2008).

Development classes

The class of Development defines the aspects of software design, implementa-

tion and integration of planning systems. This class includes the steps taken by the

primary studies, ranging from the conception of planning systems through their

manifestation as software products to the integration of the systems into ubiquit-

ous computing architectures. We therefore divide the Development class into two

subclasses, namely Design and implementation and Integration architecture.

Design and implementation

The class of Design and implementation deals with the architecture design used

to develop planning systems, and the level of software development achieved for

such systems. Let us discuss each aspect separately.

The analysis of primary studies with respect to the development of planning sys-

tems yields many similarities among the designs of these systems. Consequently,

we identify a possibility for a common characterisation of a planning architecture

suitable for ubiquitous computing. Figure 2.9 shows a component diagram of

the architecture resulted from the design commonalities of several primary stud-

ies (Qasem et al. 2004, Ranganathan and Campbell 2004, Kotsovinos and Vukovic

2005, Vukovic et al. 2007, Bajo et al. 2009, Liang et al. 2010, Santofimia et al. 2010,

Bidot et al. 2011, Hidalgo et al. 2011, Kaldeli et al. 2012, Song and Lee 2013, Sánchez-

Garzón et al. 2012, Fraile et al. 2013, Ha et al. 2005, Rocco et al. 2014, Madkour et al.

2013, Georgievski et al. 2013, Jih, Hsu, Lee and Chen 2007). The architecture con-

2.3. Classes of properties 57

Problem

Generator
Planner

Monitor

Executor

Knowledge

Base

Action

Context

Request

Event/Failure

State

Plan

DomainModel

ProblemDefinition

Figure 2.9: Component diagram of typical systems for planning in ubiquitous computing.

sists of five components. The Problem Generator component accepts two input in-

gredients: request, which describes the objective issued either by a user or by an-

other component, and context, which represents the high-level information about

the environment. The component generates a problem definition interpretable by

the Planner component. Along with the problem definition, the Planner compon-

ent, which implements a particular planning technique, requires a suitable domain

model provided by the Knowledge Base component. Given these input ingredi-

ents, the Planner finds a solution plan, if one exists, and passes it to the Executor

component. The Executor is responsible for the execution of each plan action in the

environment. The execution of action is observed by the Monitor component. Upon

deviations from the expected flow, the Monitor reacts accordingly either by repair-

ing the situation arisen, or by invoking the Planner to search for a new solution.

The second aspect should provide insights into the maturity of the software solu-

tions proposed by the primary studies. However, we identify only three meaning-

ful pieces of information. First, the majority of primary studies implement pro-

totype software of their proposal. That is, incomplete versions or only a few as-

pects of the proposal are provided. A working prototype is implemented in (Ran-

ganathan and Campbell 2004, Kotsovinos and Vukovic 2005, Vukovic et al. 2007,

Bajo et al. 2009, Hidalgo et al. 2011, Kaldeli et al. 2012, Sánchez-Garzón et al. 2012,

Fraile et al. 2013, Ha et al. 2005, Rocco et al. 2014). Second, many primary stud-

ies employ or extend one or several state-of-the-art planners. Within the group of

hierarchical planning, the majority of studies adopt some version of the SHOP plan-

ner (Nau et al. 1999). SHOP is extended in (Qasem et al. 2004), SHOP2 is used in (Ha

et al. 2005, Marquardt et al. 2008), and JSHOP2 is employed in (Ding et al. 2006,

Liang et al. 2010, Song and Lee 2013). Two studies (Hidalgo et al. 2011, Sánchez-

58 2. Systematisation of planning for ubiquitous computing

Garzón et al. 2012) use the SIADEX planner (Castillo et al. 2006), and Amigoni et al.

(2005) uses a modified version of the NOAH planner (Sacerdoti 1975a). Further-

more, Cirillo et al. (2012) extend the PTLplan planner (Karlsson 2001), while the

graph-based LPG planner (Gerevini and Serina 2002) is employed in (Heider 2003,

Marquardt and Uhrmacher 2009a). The heuristic-based FF planner (Hoffmann and

Nebel 2001) is extended in (Yordanova 2011), the heuristic-based planners Metric-

FF (Hoffmann 2003) and MIPS (Edelkamp and Helmert 2001) are used in (Heider

2003); the temporal TLPlan planner (Bacchus and Kabanza 1996) is used in (Kotsovi-

nos and Vukovic 2005, Vukovic et al. 2007), the partial-order UCPOP planner (Pen-

berthy and Weld 1992) in (Heider 2003), and the Blackbox planner (Kautz and Sel-

man 1999) is adopted in (Ranganathan and Campbell 2004).

Only a few studies implement new planners. Kaldeli et al. (2012) implement

their approach in the RuGPlanner, Bajo et al. (2009) develop the case-based CBPMP

planner, Pajares Ferrando and Onaindia (2013) build the CAMAP planning system,

and we develop and use the SH planning system (Section 6.3).

Integration architectures

The class of Integration architecture defines and analyses paradigms upon which

ubiquitous computing systems integrating a planning system are designed and im-

plemented. We opt for ubiquitous computing systems truly and entirely realised

in real environments that would therefore require a standardisation in both, at the

system level, and at the single-component level (Degeler et al. 2013). A ubiquit-

ous computing architecture must consider scalability and distribution as two import-

ant design characteristics currently challenges for many ubiquitous computing sys-

tems. Inherently, these two requirements are challenging for all architectural en-

tities, including the planning one. A planning system needs to communicate and

cooperate with other entities of the ubiquitous system. Communication and cooper-

ation prompt for interoperability as another requirement for planning systems. The

rapid evolution of technology implies that systems already deployed in ubiquitous

computing environments will be soon outdated compared to the most recent ubi-

quitous systems. This implication represents a requirement to planning systems:

they need to be able to catch up with new advances and to easily evolve. Addition-

ally, the complexity of their adaptation to different types of ubiquitous computing

environments must be taken into account. Reusability of planning systems gives

ubiquitous technological solutions an opportunity for a wider use, and also a pos-

sibility for solutions to grow in power and complexity.

The qualitative analysis of primary studies resulted in three architecture

paradigms, namely Multi-agent systems, Modular architectures, and Service-oriented

architectures.

2.3. Classes of properties 59

Multi-agent systems A multi-agent system is one that consists of a collection of

agents. Each agent is a computer system that first, is capable to exhibit to some

extent an autonomous behaviour – to decide what to do so as to satisfy some ob-

jectives, and second, is capable to interact with other agents – to exchange mes-

sages through a network, but also to engage in sort of social activities (Wooldridge

2009). A successful interaction depends on the abilities of agents to cooperate, co-

ordinate and negotiate with each other. Some primary studies indicate that multi-

agent systems are a “natural” (Amigoni et al. 2005) and “relevant” (Bajo et al. 2009)

paradigm for ubiquitous computing environments, and that they “facilitate” the

development of such environments (Fraile et al. 2013). A common approach taken

by the primary studies to the design and implementation of multi-agent systems for

ubiquitous computing environments is to consider environment devices or objects

as agents, software components as agents, and a single planning agent (Amigoni

et al. 2005, Bajo et al. 2009, Santofimia et al. 2010, Fraile et al. 2013, Jih, Hsu, Lee and

Chen 2007). Amigoni et al. (2005) consider devices as simple agents that neither

support context reasoning nor participate in distributed planning. The other stud-

ies report similar designs: the main assumption is that, besides device agents, other

agents can only extract and provide context information and domain knowledge

to the planning agent that has solely the reasoning capabilities to achieve the de-

sired objectives. Pajares Ferrando and Onaindia (2013) take an approach closer to

the core idea of the multi-agent paradigm, and in fact, employ multi-agent plan-

ning (Weerdt and Clement 2009) to search for a plan. Since ubiquitous computing

environments have imperfect context information, a distribution of responsibilities,

such as in the domain of health-care assistance, and heterogeneity of local context

theories, it is required to have agents that are able to exchange and support their

decisions, to interact with each other and to derive a joint plan as a solution to the

problem. Several agents can thus be involved in the process of creating a plan ac-

cording to their context information and reasoning.

Modular architectures A modular architecture is a design model in which a sys-

tem consists of distinct modules that can be interconnected together. Modules

represent a separation of functionality of a system into independent and logic-

ally bound concerns. Three primary studies indicate the use of a planning mod-

ule within a modular architecture (Courtemanche et al. 2008, Sánchez-Garzón et al.

2012, Garro et al. 2008). Various modules, such as a diagnosis module (Courtem-

anche et al. 2008) or actuator module (Garro et al. 2008), are incorporated to support

the planning module. When connected together, the modules form an executable

system. Modules communicate through interfaces, which describe objects required

and provided by a module. For instance, in (Courtemanche et al. 2008), all modules

60 2. Systematisation of planning for ubiquitous computing

communicate using XML messages. The use of interfaces is a small step towards

standardisation. A modular architecture supports reusability when new applica-

tions are built by reusing and modifying existing modules (Sánchez-Garzón et al.

2012). Unfortunately, no further technicalities on modules can be extracted from

the primary studies.

Service-oriented architectures Service-oriented architectures (SOAs) are an ar-

chitectural model that enhances efficiency, agility, evolution and productivity by

considering services as a primary way through which logic is represented. In this

context, services are used to represent the functionalities of devices to sense and

act in the environment in which they are deployed (Qasem et al. 2004, Vukovic

et al. 2007, Masellis et al. 2010, Santofimia et al. 2010, Bidot et al. 2011, Kaldeli et al.

2012, Song and Lee 2013, Ha et al. 2005, Marquardt et al. 2008, Madkour et al. 2013,

Marquardt and Uhrmacher 2009a, Jih, Hsu, Lee and Chen 2007). Services are also

used to design, implement and execute ubiquitous computing systems (Kaldeli et al.

2012, Georgievski et al. 2013). The first type of services are ubiquitous computing

services, and the second one are application services (see Section 1.4).

2.3.3 Interpretation

The objective of the Interpretation class is to provide insights into practical as-

pects of the theories and solutions proposed in the primary studies. Practical as-

pects may refer to the approaches taken to understand better and demonstrate the

complexity and applicability of theories. Further, practical aspects may include a

technical and qualitative evaluation of solutions, and may consider an examination

of user acceptance and satisfaction of these theories and solutions. We therefore

analyse the primary studies with respect to four subclasses of the Interpretation

class, namelyDemonstrations, Quantitative evaluation, Qualitative evaluation, andUser

satisfaction. We provide the classification of primary studies with respect to these

classes in Table 2.4.

Demonstrations

The Demonstrations class describes the ways used to illustrate the complexity,

and to evaluate the feasibility of a particular planning technique. While this class

provides details on the approaches taken to demonstrate a proposed theory, it may

also indicate the distance of a proposal from a real situation. In addition, this class

points out the most common way of demonstration used by the primary studies.

The Demonstrations class has three subclasses, namely Scenarios, Examples, and

Real-life settings.

2.3. Classes of properties 61

Table 2.4: Classification of the primary studies with respect to the Interpretation classes.

Demonstrations Demonstrations

S
tu
d
y

S
ce
n
a
ri
o
s

E
x
a
m
p
le
s

R
e
a
l-
li
fe
se
tt
in
g
s

Q
u
a
n
ti
ta
ti
v
e
e
v
a
l.

Q
u
a
li
ta
ti
v
e
e
v
a
l.

U
sa
b
il
it
y
e
v
a
l.

S
tu
d
y

S
ce
n
a
ri
o
s

E
x
a
m
p
le
s

R
e
a
l-
li
fe
se
tt
in
g
s

Q
u
a
n
ti
ta
ti
v
e
e
v
a
l.

Q
u
a
li
ta
ti
v
e
e
v
a
l.

U
sa
b
il
it
y
e
v
a
l.

S1 S20 8 8

S2 8 8 8 S21 8 8 8 8

S3 8 8 8 S22 8 8 8

S4 8 8 S23 8 8

S5 8 8 S24 8

S6 8 8 8 8 S25 8 8

S7 8 8 S26 8

S8 8 8 S27 8

S9 8 8 8 8 S28 8 8

S10 8 S29 8 8 8

S11 8 S30 8 8

S12 8 8 S31 8

S13 8 S32 8 8 8

S14 8 8 S34 8

S15 8 S33 8 8 8

S16 8 8 S35 8 8 8

S17 S36 8 8

S18 8 8 8 8 S37

S19 8 8

Scenarios

A scenario provides a synoptic description of people’s and system’s actions and

events in a ubiquitous computing environment. It is a powerful illustration of the

complexity of problems and their solutions. Scenarios should help people have

a sufficiently wide view about the proposed idea so as to avoid missing import-

ant attributes of corresponding planning problems (Alexander and Maiden 2004).

Nevertheless, scenarios are the starting point of all modelling and design (Sutcliffe

2003).

Almost half of the primary studies use scenarios to introduce and illustrate the

(planning) problem of interest. Most of these scenarios are from the domain of smart

homes, while the rest are from the domain of smart offices, smart hospitals and in-

fotainment systems (information-providing systems). Some scenarios focus on a

very specific use case and solve a single planning problem (Amigoni et al. 2005,

Ding et al. 2006, Ranganathan and Campbell 2004, Carolis and Cozzolongo 2007,

62 2. Systematisation of planning for ubiquitous computing

Marquardt and Uhrmacher 2009a), while other describe various use cases and ad-

dress multiple problems (Kotsovinos and Vukovic 2005, Bidot et al. 2011, Kaldeli

et al. 2012, Pajares Ferrando and Onaindia 2013, Cirillo et al. 2012, Rocco et al. 2014,

Jih, Hsu, Lee and Chen 2007, Marquardt and Uhrmacher 2009a, Song and Lee 2013).

All scenarios illustrate the characteristics of problems and solutions from the per-

spective of a person who is explicitly or implicitly involved.

Examples

When introducing an approach taken to address a particular problem within

ubiquitous computing, it is essential for the understanding and applicability of the

approach to be exemplified. An example supports and clarifies what is introduced

and meant. Examples are the most common form of demonstration taken by the

primary studies. We identify that examples can be descriptive (that is, included in

the text), or examples can be represented in a chosen syntax. The latter may include

excerpts from a state representation, a goal example, parts of domain knowledge,

such as a single action and/or decomposition, and an example of a plan. We have

only eleven examples of what a planning state may be represented as, a few more

examples of what a goal is, and 22 examples of different types of actions. A plan is

exemplified in fourteen primary studies.

Real-life settings

The class of Real-life settings offers a particularly interesting perspective as it

provides details on the application of AI planning in actual ubiquitous computing

environments. As shown in Table 2.4, only seven primary studies are tested in real

environments. Four studies are deployed in homes (Fraile et al. 2013, Ha et al. 2005,

Rocco et al. 2014, Cirillo et al. 2012), one study in a university laboratory (Sando and

Hishiyama 2011), one study in a hospital (Bajo et al. 2009), and one study in a care fa-

cility (Grześ et al. 2014). Bajo et al. (2009) involves the largest number of participants,

namely thirty patients and six nurses, while other studies involve ten people (Sando

and Hishiyama 2011), seven persons with dementia (Grześ et al. 2014), one home

occupant (Fraile et al. 2013), one person and one robot (Ha et al. 2005, Cirillo et al.

2012), and two robots (Rocco et al. 2014). We identify the duration of real-life experi-

mentation only for three studies: three partial days in (Sando and Hishiyama 2011),

five hours in (Cirillo et al. 2012), and three months in (Fraile et al. 2013). Almost

all studies provide a clear description of the entities, such as devices and locations,

used for the real-life experiment. Furthermore, only one study (Fraile et al. 2013)

consults experts to create the domain knowledge for the experiment. Finally, the

majority of the studies perform the real-life testing only for exploratory purposes.

2.3. Classes of properties 63

Quantitative evaluation

The factual demonstration of proposed planning approaches is covered by the

class of Quantitative evaluation. In fact, this class deals with the feasibility of an ap-

proach expressed through an evaluation of the performance of the adopted plan-

ning technique. The analysis of primary studies helps to define the following as-

pects of interest for a technical evaluation of planning for ubiquitous computing.

• Technical configuration refers to the configuration of the technical setting in

which tests are conducted. Five primary studies (Kotsovinos and Vukovic

2005, Vukovic et al. 2007, Bidot et al. 2011, Kaldeli et al. 2012, Milani and Pog-

gioni 2007) or about 40% of the classified studies reveal the technical setting

in which the respective approach is deployed and tested.

• Algorithmic configuration deals with the configuration of the planning al-

gorithm used to run the approach. The cases of a planning algorithm con-

figured with different runtime properties must be explicitly noted as the

results of the quantitative evaluation depend directly on those configura-

tions. For instance, Kotsovinos and Vukovic (2005) run the TLPlan planner

in the mode of breadth-first search without knowledge on search control,

while Kaldeli et al. (2012) use a random branching strategy during constraint

solving with halting the search after a maximum number of backtracks.

• Problem specification and performance involves the need for specification of a

particular planning problem used to produce a concrete and suggested per-

formance result of the approach. The computational complexity of a planning

problem is usually a function of the number of domain actions and/or meth-

ods (Vukovic et al. 2007, Bidot et al. 2011, Kaldeli et al. 2012, Pajares Ferrando

and Onaindia 2013, Marquardt and Uhrmacher 2009a), objects (Kotsovinos

and Vukovic 2005, Vukovic et al. 2007, Mastrogiovanni et al. 2010, Bidot et al.

2011, Georgievski et al. 2013), variables (Kaldeli et al. 2012), rooms (Kaldeli

et al. 2012), the room topology (Milani and Poggioni 2007), the complexity of

the goal (Kaldeli et al. 2012, Milani and Poggioni 2007, Georgievski et al. 2013),

etc. Some studies, such as (Kaldeli et al. 2012), report that the performance of

a planner may not be affected by the number of domain actions as much as

it can be affected by the structure of the domain itself and goal. The struc-

ture of the domain refers to the causal dependencies between actions. These

settings define rather ideal conditions for the evaluation of planners. In addi-

tion to the evaluation in ideal circumstances, there is at least one more case to

be considered that includes failure of an action or a service. The evaluation of

64 2. Systematisation of planning for ubiquitous computing

planners under faulty conditions is considered in several primary studies, such

as (Ranganathan and Campbell 2004, Vukovic et al. 2007, Kaldeli et al. 2012).

• Computational factors and scalability focuses on factors that influence the com-

putational efficiency of a planning technique, and include a worst-case ana-

lysis of the performance of planning systems with and without action con-

tingencies. Influential factors relate to the aforementioned function argu-

ments. The scalability of planning systems for ubiquitous computing envir-

onments can be defined with respect to two factors, namely the size of a domain

and the size of a solution plan. In other words, these two factors influence the

size of space that a planning system searches in. Planning problems of varying

and increasing size of the search space can be created by (1) increasing the ini-

tial state (Kotsovinos and Vukovic 2005, Vukovic et al. 2007, Mastrogiovanni

et al. 2010, Kaldeli et al. 2012, Pajares Ferrando and Onaindia 2013, Milani

and Poggioni 2007, Georgievski et al. 2013), (2) increasing the size of a re-

quest (Vukovic et al. 2007, Kaldeli et al. 2012, Pajares Ferrando and Onaindia

2013, Milani and Poggioni 2007, Georgievski et al. 2013), and (3) increasing the

number of domain actions (Kaldeli et al. 2012). In contrast to point (3), Milani

and Poggioni (2007) show that in environments that support reactive devices,

a higher number of reactive devices (that is, actions) can make the planning

problem easier to solve.5 Finally, the worst-case analysis can be performed

by using randomly generated sets of planning problems. For instance, Mas-

trogiovanni et al. (2010) analyse a worst case by running 100 and 200 itera-

tions of their algorithm over a varying number of randomly generated objects

(cf. neurons), ranging from 1000 to 6000. The number of iterations is related to

the length of the solution. That is, 100 iterations of the algorithm correspond

to the longest sequence of 100 actions. The analysis shows that the complexity

of the worst case is not linear in the number of objects.

Qualitative evaluation

The class of Qualitative evaluation is concerned with the quality of solutions pro-

duced. This type of evaluation might be rather subjective as it may be based primar-

ily on opinions drawn from observations. During the analysis of the primary stud-

ies, we recognise generally two categories of qualitative evaluation, namely an eval-

uation may answer how well a solution plan is created in relation to specific parameters,

and/or howwell a solution plan is created in comparison to the solutions of other approaches.

5Reactive devices represent mandatory choices which results in elimination of many branching points

in the search space.

2.3. Classes of properties 65

Vukovic et al. (2007) analyse their approach in relation to four parameter groups,

such as task specification, application behaviour specification and configuration,

application execution, and unpredictability and failure recovery. Each group con-

tains several parameters each of which takes a particular value. For instance, the

parameter indicating a specification of goal that belongs to the task specification

group can take one of three values from a development perspective, namely manual,

semi-automated, and automated. From a complexity perspective, the same para-

meter can take one of three values as well: easy, moderate, and difficult. Courtem-

anche et al. (2008) validate the quality of their approach by analysing the duration

of plans proposed to a user in relation to their complexity, where the complexity

is represented by the number of parallel actions that need to be carried out by the

user. That is, the duration of a plan is reduced by decreasing the latency between

plan actions due to the parallelism. Bajo et al. (2009) evaluate generated plans in re-

lation to the time spent by nurses to supervise and control patients, the time spent

for false alarms and for direct patient care, and in relation to security. The plan-

ning system may take care of some nurse’s tasks which means more time for the

nurse to carry out other (more important) tasks. The success or efficiency of a plan

is evaluated based on the results obtained for each plan action and the feedback

provided by the nurse that carried out the plan. Moreover, the authors use the re-

lation between the average number of cases retrieved to solve a planning problem

and the average number of replanning runs required to understand the behaviour

of the system. Pajares Ferrando and Onaindia (2013) validate the quality of plans

in relation to two parameters. The first one is the cost of a plan, assuming that ac-

tions are associated with a non-negative value, while the second one is the number

of time steps of the plan, assuming that at each time step several actions can be ex-

ecuted in parallel. Fraile et al. (2013) evaluate the “advance in a plan” in relation

to the sum of the “advances” achieved for each of the actions in the plan. Milani

and Poggioni (2007) provide a qualitative analysis of plans in relation to a set of

reasoning patterns of their planner. They distinguish four patterns, namely neglec-

tion, avoidance, exploitation, and prevention. In the neglection pattern, the planner

does not take the presence of reactive device into account. This attitude has neither

positive nor negative influence on the plan, but it has a side effect of an action not

included in the solution. In the avoidance pattern, the planner inserts actions in

the plan so as to avoid triggering of specific reactive devices which may prevent

reaching the goal. In the exploitation pattern, the planner executes actions whose

effect is to trigger specific reactive devices. In the prevention pattern, the planner

intentionally activates reactive devices and prevents situations in which the search

space would be infeasible.

Several primary studies compare their approaches with others qualitat-

66 2. Systematisation of planning for ubiquitous computing

ively. Vukovic et al. (2007) use the aforementioned parameter groups to compare

their approach with a legacy application framework. The authors assume that such

framework has fixed contextual dependencies, uses a “traditional application de-

velopment strategy”, and adopts “available application design toolkits and context

middleware solutions”. The way of assigning values for each parameter to both

approaches is undefined. Pajares Ferrando and Onaindia (2013) use the two para-

meters (cost and number of time steps) to compare their approach with a tradi-

tional multi-agent planning system (with no argumentation mechanism for reas-

oning about context information). Fraile et al. (2013) use the “advances” of tasks

to compare their system before and after its application. For instance, if the task

is “control of medication intake”, then a sensor is used to weigh the pill container

and to inform the system about the medication intake. If the weight stays the same

when a medication should have been taken, then there is an anomaly (an anomaly is

measured in relation to the number of episodes of the abnormal patient behaviour).

Usability evaluation

The ISO 9241-11 standard defines usability as “the extent to which a product can

be used by specified users to achieve specified goals with effectiveness, efficiency

and satisfaction in a specified context of use”.6 Usability testing provides a funda-

mental method to evaluate such extent of products and systems (Wichansky 2000).

It is also acknowledged that usability testing should be an essential phase in the de-

velopment of ubiquitous computing environments (Kim et al. 2003). Therefore, the

class of Usability evaluation deals with testing and evaluating the usability of plan-

ning systems particularly adopted in ubiquitous computing. Table 2.4 shows that

there is a limited number of primary studies that take usability into account. This

situation presents a clear gap in the understanding of usability requirements for

planning systems, and on how to systematically evaluate usability. Our ambition

is not to fill this gap, but to provide initial guidelines based on practices in primary

studies. The basic steps of usability evaluation methodology could be as follows.

• Determine users. A planning system may have many distinct user groups such

that each group may have its own goals with varying levels of effectiveness,

efficiency and satisfaction. For instance, Kaldeli et al. (2012) identify two

user groups with contrasting characteristics, a group of elderly and disabled

people, and a group of young people who are technologically savvy. Bajo

et al. (2009) identify nurses as a targeted group of users, while Sando and

Hishiyama (2011) do not specify the users of focus.

6http://en.wikipedia.org/wiki/ISO_9241

http://en.wikipedia.org/wiki/ISO_9241

2.3. Classes of properties 67

• Determine user goals. Determining the user goals is a rather difficult step as it

is unclear how to select the user goals important for a given problem. Kaldeli

et al. (2012) use the term ‘dimensions’ to define the focus of their interest over

users. We describe the following user goals based on the dimensions provided

in (Kaldeli et al. 2012).

– In ubiquitous computing environments, acceptability refers generally to

the attitude of users towards the proposed solution and adopted techno-

logy. In (Kaldeli et al. 2012), acceptability comprises the attitude of users

towards the importance of domotic technology, automation of tasks, and

privacy. Sando and Hishiyama (2011) use several items, such as context-

sensitive support, for the evaluation of the planner, and for each such

item users score the level of importance.

– Learnability refers to the process of gaining understanding about how to

use a system. In (Kaldeli et al. 2012), learnability is represented by the

amount of effort users have to make in order to understand the function-

alities of the system, and to be able to use it.

– System effectiveness is related to the satisfaction of users with the overall

system. The system effectiveness can be an aggregate of several compon-

ents, as in (Kaldeli et al. 2012) where the components are virtual envir-

onment effectiveness, user interface effectiveness, the support for com-

plex goals, etc. Bajo et al. (2009) define two relations for the satisfaction of

nurses with the system. The first relation is between the average satisfac-

tion degree of a nurse with respect to the plan success and the number of

retrieved cases to provide such plan. The second relation is between the

number of retrieved cases, the average satisfaction degree of a nurse and

the average number of replanning runs per plan. Sando and Hishiyama

(2011) allow users to score their satisfaction level for each item in the

evaluation form, and use a correlation coefficient between the level of

importance and the level of satisfaction to evaluate the effectiveness of

the planning system.

– Efficiency refers to the time that a system takes to perform assigned tasks.

In (Kaldeli et al. 2012), the efficiency is measured according to the user’s

assessment of the time required to complete simple operations and com-

plex goals.

• Determine the context of use. In (Kaldeli et al. 2012), the context of use is determ-

ined by the “diverse requirements, abilities and technological knowledge” of

targeted users within the project whose context is a smart home. In (Bajo et al.

68 2. Systematisation of planning for ubiquitous computing

2009), the context of use is determined by the profiles of nurses and patient

needs, while in (Sando and Hishiyama 2011), the context of use is determined

by the needed ingredients that users have to collect.

• Determine the levels of importance, effectiveness, efficiency and satisfaction. This is

a challenging step as it requires determination of the ‘right’ levels, but also a

crucial step as it defines the actual usability of a planning system (or a ubiquit-

ous system in general). Kaldeli et al. (2012) use a scale from 0 to 4, while Sando

and Hishiyama (2011) use levels from 0 to 5. Bajo et al. (2009) use an average

satisfaction degree expressed in percentage.

2.4 Remarks

We observe that there are a number of interesting and challenging issues which

remain still open. We are urging attention to focus and precision of defining future

planning problems in ubiquitous computing. A study claiming to use planning

should clearly define the planning problem being solved. We recognise a neces-

sity for reporting more details on the translation of ubiquitous computing environ-

ments into planning problems, and on the actual representation of such problems.

The use of ambiguous terms certainly leads to misunderstandings and misinter-

pretations of an approach. Further, preferences, spatial and temporal properties

represent topics that are insufficiently investigated in the existing approaches. With

respect to the handling of uncertainty, we find that a formalisation of the plan ex-

ecution semantics is needed together with a sound and complete algorithm able to

monitor ubiquitous computing environments and to perform valid plan repairs at

execution time. We also point out that modelling domain knowledge automatically

can drastically foster the understanding of ubiquitous computing environments,

and generally, the use of planning for ubiquitous computing. There is space for

analysis of the constructs needed to support expressivity, and the effect of their use

in actual environments. Currently, little or nothing is known about this subject.

Implementation-wise, we need planning systems that can be easily plugged into a

complex ubiquitous computing system with little effort. Therefore, future planning

systems should pay attention to their capabilities to interoperate with other soft-

ware components, to be distributed, to scale, and to naturally support the evolution

of ubiquitous computing. Finally, we need studies in which information of practical

matters is reported. Well-defined quantitative, qualitative and usability evaluations

are more than desired so as to better understand all dimensions that affect the use of

planning for ubiquitous computing. Nevertheless, we really urge to apply planning

to real ubiquitous computing environments.

Chapter 3

Model and complexity of planning for
ubiquitous computing

Now imagine planning for ubiquitous computing as the target of observation.

While we indeed identify an extensive set of classes and give all sorts of ex-

planations, we cannot see the dots connecting everything and making the whole

that achieves the (research) purpose.

In ubiquitous computing, one usually uses various kinds of models, such as en-

vironment models, planning models, architecture models, data models, and simu-

lation models, to understand some problem at hand. Though each type of model

deals with a specific aspect, all models have a common inception point with one

purpose – to represent problems of the domain and their solutions. However, we

have seen in Chapther 2 that there are many issues related to planning for ubiquit-

ous computing that remain vaguely defined and leave space for misinterpretations.

Some sort of a meta-model is needed that represents the inception point, that is, a

model that organises all aspects of planning for ubiquitous computing and can be

easily and clearly understood.

Let us go back to our target for observation and think about problems that plan-

ning is trying to solve in ubiquitous computing in terms of how difficult they are

or the amount of resources they require. The knowledge about the complexity of

planning in general helps in characterising the runtime behaviour of planning tech-

niques for specific cases. More specifically, knowing the complexity of planning in

specific domains gives an opportunity to outline the speed and length of plans gen-

erated by some techniques in those domains. Theoretical analysis may also expose

some sources of hardness in a particular domain (Helmert 2003).

A wide range of planning domains have been suggested in ubiquitous com-

puting, which makes the complexity analysis practically a difficult task. A better

approach is to have a single and general ubiquitous computing planning domain

in which we can analyse the complexity of planning. However, to the best of our

knowledge, there are no domain definitions in the literature from which one can

derive a general one. On the other hand, the descriptions, scenarios and actual en-

vironments in existing studies can help in generalising a ubiquitous computing do-

70 3. Model and complexity of planning for ubiquitous computing

main.

In the following, we fix our target for observation by introducing a model spe-

cification, and formally defining a general ubiquitous computing planning domain.

In order to develop a model specification of planning for ubiquitous computing, we

use a widely used practice in Computer Science, called conceptual modelling (Embley

and Thalheim 2011). In addition to providing a better overview of the domain of

planning for ubiquitous computing, the model specification can orient the design

and development of future systems due to model’s commitment to clustering in-

formation according to its topic (Jeusfeld et al. 2009). It can be also used by the ubi-

quitous computing community to design enhanced and more intelligent solutions.

Finally, having a well-defined ubiquitous computing planning domain provides

means to characterise mathematically and discuss the complexity of planning prob-

lems in ubiquitous computing.

3.1 Conceptual modelling

Conceptualmodelling is widely used in the field of Computer Science to elicit high-

quality specifications of systems from some domain (also application domain or

subject domain) (Thalheim 2010). It is defined as “the activity of formally describ-

ing some aspect of the physical and social world around us for purposes of under-

standing and communication” (Mylopoulos 1992). The structuring and inferential

facilities supported by conceptual modelling are psychologically grounded because

the resulting descriptions are intended for humans (in opposition to machines).

The description of situations from the real world should stand for the actual

state of affairs of the domain under consideration (Guizzardi 2005). For example,

if a planning problem is said to represent some problem from a ubiquitous com-

puting environment, then this should reflect the actual state of affairs holding in

reality. Abstractions of some part of the real world are created using concepts,

which abstract representations of certain aspects of entities that exist in that do-

main (Guizzardi 2005, Jeusfeld et al. 2009). Concepts can be explicitly defined or

implicitly assumed based on some common sense within the domain or a sub-field

of Computer Science (Thalheim 2011). Conceptualisation gathers a set of concepts

and relationships among them which are used to abstract away the state of affairs

in the domain (Thalheim 2010, Guizzardi 2005). The abstraction of some part of

reality according to a conceptualisation is called a conceptual model (Guizzardi 2005),

domain model (Larman 2004), or information model (Jeusfeld et al. 2009). As abstract

entities, conceptual models need to be represented in a concrete artefact in order to

be further communicated and analysed. The representation of a conceptual model

is called a model specification, which, in turn, is described using a modelling language.

3.1. Conceptual modelling 71

Conceptualisation

Conceptual

model

Modelling

language

Model

specification

used to

compose
instance of

used to

compose
instance of

represented by

interpreted as

represented by

interpreted as

Figure 3.1: Relations between conceptualisation, conceptual model, model specification and modelling

language (adopted from (Guizzardi 2005)).

The relation between conceptualisation, conceptual model, model specification, and

modelling language is shown in Figure 3.1, which is adopted from (Guizzardi 2005).

In addition to concepts, conceptual models are constructed using structural rela-

tionships, such as aggregation, generalisation, exhibition, etc. (Thalheim 2010). For

example, aggregation is used to characterise that a concept consists of some other

concept, or generalisation enables to construct hierarchies of concepts based on in-

heritance assumptions.

Conceptual model specifications are mainly used as an intermediate artefact

for system development (Thalheim 2011). In fact, a model specification is a de-

scription of the domain independent of specific system design and implementation

choices (Guizzardi 2005). Model specifications are used by other stakeholders of

the domain, such as software developers, learners, business users, and evaluators.

That is, the specifications are used to support understanding, problem-solving, and

communication among the stakeholders. Once there is a sufficient level of under-

standing and agreement about the domain, the conceptual model specification can

be used as a blueprint for the further phases of the development process of the sys-

tem.

Conceptual models use a modelling language as a carrier for specifications and

72 3. Model and complexity of planning for ubiquitous computing

are restricted by the expressiveness of the carrier (Thalheim 2011). A common

choice as a language for conceptual modelling is the Unified Modelling Language

(UML), which deals with the construction of structural models (Booch et al. 2005).

The UML fragment that is mostly used for conceptual modelling are class diagrams,

e.g., (Larman 2004, Guizzardi 2005, Walsh et al. 2007, Osis et al. 2007). Class dia-

grams are intended to represent the static structure of a domain. Generally, classes

represent concepts and associations represent relationships between the concepts.

While classes may contain attributes, method signatures are not allowed since meth-

ods are purely related to software design (Larman 2004).

The approach to conceptual modelling includes several activities (or acts), such

as understanding, conceptualisation, abstraction, definition, construction, refine-

ment, and evaluation (Thalheim 2010). The understanding act refers to the reason-

ing within the domain and results in preliminary data that can be used for the de-

velopment of concepts. The conceptualisation act involves formulation of concepts

and representation of those in the chosen language. The abstraction act outlines the

main problem that must be supported by the system to be developed and abstract

from unnecessary details. The definition act refers to defining the concepts used

to develop the model specification in such a way that all ambiguities are removed.

The construction act is the step that deals with the creation of the model specifica-

tion by organising and linking concepts. The refinement act is an iterative step that

improves the created specification by enriching or elaborating more the concepts

and relationships. The final act is based on qualitative characteristics usually given

in an abstract form for the entire model or parts of it.

3.2 Model specification

Following the preceding discussion, we here develop a model specification for

the domain of planning for ubiquitous computing. For the understanding act, we

can refer to the knowledge in Chapter 2. Thus, with the classes of properties of

planning for ubiquitous computing in hand, we can focus on the conceptualisation.

Since the classes represent generic properties or abstractions of aspects relevant to

planning for ubiquitous computing, we map most of the classes to concepts. Con-

sidering the abstraction and definition acts, we derive concepts directly from the

definitions of classes in Chapter 2. Table 3.1 shows the concepts and their defini-

tions.

3.2. Model specification 73

Table 3.1: Concepts derived from classes in Chapter 2.

Concept Definition

Environment

Defined by the existence and interaction of artefacts,

people, and robots in a part of the physical world.

Objects, people and robots all have some relations with

time and space, and the world itself is characterised by

some degree of uncertainty. The environment takes on

meaning and purpose only in the context of people’s

needs.

Behavioural input
People’s desires according to which the environment

should behave.

Request
The model of desires specified by people (or software

components) that must be satisfied by the environment.

Declarative goal
A declarative description of a desired state of the

environment.

Procedural goal
A set of procedures specifying how to accomplish a

desired objective.

Preference

Individual desires towards the behaviour of the

environment which should be satisfied as much as

possible.

Behavioural output
The way in which the information that changes the

environment is represented and produced.

Device operation A functionality that some device can perform.

Human action A behaviour to be performed by a person.

Robot action
A behaviour of a robot performed in order to achieve

some goal.

Application service A purposeful behaviour of an application.

Information service

A knowledgeable behaviour performed by collecting,

managing and reasoning over data coming from

distributed sources.

Physical property
A situation of a person, object or a place with respect to

space and time.

Spatial property
A physical information that relates people and objects one

another and with space.

Temporal property
The information used to organise the environment with

respect to time.

Uncertainty
Unexpected events, changes and failures of behavioural

outputs, and people behaviour over time.

74 3. Model and complexity of planning for ubiquitous computing

Unexpected event
An event that happens in an exceptional and unpredicted

situation.

Action contingency
The state of an operation (action or service) in which it

does not work correctly during execution.

Partial

observability

The imperfectness and incompleteness of information

about the environment.

Planning technique The technique used to realise planning.

Planning problem The planning problem that needs to be solved.

Problem

representation
The way in which a planning problem is represented.

Problem definition
The process of composing and generating a planning

problem.

Expressiveness

constructs
(Required or preferred) expressive power of planning.

Language
The syntax used to express the properties and other

specific knowledge about the environment.

Monitoring and

recovery
The way planning deals with uncertainty.

Interpretation

The practical aspects of the domain, including

demonstration of applicability, technical and qualitative

evaluation, and examination of user acceptance and

satisfaction.

Demonstrations
The ways used to illustrate the complexity and to evaluate

the feasibility of planning.

Quantitative

evaluation

The feasibility of planning through an evaluation of the

performance of the adopted planning technique.

Qualitative

evaluation

The quality of plans produced by planning techniques by

evaluating a plan in relation to some parameters or in

comparison to plans created by other techniques.

Usability

evaluation

The testing and evaluating the extent to which planning

can be used by users to satisfy their desires.

Beside the concepts derived from the classes from Chapter 2, the domain of plan-

ning for ubiquitous computing involves several other relevant concepts discussed

implicitly in the previous chapter and also mentioned in the definitions in Table 3.1.

Looking at the definition of the Environment concept, one notices that artefacts,

people and robots can be found in ubiquitous computing environments. Artefacts

are objects embedded or abstractions present in the environments, such as devices,

portables, applications, and information sources. Therefore, we define concepts for

3.2. Model specification 75

Table 3.2: Additional concepts and their definitions.

Concept Definition

Artefact
Objects embedded or abstractions present in the

environment.

Device
A piece of equipment with limited capabilities to interact

autonomously.

Portable A small item that can be carried by a person or a robot.

Application A piece of software that provides some functionalities.

Source
A document or software component that provides

information.

Person An individual within the environment.

Robot
An autonomous and intelligent to a certain degree device

able to perform various tasks.

Goal A description that represents the planning objective.

State
A description representing the current state of the

environment.

(Planning) Domain
A description that represents behavioural output or other

domain-specific knowledge.

Plan

A description representing the solution to some planning

problem in terms of representatives from the behavioural

output.

artefacts, people, and robots. In addition, Definition 2.3 describes that a typical

planning problem consists of three entities, namely a goal, state, and domain (a set

of actions). A solution to such a problem is called plan. We conceptualise these

entities too. Table 3.2 shows these additional concepts and their definitions.

With the conceptualisation accomplished, we can now construct the specifica-

tion of the conceptual model. We specify the concepts and their relationships in

UML. Figure 3.2 shows the class diagram representing the conceptual model of

planning for ubiquitous computing. With this specification, we intend to have a

clear understanding of what a ubiquitous computing environment is composed of

in order to model the planning problem determining the environment.

The Environment is composed of several concepts, namely the Behavioural in-

put, Physical property, Behavioural output, Artefact, Person and Robot. All these

concepts have a relationship to Environment specified as a composite association in

UML. Each such an association has a multiplicity factor, which denotes the relation

between the respective concept and its instances contained in the environment. For

example, we may say that there is strictly more than one person in the environment,

76 3. Model and complexity of planning for ubiquitous computing

E
n

v
iro

n
m

e
n

t
B

e
h

a
v

io
u

ra
l

in
p

u
t

A
p

p
lica

tio
n

se
rv

ice

R
o

b
o

t a
ctio

n

H
u

m
a

n
 a

ctio
n

D
e

v
ice

 o
p

e
ra

tio
n

B
e

h
a

v
io

u
ra

l

o
u

tp
u

t

T
e

m
p

o
ra

l

p
ro

p
e

rty

S
p

a
tia

l p
ro

p
e

rty

P
h

y
sica

l

p
ro

p
e

rty

U
n

ce
rta

in
ty

P
ro

ce
d

u
ra

l g
o

a
l

D
e

cla
ra

tiv
e

 g
o

a
l

P
re

fe
re

n
ce

R
e

q
u

e
st

In
fo

rm
a

tio
n

se
rv

ice

S
o

u
rce

A
p

p
lica

tio
n

D
e

v
ice

P
o

rta
b

le

A
rte

fa
ct

R
o

b
o

t

P
e

rso
n

S
ta

te
G

o
a
l

D
o

m
a

in

P
la

n
n

in
g

p
ro

b
le

m

P
ro

b
le

m

re
p

re
se

n
ta

tio
n

P
la

n

L
a

n
g

u
a

g
e

P
ro

b
le

m

d
e

fin
itio

n

M
o

n
ito

rin
g

 a
n

d

re
co

v
e

ry

In
te

ro
p

e
ra

tio
n

E
x

p
re

ssiv
e

n
e

s

D
e

m
o

n
stra

tio
n

Q
u

a
n

tita
tiv

e

e
v

a
lu

a
tio

n

Q
u

a
lita

tiv
e

e
v

a
lu

a
tio

n

U
sa

b
ility

e
v

a
lu

a
tio

n

U
n

e
x

p
e

cte
d

e
v

e
n

t

P
a
rtia

l

o
b

se
rv

a
b

ility

A
ctio

n

co
n

tin
g

e
n

cy

P
la

n
n

in
g

te
ch

n
iq

u
e

1
..*

0
..*

e
v
a
lu

a
te

s

1
..*

0
..*

0
..*

1
..*

1

0
..*

1
..*

1
..*

1

a
d
a
p
ts

h
a
s

re
p
re

s
e
n
ts

re
p
re

s
e
n
ts

re
p
re

s
e
n
ts

re
p
re

s
e
n
ts

a
s
s
e
s
s
e
s

e
x
p

la
in

s

a
s
k
s

h
a
n
d
le

s

m
o
n
ito

rs

u
s
e
s

u
s
e
s

o
u
tp

u
ts

u
s
e
s

h
a
s

s
u
p
p
o
rts

h
a
n
d
le

s

p
ro

d
u

c
e

s

a
c
c
e
p
ts

h
a
s

h
a
s

p
e
rfo

rm
s

e
x
e
c
u
te

s

p
ro

v
id

e
s

p
ro

v
id

e
s

e
x
e
c
u
te

s

ta
k
e
s
 in

ta
k
e
s
 in

is
s
u
e
s

p
ro

v
id

e
s

h
a
s

h
a
s

F
ig
u
re
3
.2

:
U

M
L

class
d
iag

ram
sp

ecify
in

g
th

e
co

n
cep

tu
al

m
o
d
el

o
f
p
lan

n
in

g
fo

r
u
b
iq

u
ito

u
s

co
m

p
u
tin

g
.

3.2. Model specification 77

but that the environment might not have a robot, or it may have several robots. The

concepts that have specialised sub-concepts are connected with a generalisation re-

lationship in UML. For example, Artefact is a general representation for Source,

Application, Device, and Portable. An important dimension of the model specific-

ation covers the relationships which denote that two concepts are linked to each

other or combined logically into some aggregation. These concept relationships are

represented by associations in UML. For example, Artefact has Physical property,

or Person performs Human action and provides Behavioural input.

Once the environment concepts and their relationships are clear, we can pro-

ceed further to the construction of the part related to planning, and to the estab-

lishment of its relation to the environment-related concepts. From Definition 2.3,

we know that a planning problem is composed of a goal, state, and domain. Thus,

the composite associations between the respective concepts. While the composi-

tions of the domain and state have a multiplicity factor of one, this factor for the

composition relationship of the goal is strictly greater than one (the goal may be a

set of states, for example). The concept of Problem definition produces a Planning

problem. It uses a Problem representation that has some Expressiveness and uses

a modelling Language. A principal concept that aggregates all these concepts is

the Planning technique. That is, a Planning technique supports some Problem rep-

resentation, and handles a Problem problem. The Planning technique then outputs

a Plan, if one exists. Moreover, the Planning technique uses some Monitoring and

recovery technique that handles Uncertainty associated with the Environment. The

main correlation between the Environment and a Planning problem is established

by the Problem definition. The Problem definition accepts a description of the Envir-

onment and produces a Planning problem. More specifically, the Goal represents the

Behavioural input, the Domain represents the Behavioural output and Preference,

and the State represents the rest of concepts composing the Environment. The Plan,

which solves a specific planning problem, adapts the Environment according to the

Goal.

Having a correlation between planning and a ubiquitous computing environ-

ment, we go further and supplement the model specification with concepts relev-

ant to the use and application of planning. The main concept is represented by

the Interpretation class. Generally, this concept explains the Environment. In fact,

it represents a generalisation of the Usability evaluation, Demonstration, Quant-

itative evaluation, and Qualitative evaluation concepts. Usability evaluation asks

people within the environment (that is, Person) questions and demonstrates the

level of effectiveness of and satisfaction with planning in the ubiquitous computing

environment. Qualitative evaluation assesses the quality of a Plan, and Quantitative

evaluation evaluates the performance of the Planning technique.

78 3. Model and complexity of planning for ubiquitous computing

There are several concepts, such as Unexpected event and Action contingency,

that can be further associated with other concepts of the Environment. For example,

Behavioural output has an Action contingency. We do not show these associations

in order to keep the model specification clearer.

3.3 Complexity

Planning techniques are usually evaluated on a set of benchmark domains,

where benchmarks reflect critical aspects of actual applications. However, the ad-

aptation of applications for use as benchmarks usually involves inevitable and often

drastic simplifications (Hoffmann et al. 2006). Even in such a case, to the best of our

knowledge, there is no benchmark domain for applications in ubiquitous comput-

ing. The traditional, but unrealistic way of developing a benchmark is based on

a bottom-up approach by which a domain is artificially created according to some

imaginery scenario for the respective application. Another way is to use a top-down

approach such that actual applications of planning techniques are transformed into

an appropriate domain model (Hoffmann et al. 2006). This approach is possible

only if such applications exist and enough details are available.

Beside the common practice to evaluate planning techniques on problems from

benchmark collections, there is also research conducted on the theoretical know-

ledge about the complexity of planning techniques in general (Bäckström and

Nebel 1995, Bylander 1994, Erol et al. 1994a, 1995), and planning in specific do-

mains (Gupta and Nau 1992, Helmert 2003). It is known that the upper bound for

the complexity of planning in all domains is PSPACE-complete, where the domains

are assumed to be encoded in STRIPS (Erol et al. 1995). Such knowledge helps in

characterising the worst-case behaviour of planning techniques, but also outlining

the speed and length of plans generated by some techniques for specific planning

domains. Theoretical analysis may also help in exposing sources of hardness in a

particular domain (Helmert 2003). For example, let us assume that planning prob-

lems in a domain of smart home with only one robot can be solved in polynomial

time, but with two or more robots the corresponding problem is NP-hard. Then,

we may conclude that one source of hardness is the number of robots.

Since it is impossible to analyse the complexity of every planning domain in ubi-

quitous computing, it makes more sense to look at those domains from a broader

perspective, such as a class. This will enable us to define and analyse a single and

general ubiquitous computing planning problem whose specialisations represent

problems in specific domains. In other words, we are interested in planning tasks

as structures that are characteristic to these domains, and not as encodings in pro-

positional logic.

3.3. Complexity 79

In order to define a general ubiquitous computing planning domain, as a first

step, we have to decide which tasks should be part of the domain. As suggested

in (Helmert 2003), one way is to use available domain definitions to gather valid

tasks. In our case, this is impossible because, to the best of our knowledge, there

are no domain definitions available in the literature. The other way is to identify a

set of planning tasks by analysing domain descriptions available in the literature.

Thankfully, we can refer to the primary studies from Chapter 2 and look at those

providing descriptions of domains, scenarios and actual environments.

3.3.1 Analysis of existing domains

For the primary studies we use for the extraction of descriptions of domains,

scenarios and actual environments, we refer to (Georgievski and Aiello 2015b). As

we examine the descriptions, we observe that there are commonalities, but also

differences between the various cases of ubiquitous computing. Most cases share

the following properties, which indeed correspond to the properties of classes and

concepts discussed in previous sections:

• There is a set of predefined locations, which may be connected by doors in such

a way that they form a layout. For example, a kitchen, living room, bedroom,

and bathroom are connected by doors, such as a door leading from the living

room to the kitchen, forming a home.

• There is a set of controllables, which are devices that can be controlled, Con-

trollables can be in a particular state and embedded in some location. For

example, a TV is located in the living room, and currently turned on.

• There is a set of persons, which can be at some location and move through the

layout. For example, a person in a wheelchair moves from the kitchen to the

living room.

• There is a set of robots, which can be at some location, move through the layout,

or perform some simple job at some location. For example, a domestic robot

cleans the kitchen.

• There is a set of portables which can be at some location, moved by a robot or

person, or manipulated by a person. When manipulated, a portable may be

transformed. For example, a medication is taken in or a set of ingredients are

chopped by a person.

• There is a set of sources, such as various sensors, address books, calendars, etc.

80 3. Model and complexity of planning for ubiquitous computing

• There is a set of applications, such as a word processor, e-mail client, navigation

system, etc.

• There is a set of outputs, which can be provided by sources, generated by con-

trollables, or manipulated by applications. For example, a film can be dis-

played on the TV, or a light level can be provided by a natural light sensor.

• The goal is to move portables to the respective final locations, to transform port-

ables to needed forms, to set controllables in desired states, and to generate and

manipulate needed outputs.

There are also differences in terms of the support some domains provide for

certain features:

• A domain may or may not include controllables. In those domains that con-

sider them, the number of controllables is arbitrary.

• All domains involve at least one person, in some the number of persons is

arbitrary.

• There are domains without robots, some with one robot, and domains with at

most two robots.

• Some robots are associated with capacity constraints in terms of the number

of portables they can carry at the same time. For example, a robot’s tray may

have capacity two.

• A domain may or may not include sources. In those domains that consider

them, the number of sources is arbitrary, the source are assumed to be avail-

able upon query, and the number of queries is unlimited.

• A domain may or may not consider applications.

• A domain may or may not involve outputs. If a domain deals with outputs, it

must include controllables, sources, applications, or any combination of those.

There are some features that we do not consider in the definition of our ubi-

quitous computing domain. This is because they relate to outdoor scenarios, or

the information provided for a certain feature is insufficient or ambiguous. We ex-

clude external location points, such as a home address, airport, hospital address,

etc., mobiles other than robots, such as ambulances, cars and helicopters, specific

information, such as access control policies, the concept of preferences, such as a

preference for meal, music preference, room preference, etc., and the notion of time.

There are several sets of actions we extract from the descriptions.

3.3. Complexity 81

• There is a set of actions for controllables, such as switching actions, for example,

to turn on the TV, and setting actions, for example, to set the alarm or open the

curtains.

• There is a set of actions for persons, such asmovement, taking and leaving actions,

for example to go to the kitchen, get chips, move back to the living room and

leave the chips, and handling actions, for example, to chop an ingredient.

• There is a set of actions for robots, such as movement, picking and dropping ac-

tions, for example, to move to the laundry room and collect and deliver laun-

dry to the bedroom, and cleaning actions, for example, to clean the kitchen.

• There is a set of actions for outputs, such as acquiring actions, for example, to

get a contact from an address book, sending actions, for example, to send an

e-mail, and performing actions, for example, to display a film on the TV.

3.3.2 Ubiquitous computing task and domain

As we have seen in Section 2.1, planning relies on the concept of state model,

which is defined over a state space and associated with a single initial state, a non-

empty set of goal states, and a set of actions that deterministically map each state to

another one (see Definition 2.1). Then, solving a planning problem (or task) means

finding a sequence of actions that maps a specified initial state into some goal state.

We first define a ubiquitous computing task, which is later mapped into a state

model using a domain we call Ubiquitous computing.

₃.₁ Definition (Ubiquitous computing task). A ubiquitous computing task TUC is a

19-tuple 〈L,C, I, P,D,E,O,H,R, λ0, ι0, ω0, cap, layout, PG, λG, CG, ιG, ωG〉, where

• L is a finite set of locations,

• C is a finite set of controllables such that each c ∈ C has a state transition function

τc : Ic → Ic, where Ic is a finite set of internal states for c. We denote the set of all

controllable states as I .

• P is a finite set of portables, where a portable may have a transformation function

µp : P → P ,

• D is a finite set of available sources,

• E is a finite set of applications,

• O is a finite set of outputs,

82 3. Model and complexity of planning for ubiquitous computing

• H is a finite set of persons,

• R is a finite set of robots,

• λ0 : (C ∪ P ∪H ∪R)→ L is the initial location function,

• ι0 : C → I is the initial controllable state function,

• ω0 : ((C × i0) ∪D ∪ E)→ O is the initial output function,

• cap : R→ N is the robot capacity function,

• layout : (H ∪ R) → P(L × L) is the layout function, which is symmetric and

irreflexive,

• PG ⊆ P is the set of goal portables,

• λG : PG ∪H ∪R→ L ∪H ∪R is the goal location function,

• CG ⊆ C is the set of goal controllables,

• ιG : CG → I is the goal controllable state function,

• ωG : ((CG × iG) ∪D ∪ E)→ O is the goal output function.

Sets L,C, I, P,D,E,O,H,R are disjoint. Controllables, portables, persons and

robots have a specified initial location. Controllables are static, thus they remain in

their initial location. Persons and robots are initially unloaded, thus portables are

not associated with them at the beginning. The capacity function bounds the num-

ber of portables a given robot can carry at the same time. The layout function spe-

cifies paths for each robot and person. The pairs (L, layout(H)) and (L, layout(R))

are undirected graphs for all h ∈ H and r ∈ R, respectively.

Before we can define Ubiquitous computing, we have to formalise the concept

of planning domain which we adopt from (Helmert 2003).

₃.₂ Definition (Planning domain). A planning domainD is a function that maps words

over some encoding language to (planning) state models. Aword T that is part of the domain

of D is called a planning task of D.

We can now define Ubiquitous computing. We use the notation f ⊕ (a′, b′) for

functional overloading, that is, function f ′ with f ′(a′) = b′ and f ′(a) = f(a) for all

a 6= a′.

3.3. Complexity 83

₃.₃ Definition (Ubiquitous computing domain). Given a ubiquitous computing task

TUC , ubiquitous computing is a planning domain such that maps TUC to a planning

state model as follows.

The set of states consists of triples (λ, ι, ω) of current location function

λ : (H ∪ R ∪ P) → L ∪ R, the current controllable state function ι : C → I ,

and the current output function ω : ((C × ι) ∪D ∪ E)→ O.

The initial state is given by the initial location, initial controllable state, and initial

output functions. The set of goal states consists of those states in which the current location

of all goal portables matches their goal location, the current state and output of each goal

controllable matches its goal controllable state and output, respectively.

The set of actions consists of four subsets of actions. The first subset is called con-

trollable and consists of switching actions turnc,i, which turn controllable c to state

i, and setting actions setc,i, which cause controllable c to reach state i. The second

set of actions is called robotic and consists of movement actions mover,l, which move

robot r to location l, picking actions pickupr,p, which cause robot r to get portable p,

dropping actions dropp, which cause portable p to be put down by the robot currently

carrying it, and cleaning actions cleanr,l, which cause robot r to clean dust (that is, a

portable) from location l. The third subset is called personal and consists of daily actions

handleh,p, which instruct person h to handle portable p, and moveh,l, which suggest

person h to move to location l. The last subset is called informational and consists of

acquiring actions getd,o, which query source d for output o, sending actions sendo, which

send output o, performing actions performc,o, which use controllable c to perform output o.

The action turnc,i is defined in all states (λ, ι, ω) such that λ(c) = λ0(c), ι(c) ∈ Ic, and
there exists τc(ι(c)) = i. Its application results in state (λ, ι′ = ι ⊕ (c, i), ω). Other

actions of the controllable set are defined analogously.

The action mover,l is defined in all states (λ, ι, ω), where (λ(r), l) is part of the lay-

out of r. Its application results in state (λ′ = λ⊕ (r, l), ι, ω).

The action pickupr,p is defined in all states (λ, ι, ω) such that λ(r) = λ(p) and

|{p ∈ P | λ(p) = r}| < cap(r). Its application results in state (λ′ = λ⊕ (p, r), ι, ω).

The action dropp is defined in all states (λ, ι, ω) such that λ(p) ∈ R. It results in

state (λ′ = λ⊕ (p, λ(λ(p))), ι, ω).

84 3. Model and complexity of planning for ubiquitous computing

The action cleanr,l is defined in all states (λ, ι, ω) such that λ(r) = l, for all h ∈ H ,

λ(r) 6= λ(h), and there exists p ∈ P such that λ(p) = l. Its application results in state

(λ′ = λ⊕ (p, r), ι, ω′ = ω ⊕ (l, λ(p)).

The actions takeh,p, moveh,l and leavep are defined analogously to robotic actions

mover,p, pickupr,p, and dropp, respectively. The action handleh,p is defined in all states

(λ, ι, ω) such that λ(p) = h and there exists µ(p) ∈ P . Its application results in state

(λ′ = λ⊕ (h, µ(p)), ι, ω).

The action moveh,l is defined in all states (λ, ι, ω), where (λ(h), l) is part of the lay-

out of h. Its application results in state (λ′ = λ⊕ (h, l), ι, ω).

The action getm,o is defined in all states (λ, ι, ω) such that either m ∈ D or m ∈ E. Its
application results in state (λ, ι, ω′ = ω ⊕ (m, o)).

The action sende,o is defined in all states (λ, ι, ω). Its application results in state

(λ, ι, ω′ = ω ⊕ (e, ∅)).

The action performc,o is defined in all states (λ, ι, ω) such that λ(c) = λ0(c) and

ι(c) = i is the current state of c. Its application results in state (λ, ι, ω′ = ω ⊕ ((c, i), o)).

3.3.3 Results

Ubiquitous computing can be thought of as an infinite set of planning tasks.

For such a planning domain, we are interested in two decision problems formally

defined as follows.

₃.₄ Definition (PlanEx-UbiquitousComputing). Let TUC be a planning task from Ubi-

quitous computing. The plan existence problem is to decide whether there exists or not a

sequence of actions that maps (λ0, ι0, ω0) into (λG, ιG, ωG).

₃.₅ Definition (PlanLen-UbiquitousComputing). Let TUC be a planning task from

Ubiquitous computing and k ∈ N. The plan length problem is to decide whether there ex-

ists or not a sequence of actions of length at most k that maps (λ0, ι0, ω0) into (λG, ιG, ωG).

We now demonstrate a new property for planning tasks in Ubiquitous comput-

ing, that is, the solutions to such tasks consist of a polynomial number of actions.

₃.₆ Theorem (Membership in NP for PlanLen-UbiquitousComputing). A solvable

Ubiquitous computing task TUC has a solution of length at most p(‖TUC‖), where p is a
polynomial.

3.3. Complexity 85

Proof. To get the length of a solution to a Ubiquitous computing planning task, we

have to consider and analyse all circumstances under which each action from Ubi-

quitous computing is applicable and may therefore be part of the solution. Now,

suppose that TUC is a Ubiquitous computing task as defined in Definition 3.1 and

has a solution. Also, assume that ‖TUC‖ = |L|+ |C|+ |I|+ |P |+ |D|+ |E|+ |O|+
|H| + |R|. We go through each set of actions separately. Taking the set of control-

lable actions, we get that switching or setting a controllable from one state to another

requires one action per state, which bounds the number of controllable actions by

|C| · |I|, or O(‖TUC‖2). The discussion on the next set of actions, that is, robotic

actions, can be supported by the complexity analysis of planning in Transport do-

mains (Helmert 2003). Each portable needs to be moved to a final location at most

once, which bounds the number of picking actions by |L| · |P |, or O(‖TUC‖2), and

analogously for the number of dropping actions. Cleaning of each location bounds

the number of cleaning actions by |L|, or O(‖TUC‖). A robot should not visit a

given location twice in between two pickup and drop actions and between the first

and after the last such action, which bounds the number of movement actions by

2(|L| · |P |+ 1) · (|L| · |R|) · (|L| · |R|), or O(‖TUC‖6).
We can apply a similar reasoning to the set of personal actions. If each portable

needs to be moved by a person to a final location at most once and handled at most

once, then the number of taking, leaving and handling actions is bound by (|L|·|P |)·
|P |, or O(‖TUC‖3), each. The visitation of locations for the delivery or handling

of portables is not necessarily limited as in the robot’s case, thus the number of

movement actions is bound by |L| · (|L| · |P |) · (|L| · |H|) · (|L| · |H|), or O(‖TUC‖7).
Finally, considering the last set of actions, acquiring and sending an output re-

quires at most one action each, which bounds the number of acquiring and sending

actions by |D| · |O|, and |E| · |O|, respectively, or O(‖TUC‖2) each. Performing an

output on some controllable requires the controllable to be in the state necessary for

the output to be performed, which in turn requires one action at most. This bounds

the number of performing actions by |C| · |O|, or O(‖TUC‖2).
If we add the bounds together, we get a total upper bound of O(‖TUC‖7), and

therefore p(‖TUC‖).

Since we have showed that the solution to TUC is of length p(‖TUC‖), where p is a

fixed polynomial, then we can use a non-deterministic algorithm to guess and check

the solution in polynomial time. We can therefore state the following corollary.

₃.₇ Corollary (Membership inNP for planning in Ubiquitous computing). The plan

existence problems in Ubiquitous computing are in NP.

Proof. A Ubiquitous computing task TUC has a solution if and only if the task has a

solution of length p(‖TUC‖) given Theorem 3.6. Generating p(‖TUC‖) from TUC is

86 3. Model and complexity of planning for ubiquitous computing

a polynomial-time reduction (Garey and Johnson 1990).

3.4 Summary

Since the main context of the thesis is focused on planning techniques applied to

ubiquitous computing, we defined the concepts and specified a conceptual model

of planning for ubiquitous computing. The main purpose of the model is to ex-

press the meaning of concepts used by the experts to discuss relevant problems in

this domain, and to identify the correct relationships between the concepts. The

model provides a high-level explanation of planning for ubiquitous computing and

it is therefore independent of design and implementation choices. We also defined

a general planning domain for ubiquitous computing. The complexity analysis

provided the first results on the worst-case behaviour of planning techniques when

solving planning problems in this domain. That is, we identified the upper limit of

speed and length of plans. Further analyses may help in identifying the sources of

hardness of planning problems in ubiquitous computing.

Chapter 4

Hierarchical planning revisited

W ith planning techniques, one is able to solve various world’s problems com-

putationally. We have seen that the simplest and classical form of planning

requires an initial state of a ubiquitous computing environment, a goal state, and

some environment’s actions to realise a sequence of actions that, when executed in

the initial state, lead to the goal state. While actions present simple transitions from

a world state to another one, a very common structure we use to understand the

world better is of a hierarchical nature. The ability of planning to represent and

deal with hierarchies is supported by Hierarchical Task Network (HTN) planning, or

hierarchical planning. Hierarchies encompass rich domain knowledge characterising

the world, which makes HTN planning to be very useful, and also to perform well

in real-world domains.

HTN planning breaks with the tradition of classical planning. The basic idea

behind this technique includes an initial state description, a task network as an ob-

jective to be achieved, and domain knowledge consisting of networks of primitive

and compound tasks. A task network represents a hierarchy of tasks each of which

can be executed, if the task is primitive, or decomposed into refined subtasks. The

planning process starts by decomposing the initial task network and continues until

all compound tasks are decomposed, that is, a solution is found. The solution is a

plan which equates to a set of primitive tasks applicable to the initial world state.

Beside being a tradition breaker, HTN planning appears to be controversial as

well. The controversy lies in its requirement for well-conceived and well-structured

domain knowledge. Such knowledge is likely to contain rich information and guid-

ance on how to solve a planning problem, thus encoding more of the solution than

was envisioned for classical planning techniques. This structured and rich know-

ledge gives a primary advantage to HTN planners in terms of speed and scalability

when applied to real-world problems and compared to their counterparts in clas-

sical world.

The biggest contribution towards this kind of “popular” image of HTN plan-

ning has emerged after the proposal of the Simple Hierarchical Ordered Plan-

ner (SHOP) (Nau et al. 1999) and its successors. SHOP is an HTN-based planner

that shows efficient performance even on complex problems, but at the expense of

88 4. Hierarchical planning revisited

providing well-written and possibly algorithmic-like domain knowledge. Several

situations may confirm our observation, but the most well known is the disqualific-

ation of SHOP from the International Planning Competition (IPC) in 2000 (Bacchus

2001) with the reason that the domain knowledge was not well written so that the

planner produced plans that were not solutions to the competition problems (Nau

et al. 1999). Furthermore, the disqualification was followed by a dispute on whether

providing such knowledge to a planner should be considered as “cheating” in the

world of AI planning (Nau 2007).

SHOP’s style of HTN planning was introduced by the end of 1990s, but

HTN planning existed long before that. The initial idea of hierarchical planning was

presented by the Nets of Action Hierarchies (NOAH) planner (Sacerdoti 1975a) in

1975. It was followed by a series of studies on practical implementations and the-

oretical contributions on HTN planning up until today. We believe that the fruitful

ideas and scientific contribution of nearly 40 years must not be easily reduced to

controversy and antagonism towards HTN planning. On the other hand, we are

faced with a situation full of fuzziness in terms of difficulty to understand what

kind of planning style other HTN planners perform, how it is achieved and imple-

mented, what are the similarities and differences among these planners, and finally,

what is their actual contribution to the creation of the overall and possibly objective

image of HTN planning. The situation cannot be effortlessly clarified because the

current literature on HTN planning, despite being very rich, reports little or nothing

at all on any of these issues, especially in a consolidated form.

We aim to consolidate and synthesise a number of existing studies on HTN plan-

ning in a manner that will clarify, categorise and analyse HTN planners, and allow

to make statements that are not merely based on contributions of a single HTN plan-

ner. We also hope to rectify the perception of HTN planning as being controversial

and antagonistic in the AI planning community. This work nevertheless serves as

an extensive evaluation of the current state of the art of HTN planning.

4.1 Methodology

We inspect HTN planning from three different perspectives. The first one fo-

cuses on theoretical models of HTN planning. The second perspective provides

a clarification of different concepts related to the search space, and context for in-

terpretation of HTN planners. The last perspective enables us to go deeper and

beyond dry descriptions about HTN planners by considering a set of functional,

non-functional, and formal properties of planners.

We make use of two inclusion criteria for planners and studies. The inclusion

criterion of planners relies on the inspection of existing literature for suggestions

4.2. Models 89

on HTN planners that have risen to some degree of prominence. For example,

we accept the list of “best-known domain-independent HTN planning systems” as

provided in (Ghallab et al. 2004). In addition to those five suggested planners, we

include two more. The complete list of HTN planners participants in our study is

the following one:1

• NOAH, the first HTN planner emerged in mid-1970s (Sacerdoti 1975b,a),

• Nonlin that appeared one year later (Tate 1976, 1977),

• System for Interactive Planning and Execution (SIPE) and SIPE-2 introduced

in 1984 and 1990, respectively (Wilkins 1991),

• Open Planning Architecture (O-Plan) and its successor O-Plan2 in 1984 and

1989, respectively (Currie and Tate 1991, Tate, Drabble and Kirby 1994),

• Universal Method Composition Planner (UMCP) introduced in 1994 (Erol

1996),

• SHOP and its successor SHOP2 that appeared in 1999 and 2003, respect-

ively (Nau et al. 1999, 2003), and

• SIADEX that emerged in 2005 (Castillo et al. 2005).

The inclusion criterion of studies relies on the theoretical contribution of a study

with respect to HTN planning in general, and theoretical and practical issues of

each chosen planner separately. The criterion is based on the coverage a study gives,

which may include information that ranges from a general discussion of techniques

and approaches, peculiar matters, such as task interactions and condition types,

relevant to our concepts, to properties, such as domain authoring, expressiveness

and competence, that may be a part of the analysis.

4.2 Models

While there are several attempts to formalise a model for HTN planning (Erol

et al. 1994c, Nau et al. 1999, Ghallab et al. 2004, Geier and Bercher 2011), each defines

hierarchical terms appropriately to its underlying theory. In order to provide a basic

understanding of HTN planning, we take these existing theories and generalise a

hierarchical planning model in which we keep definitions of the terms high level.

Further and as needed, we provide specific definitions of the terms characteristic

1Henceforth, we refer only to the most recent version of each planner.

90 4. Hierarchical planning revisited

for the particular hierarchical model. The basic model also determines the focus of

categorisation of hierarchical planning that we propose later.

The HTN planning language is a first-order language that contains several mutu-

ally disjoint sets of symbols. Three of the sets are the following: P is a finite set of

predicate symbols, C is a finite set of constant symbols, and V is an infinite set of

variable symbols. These sets define the basic constructs of a state, that is, predicates.

A predicate consists of a predicate symbol p ∈ P , and a list of terms τ1, . . . , τk. A term

τ is either a constant symbol c ∈ C, or a variable symbol v ∈ V . Each predicate can

be true or false, and a predicate is ground if its terms contain no variable symbols.

We denote the set of all predicates as Q.

We can now define the state with respect to the state model (see Definition 2.1.

A state s ∈ S is a set of ground predicates 2Q in which the closed-world assumption

is adopted.

Characteristic for HTN planning are the notions of primitive and compound

tasks. A primitive task (or primitive name) as an expression tp(τ), where tp ∈ Tp and

Tp is a finite set of primitive symbols, and τ = τ1, . . . , τk are terms. Each primitive

task is represented by a single operator defined similarly to the STRIPS operator.

₄.₁ Definition (Operator). An operator o is a triple (p(o), pre(o), eff (o)), where p(o) is

a primitive task, pre(o) ∈ 2Q are preconditions, eff (o) ∈ 2Q are effects.

The subsets pre+(o) and pre−(o) denote positive and negative preconditions of o,

respectively, and eff−(o) and eff+(o) are negative and positive effects of o, respectively.

As in the STRIPS planning problem, a transition from a state to another one

is accomplished by an instance of an operator whose preconditions are a logical

consequence of the current state. That is, an operator o is applicable in state s, if

pre+(o) ⊆ s and pre−(o) ∩ s = ∅. The application of o to s results in state s[o] =

(s ∪ eff+(o)) \ eff−(o) = s′.

What makes hierarchical planning different from classical planning and a

unique planning technique is the domain-specific knowledge expressed through

compound tasks. A compound task (or compound name) is an expression tc(τ),

where tc ∈ Tc and Tc is a finite set of compound symbols, and τ = τ1, . . . , τk are

terms. We refer to the union of the sets of primitive and compound names as a set

of task names Tn. The following two definitions are further complemented for the

respective model of HTN planning.

₄.₂ Definition (Task network). A task network tn is a pair 〈T, ψ〉, where T is a finite

set of tasks, and ψ is a set of constraints.

Constraints in ψ specify restrictions over T that must be satisfied during the

planning process and by the solution. We refer to a task network over the set of

4.2. Models 91

primitive tasks as a primitive task network. The set of all task networks over Tn is

denoted as TN .

₄.₃ Definition (Method). A method m is a pair 〈c(m), tn(m)〉, where c(m) is a com-

pound task, and tn(m) is a task network.

We can now define the problem in HTN planning.

₄.₄ Definition (HTN planning problem). An HTN planning problem P is a tuple

〈Q,O,M, tn0, s0〉, where

• Q is a finite set of predicates,

• O is a finite set of operators,

• M is a finite set of methods,

• tn0 is an initial task network,

• s0 is the initial state.

From this definition, we can understand another difference that the hierarchical

model has with the classical planning model. Planning is no longer searching for

a sequence of actions that maps an initial state into some goal state, but instead

hierarchical planning searches for a sequence of actions that accomplishes the initial

task network when applied to the initial state. As in classical planning, an operator

sequence o1, . . . , on is applicable in s if there is a sequence of states s0, . . . , sn (also

called a trajectory) such that s0 = s and oi is applicable in si−1 and si−1[oi] = si
for all 0 ≤ i ≤ n. Then, given an HTN planning problem P , a plan is a solution

to P if there exists an operator sequence applicable in s0 by decomposing tn0. The

way of decomposing the initial task network and producing an operator sequence

is defined in the following sections.

Search space

The basic hierarchical model gives only an idea what hierarchical planning con-

sists of. If we wish to acquire a deeper understanding of HTN planning, we have

to look back at its beginnings and representatives. While there are different vari-

ants of HTN planning today, at first glance, this variant distinction seems not that

obvious and comprehensible. We discover that the structure of the search space in

hierarchical planning is not necessarily state based. In fact, there are two structures

of search spaces created by hierarchical planners. Let us intuitively describe each

one.

92 4. Hierarchical planning revisited

The first space structure consists of task networks and task decompositions as

evolutions from one task network to another. Given an HTN planning problem P ,

at the beginning of the search, a task decomposition is imposed on the initial task

network tn0, and the process continues by repeatedly decomposing tasks from a

newly created task network until a primitive task network is produced. A linear-

isation of this primitive task network applicable in the initial state s0 represents a

solution to P .

The second space structure is in essence a subset of the state space. It consists of

explicitly described states restricted by task decompositions. As in classical plan-

ning, the search begins in s0 with an empty plan, but instead of searching for a state

that will satisfy the goal state, the search is for a state that will accomplish tn0. In

particular, if a task from the task network is compound, the task decomposition con-

tinues on the next decomposition level, but in the same state. Otherwise, the task

is executed and the search continues into a successor state. The task in the latter

case is then added to the plan. When there are no more tasks in the task network

to be decomposed, the search is finished. The solution to P is the plan containing a

sequence of totally ordered primitive tasks.

Categorisation of hierarchical planning. The initial task network in the former

case is reduced to a primitive task network that constitutes a solution to the planning

problem. At each point in the space, the task network can be seen as a partially

specified plan until the search reaches the point where the task network is primitive

and represents a solution plan. Thus, we employ the term plan space to refer to this

structure of search space. We refer to HTN planners that search in this plan space

as plan-based HTN planners, and to the model of HTN planning as plan-based HTN

planning. For the obvious reasons, we employ the term state space to refer to the

latter structure of search space. We refer to HTN planners searching in this space

as state-based HTN planners, and to the model of HTN planning as state-based HTN

planning.

4.2.1 Plan-based HTN planning

We draw the formalism of plan-based HTN planning upon the work of (Geier

and Bercher 2011). We complement Definition 4.2 as follows.

₄.₅ Definition (Task network). A task network tn is a triple (T, ϕ, ψ), where

• T is a finite and non-empty set of tasks,

• ϕ : T → Tn labels a task with a task name,

4.2. Models 93

• ψ is a formula composed by conjunction, disjunction or negation of the following sets

of constraints:

– ≺⊆ T × T is a strict partial order on T (irreflexive, transitive, asymmetric),

– 7→⊆ V ×V ∪V ×C is a restriction on bindings of task network variables, and

– `≺⊆ T ×Q∪Q×T ∪T ×Q×T is a partial order on tasks and state predicates.

Since some task name can occur many times in one task network, task labelling

enables identifying uniquely many occurrences of that task name. For example,

tn = ({t1, t2, t3}, {(t1, t′), (t2, t′′), (t3, t′)}, ∅) denotes that the task network consists

of two tasks associated with task name t′ and one task associated with t′′.

A task network tn = (T, ϕ, ψ) is isomorphic to tn′ = (T ′, ϕ′, ψ′), denoted as tn ≡
tn′, if and only if there exists a bijection β : T → T ′, such that

• for all t, t′ ∈ T it holds (t, t′) ∈ ≺ if and only if (β(t), β(t′)) ∈ ≺′,

• for all v1, v2 ∈ V and c ∈ C it holds (v1, v2) ∈ 7→ or (v1, c) ∈ 7→ if and only if

there exist v′1, v
′
2 ∈ V and c′ ∈ C such that v1 = v′1, v2 = v′2 and (v′1, v

′
2) ∈ 7→′

or v1 = v′1, c = c′ and (v′1, c) ∈ 7→′,

• for all t, t′ ∈ T and q ∈ Q it holds (t, q) ∈ `≺ or (q, t) ∈ `≺ or (t, q, t′) ∈ `≺ if

and only if (β(t), q) ∈ `′≺ or (q, β(t)) ∈ `′≺ or (β(t), q, β(t′)) ∈ `′

≺,

and ϕ(t) = ϕ′(β(t)).

₄.₆ Definition (Decomposition). Let m be a method and tnc = (Tc, ϕc, ψc) be a task

network. Method m decomposes tnc into a new task network tnn by replacing task t,

denoted as tnc −→D
t,m

tnn, if and only if t ∈ Tc, ϕc(t) = c(m), and there exists a task

network tn′ = (T ′, ϕ′, ψ′) such that tn′ ≡ tn(m) and T ′ ∩ T 6= 0, and

tnn :=((Tc \ {t}) ∪ T ′, ϕc ∪ ϕ′, ψc ∪ ψ′ ∪ ψD) where

ψD :={(t1, t2) ∈ Tc × T ′ | (t1, t) ∈ ≺c} ∪ {(t1, t2) ∈ T ′ × Tc | (t, t2) ∈ ≺c} ∪
{(q, t1) ∈ Q× T ′ | (q, t) ∈ `≺c} ∪ {(t1, q) ∈ T ′ ×Q | (t, q) ∈ `≺c} ∪
{(t1, q, t2) ∈ T ′ ×Q× T ′ | (t, q, t2) ∈ `≺c}

Given an HTN planning problem P , tnc →∗
D tnn indicates that tnn results from

tnc by an arbitrary number of decompositions using methods from M .

₄.₇ Definition (Executable task network). Given an HTN planning problem P , tn =

(T, ϕ, ψ) is executable in state s, if and only if it is primitive and there exists linearisation

of its tasks t1, . . . , tn that is compatible with ψ and the corresponding sequence fo operators

ϕ(t1), . . . , ϕ(tn) is executable in s.

94 4. Hierarchical planning revisited

₄.₈ Definition (Solution). Let P be an HTN planning problem. A task network tns is a

solution toP , if and only if tns is executable in s0, and tn0 →∗
D tns for tns being a solution

to P .

Intuitively, a problem space is a directed graph in which task networks are ver-

tices, and a decomposition of one task network into another task network by some

method is an outgoing edge, under the condition that the initial task network be-

longs to the graph (similarly to the definition of the decomposition problem space

in (Alford et al. 2012)).

₄.₉ Definition (Plan space). Given a (plan-based) HTN planning problem P , a plan

spacePG is a directed graph (V, E) such that tn0 ∈ V , and for each tn→D tn′: tn, tn′ ∈ V
and (tn, tn′) ∈ E .

4.2.2 State-based HTN planning

We complement Definition 4.2 and 4.3 of the basic hierarchical planning model

as follows.

₄.₁₀ Definition (Task network). A task network tn is a pair (T,≺), where T is a finite set

of tasks, and ≺ is a strict partial order on T (irreflexive, transitive, asymmetric).

A task network tn in state-based HTN planning is less expressive than the one

in plan-based HTN planning. Here, tn does not allow multiple occurrences of a

same task in the partial ordering of tasks.

₄.₁₁ Definition (Method). A methodm is a triple (c(m), pre(m), tn(m)), where c(m) is

a compound task, pre(m) ∈ 2Q is a precondition, and tn(m) is a task network. The subsets

pre+(m) and pre−(m) denote positive and negative precondition ofm, respectively.

A methodm is applicable in state s, if and only if pre+(m) ⊆ s and pre−(m)∩s =
∅. Applying m to s results in a new task network.

₄.₁₂ Definition (Decomposition). Letm be an applicable method in s and tnc = (Tc,≺c)

be a task network. Methodm decomposes tnc into a new task network tnn by replacing task

t, written tnc −→D
s,t,m

tnn, if and only if t ∈ Tc, t = c(m) and

tnn :=((Tc \ {t}) ∪ Tm,≺c ∪ ≺m ∪ ≺D) where

≺D:={(t1, t2) ∈ Tc × Tm | (t1, t) ∈ ≺c} ∪ {(t1, t2) ∈ Tm × Tc | (t, t2) ∈ ≺c}

₄.₁₃ Definition (Solution). Let P be an HTN planning problem. The sequence o1, . . . , on
is a solution to P , if and only if there exists a task t ∈ T0, where tn0 = 〈To,≺0〉, such that
(t, t′) ∈ ≺0 for all t

′ ∈ T0 and

4.3. Concepts 95

• t is primitive and applicable in s0 and the sequence o2, . . . , on is a solution to P in

which the task network is tn0 \ {o1} and the state is s0[o1]; or

• t is compound and there is a task decomposition in s0 such that the sequence o1, . . . , on
is a solution to P in which tn0 →D tn′.

We consider a state space as a directed graph in which a state is a vertex, and a

task decomposition maps to the same state where the corresponding method is ap-

plicable, and an operator application leads to a successor state. A slightly different

approach is presented in (Alford et al. 2012), where the space is a directed graph in

which pairs of state and task network are vertices, and a progression from one pair

to another is an outgoing edge.

₄.₁₄ Definition (State space). Given a (state-based) HTN planning problem P , a state

space SG is a directed graph (V, E) such that s0 ∈ V , and there is a state si and tk ∈ tn
such that

• if tk is primitive, then si[tk] = si+1 such that k = i+1, si, si+1 ∈ V and (si, si+1) ∈
E ; or

• if tk is compound, then tn→D tn′ is a self-transition such that si ∈ V and (si, si) ∈
E .

4.3 Concepts

There is indeed a large body of literature on hierarchical planning, reporting

however vague and ambiguous information on planning concepts and planners es-

pecially in the beginning of the development of the field of HTN planning. The lit-

erature accommodates pitfalls related to the clarity of exploited ideas and concepts,

and how they are adapted for the purpose of HTN planning. We can notice a slight

improvement in clarifications at the time of the appearance of new HTN planners

and the attempts at formalisation.

We clarify this condition by designing and developing a conceptual model re-

lated to the search space of hierarchical planning. Contrary to the hierarchical plan-

ning model, the conceptual model is less formal and describes specific concepts de-

rived from empirical observation. While the descriptions of concepts we provide

are basic and general, they characterise different HTN planners and cover most of

their important features. The concepts are placed within a logical and sequential

design as much as possible. The key concept of the model is the search space to

which other concepts are related and interconnected in various ways. Considering

the approach of conceptual modelling presented in Section 3.1, we construct the

UML model specification shown in Figure 4.1.

96 4. Hierarchical planning revisited

Explicit

condition

Commitment Task

interaction

Task

decomposition

Constraint Constraint

posting

Search space

uses

uses

affects

affects

affects

uses

produces

uses

Figure 4.1: Concepts and their relationships that affect the search space of HTN planners specified in

UML.

4.3.1 Task decomposition

Given a task network tn, a task decomposition chooses a task t from tn and, if t

is primitive and applicable to the current state s, the task decomposition applies t

to s. Otherwise, the decomposition strategy analyses all the methods that contain

t as a part of their definition. Assuming that a set of methods is found, the task

decomposition makes a non-deterministic choice of a methodm, and replaces twith

the task network associated with m. Finally, the task decomposition checks the

newly composed task network against any constraint-related violation and modifies

it, if necessary.

We divide task decompositions into three styles based on the representation of

task networks in terms of task ordering, and the way of forming new task networks

during decomposition. The first one is totally ordered task decomposition (TOTD). It

follows the assumption of total order on task networks so as when a task is de-

composed, the new task network is created in such a way that newly added tasks

are totally ordered among each other and with respect to the tasks of the exist-

ing task network. Sometimes we refer to the HTN planning that uses this style

as totally ordered HTN planning. The second style is unordered task decomposition

(UTD) that relaxes the requirement of totally ordered task networks. That is, tasks

can be totally ordered or unordered with respect to each other (but no tasks in paral-

lel are allowed). When a task is decomposed, new task networks are created in such

a way that newly added tasks are interleaved with the tasks of the existing task net-

work until all permissible permutations are exhausted. Here as well, we refer to the

HTN planning that embodies this style as unordered HTN planning. The last style

is partially ordered task decomposition (POTD) that allows the existence of a partial or-

der on tasks. When a task is decomposed, the tasks in the newly created network

can be ordered in parallel whenever possible (with respect to the constraints). We

4.3. Concepts 97

refer to the HTN planning that uses this style as partially ordered HTN planning.

4.3.2 Constraints

Looking back at Definition 4.2, we observe that a task network relies upon the

constraints provided in the problem representation. Also, constraints can be added

during planning in order to resolve inconsistencies. Hierarchical planners deal with

several types of constraints and most of them can be interpreted as in (Stefik 1981).

Namely, there are three interpretations. First, we meet a constraint that implies

commitments about partial descriptions of state objects. Another type of constraint

refines variable bindings if a certain variable binding does not satisfy some con-

dition. Last, there is a constraint that expresses the relations between variables in

different parts of a task network.

Commitment strategy

As with the planners in classical planning, hierarchical planning techniques also

need to make two decisions on constraints. The first one is on constraints for binding

variables, while the second decision is on constraints for ordering tasks in a task net-

work. We extract two main approaches for when and how to make these decisions.

The first approach manages constraints in compliance with the least-commitment

strategy so that task ordering and variable bindings are deferred until a decision

is forced (Weld 1994). The second approach handles constraints according to the

early-commitment strategy so that variables are bound and operators in the plan are

totally ordered at each step of the planning process. Planners employing the latter

strategy greatly benefit from the possibility of adopting forward chaining in which

chaining of operators is achieved by imposing a total order over the plan. The total

ordering ensures that neither the current operator to be added to the plan can inter-

fere with some earlier operator’s preconditions or effects, nor a later operator can

interfere with current task’s preconditions or effects.

Task interaction

An inevitable consequence of a commitment strategy is the interaction among

tasks in a given task network. We define an interaction as the connection between

two tasks (or parts) of a task network in which these tasks (or parts) have a certain

effect on each other. Based on this effect, we divide interactions into two categories.

The first category introduces conflicts among different parts of a task network that

threaten its correctness. We refer to this category as harmful interactions (also threats

or flaws). While HTN planners differentiate various harmful interactions, there are

rather intuitive descriptions provided for each. We abstract definitions of several

98 4. Hierarchical planning revisited

harmful interactions in the following list.

• Deleted-condition interaction happens when a primitive task in one part of a

task network deletes an expression that is a precondition to a primitive task

in another part of that task network.

• Double-cross interaction appears when an effect of each of two conjunctive

primitive tasks deletes a precondition for the other. That is, an effect of the

first task deletes a precondition of the second primitive task, and an effect of

the second task deletes a precondition of the first task.

• Resource interaction occurs in two situations, and it is subdivided accord-

ingly. A resource-resource interaction is similar to the deleted-condition interac-

tion, while a resource-argument interaction occurs when a resource (see Defini-

tion 4.15) in one part of a task network is used as an argument in another part

of that task network.

The second category involves situations when one part of a task network can

make use of information associated with another part in the same task network.

We refer to this category as helpful interactions. The detection of these interactions

implies the possibility for a planner to generate better-quality task networks and

solutions. That is, some tasks can be merged together eliminating task redundancy

and potentially optimising the cost of the solution (Foulser et al. 1992). We provide

descriptions of several helpful interactions in the following list.

• Placeholder replacement appears when a real value already exists for a partic-

ular formal object. We already know that HTN planning allows tasks with

variables to be inserted into a task network. If there is no specific value to be

chosen for a particular variable choice, a so-called formal object is created to

bind the variable (Sacerdoti 1975b). The formal object is simply a placeholder

for some entity unspecified at that point.

• Phantomisation emerges when some goal is already true at the point in a task

network where it occurs. In the descriptions of some HTN planners, the term

‘goal’ is interchangeably used with the term ‘precondition’ – if some precon-

dition is not satisfied, it is inserted as a goal to be achieved (as in classical

planning).

• Disjunct optimisation happens in disjunctive goals when one disjunctive goal

is “superior to the others by the nature of its interaction” with the other tasks

in a task network (Sacerdoti 1975b).

4.3. Concepts 99

Constraint management

HTN planners do not provide a general approach for handling interactions, thus

each of the above interactions has its own resolution method. The underlying pro-

cess of solving task interactions is constraint posting (also known as conflict resol-

ution (Yang 1992) or critics (Tate 1976, Wilkins 1988)), which manipulates various

types of constraints in a task network. The process is based on well-known oper-

ations on constraints generally described elsewhere, e.g., (Stefik 1981). We briefly

explain the main operations in the context of hierarchical planning.

The most basic operation is constraint satisfaction which happens when a hier-

archical planner searches for a variable binding that satisfies the given constraints,

and guarantees the consistency of, for instance, a set of ordering constraints over

a task network. Constraint propagation enables adding or retracting constraints to

and from a task network. Variable constraints in one part of a task network can

be propagated based on variable constraints in another part of that task network.

With respect to ordering constraints, propagation is used when a linking process is

performed. When some task interferes with another task, the linking process records

a causal link – a three-element structure of two pointers to tasks te and tp, and a

predicate q which is both an effect of te and a precondition of tp. This linking pro-

cess practically achieves phantomisation. That is, phantomisation of a task t with

an effect e is accomplished by treating e as achieved, and finding an existing task t′

in the task network that achieves the same effect e. If task t′ is found, a constraint

(t′, e, t) is added to the task network to record the causal relation.

The last operation is different in that it does not happen during planning. Con-

straint formulation can be taken into account when modelling HTN domain know-

ledge, especially when the domain author is aware in advance of some possible

impasse situations. By posting constraints as control information into the domain

knowledge, the planner can gain on efficiency by refining the search space (Erol et al.

1994b, Nareyek et al. 2005). Moreover, in some HTN planners, the phantomisation

of a task is achieved by an explicit encoding in the domain knowledge. The plan-

ners handle the phantomisation of a rather recursive task by taking into account an

alternative method that encodes the base case explicitly through a ‘do-nothing’ op-

eration. There is also a possibility for such planners to infer these situations auto-

matically, which we cover in Section 5.2.

4.3.3 Explicit conditions

Hierarchical planners essentially depend on the quality of domain knowledge so

as to restrict and guide the search for a solution. The domain author is undoubtedly

the one who has the responsibility of giving the guidance information. One way to

100 4. Hierarchical planning revisited

represent such information is by using explicit conditions. We describe conditions

found in HTN planners in the following.

• Supervised condition is accomplished within a compound task. The condition

may be satisfied either by an intentional insertion of a relevant effect earlier in

the processing of a task network, or by an explicit introduction of a primitive

task that will achieve the required effect. Only this condition should allow

further decompositions to be made.

• External condition must be accomplished at the required task, but under the

assumption that it is satisfied by some other task from the same task network.

• Filter condition decides on task relevance to a particular situation. In the case

of method relevance to a certain task decomposition, this condition reduces

the branching factor by eliminating inappropriate methods.

• Query condition accomplishes queries about variable bindings or restrictions

at some required point in a task network.

• Compute condition requires satisfaction by information coming only from ex-

ternal systems, such as a database.

• Achieve condition allows expressing goals that can be achieved by any means

available to a planner.

4.3.4 Overview of planners

We here provide a summary of task decomposition, constraints and constraint-

based techniques, and explicit conditions as specified in each hierarchical planner.

We summarise in a tabular form for which we use the following notation. We use a

grey shade to visually separate planners in plan based and state based (grey-shaded

columns and rows signify state-based HTN planners). If a cell contains ‘3’, then

a planner supports or defines the respective element. A cell with ‘5’ indicates no

support or definition of an element, while ‘-’ denotes that the planner does not need

to support or handle the respective element. If a cell is empty, then it means that

the information was not available from the public literature.

Table 4.1 demonstrates the concept of a task decomposition as realised in hier-

archical planners. Since the task decomposition depends on the representation of

tasks and task networks, we provide insights into how primitive and compound

tasks are represented (column Mechanism for primitive and compound tasks),

and what a task network consist of (column Task network). In the column Task

4.3. Concepts 101

decomposition, we show 1) how the decomposition of a ‘compound’ task is accom-

plished, and how a ‘primitive’ task is applied (column Process); 2) the style of a task

decomposition (column Type); and 4) whether a task network is checked against

any constraint violation during task decomposition (column Constraint check).

Most plan-based HTN planners perform a task decomposition in a slightly

different way than the general process we described in Section 4.3.1. The main

reason lies in the approach that these planners use to represent tasks. In fact, with

the exception of UMCP, the rest of the planners support only a single structure to

encode both primitive and compound tasks. Although it is not always clear what

is the purpose of the respective structure or how exactly the task decomposition is

accomplished, we try to make high-level statements on the main idea behind the de-

composition at each planner. For instance, the statement “D: code” denotes that the

decomposition of a ‘compound’ task in NOAH is accomplished by an evaluation of

the respective node’s code, but also the application of a ‘primitive’ task is done by

evaluating that code (“A: code”).

State-based HTN planners in essence follow the task decomposition from Sec-

tion 4.3.1, and indeed distinguish between primitive and compound tasks. In both

planners, SHOP2 and SIADEX, the set of methods can be seen as an if-then-else rep-

resentation – the planners select the first method whose if-statement (preconditions)

holds in the current state. Given a compound task, a task decomposition evaluates

the preconditions of task’s associated methods, and chooses the first method applic-

able in the current state to expand the existing task network.

We accentuate two observations. In the case of both planners, the choice of

which method to use for the decomposition is controlled, that is, the first method

from the if-then-else representation that is applicable in the state is chosen. Second,

SHOP2 uses the unordered task decomposition (its predecessor SHOP employs

TOTD), while SIADEX follows the partially ordered task decomposition. Con-

sequently, SHOP2 does not need to check the task network for corrections during

task decomposition, but SIADEX must verify that no (ordering) constraints are vi-

olated in the newly created task network.

The constraint-related concepts, namely the commitment strategy and con-

straint management in the case of task interactions are shown in the upper part

of Table 4.2. Plan-based HTN planners take advantage of the least-commitment

strategy, however, we point out two deficiencies. First, except UMCP, which sup-

ports additional commitment strategies (Tsuneto et al. 1996), the rest of the planners

take a rigid approach of incorporating the commitment strategy into the problem-

solving mechanism. Second, only few planners backtrack on poor decisions, thus

not implementing the concept of the least-commitment strategy completely. On

the other hand, state-based HTN planners employ the early-commitment strategy.

102 4. Hierarchical planning revisited

T
a
b
le
4
.1

:
T
ask

d
eco

m
p
o
sitio

n
in

state-o
f-th

e-art
h
ierarch

ical
p
lan

n
ers

(“D
”

an
d

“A
”

stan
d

fo
r
“d

eco
m

p
o
sitio

n
”

an
d

“ap
p
licatio

n
”,resp

ectiv
ely

).

H
ie
ra
rch

ica
l
re
p
re
se
n
ta
tio

n
T
a
sk

d
e
co
m
p
o
sitio

n

M
e
ch
a
n
ism

fo
r

p
rim

itiv
e
a
n
d

co
m
p
o
u
n
d
ta
sk
s

T
a
sk

n
e
tw

o
rk

P
ro
ce
ss

T
y
p
e

C
o
n
stra

in
t
ch
e
ck

N
O
A
H

sin
g
le

fo
r
b
o
th

:
n
o
d
e

(co
d
e)

n
etw

o
rk

o
f
n
o
d
es

D
:co

d
e

A
:co

d
e

P
O

T
D

3

N
o
n
lin

sin
g
le

fo
r
b
o
th

:
n
o
d
e

(sch
em

a)

n
etw

o
rk

o
f
n
o
d
es

D
:sch

em
a

A
:sch

em
a

P
O

T
D

3

S
IP
E
-2

sin
g
le

fo
r
b
o
th

:
n
o
d
e

(o
p
erato

r)

n
etw

o
rk

o
f
n
o
d
es

D
:o

p
erato

r

A
:-

(eff
ect

d
ed

u
ctio

n
)

P
O

T
D

3

O
-P
la
n
2

sin
g
le

fo
r
b
o
th

:

sch
em

a

n
etw

o
rk

o
f
sch

em
as

D
:sch

em
a

A
:sch

em
a

P
O

T
D

3

U
M
C
P

sep
arate

fo
r
each

n
etw

o
rk

o
f
p
rim

itiv
e

an
d

co
m

p
o
u
n
d

task
s

D
:co

m
p
o
u
n
d

task

A
:p

rim
itiv

e
task

P
O

T
D

3

S
H
O
P
2

sep
arate

fo
r
each

n
etw

o
rk

o
f
p
rim

itiv
e

an
d

co
m

p
o
u
n
d

task
s

D
:co

m
p
o
u
n
d

task

A
:p

rim
itiv

e
task

U
T
D

-

S
IA

D
E
X

sep
arate

fo
r
each

n
etw

o
rk

o
f
p
rim

itiv
e

an
d

co
m

p
o
u
n
d

task
s

D
:co

m
p
o
u
n
d

task

A
:p

rim
itiv

e
task

P
O

T
D

3

4.3. Concepts 103

If some task fails, both planners backtrack on other alternatives according to a list

of variable bindings for the task precondition, or maybe to some criterion specified

in the definition of the task. In addition, SIADEX supports cutting of backtracking

points (as performed in Prolog (Bratko 2001)).

The lower part of Table 4.2 summarises and classifies resolution methods with

respect to the task interaction they solve. NOAH and SIPE-2 need to handle the

largest set of interactions, while Nonlin and UMCP handle only one harmful and

one helpful interaction. As for state-based HTN planners, if we consider their un-

derlying early-commitment strategy, we could conclude that these planners avoid

task interactions altogether. However, this statement would not be entirely correct.

The lower part of Table 4.2 shows that in SHOP2, for instance, a deleted-condition

interaction may arise and this is due to the process of interleaving tasks. The plan-

ner is able to solve this situation under a rather restricting assumption, that is, it

requires a specification of ‘protection’ conditions in the effects of operators. A pro-

tection request enforces the planner from deleting conditions, and a protection can-

cellation allows the planner to delete these conditions. In some cases, the planner

can deal with deleted-condition interaction using domain axioms. SIADEX needs

a more powerful mechanism to accomplish planning and handle interactions that

may arise in partially ordered task networks. The planner uses a causal structure of

tasks and task networks. Constraint satisfaction checks the consistency of task net-

works (and the solution) based on that causal structure, and constraint propagation

is used to post constraints, if necessary.

Table 4.3 summarises and classifies explicit conditions that hierarchical planners

employ. We observe that Nonlin initiated the idea of explicit types, supporting

four types of conditions. O-Plan2 supports the largest set of conditions, where they

play some “special role” in the planner’s planning process (Tate, Drabble and Kirby

1994). In UMCP, conditions are represented as state constraints. In addition to

explicitly typing them into the domain knowledge, the planner is extended to reason

about implicit external conditions by examining the domain knowledge (Tsuneto

et al. 1998).

The whole reasoning power of SHOP2 and SIADEX is encapsulated in the pre-

conditions of both primitive and compound tasks, thus they do not require other

explicit domain knowledge. In the scope of preconditions, however, SHOP2 en-

ables various types of computations, such as invocations of external knowledge re-

sources by using the Call condition. SIADEX also supports complex computations

by incorporating complete (Python-based (Python 2014)) procedures in the domain.

External conditions are modelled in a similar fashion.

104 4. Hierarchical planning revisited

T
a
b
le
4
.2

:
C

o
n
strain

t-related
co

n
cep

ts
in

state-o
f-th

e-art
h
ierarch

ical
p
lan

n
ers.

C
o
m
m
itm

e
n
t

N
O
A
H

N
o
n
lin

S
IP
E
-2

O
-P
la
n
2

U
M
C
P

S
H
O
P
2

S
IA

D
E
X

S
trateg

y
least

least
least

least
least

(+o
th

er)
early

early

B
ack

track
in

g
n
o

y
es

p
artially

y
es

y
es

y
es

y
es

In
te
ra
ctio

n

D
eleted

-

co
n
d
itio

n

R
eso

lv
e

co
n
fl
icts

L
in

k
in

g

p
ro

cess

S
o
lv

in
g

h
arm

.
in

ter.

T
O

M
E
/G

O
S
T

m
an

ag
ers

R
eso

lu
tio

n

m
eth

o
d

P
ro

tectio
n

co
n
d
.,

d
o
m

ain
ax

io
m

C
o
n
strain

t

p
ro

p
ag

atio
n

D
o
u
b
le-cro

ss
R

eso
lv

e

d
o
u
b
le

cro
ss

-
S
o
lv

in
g

h
arm

.
in

ter.

-
-

5
5

R
eso

u
rce

5
5

R
eso

u
rce

co
n
fl
icts

R
eso

u
rce

u
til.

m
an

ag
ers

5
5

5

P
laceh

o
ld

er

rep
lacem

en
t

U
se

ex
istin

g

o
b
jects

5
5

P
h
an

to
m

isa-

tio
n

E
lim

in
ate

red
u
n
d
an

t

p
reco

n
d
itio

n
s

L
in

k
in

g

p
ro

cess

G
o
al

p
h
an

to
m

.

Q
u
estio

n

an
sw

erin
g

D
o
m

ain

m
eth

o
d

5
5

D
isju

n
ct

o
p
tim

isatio
n

O
p
tim

ise

d
isju

n
cts

-
5

5

T
a
b
le
4
.3

:
C

o
n
d
itio

n
ty

p
es

in
state-o

f-th
e-art

h
ierarch

ical
p
lan

n
ers

(ad
ap

ted
fro

m
(T

ate,D
rab

b
le

an
d

D
alto

n
1994)

)

C
o
n
d
itio

n
N
O
A
H

N
o
n
lin

S
IP
E
-2

O
-P
la
n
2

U
M
C
P

S
H
O
P
2

S
IA

D
E
X

S
u
p
erv

ised
p
rec.

su
p
erv

ised
p
ro

tect-u
n
til

su
p
erv

ised
g
o
al

task
5

5

E
x
tern

al
5

u
n
su

p
erv

ised
ex

tern
al-co

n
d
.

u
n
su

p
erv

ised
co

n
str./ex

-

tern
al

call
arb

itrary
co

d
e

F
ilter

5
u
se-w

h
en

p
rec.

o
n
ly

_u
se_if

fi
lter

p
rec.

p
rec.

Q
u
ery

5
5

5
o
n
ly

_u
se_fo

r_q
u
ery

5
5

5

C
o
m

p
u
te

5
5

5
co

m
p
u
te

5
call

fu
n
ctio

n

A
ch

iev
e

5
5

5
ach

iev
e

at
N

5

g
o
al

g
o
al

g
o
al

ach
iev

e
at

N
after

<
tim

e
p
o
in

t>
g
o
al

task
5

5

4.4. Properties 105

4.4 Properties

We go further and consider another perspective of HTN planning and planners.

We cover properties of HTN planners related mainly to domain knowledge, ex-

pressiveness, soundness, completeness, fault tolerance, performance, and applic-

ability. Our motivation for this step essentially lies in some of the implicit assump-

tions made about HTN planners, that is, claims and beliefs accepted for granted and

without evidence. Some of these refer to the “sophistication” of domain knowledge

provided to HTN planners, the expressive power of HTN planning between theory

and practice, HTN planners being fast and scalable, and HTN planning being very

suitable for and most applied to real-world problems.

We develop an analytical model to directs us on where to look and what kind of

properties to look for. The model consist of five main elements, namely domain au-

thoring, expressiveness, competence, computation, and applicability. Each element

and the motivation for its inclusion in the model are described in the following sec-

tions. Whenever possible, we provide formal definitions that may be related to the

models presented in Section 4.2. We then collect a body of studies on HTN planning

and planners, and apply exploratory research to examine diversity and similarity

of the planners within their category and between categories, and comparative re-

search to make sense of a range of cases. We believe that, in this way, we can rectify

the statements about HTN planning in a neutral and evidence-oriented way.

4.4.1 Domain authoring

We define domain authoring as the formulation of domain knowledge as per-

formed by a domain author. What we are really interested in, in this process, is the

relative effort needed to formulate domain knowledge for an HTN planner. The

community, however, has not yet found a way or measures to provide an object-

ive answer to this type of question. The ambiguity and difficulty to define an an-

swer come directly from the capabilities and experience of the domain author with

respect to the understanding of the underlying planner and the expertise for the

respective domain (Long and Fox 2003).

The domain knowledge plays a crucial role in HTN planning. Therefore, we

still want to give a flavour of the effort needed to provide domain knowledge for

each planner. We take a model of the well-known and overused domain of blocks

world (Chenoweth 1991) as described for each planner, and inspect each model

from two viewpoints. We first take a single and the same task of each domain model

and analyse closely what needs to be encoded. Second, we give a broader view of

each domain model by quantifying its content with respect to knowledge symbols,

keyword symbols, and domain elements.

106 4. Hierarchical planning revisited

4.4.2 Expressiveness

We tackle expressiveness from two perspectives. The first one refers to the

formal properties of expressiveness of the HTN planning language. In order to

completely determine what the language can express, we need formal semantics for

the language. Fortunately, this issue has been a subject of interest for some time,

resulting in a number of studies on expressiveness of HTN planning (Erol et al.

1994a, Kambhampati 1995, Nau et al. 1998, Wilkins and Desjardins 2001, Lekavý

and Návrat 2007, Erol 1996). We analyse the expressiveness of HTN planning lan-

guage from a model-theoretic, operational and computational aspect based on the

results provided in (Erol et al. 1996). In each aspect, the expressiveness of HTN plan-

ning is compared to the one of STRIPS planning (see Section 2.1).

The second perspective refers to the practical expressive power of HTN plan-

ners. We could determine the practical expressiveness of the planners’ language by

the assessment of the breadth of what the language can represent and communicate.

The breadth may include the language’s formal system, the support for preferences,

time, etc.. Unfortunately, there is no common planning language for HTN planners.

The idea of standardising a planning language is introduced with PDDL in 1998 for

the purpose of the International Planning Competition, rather late with respect to

the history of, above all, plan-based HTN planners. Although in the first version of

PDDL there was an attempt to formalise a common syntax compatible to HTN plan-

ners, the idea was discarded with version 2.1 of PDDL due to the immense differ-

ences between planners (Fox and Long 2003).

We can still provide some insights about what HTN planners can express in

practice by exploring the expressiveness of each planner’s language separately. For

this purpose, we use three categories of properties. The first category encompasses

the system of first-order logic, particularly the support for a set of logical connect-

ives: conjunction (∧), disjunction (∨), implication (=⇒), and negation (¬), and the

support for universal (∀) and existential (∃) quantifiers. A logical connector or quan-

tifier can be applied on pre(o) and eff (o), where o is an operator, on the formula ψ

of a task network tn, and on pre(m), where m is a method.

The second category encompasses the quality constraints that can be expressed

in some languages, particularly the support for typing, extended goals, and prefer-

ences. Given an HTN planning problem P , we define each as follows.

• Typing enables expressing types of objects in a type hierarchy (similar to typ-

ing in PDDL). Each v ∈ V may have a type t ∈ T, whereT is a set of types.2 The

type hierarchy is built by a sub-typing relation st : T × T, which is reflexive

2We use letters in bold for sets defined in encoding languages to differentiate from the sets of the

HTN planning language.

4.4. Properties 107

and transitive.

• HTN planning assumes an initial task network tn0 to be accomplished as an

objective for P . In its simplest form, tn0 does not allow to specify conditions

to be satisfied in some intermediate state during or in the final state of the ex-

ecution of the solution to P . Extended goals enable us to express a planning

objective in a way that its satisfaction could be on a part, on the whole traject-

ory of the solution, or in the final state. In classical planning, this is usually

achieved through the use of temporal modal operators.

• A preference is a condition on the solution trajectory that some user would

prefer satisfied rather than not satisfied, but would accept if the condition

might not be satisfied (Gerevini and Long 2006).

The third category encompasses resource and time constraints.

₄.₁₅ Definition (Resource). Given an HTN planning problemP , a resource r is an object

of limited capacity r̄ for use by a task t within P .

The capacity r̄ can be a categorical value, such as free (for use) and used, or a

numerical value. If ci(r) denotes the current capacity of a resource r, then c0(r) = r̄

is the initial capacity. We use ct(r) to denote the consumption of r by a task t. We

use t1 ‖ t2 to denote that tasks t1 and t2 are in parallel, and ct1(r) ‖ ct2(r) for the

consumption of resource r by tasks t1 and t2 at the same time. Thus, ct1(r) ‖ ct2(r)
is possible iff t1 ‖ t2.

₄.₁₆ Definition (Types of resources). A resource is reusable if it can be used more than

once. Let t be a task and r be a resource whose r̄ has a categorical value. The resource r is

reusable iff ci(r) = c0(r) immediately after ct(r).

A shared reusable resource can be shared among several tasks at the same time. Let

t1 and t2 be tasks and r be a resource. The resource r is shared reusable iff r is reusable and

ct1(r) ‖ ct2(r).

An exclusively reusable resource cannot be used by two tasks in parallel. Let t1 be a

task and r a resource. The resource r is exclusively reusable iff r is reusable and ct1(r) such

that ct1(r) ∦ cti(r), where i > 1.

A resource is consumable if it is usable only a limited number of times. Let t be a

task and r be a resource whose r̄ has a numerical value. The resource r is consumable iff

ci(r) = ci−1(r)− ct(r) immediately after ct(r). A consumable resource can be replenished

or not.

108 4. Hierarchical planning revisited

If the resource cannot be restored after the use of the set amount, it is called dispos-

able consumable resource. Let t be a task and r a resource. The resource r is disposable

consumable iff r is consumable, and there exists i such that ci(r) = 0 and there is no i+ k,

k ∈ N such that ci+k(r) > 0.

If the resource amount can be topped up, it is called renewable consumable resource.

Let t be a task and r a resource. The resource r is renewable consumable iff r is consumable,

ci(r) = ci−1(r)− ct(r) and there exists o ∈ O and k ∈ N such that ci+k(r) = ci(r)+ rep,

where rep ∈ eff (o).

Finally, we define time as usually considered, that is, a consumable resource

that cannot be reproduced. We are interested in how HTN planners represent and

handle temporal information.

4.4.3 Competence

We use the term competence to encompass a category of functional and formal

properties that relate to specific abilities of HTN planners. We begin with properties

of the functional design of hierarchical planners.

Domain dependence defines the ability of a planning technique to solve plan-

ning problems in different domains (Nau 2007). This is the issue of domain-

specific planning, which is designed to solve problems only in a particular domain,

versus domain-configurable planning, which solves planning problems in any do-

main given specific knowledge for every domain, versus domain-independent plan-

ning, which solves planning problems in any domain without specific demands.

Given that HTN planning can solve problems in various domains, and it requires

specific-domain knowledge provided in the set of methods M , HTN planning is a

domain-configurable planning technique. This implies a design and implementation

of HTN planners that include general problem-solving mechanisms. A problem-

solving mechanism takes in a given P and computes a solution. It makes use of

various algorithms and backtracking mechanisms, heuristics, specific control know-

ledge, and constraint management. Thus, several options arise for the design of a

planner’s mechanism:

• Algorithm represents the search procedure incorporated in the problem-

solving mechanism. The mechanism can employ one or more kinds of search

strategies, such as depth-first search (DFS), breadth-first search (BrFS), iterat-

ive deepening search (IDS), best-first search (BFS), or other heuristic search

(HS) approaches. The algorithm incorporates the process of task decompos-

ition (see Section 4.3.1), and may traverse the data structure of P with or

4.4. Properties 109

without backtracking points. Recall from Section 4.3.2 that in HTN planning

there are three types of backtracking or decision points: which task to deal

with next, which method to use for some task, and which value to bind to a

variable.

• Heuristics are functions that help the problem-solving mechanism to guide

and speed up the search for a solution. In some HTN planners, heuristics

may trade completeness for speed.

• Domain-specific control is represented by the set of methods M . The problem-

solving mechanism evaluates the preconditions of methods inM to guide the

planning process.

• Interactive control involves user’s decisions during planning. A user may guide

the problem-solving mechanism by choosing values to bind to variables in

V , imposing ordering constraints on a set of tasks T , and decomposing the

current task network tn.

• Constraint management (CM) deals with constraints that are part of task net-

works of methods in M , and those that can be added during planning. The

problem-solving mechanism makes use of the constraint-related operations

discussed in Section 4.3.2.

The following formal properties show when an HTN problem-solving mechan-

ism (or, equally, an HTN planner) is sound and complete, and when the solution

that the mechanism generates is flexible.

Solution flexibility defines the ordering of operators in the solution to a planning

problem.

₄.₁₇ Definition (Flexibility). Let P be an HTN planning problem. The solution to P is

flexible if it is partially ordered.

₄.₁₈ Definition (Soundness). Let P be an HTN planning problem. An HTN planner is

sound if every plan it gives is a correct solution to P .

₄.₁₉ Definition (Completeness). Let P be an HTN planning problem. An HTN planner

is complete if it always finds a solution to P when such a solution exists.

Problem-solving mechanisms perform off-line planning with the closed-world

assumption: the state can only be changed by the execution of operators selected by

the planner. However, this is not the case in real-world environments, which are of

a complex and dynamic nature and include other agents executing their own inde-

pendent actions. During the execution of a plan, some unexpected event may occur

110 4. Hierarchical planning revisited

that invalidates the solution being executed. If an event represents a state transition,

then, from a planner perspective, the environment changes its state as a result of two

event classes: plan operators and fault occurrences. The planner itself is respons-

ible for the selection of plan operators. Otherwise, the planner sees an unexpected

or unwanted state transition in the environment as a fault. The augmentation of an

HTN planner with the ability to handle faults in a well-defined way at execution

time makes the planner fault tolerant. In order to do so, it is a prerequisite to specify

the set of faults that an HTN planner can handle. In the event of a fault at execu-

tion time, the planner must monitor and recognise the fault, deduce the parts of the

solution that are affected by the fault, and repair the existing and affected part of

the plan, or re-plan for a new solution. Thus, the planner must ensure that there is

a valid plan that accomplishes the initial task network. In the following, we define

the notion of fault and fault tolerance formally.

₄.₂₀ Definition (Correct execution). Let P be an HTN planning problem, π =

{o1, . . . , on} be the solution to P , where s0[π] = sn. Let πe be the partially applied (or

executed) part of π, and πr the remaining part still to be executed. The execution of π is in

a correct state s iff s[πr] = sn.

₄.₂₁ Definition (Fault). A fault f is a state transition s[f] = s′ such that f /∈ O and

s′[πr] 6= sn. The fault set is denoted as F .

₄.₂₂ Definition (Fault tolerance). LetP be an HTN planning problem and π be a solution

to P . An HTN planner is said to tolerate faults from a fault set F during the execution

of π iff for each f ∈ F , there exists a sequence of operators πf such that πf is a solution to

P .

4.4.4 Computation

Computation can be analysed from two perspectives too. The first one refers

to the theoretical computational boundaries of HTN planning. For details on this

perspective, we refer to the results presented in (Erol et al. 1996), where the plan

existence for an HTNplanning problem is analysed under various assumptions.

We deal with the second perspective, which refers to the computational per-

formance of HTN planners. We are interested in the runtime and scalability results

of each HTN planner. We say that a planner is scalable if it is capable to cope and

acceptably perform under a varying size of planning problems. Anything but easy is

to define dimensions that could measure the size of a problem, nevertheless, scalab-

ility is highly desirable in practical settings with an increasing and large number of

facts about the state, a large number of users, and a large number of tasks. We are

also interested in how well planners scale relative to one another assuming increas-

ingly difficult problems. As for runtime, we are interested in pairwise comparisons

4.4. Properties 111

between HTN planners with respect to the amount of time they spend on the same

sets of problems.

4.4.5 Applicability

Applicability is the last element of the framework and concerns the use of plan-

ners in actual applications. It appears to be orthogonal to previous elements, but we

have two reasons for its inclusion. First, we strongly believe that the ultimate object-

ive of research on automated planning must be exploitation of planners in a variety

of real applications. Oil spills (Agosta 1996), spacecraft assembly (Aarup et al. 1994),

microwave manufacturing (Smith et al. 1997), smart spaces (Kaldeli et al. 2012), and

Web service composition (Kuter et al. 2005) are a few prominent examples. Second,

HTN planning is promoted as the most applied planning technique for real-world

problems (Nau et al. 2005), mostly referring to the applications of SHOP2. Thus,

we want to see whether and how HTN planning contributes towards the aforemen-

tioned objective, and what is the applicability of state-of-the-art HTN planners.

4.4.6 Overview of planners

We check selected literature for the properties of each element of the analytical

model. In one case, we provide theoretical and practical interpretations of the re-

spective element. Where possible, we also show comparison of HTN planners. In

some cases, we aggregate the data on planners in tabular form. We use the follow-

ing common notation for all tables. The ‘3’ denotes that a planner supports the

respective property, the ‘5’ indicates that a planner does not support a particular

property, and an empty cell denotes that it is unknown from the literature whether

the planner is able to deal with a given element. There are rated properties, where

the rate ranges from ‘H’, denoting limited support for the given property, to ‘HHH’,

indicating extended support.

Domain authoring

The first aspect of domain authoring deals with the encoding of the same task

in the domain model of each planner. We take the description of the ‘put-on’ task

provided to each HTN planner, and analyse closely its meaning. While here be

present a brief summary, we refer for a deeper discussion to (Georgievski and Ai-

ello 2015a). The task descriptions for UMCP, SHOP2 and SIADEX differ only in the

notation, but specify almost the same meaning. All operators contain simple applic-

ability preconditions and effects. Beside the representational simplicity, the power

of these operators is, however, much weaker than the tasks of the rest of state-of-

the-art hierarchical planners. The operators cannot handle situations where some

112 4. Hierarchical planning revisited

block is above another one or when a block is not clear. The approach to achieve

fairly equal functionality would be to include methods that describe all possible

situations.

The second aspect of domain authoring gives us insights into encoding domain

models by measuring and comparing the sizes of tasks and domain models for each

planner, an approach inspired by the one used in (Shivashankar et al. 2012). Al-

though we use domain models for the same domain, we do not assume that the

models have the same level of expressiveness. The idea is to establish a relation

between the size of a domain and the effort needed to encode that domain. When

domain models would have the same level of expressiveness, a smaller domain size

would mean that the domain model is easier to encode as compared to the one with

a larger size. Looking at the number of symbols at the domain level, as shown in

Figure 4.2a, SIPE-2 has the largest domain model, however, almost half of it be-

longs to keyword symbols. On the other hand, SHOP2 has slightly smaller domain

model than SIPE-2, but the number of keyword symbols is negligible, which means

that the rest of the symbols represent the actual domain knowledge. In addition,

in UMCP and SHOP2, the knowledge is partitioned in a larger number of tasks as

compared to the rest of HTN planners. SHOP2 uses knowledge structured in 13

primitive and compound tasks in total, and 6 axioms, while O-Plan2, for example,

uses three tasks in total. There are four main reasons for these observations:

• In SHOP2, a predicate q can only be satisfied by specifying a separate task with

one or more methods that should make q true. In the block-world domain,

the top-level task achieve-goals is responsible for this. In UMCP, q can be

achieved through the use of the syntactic form achieve(q). In the rest of plan-

based HTN planners, there is no need for a separate task. The predicate can

be part of the initial task network.

• In SHOP2, the recursive tasks (e.g., find-movable) need an additional method

which encodes the base case whose decomposition does nothing. In plan-

based HTN planners, such method is not necessary, because the phantom-

isation takes care when a certain predicate is already achieved and nothing

needs to be done.

• In SHOP2 and UMCP, there is a need for an explicit check of deleted-condition

interaction. In the block-world domain of SHOP2, deleted-condition interac-

tion is handled by using Horn clauses to reason about stacks of blocks. In

UMCP, this can be accomplished generally by using achieve(q), which con-

straints q to be true right after accomplishing the corresponding task. The rest

of plan-based HTN planners do not use the domain knowledge to handle the

4.4. Properties 113

0

200

400

600

800

1000

1200

1400

1600

NOAH Nonlin SIPE-2 O-Plan2 UMCP SHOP2

knowledge symbols keyword symbols

(a) Number of knowledge and keyword symbols.

0

1

2

3

4

5

6

7

8

9

NOAH Nonlin SIPE-2 O-Plan2 UMCP SHOP2

operators methods help elements

(b) Number of domain elements.

Figure 4.2: Quantitative perception of the block-world domain in hierarchical planners.

deleted-condition interaction, but instead use their problem-solving mechan-

isms to solve it (see Section 4.3.2).

• SHOP2 uses special so-called book-keeping operators to keep track of what

needs to be done during planning. For the block-world domain, SHOP2 uses

two book-keeping operators (assert and remove) that are not part of the ac-

tual block-world domain. On the other hand, other HTN planners do not use

any special operators.

Expressiveness

We gain a perspective in theoretical expressiveness by summarising the find-

ings in (Erol et al. 1996).3 Figure 4.3a depicts the model-theoretic expressiveness.

From this aspect, the HTN language is strictly more expressive than the STRIPS lan-

guage, but totally ordered HTN planning is less expressive than partially ordered

3We assume that the reader is familiar with model-theoretic, operational and computational-based

expressiveness. Otherwise, we refer to (Erol et al. 1996) for details.

114 4. Hierarchical planning revisited

Partially ordered

HTN planning

Totally ordered

HTN planning

STRIPS

planning

(a) Hierarchy of model-theoretical and

operational expressiveness.

Partially ordered

HTN planning

Totally ordered

HTN planning

STRIPS

planning

(b) Hierarchy of computational-based ex-

pressiveness.

Figure 4.3: Hierarchies of expressiveness.

HTN planning, and strictly more expressive than STRIPS planning (Nau et al. 1998).

An HTN planning problem (with totally or partially ordered task networks) can be

transformed into a STRIPS planning problem, but the converse is not true. On the

other hand, a totally ordered HTN planning problem can be transformed into a

partially ordered HTN planning problem, but the converse is not true.

Figure 4.3a shows that the operational aspect has the same expressiveness hier-

archy as the model-theoretic aspect. That is, HTN planning is strictly more express-

ive than STRIPS planning, and totally ordered HTN planning is strictly between

STRIPS planning and partially ordered HTN planning. Figure 4.3b depicts the

computational-based hierarchy. Once more, HTN planning is strictly more express-

ive than STRIPS planning. In particular, there is a (polynomial) transformation

from STRIPS planning to HTN planning, but there is no computable transforma-

tion from HTN planning to STRIPS planning. Intuitively, HTN elements can rep-

resent computationally more complex problems than STRIPS operators. However,

these results are true when partially ordered task networks are allowed. In fact,

totally ordered HTN planning is at the same level of expressiveness as STRIPS plan-

ning, but significantly less expressive than partially ordered HTN planning. This is

because totally ordered HTN planning avoids interleaving of tasks from different

compound tasks.

Table 4.4 illustrates the practical expressiveness of the planning languages of

HTN planners. SIPE-2, UMCP, SHOP2 and SIADEX employ the set of logical con-

nectors (∧, ∨, =⇒ , ¬) in task preconditions with some restrictions, while ∨ is not

allowed in the effects of tasks. Thus, task preconditions are more expressive than

the task effects. Given a predicate q, except Nonlin and SHOP2, which use deletion

of q, other HTN planners use ¬q in the effects. SHOP2’s and SIADEX’s languages

4.4. Properties 115

support about the level 2 of the PDDL version 2.1 (i.e., numeric extensions), and al-

low =⇒ in task preconditions and ∀ in task preconditions and effects (with differ-

ent semantics, however). Furthermore, the most extensive support for typing has

SIPE-2 that goes even beyond what we defined. For example, we can state that a

variable must not be of a certain type. The rest of HTN planners have either very

limited or no support at all for typing. With respect to extended goals, SIPE-2, O-

Plan2 and SIADEX support temporally extended and deadline goals. Temporally

extended goals are expressed through the use of temporal modal operators, while

deadline goals expresses conditions that must be achieved at a specific point in time

in the trajectory. Default mechanisms of HTN planners do not support preferences,

but SIPE-2 and SHOP2 have been extended to handle some forms of preferences.

SIPE-2 is extended to two forms of preferences (Myers 1996, 2000). The first form

prescribes or prohibits the use of some variables within a task, while the second one

prescribes or prohibits the use of a particular task when accomplishing some object-

ive. SHOP2 is extended to support three types of preferences (Sohrabi and Mcilraith

2008, Sohrabi et al. 2009). The first type are basic constructs of linear temporal logic.

The second type are constrains, such as the precedence constraint before(t,t')
and state constraints holdBefore(t,q), where t and t' are tasks and q is a predic-

ate. The most interesting type are the preferences over how tasks are decomposed

into task networks (e.g., prefer to apply a certain method over another), preferences

over the parametrisations of decomposed tasks (e.g., preferring one task grounding

to other4), and many temporal and non-temporal preferences over task networks.

Finally, SIPE-2 and O-Plan2 support our resource hierarchy completely. In ad-

dition to the hierarchy, O-Plan2 allows sharing reusable resources unary, where a

sharable resource cannot be shared among many tasks at the same time, or simul-

taneously, where a resource can be shared among many tasks without any specific

control. SIPE-2 offers a limited mechanism for temporal reasoning, but full sup-

port can be achieved by using an external temporal reasoning system, such as Ta-

chyon (Stillman et al. 1993). O-Plan2 appears to have the most comprehensive sup-

port for temporal reasoning compared to its predecessors (Tate, Drabble and Kirby

1994), however, this cannot be easily confirmed from the literature. SHOP2 does not

explicitly reason about time. The planner has been temporally enhanced in several

studies (Nau et al. 2003, Yaman and Nau 2002, Goldman 2006), but at the expense

of degrading its performance and soundness. On the other hand, SIADEX provides

clear explanations about its temporal reasoning mechanism and supports all re-

lations defined independently by Allen (Allen 1983) and van Benthem (Benthem

1991).

4For the sake of completeness, the default mechanism of SHOP2 supports a similar feature called

‘sort-by’ that sorts variable bindings according to some criteria (e.g., ascending order).

116 4. Hierarchical planning revisited

Table 4.4: Practical expressiveness of HTN planners (“P”, “E”, “C”, and “ψ” stand for “preconditions”,

“effects”, “conditions”, and “constraints”, respectively).

Property NOAH Nonlin SIPE-2 O-Plan2 UMCP SHOP2 SIA-

DEX

Conjunction 3 3 3 3 3 3 3

Disjunction P 5 P ψ P P P

Negation E P, E E P, ψ, E P P

Implication 5 5 5 5 5 P P

Existential q. P, C ψ

Universal q. 5 5 E 5 5 P, E P, E

Sort hierarchy 5 5 HHH H 5 5 H

Extended goals 5 5 H H 5 5 H

Preferences 5 H HH H H HHH 5

Resource 5 5 HHH HHH 5 5 5

Time 5 5 H HH 5 H HHH

Competence

Table 4.5 summarises the properties related to the competence of HTN planners.

We begin with the property of solution flexibility. The result of the planning process

in plan-based HTN planners is a partially ordered plan which is in compliance with

the definition of flexibility. An exception to this is the UMCP planner which restricts

the tasks of the solution to be totally ordered. With respect to state-based HTN

planners, there are two cases as well. SHOP2 produces a totally ordered plan, while

SIADEX is able to plan for a flexible solution.

Except for Nonlin and O-Plan2, all planners implement DFS as their main al-

gorithm, however, not all of them backtrack to all alternative points. NOAH, Non-

lin, SIPE-2 and O-Plan2 all make use of heuristics to guide their search for a solution.

During the search, Nonlin employs dependency-directed backtracking – it back-

tracks on choices of variable bindings and choices of task orderings, while SIPE-

2 backtracks chronologically, and uses the heuristics to limit backtracking points

to alternative tasks and variable binding choices only in two places. SIPE-2 does

not backtrack the addition of ordering constraints. O-Plan2 uses heuristics over its

choices of tasks in the plan space for which an evaluation function based on the op-

portunistic merit of the state is used. In addition, user interaction addresses some

decision-related issues that are beyond the capabilities of the algorithms. Among

4.4. Properties 117

Table 4.5: Competence of HTN planners (“P” and “C” stand for “preconditions” and “conditions”,

respectively).

Property NOAH Non-

lin

SIPE-2 O-

Plan2

UMCP SHOP2 SIA-

DEX

Algorithm DFS BFS DFS HS DFS DFS DFS

Backtracking 5 DD Chronological

Heuristics 3 3 3 3 5 5 5

Domain-specific control 5 C P C C P P

Interactive control 5 5 3 3 3 5 3

Constraint management 3 3 3 3 3 5 3

Alternative algorithms 5 5 5 5 BrFS,

BFS

IDS 5

Solution flexibility Flexible Total Flexible

Completeness 5 3* 5 3* 3 3

Soundness 5 5 5 5 3 3

Execution monitoring H 5 HHH HHH 5 5 HHH

Replanning H 5 HHH HHH 5 5 HHH

HTN planners, SIPE-2, O-Plan2, UMCP and SIADEX provide user interfaces for

guidance purposes. Backtracking points indeed ensure completeness, however,

only UMCP and SHOP2 are provably complete and sound planners (Erol et al.

1994c). Nonlin and O-Plan2 are designed but not proved to be complete with re-

spect to the provided domain knowledge.5

With respect to the ability of HTN planners to monitor the execution of plans,

recognise faults, and handle them accordingly, we abstract away the mechanisms

of SIPE-2, O-Plan2 and SIADEX in a general process consisting of the following

components:

• Planner takes in the current HTN planning problem P and computes a solu-

tion plan sol.

• Execution andMonitoring takes sol and executes the actions one by one to the

environment. It also processes the observations of the actual resulting state

by comparing them with the expectations made during planning. If some

discrepancy is recognised, a fault f is generated.

5Austin Tate, personal communication, November 23, 2012.

118 4. Hierarchical planning revisited

Table 4.6: Runtime and scalability of UMCP and SHOP (upper part), and SHOP2 and SIADEX (lower

part).

Domain Property UMCP SHOP

Runtime
10 problems 100 problems

UM Translog > SHOP > UMCP

Scalability >UMCP

Domain Property SHOP2 SIADEX

Runtime
2 problems 18 problems

Zeno travel = SIADEX > SHOP2

Scalability = SIADEX

• Repair and Replanning takes f and tries to repair the current plan. If the

component is able to do so, it sends the repaired plan for execution, otherwise

it may ask a user for help, and if that does not work, it asks the planner to

re-plan given a modified HTN planning problem P ′.

Computation

To the best of our knowledge, three pieces of evidence report on performance

and pairwise comparison results. The first evidence compares UMCP and SHOP

under loads of different problems (Nau et al. 2000). The experiments are based

on the UM Translog (Andrews et al. 1995), a domain similar, but quite larger than

the standard logistics domain. For this domain, a set of problems with increasing

number of boxes to be delivered is randomly created. The results show that the run

time for UMCP is several orders of magnitude larger than the run time for SHOP.

Only in first ten problems UMCP appears to perform better than SHOP, as depicted

in the left-hand part of Table 4.6. Additionally, UMCP faced some difficulties when

trying to find solutions to the problems. The planner tries to solve only 37% of total

number of problems, and failed 45% of those 37%. The reasons for such behaviour

are due to running out of memory, inability to find an answer within a specific time

frame, or returning a failure.

The second evidence compares the performances of SHOP2 and SIA-

DEX (Castillo et al. 2005, 2006). The planners are tested on the Zeno travel do-

main (Long and Fox 2003) under a set of different temporal problems. In all cases,

SIADEX outperforms the temporal version of SHOP2 (Nau et al. 2003). The right-

hand part of Table 4.6 summarises the results of this comparison.

The third evidence compares the performances of SIPE-2 and Nonlin (Wilkins

1991). The planners are compared in the domain of house construction (Tate 1976) in

which SIPE-2 has four times better planning time than Nonlin for the same planning

problem.

4.4. Properties 119

HTN planners, especially plan-based HTN ones, report obscure results about

their performance. To the best of our knowledge, performance results for SIPE-2 in

various domains are reported only in (Wilkins 1991). The runtime of the planner

varies from one second up to six minutes for a “typical problem” in each domain.

We also know that SIPE-2 is able to handle a domain that includes up to 200 tasks,

500 objects with 10 to 15 properties per object, and a problem that includes a few

thousand predicates (Wilkins and Desjardins 2001).

Applicability

We define a set of domains based on the set of applications we found in the lit-

erature. The purpose of domains is to help us cluster together applications with

commonalities. Some domains may not be mutually exclusive, but, for simplicity,

we dispose an application only to one domain. Table 4.7 shows the list of domains

where each state-of-the-art HTN planner is applied. SHOP2 and O-Plan2 are the

most widely used planners, SIPE-2 and SIADEX have also a relatively high num-

ber of applications. SIPE-2 is used in at least seven applications ranging from

air-campaign planning, crisis management and logistics, mission planning and oil

spills, to beer production. SIADEX is employed in at least nine applications ranging

from business process management, fire forest fighting, e-learning, oncology treat-

ment, planning tourist visits and Web service composition, to planning in ubiquit-

ous computing. O-Plan2 is used in least 14 applications ranging from air-campaign

planning, biological pathway discovery, house and space platform construction,

crisis management and logistics, mission planning, production and project plan-

ning, to service composition. SHOP2 is used in at least 16 applications ranging from

crisis management and logistics, location-based services, plan and goal recognition,

production and project planning, mobile robot planning, Web service composition,

to planning in ubiquitous computing and video games. For more details on how

HTN planning is applied to most of these domains, we refer to (Georgievski and

Aiello 2015a).

Figure 4.4 shows the applicability of HTN planners from a time perspective. We

consider as a time point of a specific application the year when its publication has

appeared, or when a reference about the application is made in some publication.

The majority of applications were developed in the decade 1990-2000, the time when

O-Plan2 was in its prime, and the decade 2000-2010, the time when SHOP2 was in

its heyday. In the most recent times, two applications are implemented by SHOP2,

and three applications by SIADEX.

120 4. Hierarchical planning revisited

T
a
b
le
4
.7

:
A

p
p
licatio

n
s

o
f
H

T
N

p
lan

n
ers

in
d
iv

erse
d
o
m

ain
s.

D
o
m
a
in

N
O
A
H

N
o
n
lin

S
IP
E
-2

O
-P
la
n
2

U
M
C
P

S
H
O
P
2

S
IA

D
E
X

A
ir-cam

p
aig

n
p
lan

n
in

g
(L

ee
an

d
W

ilk
in

s

1996)

(T
ate

et
al.1998)

B
io

lo
g
ical

p
ath

w
ay

s
(K

h
an

et
al.2003)

B
u
sin

ess
p
ro

cess
m

an
ag

e-

m
en

t

(G
o
n
zález-F

errer
et

al.

2013)

C
o
n
stru

ctio
n

p
lan

n
in

g
(T

ate
1976)

(W
ilk

in
s

1991)
(C

u
rrie

an
d

T
ate

1991,

A
aru

p
et

al.
1994,

D
rab

b
le

et
al.1997)

C
risis

m
an

ag
em

en
t

an
d

lo
-

g
istics

(T
ate

1976)
(W

ilk
in

s
an

d
D

esi-

m
o
n
e

1992)

(T
ate

et
al.1996,K

in
g
-

sto
n

et
al.

1996,
T
ate,

D
alto

n
an

d
L
ev

in
e

2000,
T
ate

an
d

D
alto

n

2003)

(M
u
ñ
o
z

A
v
ila

et
al.

1999,
G

an
-

cet
et

al.
2005,

N
au

et
al.2005)

(A
su

n
ció

n
et

al.2005)

E
-learn

in
g

(C
astillo

et
al.2010)

G
eo

so
cial

n
etw

o
rk

in
g

(N
au

et
al.2005)

H
ealth

care
(F

ern
án

d
ez-O

liv
ares

et
al.

2008,
S
án

ch
ez-

G
arzó

n
et

al.2013)

M
issio

n
p
lan

n
in

g
(W

ilk
in

s
1988,

W
ilk

in
s

et
al.

2003)

(D
ru

m
m

o
n
d

et
al.

1988,
T
ate,

L
ev

in
e,

Jarv
is

an
d

D
alto

n

2000)

E
q
u
ip

m
en

t
co

n
fi
g
u
ratio

n
(A

g
o
sta

1996)

P
lan

reco
g
n
itio

n
(B

lay
lo

ck
an

d
A

l-

len
2005,2006)

P
ro

d
u
ctio

n
p
lan

n
in

g
(S

acer-

d
o
ti

1975a)

(W
ilk

in
s

1991)
(T

ate
1994)

(N
au

et
al.2005)

P
ro

ject
p
lan

n
in

g
(T

ate
1976)

(T
ate,

D
rab

b
le

an
d

K
irb

y
1994)

(M
u
ñ
o
z

A
v
ila

et
al.2002)

T
o
u
rism

p
lan

n
in

g
(C

astillo
et

al.2008)

M
o
b
ile

ro
b
o
t
p
lan

n
in

g
(T

ate
2007)

(W
eser

et
al.2010,

M
arco

et
al.2013)

S
erv

ice
co

m
p
o
sitio

n
(T

ate
an

d
L
es-

ley
1982)

(U
szo

k
et

al.2004)
(W

u
et

al.2003)
(F

ern
án

d
ez-O

liv
ares

et
al.2007)

S
o
ftw

are
sy

stem
in

teg
ratio

n
(N

au
et

al.2005)

U
b
iq

u
ito

u
s

co
m

p
u
tin

g
(H

a
et

al.
2005,

M
arq

u
ard

t
et

al.

2008,
S
o
n
g

an
d

L
ee

2013)

(H
id

alg
o

et
al.

2011,

S
án

ch
ez-G

arzó
n

et
al.

2012)

V
id

eo
g
am

es
(K

elly
et

al.2008)

T
o
tal

ap
p
licatio

n
s

1
5

8
14

0
1
6

9

4.5. Remarks 121

0

2

SHOP2

Figure 4.4: Applicability of HTN planners from a time perspective.

4.5 Remarks

For the discussion in Section 4.4.6, we could not assume that the domain models

of HTN planners have the same level of expressiveness. It is therefore not possible

to make statements about the relative effort needed for domain authoring.

From the theoretical discussion in Section 4.4.6, we may agree with the statement

that HTN planning is able to express a broader and more complex set of planning

problems than STRIPS planning. At the same time, we may question the generosity

of this statement due to the assumption that the language of HTN planning uses

an infinite set of symbols to represent tasks. This assumption cannot be practic-

ally supported by any planner unless restrictions are imposed (Lekavý and Návrat

2007).

Chapter 5

Reinforcing state-based HTN planning

Numerical variables are useful in many real-world domains, including ubiquit-

ous computing (see Section 2.3.2). While many planning techniques provide

support for such variables and numerical expressions (e.g., (Hoffmann 2002, Kaldeli

et al. 2012)), the model of state-based HTN planning defined in Section 4.2.2 is based

only on logical expressions. In contrast, the state-based HTN planners, SHOP2 and

SIADEX, support numerical reasoning. The main issue with these planners in this

context is that their underlying planning models are unclear. The ambiguity in

SHOP2 lies in the constructs and expressions that are allowed to be used in para-

meters, preconditions and effects of tasks. In addition, one can use structures, such

as programming-level lists, mechanisms that represents goal agendas, and other

solution-oriented structures to encode SHOP2 domain knowledge. Such encodings

most often exhibit behaviours that go beyond the ones expected to be provided to

AI planners. SIADEX, on the other hand, supports specifying domains in the man-

ner of PDDL. While there was an attempt to define a common syntax for describing

hierarchical domains in PDDL1.0 (McDermott et al. 1998), the differences between

planners based on hierarchical planning undermined the efforts at standardisation

and this part of the PDDL language has never been successfully explored. However,

SIADEX is based on the Hierarchical Planning Definition Language (HPDL) nota-

tion (Castillo et al. 2006, Georgievski 2013), which extends PDDL with hierarchical

constructs, but for which there is no well-defined semantics.

Domains provided to state-based HTN planners generally contain well-

conceived knowledge. Recall that SHOP2 requires a larger and more elaborated

domain model for solving block-worlds planning problems than plan-based HTN

planners do (see Section 4.4.6). Among the reasons for this is the need for hand-

ling phantomisation explicitly in the encodings of compound tasks. Phantomisation

is what happens after the process of recognising that some task is already accom-

plished by other task(s) at some place in the task network (see Section 4.3). Thus,

a state-based HTN planner can find that some effect has been achieved only if the

given domain knowledge contains a phantom method (or several phantom meth-

ods). Such conceived knowledge however depends on the domain author’s ability

and experiences to identify and encode phantomisation.

124 5. Reinforcing state-based HTN planning

Looking at real-world domains, they are characterised by unpredictability of

alternatives encountered during planning which relates to risk. The sensitivity of

planning techniques to risk is especially useful for applications with large wins or

losses of resources, such as money, power, equipment, time, and even humans. If

a planning technique is indifferent towards risk, the result may be an undesirable

outcome. To take the case of ubiquitous computing, consider a building confronted

with an emergency situation due to fire. The building needs to react in such a way

that all its occupants will be rescued in as short a time as possible. Let us assume

that the building can accomplish the deliverance in two ways. One way involves

guiding occupants through a very fast track but with a high risk of encountering

flames on the route to the exit. Otherwise, the planner may choose a longer track:

through this track occupants can be guided to escape the building with a lesser

chance of danger of fire breaking out. Which track to decide on?

We consider all these issues by improving state-based HTN planning with con-

crete features. We define a domain theory that supports numerical expressions in

preconditions of tasks, and operations on numeric-state variables in the effects of

primitive tasks. With this, we clarify what can be included in domain encodings,

define in essence the notations of HPDL, and bring closer state-based HTN plan-

ners to using a unified representational model. We then introduce an approach for

automatic phantomisation in state-based HTN planning. We transfer some of the

domain solution-related knowledge into the planning process itself with the goal

of keeping the domain knowledge as simple and compact as possible. Finally, we

use HTN planning for risk-sensitive planning domains. In fact, we propose a novel

framework, called utility-based HTN planning, in which utility functions reflect the

risk attitude of compound tasks. We also adapt a best-first search algorithm to take

such utilities into account.

5.1 Numerically extended state-based HTN planning

We extend the formalism for state-based HTN planning (see Section 4.2.2) to

support numeric-state variables. All sets in the following definitions are finite and

non-empty, if not stated otherwise. To recapitulate, a primitive name is an expres-

sion of the form tp(τ), where tp is a primitive symbol, and τ = τ1, . . . , τn are terms.

A compound name is defined similarly. We refer to the set of primitive and com-

pound names as a set of task names Tn.

₅.₁ Definition (Domain theory). A domain theory D is a tuple 〈Q,V, T 〉, where:

• Q is a set of predicates.

• V = {v1, . . . , vn} is a set of variables. Each vi ∈ V ranges over a finite domain Di.

5.1. Numerically extended state-based HTN planning 125

• T is a set of tasks. The set of tasks T consists of a set of primitive and a set of compound

tasks, where:

• A primitive task (also an operator) o is a tuple 〈tp(o), pre(o), eff (o)〉, where:
• tp(o) is a primitive name,

• pre(o) are preconditions. A condition is a pair 〈p(cond), nc(cond)〉, where
p(cond) ⊆ Q is a set of predicates and nc(cond) is a set of numerical con-

straints. A numerical constraint nc is a tuple 〈exp, ◦, exp′〉, where exp and
exp′ are expressions, and ◦ ∈ {<,≤,≥, >} is a relational operator. An ex-

pression exp is an arithmetical expression constructed by using a binary

operator � ∈ {+,−, ∗, /} over V and Q.

• eff (o) are effects. An effect is a pair 〈p(eff),nc(eff)〉, where p(eff) ⊆ Q is

a set of predicates, and nc(eff) is a set of numerical effects such that for all

〈vi, assign, exp〉,〈vj , assign, exp′〉 ∈ nc(eff) it holds i 6= j. A numerical

effect is a tuple 〈vi, assign, exp〉, where vi ∈ V , assign ∈ {:=,+ =,− =

, ∗ =, / =} is an assignment operator, and exp is an expression.

• A compound task t is a pair 〈tc(t),Mt〉, where tc(t) is a compound name, and

Mt is a set of methods. A methodm is a pair 〈pre(m), tn(m)〉, where pre(m) are

preconditions and tn(m) is a task network. A task network tn is a pair 〈TN,≺〉,
where TN ⊆ Tn are task names, and ≺ is the order of task names in TN .

A state s is a pair 〈p(s), v(s)〉, where p(s) ⊆ Q is a set of predicates and v(s) =

(v1(s), . . . , vn(s)) ∈ Qn is a vector of rational numbers. Basically, p(s) represent

predicates that evaluate to true, and each vi(s) is the value of vi. We say that a

numerical constraint is satisfied in state s if the value of exp in s is in relation ◦ to the

value of exp′ in s. A numerical effect is applied in a state s by updating the value of

vi in s with the value of exp in s using the assignment operator assign. A primitive

task o is applicable in a state s if s |= pre(o). s |= pre(o) holds iff p(pre(o)) ⊆ p(s) and all

numerical constraints in nc(pre(o)) are satisfied in s. Applying o to s results into a

new state s[o] = s∪ eff (o), where p(s[o]) = p(s)∪p(eff (o)) and v(s[o]) is the vector of

values generated by applying all numerical effects in nc(eff (o)) (unaffected values

are left unchanged). A method m is applicable in a state s if s |= pre(m). Akin to a

primitive task, s |= pre(m) holds iff p(pre(m)) ⊆ p(s) and all numerical constraints

in nc(pre(m)) are satisfied in s. Given a compound task t and a methodm such that

m ∈Mt, applying m to s results into a task network tn(m) = (s[m], t).

Having the definition of the domain theory and the semantics, we can define the

HTN planning problem and its solution.

₅.₂ Definition (HTN planning problem). An HTN planning problem P is a tuple

〈D, s0, tn0〉, where D is the domain theory, s0 is an initial state, and tn0 is an initial task

126 5. Reinforcing state-based HTN planning

network.

A sequence of primitive tasks o1, . . . , on is applicable in s if there are states

s0, . . . , sn such that s0 = s and oi is applicable in si−1 and si−1[oi] = si for all

1 ≤ i ≤ n.

₅.₃ Definition (Solution). Given an HTN planning problem P , a solution to P is a se-

quence of primitive tasks o1, . . . , on applicable in s0 by decomposing tn0.

5.2 Phantomisation

Phantomisation is a stage after the process of recognising that the purpose of

some task is already accomplished by other task(s). It involves a substitution of

an element of a plan with a “phantom” element to indicate that the step is a no-op

or not needed in the given situation. The phantomisation is mainly used to avoid

redundant, unnecessary steps in plans. In many cases, the phantomisation can be

key to a satisfactory performance of HTN planners. Thus, the advantage of using

phantomisation is the planner’s ability to take into account which and when tasks

are really necessary, and therefore, to produce more efficient plans. In most plan-

based HTN planners, the phantomisation process is accomplished automatically

during the planning process. This is not the case with state-based HTN planners

in which phantomisation information is provided in the domain knowledge. The

weak points of this type of phantomisation are its identification and encoding, and

along with that, an increased domain size.

We address the possibility of diminishing the strenuous and tedious process of

writing effective domain knowledge by introducing enhanced reasoning in state-

based HTN planners so as to recognise and handle phantomisation automatically

and without explicit domain encodings. The reasoning is performed by checking

whether a current task’s effects are already achieved by other same-named tasks

and are still holding in the current state. In the case when these effects are still

holding, a planner can reason that this task is redundant and avoid its application.

By performing automatic phantomisation, a planner has to control better the search

space as the phantomisation can happen at different levels of task decomposition

(and interleaving) which may lead to redundant searches or plans, if such exist.

5.2.1 Approach

Our approach to automatic phanotmisation includes a notion of agenda. In-

tuitively, given an HTN planning problem P , the agenda contains all atoms that

are valid up to the i-th state. An atom may not be in the si state, but it may

still be valid. That is, an atom is phantom in state si if and only if its value eval-

5.2. Phantomisation 127

uates to true in some state si−k and whose truthfulness holds between si−k and

si but not in si. For example, let r1, r2, r3 be rooms in Theodore’s home, Tars is

in room r1, and c is a cup also in r1. Let r1 be adjacent to r3 and r3 to r2. The

goal then is to move Tars from r1 to r2 and transfer c from r1 to r3, that is, move-

robot(Tars, r1, r2)∧transfer-cup(c,Tars, r1, r3). If we move Tars from r1 to r3, the fact

(at Tars r1) is no longer true in the state, but it is a valid fact for the transfer-

cup(c,Tars, r1, r3). Recording this type of fact validity enables the task to be further

decomposed by unloading the cup at r3 and moving Tars to r2.

₅.₄ Definition (Agenda). Let P be an HTN planning problem and si the current state.

An agenda is a set A ⊆ s0 ∪ · · · ∪ si such that all logical atoms in A are phantoms in si.

We can now check when some operator is already accomplished during the plan-

ning process. We consider such operator to be matchable to some already applied

operator if and only if they represent the same primitive task.

₅.₅ Definition (Phantom primitive task). Let P be an HTN planning problem andA the

agenda. A primitive task t is phantom if and only if there exist another primitive task t′ in

the current plan π such that t(tp(τ)) = t′(tp(τ)) and eff (t
′) ∈ A.

In addition, we need to check methods of a compound task for their applicab-

ility. Without phantomisation, the methods’ precondition may not be applicable

as certain bindings do not exist explicitly in the current state. In our case, relevant

methods are those that have been already successfully instantiated (for example,

their primitive tasks, if any, are part of the potential plan).

₅.₆ Definition (Phantom compound task). Let P be an HTN planning problem and A

the agenda. Let t be the current compound task, m its method, and si the current state.

Task t is phantom if t is decomposable inm andm is applied to state sk such that k < i and

pre(m) ∈ A.

Algorithm 2 implements phantomisation taking as input an HTN planning

problem P = 〈s0, tn0,D〉, an agenda A initialised to s0, and an empty set applied

that will contain applied tasks. The main procedure starts with an interleaving step

represented through the getTask procedure. This procedure prunes each primit-

ive task that is already applied (i.e., a step in the potential plan) and its effects are

elements of A (according to Definition 5.5).

Planning continues depending on whether the chosen task is primitive or com-

pound. If the chosen task t corresponds to a primitive task, which is applicable in

the state si, its effects are added to the list of valid logical atomsA. When the chosen

task t is compound, a typical state-based HTN planner (e.g., JSHOP2) skips task’s

methods for which bindings do not exist. However, with phantomisation, we may

128 5. Reinforcing state-based HTN planning

Algorithm 2 Planning with phantomisation

1: procedure search(P,A, applied)

2: t←getTask(tni, A)

3: if t is primitive then

4: if t is applicable in the current state si then

5: apply t to si
6: add t to applied, update A with t’s effects, remove t from tni
7: search(P,A, applied)

8: else if t is compound then

9: if t has a method m in applied and pre(m) are in A then

10: add m’s tasks to tni and search(P,A, applied) . t is phantom

11: if t is decomposable through a method m′ in the current state si then

12: decompose t into m′ and add tasks of m′ to tni
13: add m to applied and search(P,A, applied)

14: end procedure

15: procedure getTask(tn,A)

16: choose a task t from tn . With respect to ordering constraints

17: if t is primitive then

18: if same-named operator t′ is in applied and t’s effects are in A then

19: getTask(tn \ t, A) . t is phantom

20: else

21: return t

22: else

23: return t

24: end procedure

also consider some of those methods, in particular, those already successfully ap-

plied. Therefore, in lines 9-10, we add logic to the algorithm that handles this type

of methods and call the procedure recursively with methods’ tasks added to the

current task network.

An HTN planner employing POTD or UTD produces all possible combinations

of task sequences for a given task network (see Section 4.3.1). Previously identified

phantomisation results in additional interleaving steps between tasks in the task

network. But, since the task has already been accomplished, many of the interleav-

ing steps are not necessary – they produce redundant searching. For instance, if a

planner finds a plan at some point after successful phantomisation and backtracks

5.2. Phantomisation 129

adjust-office (r,t,l,m)

set-AC (t,r) turn-on-lamp (l,r) turn-on-music (m,r)

adjust-desk (r,l,c)

turn-on-lamp (l,r) turn-on-computer (c,r)

Figure 5.1: Examples of two compound tasks.

to try other combinations without controlling the search, it will find a number of

plans which are equivalent to the first found one. Hence, we add a control ability to

the algorithm that prunes these steps. The algorithm continues to search for other

possible methods of t for which appropriate bindings exist in the i-th state. Thus,

when a certain task is decomposable in si, its applicable method is added to applied.

5.2.2 Example

While some performance results of this approach implemented on top of the

JSHOP2 planner are reported in (Georgievski et al. 2011), here we provide a simple

example of phantomisation from a scenario in ubiquitous computing. The scenario

is articulated around the adaptation of an office equipped with an air conditioning

system, lamp, radio, and computer. This information can be encapsulated in two

compound tasks as shown in Figure 5.1. One task is for adapting the office to certain

ambience (that is, adjust-office), and the other one is for adjusting the work desk

(adjust-desk). The adjust-office task can be further decomposed into a network of three

tasks, namely set-AC for setting the air conditioning system to a temperature level t,

turn-on-lamp for switching on the lamp l, and turn-on-music for controlling the radio

r. The adjust-desk task contains a decomposition of two tasks, namely turn-on-lamp

and start-computer for invoking the computer c. set-AC, turn-on-lamp, turn-on-music,

and start-computer are all primitive tasks.

We may also have some constraints on the order of tasks in the task networks of

the compound tasks, for example, that set-AC must occur before turn-on-lamp and

the latter one must occur before turn-on-music. Thus, the tasks of adjust-office should

be accomplished in the sequence given in Figure 5.1.

Figure 5.2 shows the encodings of the compound tasks for the planning problem

just described in HPDL. adjust-desk and adjust-office tasks do not contain any

preconditions to keep the representation as simple as possible.

Say that we want to perform both tasks, i.e., an initial task network of preparing

the work desk in the office r and adjusting r after some time being empty. We

assume that one of the most effective solutions would be when the air conditions are

comfortable, the lamp is turned on, the music is playing, and the computer is started

and ready for work. That is, the plan π = set-AC,turn-on-lamp,turn-on-music,turn-

130 5. Reinforcing state-based HTN planning

(:task adjust-office
:parameters (?r ?a ?l ?m)
(:method

:precondition ()
:tasks (sequence (set-AC ?a ?r)

(turn-on-lamp ?l ?r)(turn-on-music ?m ?r))))

(:task adjust-desk
:parameters (?r ?l ?c)
(:method

:precondition ()
:tasks (sequence (turn-on-lamp ?l ?r) (start-computer ?c ?r))))

Figure 5.2: Simplified task encodings.

on-computer.

Let us examine the situation when our algorithm is on the right way of finding

such good solution. For the purpose of demonstration, we consider a straightfor-

ward application of the first two operators of the adjust-office task. At this point,

their effects are added to the agenda. The planning process continues by interleav-

ing the task (adjust-desk r l c) and decomposing it to its task network. Task’s

first subtask is (turn-on-lamp l r) which is already a part of the potential plan.

The algorithm reasons that this task is already achieved and that its effect (the lamp

is on) is still valid. Therefore, the algorithm is allowed to prune the task from in-

terleaving and continues by processing the rest of available tasks. In few steps, the

algorithm finds the correct sequence of operators.

In contrast to our approach, a typical state-based HTN planner will not find a

solution given the domain encoding in Figure 5.2. In order for such planner to come

up with a plan, we have to improve the domain with more effective descriptions. In

Figure 5.3 we enclose such enhanced encodings. As we can see, we have to include

an additional task light-helper which has a method representing phantomisation

– doing nothing when the lamp is already turned on. Comparing Figures 5.2 and 5.3,

one notices the first is a simpler and more compact domain representation.

5.3 Utilities

In making decisions, an individual or a system will try to enhance his utility or

a given one. Utility is defined such that a preferred alternative always represents a

higher utility level than the less preferred (or rejected) alternative.

5.3. Utilities 131

(:task adjust-office
:parameters (?r ?a ?l ?m)
(:method

:precondition ()
:tasks (sequence (set-AC ?a ?r)

(light-helper ?l ?r)(turn-on-music ?m ?r))))

(:task adjust-desk
:parameters (?r ?l ?c)
(:method

:precondition ()
:tasks (sequence (light-helper ?l ?r) (start-computer ?c ?r))))

(:task light-helper
:parameters (?l ?r)
(:method

:precondition (not (on ?l ?r))
:tasks (sequence (turn-on-lamp ?l ?r)))

(:method
:precondition (on ?l ?r)
:tasks ()))

Figure 5.3: Enhanced task encodings.

5.3.1 Utility theory

Utility theory deals with decision making according to a given risk attitude un-

der several assumptions and unlimited (planning) resources available (Neumann

and Morgenstern 1947). In order to illustrate the theory on an example, we take the

famous paradox of the St. Petersburg game studied by Daniel Bernoulli:

Theodore tosses a fair coin until heads appear for the first time. If heads

shows up on the k-th toss, he gets 2k Euro. How much is Theodore

willing to pay in order to be allowed to participate in this game?

Let Theodore own a wealth of w Euro. If he chooses to play the game and pays

c Euro for participation, he owns 2k + w − c afterwards with probability 1
2k

. The

expected reward of the game then is
∑∞

k=1
2k+w−c

2k
=∞ Euro. Thus, irrespectively

of how much the participation costs, the expected reward of playing the game is

larger than the expected reward of abstaining.

Bernoulli was of the opinion that people do not average over rewards, but over

the satisfaction or utility that the rewards provide. For every type of risk attitude,

there exist a utility function that transforms c into utilities u(c) ∈ R such that it is

132 5. Reinforcing state-based HTN planning

reasonable to maximise expected utility. This is done only if the decision maker (a

person or a system) follows several simple preference assumptions (axioms) and

has unlimited planning resources available.

u(w) is the utility when Theodore is not participating in the game, and u is the

utility function of the decision maker. Theodore’s participation in the game implies

the expected utility
∑∞

k=1
u(2k+w−c)

2k
. Thus, he should bet at most cmax Euro, where

u(w) =
∑∞

k=1
u(2k+w−cmax)

2k
. Theodore (and people in general) is not willing to pay

more for the participation because he is risk-averse. That is, losing a part of his

wealth means more to him than winning a fortune. People are risk-averse (risk-

seeking, risk-neutral) if and only if their expected utility of every non-deterministic

game is smaller than (larger than, equal to) their utility of the expected reward of the

same game. People that are not risk-neutral are risk-sensitive (Koenig and Simmons

1994).

5.3.2 Framework

We propose a framework based on HTN planning that takes task utilities into

account, where a utility is a function of a profit and may determine the attitude

towards risk (Georgievski and Lazovik 2014). We assume that a primitive task is

associated with a function of consumption that expresses a single or combination

of properties, such as failure rate and energy use. The possible runtime failures

are not modelled directly, but we assume that some tasks are more likely to show

unpredictable behaviour. Under the assumption that a compound task may have a

large number of methods and many of them be applicable, we use a utility to express

the level of preference of the compound task, and a utility function to calculate the

perceived utility of the task.

We require a primitive task to be provided with some function of consumption

that expresses the cost of the operator as a non-positive value, that is, c(o) ∈ R≤0.

We estimate the utility of a compound task t based on its risk or consumption atti-

tude. We assume that each t is acyclic, that is, t can be decomposed only to a finite

depth. The following function represents a template formula for calculating the

utility value of t

U(t) =

c(o), if t is primitive;

min
m∈Mt

E(m), otherwise,

where E is an estimation factor. In fact, the definition of the estimation factor E

gives a concrete utility function. Based on the discussion about utility theory and the

types of attitude towards risk and consumption, we define four estimation factors,

5.3. Utilities 133

Table 5.1: Utilities for the task t in Figure 5.4.

Utility function Utility value

Risk-averse -3

Risk-seeking -1

Risk-neutral -2

Consumption-aware -5

that is, utility functions.

Risk-averse utility. A task is risk-averse if and only if it maximises the minimum

expected utility value of its methods’ subtasks. A risk-averse task shows pessimistic

behaviour towards risk, that is, it represents the safest possible decision by using

E(m) = min
t′∈tn(m)

U(t′).

Risk-seeking utility. A task is risk-seeking if and only if it maximises the maximum

expected utility value of its methods’ subtasks. A risk-seeking task shows optimistic

behaviour towards risk, that is, it takes the highest risk to gain the best outcome by

using

E(m) = max
t′∈tn(m)

U(t′).

Risk-neutral utility. A task is risk-neutral if and only if it maximises the average

expected utility value of all subtasks for a given task’s method, that is,

E(m) =

∑
t′∈tn(m) U(t′)

|tn(m)|
.

Consumption-aware utility. A task is consumption-aware if and only if it maxim-

ises the sums of utility values of its methods, that is,

E(m) =
∑

t′∈tn(m)

U(t′).

In Figure 5.4 we show an example of a compound task whose leaf tasks are op-

erators associated with non-positive costs. Applying risk attitudes to this task by

using the utility functions we just defined results in the utilities values shown in

Table 5.1.

We can now define the notion of utility-based HTN planning. To do so, we assume

a utility function u for a plan π to produce an expected total utility as sum of the

costs of plan’s steps.

134 5. Reinforcing state-based HTN planning

t

m1
m2 m3

t1

-3

t2

-1

t3

-2

t4 t5

-2

t6

-6

m4 m5

t7

-4

t8

-2

t9

-3

t10

-3

Figure 5.4: Example of a task.

₅.₇ Definition (Utility-based HTN planning). An HTN planning problem P with util-

ities is a tuple 〈s0, tn0,D, U〉, where U is a utility function. A plan π is a solution to P if

and only if there does not exist a plan π′ for P such that u(π) < u(π′).

5.3.3 Algorithm

We propose an algorithm that selects the best task network to work with, that is,

the one with the highest utility value. The utility-based best-first search algorithm

shown in Algorithm 3 takes an HTN planning problem, some resource value and a

utility function, and starts by setting the frontier to an initial node. We take a node

n to be a three-element structure 〈s, tn, π〉, where s is a state, tn is a task network,

and π is a partial plan. A node n is selected for expansion based on one of the utility

functions that can be seen as a heuristic function. The nodes whose absolute utility

value is greater than the amount of resource are pruned from the search space. If

the node has no more tasks to be decomposed, and the utility of its partial plan is

higher than the utility of the best plan found so far, then we consider the current

one as the best plan. The function in line 10 can be one of the task decomposition

styles discussed in Section 4.3.1. The chosen style must consider the applicability of

operators and methods in the state of the current node.

₅.₈ Theorem (Optimality). Given a utility-based HTN planning problemP and a resource

value, if the termination of the algorithm returns a plan, then the plan is an optimal solution

to P with respect to maximising the utility of using the given resource.

5.4. Summary 135

Algorithm 3 Utility-based search for solution

Input: P , U , resource

Output: best plan

1: currentUtility ←∞
2: frontier ← 〈s0, tn0, ∅〉
3: while frontier 6= ∅ do
4: best← POP (frontier)

5: if resource > |U(best.tn)| then
6: if best.tn = ∅ and u(best.π) > currentUtility then

7: output best.π

8: currentUtility ← u(best.π)

9: decompositions← DECOMPOSE(best)

10: frontier ←MERGE(decompositions, frontier, U))

11: end while

The proof of the theorem follows from the definition and properties of the best-

first search algorithm (Russell and Norvig 2003).

5.4 Summary

Among planning techniques we chose to work with HTN planning, and in

particular, with state-based HTN planning. With the intention to make this tech-

nique even more suitable for real-world environments, such as ubiquitous comput-

ing ones, we augmented the technique with several features. We first defined the

semantics of state-based HTN planning with numerical expressions. This formal

model supports the syntax of HPDL. We also showed how can phantomisation be

performed in state-based HTN planners automatically, and the benefits of it use.

The main advantage is the simplification and reduction in size of the domain know-

ledge. Finally, we proposed the framework of utility-based HTN planning to asso-

ciate an attitude of tasks towards the risk of using a given resource. We provided

an algorithm that outputs optimal solutions, that is, plans with maximised utilities

of using the resource.

Chapter 6

Planning as a service

The applicability of large systems, such as ubiquitous computing ones, is chal-

lenged by scalability, distribution, interoperability, evolution, and reusability.

As part of such systems, planners inherit most of these challenges mainly due to

the characteristics of problems and situations encountered in real-world domains.

These include the size and diversity of planning problems, deployment location of

planners, distribution of domain knowledge, mixed decision-making, etc. Consid-

ering ubiquitous computing, the problem size may vary depending on, for example,

the proliferation of devices, planner’s implementation may reside, let’s say, in the

home or in the Cloud, domain knowledge may be distributed centrally or to mul-

tiple components (or devices), and decision-making control based on AI and user

decisions, which may lead to conflicts. On top of these concerns, the scenario of

planning problems may vary between homes, office building, to hospitals.

The ability of planners to integrate in large systems is something that research

in planning appears to be neutral to principally due to its orthogonality to the reas-

oning capabilities of planners as primary concerns of the community. A planning

system is integrable if it offers its essential functionalities to interested components

in a defined and standardised way, and is able to interoperate with them. Most of

the current planners fail to be integrable. To the best of our knowledge, the only

attempt, which considers this issue and is made only recently, focuses on the inter-

operability of planning systems employed in space-mission domains (Fratini et al.

2013). Also, several questions related to runtime behaviour, interoperability and

scalability of planners in ubiquitous computing are raised in (Marquardt and Uhr-

macher 2009c). The study however does not discuss in details the possible design

of planning systems that could answer the questions.

Since the current situation witnesses planning systems with no standardisation,

the obvious consequence is the strong need for familiarity with details of planning

systems. The interoperability of planners is only possible under the assumption that

they offer a standard interface or a set of services to other components of the under-

lying system. A common way to accomplish this in a transparent way is by consid-

ering the primary elements of Service-Oriented Computing (SOC) (Papazoglou and

Georgakopoulos 2003, Erl 2007). The first element is the model of Service-Oriented

138 6. Planning as a service

Architecture (SOA) which provides foundations for designing large and cooperat-

ive systems. The capabilities of the components of SOA-based systems represent

application services (see Section 1.4). In order planners to be integrable in SOA-

based systems, they need to take into account another primary element, namely

service-orientation. Service-orientation focuses on the structure and implementa-

tion of planning functionalities. These are offered as services to other components

of the system. We refer to the services that planners provide as planning services.

Since planning services are used at the application level of the system, they repres-

ent a subset of the application services.

We propose the concept of planning as a service, that is, planners to be completely

service oriented (to comply with SOC principles), and consequently to support easy

construction of cooperating distributed systems (based on SOA). While in the fol-

lowing we analyse the integration of planning systems in a larger distributed ar-

chitecture in the context of ubiquitous computing, our proposal is general and can

be considered in a wider range of contexts. The benefits of defining planning func-

tionalities as services can be multiple: (1) efficiency - rapid prototyping design; (2)

flexibility - arbitrary system configurations, in terms of (new) planning functional-

ities, can be easily integrated; (3) scalability and fault tolerance; (4) interoperability;

(5) reuse - usable in various ubiquitous computing domains with minor changes

(tailoring), and also reduced development time, cost, training, etc.

Finally, we introduce the SH planning system, some of its engineering and im-

plementation details considering the principles of service-orientation, and the set

of planning services it supports. SH is used in two applications illustrated in the

following chapters.

6.1 Service-orientation

A system is service oriented if the concept of service-orientation is applied to

it (Erl 2007). Service-orientation affects the way of organisation and implementation

of the functionalities of systems. In this regard, several design principles appear to

be important but challenging for planners to achieve service-orientation.

Interfacing

We can ensure the interoperability of a planning system with other compon-

ents of an architecture by considering two important design principles. The service

contract defines interaction requirements and constraints as well as the semantic in-

formation of the planning system made available to application services consumers

of planning services. In other words, this principle enforces the planner to adhere to

a communication agreement, and to provide an interface with a description of what

6.1. Service-orientation 139

Planning

implementation

S
er

v
ic

e
co

n
tr

ac
t

message

message

Message

processing logic

service

software

component

service

description

Figure 6.1: Profile of a planning service specified in the notation of (Erl 2007).

it offers and requires. The description can be specified using interface description

languages, such as the RESTful Service Description Language (RSDL) (Robie et al.

2013), Web Service Description Language (WSDL) (ConsortiumW3C 2005), and so

forth. The second principle is closely related to the service contract. Service abstrac-

tion ensures that the knowledge about the planning implementation (or domain

model) offered to other components through the contract is limited (see Figure 6.1).

Service contract and service abstraction should be defined in such a way that the

planning system provides general but detailed enough planning services to be prac-

tically usable. This is important especially because many planning systems use do-

main models specific to the planning technique adopted. For example, the model

of a PDDL-based or a CSP-based planner is reasonably different than the model of

an HTN planner. Therefore, the level of abstraction directly affects the easiness (or

equally, the difficulty) to specify a planning request or to interpret a plan. Obvi-

ously, a standard contract cannot be defined easily, at least not at the current stage

of development of AI planning (many planning techniques use their own domain

models, or in a better case, an extension of a more generic planning model, such as

PDDL).

The main challenge with respect to interoperability is to find the state in which

these two principles are in equilibrium. Let us analyse why we need such a state.

If we standardise the contract only, it means that the semantics for the plan-

ning problem must be defined within the planning system. Ergo, planning services

would require a minimal specification for invocation, and would refer to predefined

domain models. This case is only possible under the assumption that the relevant

data needed for the planning process would be available and certain at the time of

each request issued to the planning system. Practically, this assumption might be

too strong for ubiquitous computing environments. These environments are highly

140 6. Planning as a service

dynamic (in terms of context changes) and involve different types of requests, such

as user preferences (see subsection Requests in Section 2.3.2). If the planning system

maintains the state of the environment, then we need to assure that the system will

contain the latest update of the context. Otherwise, the context information should

be provided along the preferences and the predefined goal.

If we standardise the semantics, it means that the specification of relevant data

needed for the planning process would be provided through the contract of the

planning system. The more information is exposed in the contract, the deeper the

coupling of consuming services to the contract can become (see Section 6.1). There-

fore, one should have great knowledge of the planning technique adopted by the

system, or there should be an agreement on some abstract domain model. The first

case is what we aim to avoid in the first place, while the second one represents an

ambition already existing within the AI planning community (Fratini et al. 2013).

One way to address the challenge of finding a state of balance is to agree on the

contract and the level of abstraction for the most essential services that a planning

system should provide, for instance, in ubiquitous computing environments.

Loose coupling

Loose coupling minimises the level of dependency between planning services

and application services consumers of planning services, but also the level of de-

pendency among planning services themselves. This means that the relationship

between a planning service, its underlying environment, and its consuming services

is clearly defined. In essence, a planning system would support loose coupling if

the dependency of a dependent service is to the contract of the planning service

and not to internal and concrete classes of the planning technique, and also if the

dependency of the planning service to some outside logic is reduced as much as

possible (see Figure 6.2). What could be problematic with the application of this

principle is the case when contracts for planning services would be derived directly

and only form the implementation of existing planning techniques, and therefore,

such contracts could become tightly coupled on that existing implementation.

A planning system receives messages from other application services, such as a

context update or planning request, but also publishes messages to other services,

such as the component responsible for the execution of device operations (cf. Or-

chestration component in Figure 1.1). In this regards, loose coupling of the plan-

ning system can be increased if the system supports and handles some flexible file

format, such as Extensible Markup Language (XML) or JavaScript Object Notation

(JSON). The planning system can then provide clearly defined interfaces on how

it uses transmitted data. For example, the planning system could provide a set of

6.1. Service-orientation 141

P
la

n
n

in
g

im
p

le
m

en
ta

ti
o

n

S
er

v
ic

e
co

n
tr

ac
t

Outside logic
Dependent

service

M
es

sa
g

e

p
ro

ce
ss

in
g

 l
o

g
ic

Figure 6.2: Service loose coupling specified in the notation of (Erl 2007).

methods used to extract information from received messages by exposing an XM-

L/JSON schema.

Reusability

A planning system that adopts a domain-independent planning technique meets

the opportunity to be reused in various domains. However, the planning system

would be truly independent if it is not attached to any specific underlying environ-

ment (or workflow which represents the business/execution steps of the underly-

ing system). In this context, the principle of reusability provides the possibility for

a planning system to be reused across various technological environments and in

multiple workflows, and therefore, it supports planning systems to be applied to

diverse domains. Resuability of planning systems can be ensured if:

1. Each planning service is defined within an agnostic functional context. This

means that the functionality that a planning service provides is associated

with a context that is neutral – it does not take any specific workflow (or

scenario) into account so as to be considered reusable. For example, a service

providing domain modelling capability also stores domain models to some

database. Its functional context is agnostic because it deals with the definition

or modification of classical domain concepts only, such as state variables, con-

strains or actions, but the context is not about details related to the database

used to store data.

2. The implementation encapsulated by a planning service is generic enough

to support various situations in a single domain or different domains, where

these situations are created by application services consumers of that service.

In core planning services, such as domain modelling or solving a planning

142 6. Planning as a service

problem, this characteristic is naturally supported by the domain independ-

ence typical of the majority of planners.

3. A planning service has an easily extensible contract. This characteristic gives

services flexibility to deal with diverse input and output messages, that is, the

format and type of messages (of course, this overlaps with the goals of the

service contract principle).

4. A planning service can be accessed concurrently by other parties. Some plan-

ning services, such as solving a planning problem, might be invoked simul-

taneously by multiple office users, for instance. If the planning system main-

tains the state of the office environment, which is used by the invoked service,

then the system needs to take care of concurrent use and updates of that state.

Practically, concurrent computation in planning services can be realised by

implementing, for example, the actor model (Hewitt et al. 1973).

Autonomy

The independence of planning services from the environment in which they are

deployed, invoked and executed is ensured by the principle of service autonomy. The

immediate benefit of autonomy is increased runtime reliability of the planning sys-

tem to unexpected outside behaviour (the behaviour of other application services).

The reliability of a planning service depends on the service’s operational control and

external resources. That is, the service needs to become more independent from the

external resources. An example includes a database that stores and provides static

information about a ubiquitous computing environment (e.g., spatial information

about an office building), which may not be available when required by some plan-

ning services.

The application of this principle includes two types of autonomy. Design-time

autonomy gives the freedom to evolve planning services without affecting the way

in which other application services consume them. The implementation of design-

time autonomy can be guaranteed by the application of service abstraction and loose

coupling principles. Runtime autonomy defines the level of control that a planning

service has over its implementation when processed in a runtime environment. The

application of runtime autonomy involves support for deployment of planning ser-

vices to distributed environments and handling of resources required at runtime.

Some planning services would face difficulties in achieving this principle as they

might depend on data coming from other application services. For example, the

service that solves a planning problem cannot be correctly executed if the applic-

ation service that is responsible for the environment context is down and has not

6.1. Service-orientation 143

provided the most recent changes of the environment. As a result, the autonomy

of the planning service depends on the autonomy of the services that participate in

the current workflow.

Statelessness

The scalability of planning systems can be supported to a large extent by the

principle of statelessness. The way of managing state data, which is the information

associated with the process currently being executed, determines the level of state-

lessness that a planning service is characterised by. In other words, this principle

suggests to separate state data from a planning service whenever possible. Con-

versely, if the planning service actively maintains and processes state data, it con-

stantly consumes a reasonable amount of memory and CPU usage (an even worse

case is when the planning service is simultaneously accessed by multiple consum-

ing services).

The state data that a planning service may process can represent environmental

and session data. Environmental data can be static and dynamic. Static data repres-

ents the information about, lets say, the spatial organisation of an office building,

and obviously, it does not actually represents the state of a planning service or the

state of the current process, but it might be relevant to some capability of the ser-

vice, such as solving a planning problem. Dynamic data represent the information

about the events, that is, context changes that currently happen in the environment.

Dynamic data is usually passed between application services. In many ubiquitous

computing architectures, such as the one in Figure 1.1, the management of envir-

onmental data is deferred to a common architectural component (the Repository

component in Figure 1.1). This data deferral gives the possibility to application

services, including planning ones, to retrieve information when needed. As a res-

ult, the planning system may become responsible for managing the retrieved data.

In practice, planning systems would retain static and dynamic data, which is re-

trieved from some storage on a system’s first invocation, and update the dynamic

data whenever a context change occurs. Practically, this means that the planning

system has the latest environmental state, and it does not overload the communic-

ation by frequently retrieving a large amount of data.

The session data represents information about a connection established between

a planning service and its consuming services. Statelessness says that we need to

provide a possibility for a planning service to transit from an active and stateless

mode to an active and state-processing mode in an efficient way. Planning services

for which full statelessness is not possible (or not desirable), such as the service to

solve a planning problem, should implement some form of moderate statelessness.

144 6. Planning as a service

This means that if the planning system is idle for a long period, then its services

should transit to a stateless mode.

An example of an HTN planner that supports a certain form of statelessness

is O-Plan offered as a Web service (Tate, Dalton and Levine 2000, Tate and Dalton

2003).

Discoverability and composability

To search for and find services that provide the functionality we need, services

need to be outfitted with meta data that will be used when the discovery search is

performed. If the service can be discovered, then it possesses a degree of discoverab-

ility. From a planning perspective, this principle does not bring any additional chal-

lenges than those for the other application services. The application of this principle

includes providing planning services’ contracts with adequate meta data that will

be referenced in discovery searches, and also used to communicate the functionality

of those services. In addition, planning services should be able to announce their

existence by registering their meta data to some service registry (e.g., a distribution

configuration service (Degeler et al. 2013)).

Distributed systems address larger problems by aggregating the capabilities of

different services members of their underlying service-oriented architectures. Ser-

vice composability is in favour of this concept and provides design considerations that

guarantee that services can be part of diverse compositions. This enables service-

oriented systems to automate their workflows by combining multiple services.

The application of service composability requires a service that is a part of a com-

position either as a service that controls other services, or as a service that provides

functionality to other services in the composition (and does not further compose

other services). The purpose of this principle is close to the goal of service reusab-

ility principle. On the other hand, the effectiveness of the principle depends on the

service contract, loose coupling, autonomy and statelessness. Thus, the application

of this principle can be a consequence of these principles. Their implementation

should ensure, to a large extent, that planning services will exhibit a high level of

composibility, and can participate in the automation of the workflow of service-

oriented systems.

6.2 Services

By considering the general classification of services as suggested in (Erl 2007),

the categorisation of planning services in space-mission domains (Fratini et al.

2013), and our experience, we organise planning services in the following classes.

6.2. Services 145

1. Modelling services are entity centric because they base their functionality on

planning entities that are used to form a planning problem. These services

can be considered as highly reusable because they are neutral to any process.

An example is a service for modelling planning domains.

2. Problem-solving services are task centric because they have a functional bound-

ary associated with the task of solving planning problems. These services

provide their functionality by using the capabilities of modelling services. The

most important of which is the Solve planning problem service that represents

the core planning process.

3. Management services are also task-centric ones whose functionality is related

to the use and management of planning problems. For example, a service for

parsing or validation of planning problems.

4. Utility services have a functional context that is not directly related to the core

capabilities of planning systems. Utility services have a set of capabilities that

handle various technological environments in a sense that make modelling

and problem-solving services available and suitable for a specific system. For

example, a service for storing domain models.

The first three classes of planning services depend on the adopted planning tech-

nique, that is, the implementation and language used to define domain models and

planning problems. We believe that many of these services can be mapped to re-

spective internal classes of existing planning techniques with little effort. This way,

instead of standardising specific syntax or interfaces of internal classes, we can focus

on the standardisation of a general set of services.

The last class of services makes the services of the first three classes suitable for

a specific type or several types of runtime environments.

6.2.1 Modelling services

Planning problems are composed of predefined domains and some specific

problems. The result of solving planning problems is a set of solutions or plans. For

each planning entity, we envision a modelling service, that is, Domains, Problems

and Plans services. The Domains service can be used in several scenarios, such as

in solving planning problems, as discussed later, or in user-supportive tools for au-

thoring domain models (see Section 6.3.2 or, for example, (Simpson et al. 2001)). The

capabilities of the Domains service enable definition and manipulation of diverse

concepts: state variables and/or predicates, actions and tasks, axioms and prefer-

ences. To take the case of ubiquitous computing, state variables may be used to

146 6. Planning as a service

Table 6.1: Interface of the Domains service.

Operation Input Output

getDomainObject unique domain ID domain object

modifyDomain unique domain ID and planning entity domain object

addDomain domain file acknowledgement

represent attributes and input parameters of device services (Kaldeli et al. 2012),

while predicates may be used to describe characteristics and states of objects present

in the environment (Pajares Ferrando and Onaindia 2013, Kotsovinos and Vukovic

2005, Marquardt and Uhrmacher 2009a). Actions are used to update the values of

state variables (Kaldeli et al. 2012), or to change the states of predicates (Pajares Fer-

rando and Onaindia 2013). Tasks, on the other hand, are used to encode such com-

plex knowledge about ubiquitous computing environments that actions are not able

(or not supposed) to capture. Examples include activities in the domain of eld-

erly care (Yordanova 2011), assistance for diabetic people (Amigoni et al. 2005), ad-

aptations of offices (Georgievski et al. 2013), etc. Axioms may be used to decouple

device services from the rest of the knowledge about the environment (Heider and

Kirste 2002). Finally, preferences are an important construct that can be used to

customise the behaviour of ubiquitous computing environments according to the

needs of their occupants (or users). Although preferences are not fully exploited in

the setting of ubiquitous computing environments (see subsection Requests in Sec-

tion 2.3.1), simple soft constraints are supported in (Kotsovinos and Vukovic 2005),

for example.

Table 6.1 establishes a set of operations that could be used to define the interface

of the Domains service. The set is indicative and should be further extended with

more operations.

The Problems service is used to assemble the current state of the environment

and the goal to be accomplished. The Plans service is used to represent the solution

for a specific planning problem. A plan is represented as a collection of actions

along with a set of temporal constraints to determine the order among them.

6.2.2 Problem-solving services

Solve planning problem service encapsulates the requirements of the main plan-

ning process, and fulfils them by composing the capabilities of the Domains and

Problems services to acquire the domain and problem objects, respectively. Its in-

terface can include, for example, solving for the first found plan and solving for the

best plan.

6.3. Engineering SH 147

Another important functionality especially for dynamic environments, such as

ubiquitous computing ones, is continual planning (Kaldeli et al. 2011). The service

that supports the process of interweaving planning with action execution is called

Plan continually service. The service may use the capability of the Solve planning

problem service whenever there is a new request issued. Otherwise, this service will

try to refine the current solution by taking into account the changes of the context

(that is, the initial state). If possible and supported by the planning system, dynamic

changes can be incorporated into the domain object too.

6.2.3 Management and utility services

Management services encompass a set of functionalities related to parsing, val-

idation and verification (Long et al. 2009), and visualisation of planning domains,

problems and solutions (Gerevini and Saetti 2008). These services appear to be

handy in ubiquitous computing environments in cases where users are empowered

to interact with the environment (Butz 2010). In particular, users should be able

to modify the existing domain model, for instance, by stating their preferences

through a graphical user interface. Consequently, their input must be validated

and verified with respect to the adopted formalism, and with respect to the refer-

enced domain model. Hence, these services should support automatic analysis and

translation of planning domains, problems and solutions. This approach will signi-

ficantly reduce the need for a planning expert (or domain expert) to validate changes

made by different users. Furthermore, in many types of ubiquitous computing en-

vironments, a plan synthesised by the planning system needs to be presented to a

user for inspection, modification, approval, or just as advice to be followed. Visu-

alisation services are envisioned to provide such capabilities and indeed to support

the user interaction.

Utility services include functional contexts related to message conversion, stor-

age of domain models, communication with other application services, exception

handling, etc. Assuming that other classes of planning services are available, util-

ity services will generally not require involvement of planning experts when be-

ing modelled. These services may include capabilities suitable for several types of

ubiquitous computing environments whose implementation is based on reuse of

planning services from the other three classes.

6.3 Engineering SH

We introduce the Scalable Hierarchical (SH) planning system developed to sup-

port some of the features presented here and in Chapter 5, and used in the applica-

tions discussed in the following chapters. The internal architecture of SH is shown

148 6. Planning as a service

SH

Planner

Planning service

HPDL Processor

Problem

Converter

Domain

Modeller

Request ResponseHPDLSpecification

Request

Request

HPDLProblemHPDLDomain

EnvironmentInformationUserInput

ResponseReponse

Object

EnvironmentInformationUserInput

Figure 6.3: Component diagram of the SH planning system.

in Figure 6.3 and consists of three main components, namely Problem Converter,

Domain Modeller, and Planner. The ProblemConverter component generally accepts

state information and desired objectives about some environment, and translates

them into a standardised form acceptable by the Planner. This components supports

several underlying message exchange and interconnection mechanisms, which en-

ables easier integration of SH into large system architectures. The final result of the

conversion is a complete problem description that is part of the Planner’s input.

The Domain Modeller component is a Web-based editor that enables intuitive

guidance for users when creating, viewing and modifying the domain knowledge

required by the Planner component. The modeller offers an abstraction in the way

of forming domain tasks and verification of the correctness of the knowledge be-

ing produced or altered with respect to the Backus-Naur Form (BNF) of the input

language of the Planner. The domain models are stored and available to be used as

another part of the input to the Planner.

The Planner component (or just the planner) is founded on state-based HTN

planning. It is able to administer typing the parameters that appear in operators

and tasks, conjunction, disjunction, implication and universal quantification in pre-

6.3. Engineering SH 149

conditions, numeric fluents in both preconditions and effects, universally quantified

effects, and axioms. Given a translation of domain and problem descriptions into an

object representation, the planner uses depth-first search on the initial task network

to synthesise a solution plan.

6.3.1 Syntax processing

SH performs double transformation of HTN planning problems. First, the in-

formation coming from an environment (and similarly, the knowledge coming from

a user) is transformed into a problem described in HPDL through the Problem Con-

verter (a domain described in HPDL through either the Domain modeller or a text

editor). In (Georgievski 2013), we provide the syntax for HPDL using an exten-

ded BNF. The HPDL problem and domain descriptions are then transformed into

programming-level constructs through the HPDL Processor (see Figure 6.3).

We design the Problem Converter upon the Cake pattern (Odersky and Zenger

2005). The basic idea behind this pattern is to solve dependencies between com-

ponents through abstraction of implementation details. In particular, we define an

interface for the Problem Converter through a trait that may be instantiated in mul-

tiple ways depending on the number and types of environments we need to imple-

ment. In this way, on the one hand, all components invoking the Problem Converter

see and use the same set of operations. On the other hand, all further changes we

make on the implementation of the converter will not affect the depending com-

ponents.

The Problem Converter is implemented in the Scala programming language.1

Scala is a type-safe language designed to be concise, logical and powerful with

many implicit techniques to help simplify some common tasks. It may also improve

the performance of the underlying application in terms of efficiency and scalability

(when combined with other tools, e.g., Akka (Wyatt 2013)).

The HPDL Processor is also implemented in Scala. We use parser combinat-

ors (Odersky et al. 2011) to transform HPDL descriptions into Scala objects. A parser

is a function that takes input tokens and transforms them into programming-level

constructs. A combinator is a higher order function that combines two functions

into a new function. A parser combinator is then a function that combines two

parsers into another parser.

Listing 6.1 shows a code snippet of parser combinators for an atomic formula

and predicate: | is the alternation combinator, ~ is the sequential combinator, ^^
is a transformation combinator, and ~> (<~) is a combinator that does not include

the content on its left (right) in the result. The result of the transformation for the

1http://www.scala-lang.org/

http://www.scala-lang.org/

150 6. Planning as a service

predicate value is the Scala case class Predicate.

lazy val atomic_formula = predicate | equality_predicate

lazy val predicate: Parser[Predicate] = ”(” ~> predicate_name ~ terms <~ ”)”

^^ {case pn ~ t => Predicate(pn, t)}

Listing 6.1: Example of parser combinators in the HPDL processor.

6.3.2 User-friendly domain manipulation

A graphical domain modeller has been designed and implemented to guide

users in manipulating HPDL domain models. The modeller is also implemented in

Scala, and details about the implementation can be found in (Hoekstra 2013). The

Domain Modeller is a user-friendly, Web-based interface which empowers users

to create new domain models, offers a graphical and textual overview of existing

domains, and supports modifications and removal of domains from a domain data-

base.

The Domain Modeller presents the users with the constructs of HPDL and

shields the user from all unnecessary details of the language, such as the construct

structures and naming conventions. For example, a variable must begin with a

question mark directly followed by the variable’s name. The name has also some

expression constraints. What the user sees in the Domain Modeller is only the text

box shown in the upper part of Figure 6.4.

The Domain Modeller checks and verifies the structure and expression of do-

main constructs regularly. If the modeller identifies an error, a message is shown to

the user indicating the position of the error and possibly a user-friendly suggestion.

The lower part of Figure 6.4 shows an example of the user entering an incorrect

name for a domain.

The Domain Modeller assists the user in choosing the allowed constructs, and

combinations of constructs and expressions. Figure 6.5 shows an example of user

assistance. While the upper part contains buttons for adding precondition expres-

sions, they are no longer visible in the lower part where the user has chosen to add

an atomic formula. The modeller allows only constructs relevant to the atomic for-

mula to be inserted by the user. Thus, shielding other precondition expressions

keeps the user from building erroneous encodings.

Future modifications of existing domains do not have to be parsed because the

modeller accepts a domain only if its constructs are error free.

6.3. Engineering SH 151

Figure 6.4: Example of creating a variable and creating/editing a domain with an error.

6.3.3 Implementation and services

The Planner is implemented in Scala entirely. To provide quick access to predic-

ates in the state, an Internal argument container class keeps a map of (arity, index,

argument) for the predicates that share same properties (the arity indicates the num-

ber of arguments in a predicate). This way, it is possible to look up the list of pre-

dicates where a specific argument is already provided, and to minimise the number

of bindings that need to be checked when iterating over the possible bindings. We

refer to a tuple that contains unbound variables as bindable, and to every possible

substitution for unbound variables as binding. Bindable and Binding represent two

case classes on the programmatic level.

Consider that task preconditions contain unbound variables. When evaluating

these preconditions with respect to the current state, the values that are substituted

for the unbound variables need to be somehow carried over to other parts of the pre-

condition. In the case of compound tasks, the values need to be transferred also to

the task’s corresponding method. We achieve this by using Scala Symbols to repres-

ent variables. That is, we use the same symbol in multiple parts of a precondition,

which means that all parts will reference the same symbol of the tuple that was first

matched against it. For example, assume the state contains the following predic-

ates: (lamp l1), (lamp l2), (colour l1 red), and (colour l1 yellow). If some

part of the precondition is (lamp 'name), the state has a match for ′name => l1 and
′name => l2. The 'name symbol must be carried over to parts of the precondition

152 6. Planning as a service

Figure 6.5: Example of guidance in creating a primitive task.

6.3. Engineering SH 153

Table 6.2: Some of the services that SH provides.

Service Description

Modelling services

addDomain
Input: domain in string

Output: acknowledgement

createProblem

Input: domain and problem names,

requirements, objects, state, goal tasks

Output: Problem

Problem-solving services

planWithProvidedProblemInString
Input: problem, number of plans

Output: set of plans

planWithGivenDomainAndProblemName

Input: domain and problem names, number

of plans

Output: print plans

planWithGivenDomainAndProblem

Input: domain and problem as objects,

number of plans

Output: set of plans

Management services

checkDomainCorrectness
Input: domain in string

Output: Success/Failure

Utility services

checkSHLiveliness
Input: no

Output: Success/Failure

convertPlanToJSON
Input: plan

Output: plan in JSON

that are evaluated later. For instance, if a predicate for the colour of a lamp is added

to this precondition and it becomes (lamp 'name) and (colour 'name 'colour),

the 'name variable that is matched in the first part needs to be substituted in the

second part. Then, the complete set of bindings for this precondition is {(′name =>
l1,′ colour => red), (′name => l2,′ colour => yellow)}.

We provide planning as a service by implementing SH’s functionalities as Rep-

resentational State Transfer (REST) resources (Richardson and Ruby 2007). Table 6.2

shows some of the services that SH provides. Upon receiving a request with appro-

priate arguments, SH may check the correctness of an HPDL domain or problem,

the consistency of a required problem and domain, or search for a solution. The

planning system replies to an interested component with an appropriate to a situ-

ation answer. For example, SHmay provide a plan in JSON format, or it may show

a syntax failure at a specific position in a domain encoding.

154 6. Planning as a service

Table 6.3: Performance results in ms for SH and JSHOP2 (“OM” signifies “out of memory”).

Domain Problem (number of plans) JSHOP2 SH

Blocks-world 1 (1) 44 162

Transitivity 1 (1) / 123

Rover

1 (1) 5961 1617

2 (10) 14165 2174

3 (100) OM 8351

4 (1000) OM 63659

DWR
1 (136) 98 546

2 (1880) 1093 2844

6.3.4 Discussion

SH employs UTD (see Section 4.3.1) and it is therefore comparable to SHOP2 (or

JSHOP2). JSHOP2, as a relatively recent and modern version, is characterised by

complicated dependencies between its internal components which makes it hard

to use and extend. Moreover, the planner uses code generation to transform HTN

planning problems into executable code. On the other hand, we transform an HPDL

planning problem into Scala objects directly, which enables convenient manipu-

lation and extension. Moreover, SH, with small modifications, supports defining

planning problems directly in code through the use of Scala Domain Specific Lan-

guage. Both ways remove the code generation step of the JSHOP2 planner. Finally,

with SH and its support for HPDL, we move closer to having a unified and well-

defined language for state-based HTN planners (SIADEX also supports HPDL).

We execute a set of tests in order to provide insights into the performance of

SH and JSHOP2. The tests have been run on an Intel Core 2 Duo @2.00GHz, 3GB

RAM machine running Windows 7 and Java 1.6. The tests are based on planning

problems generated for four different domains: blocks-world, transitivity, rover

and dock-worker robots (DWR) domains. The first three domains are provided

in the JSHOP2 distribution, while we model DWR for both planners as described

in (Ghallab et al. 2004). For the blocks-world and transitivity domains, we require

only one plan to be found. For the rover and DWR domains, we ask the planners to

search for an increasing number of plans on the next problem. We run both planners

on each HTN planning problem three times, and measure average values.

Figure 6.3 shows performance results for SH and JSHOP2. The second column

includes the number of the planning problem and number of plans that the planners

find within the showed time. SH shows worse performance than JSHOP2 in three

domains, while in the Rover domain SH outperforms in terms of the planning time

spent and the ability to find plans when JSHOP2 runs out of memory.

Chapter 7

Modelling and realising ubiquitous
computing environments

So far, we dealt with two strings separately, one being the domain of ubiquitous

computing and its issues when planning is in question; the other one is HTN

planning, a technique that is desirable for solving problems in real-world domains

and that we upgraded with features relevant to such domains. We saw that there

are several attempts to tie these strings together in a knot (Chapter 2). Looking at the

knot, we notice, however, that at least four important questions remain still open:

What does a ubiquitous computing environment consist of and in what relation is it

with an HTN planning problem? What happens with the plans computed for such

problems? Finally, can this tie be realised in practice and what are the potential

benefits of it?

Here we make a braid out of the two strings, aiming to answer these questions.

In particular, we define a ubiquitous computing environment, including its phys-

ical constituents and their abstraction, activities that people perform, and a context

which represents a snapshot of the ubiquitous computing environment. We also

allow other kinds of information to be modelled, such as properties and conditions

specific to the underlying environment. With these ingredients in hand, we form a

ubiquitous computing problem and define its corresponding HTN planning prob-

lem. This in turn provides a good basis to discuss the soundness of this corres-

pondence. Further, we use a pragmatic approach to deal with the dynamics of the

ubiquitous computing environment during plan execution. When a dynamic event

invalidates an executing plan, coordination either continues with the execution, if

plan conditions allow for it, or it makes a new plan.

We designed, developed, and implemented our approach in a system proto-

type that is capable of full coordination in ubiquitous computing environments.

We design our system following the SOC approach to obtain, among other benefits,

scalability, evolution, and reuse of the system (Papazoglou and Georgakopoulos

2003, Erl 2007). We realise all components of the system, starting from devices that

provide their functionalities as services, components that store environment data

and process it, and those that deal with composition of device services using HTN

156 7. Modelling and realising ubiquitous computing environments

planning and coordination of plan execution and receipt of dynamic events.

We deployed and tested the system in the restaurant of the Bernoulliborg build-

ing with the aim to find out the benefits of automated coordination in ubiquitous

computing environments. We evaluate the benefits of our system in terms of energy

and monetary savings, satisfaction of the users with the system, and performance

behaviour.

In the following, we first model a ubiquitous computing environment and detail

how to get from such an environment to a ubiquitous-based HTN planning prob-

lem. Further, a description of the coordination at the execution level follows, which

we refer to as orchestration. We then demonstrate how we realise the HTNPUC ar-

chitecture introduced in Section 1.4 into a system prototype, and how we use the

system in the actual environment. Finally, we show the results of several evalu-

ations.

7.1 From environments to HTN planning

A formalised model of ubiquitous computing environments provides means for

developing well-defined ubiquitous computing systems, which may bring many

benefits, such as improved maintainability, ability to evolve, resuability, consist-

ency, and sound reasoning over the context data (Bettini et al. 2010). Therefore,

an approach employing planning for ubiquitous computing is well established

when there is a clear understanding of how a ubiquitous computing environment is

defined and how the corresponding planning problem is created.

7.1.1 Model of ubiquitous computing environments

Ubiquitous computing environments are enriched with assorted devices, which

report various kinds of data used to interpret the environments, and some of which

provide means to adjust the environment to meet users’ needs and operate effi-

ciently at the same time. We therefore say that a physical model of a ubiquitous com-

puting environment consists of a set of devicesD, where each device d has a sensing

service sd that returns the device’s output. To exemplify this, let us revive Theodore

and place him in the office building where he works. The building environment is

equipped with various types of sensors. In Theodore’s office, for example, there are

two light sensors, one embedded in the window to sense the natural light level, and

the other one placed above Theodore’s desk to gather the indoor light level. The

values of these sensors are returned through getLux services.

The raw data coming from devices inD is then a set of outputs {sd1
, . . . , sdn

}. In

actuality, this set presents pieces of data that has little meaning and may be conflict-

ing. For example, if we assume that the two light sensors in Theodore’s office are

7.1. From environments to HTN planning 157

in fact different hardware components, it may happen that they sense contradicting

values. In order to ensure a consistent view of the light conditions of the environ-

ment and to get more meaningful information from the raw data, it is necessary to

combine the outputs of devices. We use a data fusion function df(·) to relate devices’

outputs to variables, which represent an abstraction of the physical model. That is,

df : {sd1 , . . . , sdn} → V , where V is a set of environment variables. Here we do not

assume that the application of df(·) guarantees assignments of values to all variables

in V , resulting in a partially observable environment. We refer to the abstraction of

the physical model as an environment.

₇.₁ Definition (Environment). An environment E is a pair 〈V, L〉, where V is a set of

environment variables such that each v varies over a domain D̄v and has a location lv ∈ L,
and L is a set of locations.

With this definition, one or more unique variables can be associated with the

office of Theodore. For example, room564Lux1 and room564Lux2 variables indicate

the luminance level expressed in lux within the domain of, lets say, [0, 1700].

When performing activities, people usually interact with the environment

through its devices, causing changes in device outputs, for example, changes in

values of a movement sensor. User activities can be therefore identified and recog-

nised via environment variables whose values are assigned with respect to device

outputs. In addition, activities tend to be regular and repetitive. In other words,

we can derive that specific environment locations are associated also with specific

activities. For example, Theodore’s office is a location where he works with or

without his computer (PC) at his desk, or a meeting room, where people typically

give presentations or have discussions. We refer to this association as activity area:

a logically defined space where some particular activity takes place involving one

or more users (Curry 1996).

₇.₂ Definition (User activity). A user activity ua is a tuple 〈n, l〉, where n is the name of

the activity and l ∈ L is the activity area.

This means that ua = 〈workingWithPC, room564〉 is the activity of working with

a PC in Theodore’s office. In reality, there can be many activities happening in one

location. So, beside working with a PC, Theodore may work something without

involvement of a PC, he may be just present in the office, or he can be absent. The

occurrence of such activities depends on the values of variables abstracting the en-

vironment. This means that we can recognise all activities taking place at all loca-

tions in an environment given the variables associated with each location.

₇.₃ Definition (Activity recognition). Activity recognition is a function ar : E → Act,

where Act is a set of activities.

158 7. Modelling and realising ubiquitous computing environments

Each act ∈ Act is a user activity derived from the correlation of all v ∈ V that are

associated with the location of act. Activity recognition can be achieved by various

techniques, e.g., (Riboni and Bettini 2011, Nguyen et al. 2014). The set of recognised

activities together with the abstraction of the physical model provide a snapshot of

the environment at a particular point in the time. We refer to such snapshot as a

context.

₇.₄ Definition (Context). A context c is a tuple 〈E,Act〉, where E = 〈V, L〉 is the envir-
onment and Act is the set of recognised activities at all locations in L.

7.1.2 Ubiquitous-based HTN planning problem

The context, through its variables, may not satisfy certain conditions of the en-

vironment related to the performing of the recognised activities. For example, if

Theodore starts working with his PC, it may be that too much sun light is hitting

his desk. Usually, for every living environment there is a set of quality conditions

that an organisation or home must adhere to or maintain. Such conditions can be en-

forced by environment standards, corporate policies, health protocols, etc., and can

be related to activities with different concerns. For example, in an office building,

many activities and therefore the performance of occupants depend on the quality

of light in offices. The European standard for lighting in indoor work places defines

that basic requirements, such as light level, should be taken into account for exist-

ing and future buildings in general situations and diverse particular activities tak-

ing place there (European Committee for Standardization 2011). Conditions may

specify a recommended state (e.g., the light level when working with a computer

should be between 450 and 500 lux), or limit alterations (e.g., up to a certain amount

of carbon can be emitted). The environmental perspective of such conditions en-

compasses not only the social dimension, such as the quality of life of occupants

and health of people, but also the economic dimension, including resource man-

agement.

The satisfaction of environment conditions depends on the ubiquitous comput-

ing environment, more specifically, on the variables and their values. We can ab-

stract away an environment condition ψ as a propositional formula over (v = val) |
(v 6= val) | (v < val) | (v > val) | (v ≤ val) | (v ≥ val) such that v ∈ V

and val ∈ D̄v . For example, consider the recommendation for the light level in

Theodore’s office when he is working with the computer to be between 450 and

500. This means the following condition must be satisfied by the environment

(room564Lux1 > 450) ∧ (room564Lux1 < 500) ∧ (room564PC = active).

For these reasons, the set of recognised activities may require a change in the en-

vironment, a change that will support users in performing their activities according

7.1. From environments to HTN planning 159

to some prescribed conditions. This means that we need to check what has to be

done in order to adapt the environment appropriately. Since the set of recognised

activities implies such need, we consider the set as a request to be achieved.

₇.₅ Definition (Ubiquitous computing problem). A ubiquitous computing problem

PE is a tuple 〈E,Ψ,Act〉, whereE is the environment,Ψ is a set of environment conditions,

and Act is a set of activities.

Recall that our physical model consists of a set of devices. Beside sensors, some

of the devices represent also actuators, which means they enable acting upon their

states. We say that a device d, which is an actuator, has an acting service ad that

can change its state. For example, there are two actuators unobtrusively embedded

in the lamps near by the door and windows of Theodore’s office. These actuators

are associated with an acting service that turns on lamps, and another services for

turning off the lamps.

Given a set of acting services A, we say that α is a satisfying adaptation for PE

if and only if α ⊆ A is a sequence of acting services that transform E into one

accomplishing Act according to Ψ. A request, Act, is achievable if and only if there

exists at least one satisfying adaptation for it.

This gives sufficient information to illustrate how a ubiquitous-based HTN plan-

ning problem is formed. Assume PE to be a ubiquitous computing problem and P
an HTN planning problem as defined in Definition 5.2. Then, s0 is the initial state

corresponding to V , and consists of the following ingredients:

• A predicate p corresponding to a Boolean variable v ∈ V , only when v evalu-

ates to true.

• A numerical variable v̄ corresponding to a numerical variable v ∈ V associated

with a value val ∈ D̄v .

• A corresponding predicate for each property of the environment. An environ-

ment property is an expression of the form prop(b, b′), where prop is the property

name, b ∈ V and b′ ∈ L ∪ T and T is a set of device types, or b, b′ ∈ L.

The properties represent additional information about the environment, includ-

ing spatial relationships, device typing, and variables’ descriptions. We can achieve

abstract spatial representation (see Spatial properties in Section 2.3.1) of the envir-

onment by defining interrelationships over environment locations. Considering

Theodore’s office, we can say that his desk is a sub-location of his room. We can also

associate each variable with the location to which it belongs, that is, room564Lamp1

is at desk. Further, each device representing an actuator may have an attribute that

determines its type. For example, room564Lamp1 is of type ceilingLamp. Finally, a

160 7. Modelling and realising ubiquitous computing environments

property may describe or relate a variable to its current value. For example, light-

level relates the variable room564Lux1 with its current value 570.

The next component, tn0, is the initial task network corresponding to Act. We

create the corresponding tn0 if and only if there exist t ∈ Tn for all act ∈ Act such

that t = nact and |τ | = 1.

The last component of an HTN planning problem we need to consider is the

domain theory. In this context, we consider an acting service as a primitive task,

where preconditions model only variables that the service deals with in order to let

the service be executable, and effects model how the variables are changed after the

service execution. This means we do not annotate the corresponding primitive tasks

with environment-specific knowledge. We say that a primitive task o corresponds to

ad ∈ A if and only if t(τ) = ad, pre(o) is a logical expression over V , and eff (o) is a

conjunction of expressions over V .

Thanks to HTN planning, we can present all environment-specific knowledge in

compound tasks. This knowledge includes the environment properties and envir-

onment conditions. Generally, the environment-specific knowledge can also con-

tain preferences of users, and may be used to empower users with a set of tasks that

can be executed along with the automated coordination of the environment. In all

cases, the environment-specific knowledge can be organised in some form of com-

plex services. For example, a service to adjust the light level in a room. This service

may have requirements involving environment properties and environment condi-

tions, and several types of reactions that include acting services (or other complex

services). Then, a compound task corresponds to a complex service, where the task’s

methods define the ways in which the service can react, and preconditions corres-

pond to the service’s requirements. The acting services and other complex services

involved in the reactions of the complex service correspond to the methods’ task

networks.

We can now propose a correct correspondence between an HTN planning prob-

lem and a ubiquitous computing problem.

₇.₆ Proposition. Let PE be a ubiquitous computing problem and P be an HTN planning

problem. P corresponds to PE if and only if

• s0 is the initial state corresponding to V ,

• tn0 is the initial task network corresponding to Act,

• V ⊆ V ,

• Q is the set of predicates corresponding to Boolean variables in V and environment

properties, and

7.2. Orchestration 161

• T is the set of tasks such that primitive tasks correspond to acting services in A and

compound tasks correspond to activities in Act and complex services based on envir-

onment properties and Ψ.

The following properties hold.

₇.₇ Theorem. Let PE be a ubiquitous computing problem andP be the corresponding HTN

planning problem. If a request Act is achievable, then there exist a plan π for P .

Proof. Assume that α is a satisfying adaptation for PE such that Act is achievable.

From Proposition 7.6, there exist an HTN planning problemP corresponding toPE .

Since Act is achievable for PE , there exist a plan for P that accomplishes tn0.

We can now obtain that the solution of the ubiquitous-based HTN planning

problem is an adaptation for the corresponding ubiquitous computing problem.

₇.₈ Theorem. Let PE be a ubiquitous computing problem andP be the corresponding HTN

planning problem. If there exist a plan π that is a solution to P , then we can construct a

sequence of acting services α based on π that is a satisfying adaptation for PE .

Proof. Assume that there exist a plan π for P . Since P corresponds to PE , we can

map each primitive task from π to an acting service fromA. Given thatπ is a solution

to P , it means that Act is achievable for PE according to Theorem 7.7. Thus, the

resulting sequence of acting services is a satisfying adaptation for PE .

7.2 Orchestration

We now have a correspondence between the problems of ubiquitous computing

environments and HTN planning established. We still have to bring the dynamics

of ubiquitous computing environments into perspective, that is, events happening

continuously while a plan is in execution.

In this context, many approaches try to interleave planning with the execution of

plans and context changes by continuously revising already computed plans so as

to achieve the given goal (see Monitoring and recovery in Section 2.3.2). Although

such continual planning may be a more or less suitable approach, depending on the

nature of the adopted planning technique, it commonly causes performance deteri-

oration to the underlying system. This is usually due to the time spent on revising

a plan, and even more, ending up planning from scratch when the revision is un-

successful. A simpler approach, e.g., always planning when some context update or

service failure is encountered, brings a trade-off between spending unknown time

on revising and/or planning from scratch and accepting a computation time with a

known upper bound – the one of the planning step.

162 7. Modelling and realising ubiquitous computing environments

Such a pragmatic approach still has some challenges to be overcome, such as

dealing with continuous events due to the dynamics of the environment, consistent

updates of the planning state, and continuous execution of plans for the respective

HTN planning problems. We refer to the process of receiving events, creating HTN

planning problems, and executing the corresponding plans as orchestration. Thus,

the orchestration acquires the most recent information about the ubiquitous com-

puting environment and listens to new events coming from it. The events, which

indicate environment changes, are incorporated in the current planning state or task

network. Upon the receipt of an event, the orchestration constructs an HTN plan-

ning problem and executes the computed plan, if such exists. While executing, the

orchestration takes into account newly received events and responses of acting ser-

vices. If plans with obsolete services are discovered, then these plans are modified

only if the remaining services are independent from the obsolete ones. Otherwise,

a new plan is computed.

7.2.1 Model

The problem we need to solve with orchestration is based on the state model

defined in Definition 2.1. In addition, it involves events, which means that, beside

the state-transition function, there is an update function that changes the values of

variables with respect to assignments provided in the events. We assume that the

assignments in events refer to different variables. The problem we deal with here is

in fact a simplification of the one considered in (Kaldeli 2013).

₇.₉ Definition (Orchestration model). LetE be an environment. An orchestration model

Σ based on E is a tuple 〈S, A, E , γ〉, where

• S is a set of states,

• A is a set of acting services,

• E is a set of events. An event assigns a value val to a variable v ∈ V such that

val ∈ Dv ,

• γ : S × A × E → P(S) is a transition function γ(s, a, ε) = {δ(s′, ε) | s′ = s[a])},
where δ : s× E → S is a function that updates a state s using the assignments from

E and s[a] is as defined in Section 2.1.

The orchestration model is the one determining the orchestration. In other

words, an orchestration o refers to a sequence of pairs of events and plans

〈(ε0, π0), . . . , (εk, πk)〉. The orchestration problem then concerns maintaining a con-

sistent planning state given uncontrolled events, and finding and executing a se-

quence of acting services that satisfy some request given such state.

7.2. Orchestration 163

₇.₁₀ Definition (Orchestration problem). An orchestration problem PO is a triple

〈Σ, V,Act〉, where Σ is an orchestration model, V is a set of environment variables, and

Act is a set of recognised activities.

Upon each context change, a ubiquitous-based HTN planning problem is cre-

ated with a state resulting from the application of δ. Thus, for a sequence of

events ε0, . . . , εk, there is a sequence of ubiquitous-based HTN planning problems

P0, . . . ,Pk and their corresponding plans π0, . . . , πk. We refer to the sequence of

plans 〈π0, . . . , πk〉 as an orchestration plan Π. Since events may come fast in a se-

quence, many of these plans will contain redundant acting services. On the other

hand, parts of some existing plans may be already executed before a new plan is set

for execution and whose acting services may contain a subset of already executed

ones. In both cases, we can reduce Π by removing the redundant acting services

without introducing conflicts among dependent services. A reduced orchestration

planΠ′ is a sequence of modified plans 〈π′
0, . . . , π

′
k〉 such that it is a correct execution

(see Definition 4.20), that is, it still achieves Act. Then, Π′ is a solution to PO if Π′ is

part of an orchestration o that produces a sequence of states such that achieves Act.

7.2.2 Algorithm

We design an algorithm that supports concurrent processing of incoming events

and executing actions. In this way, the orchestration can process messages coming

in parallel from the changes in the environment and service invocations, and will

not get blocked by acting services unable to react on the first invocation. The al-

gorithm is able to handle simple service failures and tolerate events that may affect

the orchestration model. Thus, the algorithm takes a pragmatic attitude and refers

to planning whenever an event is received.

The algorithm is shown in Algorithm 4. The receive function indicates that mes-

sages are received asynchronously. The message ‘InitialiseEnvironment()’ informs

the algorithm that a ubiquitous computing environment has to be created. This

happens only when the algorithm is booted up, and involves gathering all inform-

ation relevant for the environment, such as variables, locations, device types, and

properties. Given all these ingredients, the algorithm coordinates the creation of

corresponding HTN planning constructs. Here we assume that domain theories

are encoded in advance and available for the orchestration to retrieve given a do-

main name (ConstructDomain(domainName)). Then, the domain object is stored and

available for all planning requests. The state is created dynamically with respect to

V and environment properties (ConstructState()). When a planning request is re-

ceived (PlanReq(taskNetwork)), the orchestration invokes SH given the current HTN

planning problem P .

164 7. Modelling and realising ubiquitous computing environments

Algorithm 4 Orchestrating incoming events and execution of corresponding plans

E,D, s,Π′ empty

tn← default task

function receive

case InitialiseEnvironment():

Gather all information about the environment E

Create corresponding planning constructs based on E

case ContextChange(ε):

if ε is an activity then

Update tn

else

p← ConvertToPredicate(ε.v,ε.val)

UpdateState(p)

Plan for the latest tn and s

case ConstructDomain(domainName):

D ← createDomain(domainName)

case ConstructState():

s← toState(E)

case PlanReq(taskNetwork):

P ← 〈D, s, taskNetwork〉
π ←search(P)

if π 6= ∅ then
Execute π

case ExecutePlan(plan):

A← ConvertToServices(plan)

Add A to Π

for ad ← A do

ad completes

case ad is failure:

Retry the service n times

if ad has failed n times then

Remove ad from Π′

Plan for the same tn and current s

case ad is success:

Remove ad from Π′

Check whether s is consistent with the effects of ad

end for

end function

7.3. Implementation 165

The message ‘ContextChange(ε)’ refers to the events received from the envir-

onment. If ε represents a new value for a variable, either a predicate or numerical

variable is updated in the state. Otherwise, the event is added to the network of

tasks to be accomplished. Upon each event, irrespectively of its type, a planning

request is issued to find a new adaptation for the environment.

The last message ‘ExecutePlan(plan)’ first maps the plan tasks into a set of acting

services. If possible, some of these services are executed in parallel. When an acting

service completes its execution, the orchestration checks the response. When a ser-

vice fails, the orchestration re-executes it for a fixed number of times. If this step is

unsuccessful, the failure is permanent (see subsection Action contingencies in Sec-

tion 2.3.1) and the algorithm removes the service from the reduced orchestration

plan and issues a planning request.

7.3 Implementation

With the orchestration, we complete a whole operating cycle of a ubiquitous

computing environment, starting from the collection of data through sensors, pro-

cessing it into context information, planning the coordination of acting services in

order to adapt the environment according to its conditions, until the execution of

acting services upon devices representing actuators. In order to see what the be-

nefits of such an approach are and whether the quality of life is improved in terms

of energy savings and user satisfaction, we implement our approach in a prototype

system ready for deployment. In the following, we provide insights into the real-

isation of each component of the HTNPUC architecture, focusing on planning and

orchestration ones.

Devices

We use wireless sensors that are based on the TelosB platform and compliant

with IEEE 802.15.4, produced by Advantic Systems (Advantic Sys. 2015). Examples

of sensors include natural-light sensors and motion detectors based on passive-

infrared sensors. The sensor nodes are implemented in the nesC language and run

on the TinyOS embedded operating system.1

Another type of sensors we use are plugs for measuring electricity of appliances,

produced by Plugwise (Plugwise 2015). These are plug-in adapters that fit between

an appliance and a power socket. The plugs form a wireless mesh network around

a coordinator. The network, which is based on ZigBee,2 communicates with a base

station through a link provided by a receiver (in the form of a USB stick). At the

1http://www.tinyos.net/
2http://www.zigbee.org/

http://www.tinyos.net/
http://www.zigbee.org/

166 7. Modelling and realising ubiquitous computing environments

same time, we use the plugs as actuators – they enable control of the power flow,

and thus, turning on/off of attached devices.

At the gateway, there are two types of services all implemented in Scala: one

type to handle sensors, and another one for Plugwise devices. The sensor services

handle readings in an asynchronous manner. Every time a new message arrives

from the sensor network, a service checks the message senders and push new data

to a publish and subscribe component implemented by RabbitMQ.3 The services

responsible for managing Plugwise devices enable gathering the current state of a

specific plug, and changing the plug’s state (i.e., switch a plug on or off).

Context

The context component, which is implemented in Scala, consists of two parts,

namely activity recognition and context processing. Activity recognition takes care

of user-activity related data (i.e., motion data) and recognising the presence of user

in each area of the environment. The user presence in an area can be concluded from

one or several PIR sensors, depending on the configuration of the environment. We

also implement a dynamic presence detection mechanism that adapts the timeout of

the presence activity given the time of the day. For example, in the early morning,

the timeout is set as short as five minutes, while during the lunch time, the timeout

is set to 30 minutes in order to minimise any possible inconvenience.

We adopt an ontology-based activity recognition approach. The ontologies are

developed using Protégé,4 a graphical tool for ontology development that simplifies

design and testing. The ontological reasoning is performed using the HermiT infer-

ence engine,5 and its application programming interfaces for the Java programming

language. The recognition algorithm is developed in Java and implemented as an

on-line recognition system. More details are presented in (Nguyen et al. 2014).

Context processing is responsible for ensuring a consistent view over the am-

bient environmental condition. For example, this includes a calibration of the raw

sensor readings coming from light sensors in the unit of lux.

As soon as new activities and environment changes are detected and processed,

the context component, through RabbitMQ, informs the interested parties about the

updates.

3https://www.rabbitmq.com/
4http://protege.stanford.edu/
5http://hermit-reasoner.com/

https://www.rabbitmq.com/
http://protege.stanford.edu/
http://hermit-reasoner.com/

7.3. Implementation 167

Repository

We use two databases to store the information about a ubiquitous computing

environment, each containing one type of information. Static information is stored

in Neo4j,6 which is an open-source database with features from both document and

graph database systems. It promises features such as scalability, availability, and

performance.

We store dynamic information in Cassandra,7 which is a NoSQL database that

delivers fast performance and is suitable for systems with time series or big data.

Domain model

We use the SH planner for computing compositions of device services. Details

on SH are presented in Section 6.3. Here we demonstrate how to create a domain

model specified in HPDL given a model of a ubiquitous computing environment.

We encode device types and locations as domain types, which are all subtypes

of the type object. For example, consider that the restaurant in the building

where Theodore works has two types of lamps: security and regular lamps. Then,

regularLamp and securityLamp are domain types whose supertype is lamp, which

is a subtype of object.

The properties of the environment are specified as predicates of the form

(prop arg1 - type1 arg2 - type2 ...). An example of a location-related prop-

erty is (in ?a - area ?r - room), which denotes that an area is within some

room, lets say, the restaurant.

Boolean variables are encoded as predicates too. Such a predicate is in the state

only when the corresponding variable evaluates to true. The predicate name in-

dicates the truth value, and the predicate’s only argument is the variable itself. An

example of such a predicate is (turned ?l - lamp).

Numeric variables are modelled as domain functions. A domain function re-

turns the value of the variable it represents. The function name describes the sensor

associated with the variable (we get this association from the databases). A func-

tion may also have arguments denoting variables to which the numeric variable is

related. For example, (light-level ?a - area) encodes the variable representing

a natural light sensor deployed within some area of the restaurant.

Acting services are encoded as primitive tasks or actions in HPDL terms. We

use a parametrised action for the same type of acting services. Then, a parameter

denotes the actual variable we want to act upon. In this way, we ensure the unique-

ness of each action instance. An action may have other parameters that refer to the

6http://neo4j.com/
7http://cassandra.apache.org/

http://neo4j.com/
http://cassandra.apache.org/

168 7. Modelling and realising ubiquitous computing environments

(:action turn-on-lamp
:parameters (?l - lamp)
:precondition (not (turned ?l))
:effect (turned ?l))

Figure 7.1: Example of an acting service encoded in HPDL.

(:method deficient-light-level
:precondition (and (>= (light-level ?a) ?x) (< (light-level ?a) ?y)

(in ?l ?y) (regularLamp ?l) (not (turned ?l)))
:tasks (sequence (turn-on-lamp ?l) (estimate-light-increase ?l)

(increase-level ?a)))
Figure 7.2: Example of conditions contained in an environment standard encoded as an HPDL method.

input variables of the corresponding acting service. The preconditions and effects

capture the semantics of the service. Since we have acting services without semantic

annotations, our actions are very simple. The HPDL action in Figure 7.1 represents

an acting service for turning on a lamp only when the lamp is turned off.

Complex services or domain-specific knowledge is modelled in compound

tasks. Let us assume that we need to adjust the light level in some area within

the restaurant. There are two possibilities for this: to increase or decrease the light

level. These two possibilities indicate two complex services that require different

modelling but similar reasoning. Thus, each complex service is a compound task,

namely increase-level and decrease-level tasks. Each method encodes a spe-

cific way of accomplishing the respective task. Let us focus on the increase-level
task. If there is not enough light, it means that we need to turn on some lamps.

While doing that, we need to ensure a certain level of light according to, lets say,

the European standard for lighting in indoor work places. Then, one method of the

task deals with the case when there is deficient light and there are lamps that can

be turned on. That is, if the estimated light level of the given area is not within the

recommended light-level range, and there are lamps that can be controlled and are

turned off, then we can turn on a lamp, estimate its effects on the light level (sim-

ulated sensing), and recursively call increase-level. The encoding in Figure 7.2

represents this case.

The process of estimating the effect of a lamp on the light level is encoded in a

separate task. This is necessary because, first, we keep primitive tasks simple, which

means they do not perform sensing, and second, we perform off-line planning with

completely instantiated variables, and thus, deterministic outcomes of actions.

Another method deals with the case when all lamps are already turned on. To

address all of the lamps, for example, in the area of our interest and in the areas near

by our area, we use a forall expression. Figure 7.3 shows the expression that can be

7.3. Implementation 169

(forall (?l - regularLamp) (and (or (in ?l ?a) (near-by ?l ?a))
(turned ?l)))

Figure 7.3: Example of forall expression ensuring satisfaction of some conditions over devices of the

same type.

(:task absence
:parameters (?a - area)

(:method turn-off-all-lamps
:precondition ()
:tasks (sequence (turn-off-lamps ?a))))

Figure 7.4: Example of an activity encoded as an HPDL task.

used in a method of the increase-level task.

We model user activities as separate compound tasks. These tasks further in-

volve other compound tasks to ensure a satisfactory state of the environment,

resulting in a well-structured hierarchy of tasks. For example, consider the case

of presence activity in some area. The corresponding compound task involves

increase-level and decrease-level tasks, depending on the estimated level of

light given the information in the current state. The task encoding the absence activ-

ity, which is demonstrated in Figure 7.4, is simpler and it indicates that we can turn

off all lamps associated with the area of interest. However, this does not mean that

the area’s lamps cannot be turned on later during planning. If areas, which are near

by this area, have presence activities and insufficient light level, then it means that

some lamps of this area will be turned on despite its absence activity. This is taken

into account in the hierarchy of the increase-level task.

The modelling of other activities can be realised using reasoning analogous to

the one described so far.

Orchestrator

Since the orchestration algorithm is stateful (see Section 6.1), i.e., it maintains a

model of the environment, including the state, domain, task network and reduced

orchestration plan; and, in order to support our design assumption (i.e., concurrent

use and updates of the state), we built the algorithm upon the Actor model (Hewitt

et al. 1973). It receives messages asynchronously and reacts to them by making

local decisions, creating other actors to handle specific and/or concurrent messages,

sending new messages, and deciding what to do upon the next message received.

The orchestration algorithm is implemented in Scala. We refer to the imple-

mentation of the algorithm as orchestrator. Instead on concrete implementations,

the orchestrator depends on abstractions of other components. All abstractions are

170 7. Modelling and realising ubiquitous computing environments

Table 7.1: Set of standard operations for manipulating a ubiquitous computing environment.

Operation Input Output

initialiseEnvironment / /

isEmpty / Boolean

addVariable variable Boolean

removeVariable variable Boolean

updateVariable variable, value Boolean

getEnvironmentName / name

getVariables / map of variables

founded upon the Cake pattern (Odersky and Zenger 2005).

In order to accept different types of environments, the orchestrator uses a trait

called Environment, which is specified based on Definition 7.1. It includes a pre-

defined set of operations listed in Table 7.1. In our case, the environment is rep-

resented by an implementation of an office building. The orchestrator populates a

specific environment by retrieving the information from the repositories. The set of

variables, their types, locations, and properties are gathered from a Static Reposit-

ory, in our system represented by Neo4j. The initial values of variables are gathered

from the Dynamic Repository, that is, Cassandra. Both repositories provide a uni-

fied set of operations. Then, the orchestrator subscribes to the Publisher, such as

RabbitMQ, and awaits for messages, that is, events.

The orchestrator creates a domain object with the help of SH planning services,

and uses the Problem converter to transform Environment in a planning state as

described in Section 6.3.1. Upon each event, the orchestrator creates a correspond-

ing HTN planning problem and invokes the core planning service of SH. When a

plan is found, if such exists, the orchestrator translates the plan steps into acting

services and uses the device services implemented as REST resources for execution.

The orchestrator itself is built as a container for the Docker platform,8 which

automates the process of deployment of distributed applications.

7.4 Evaluation

We have deployed the system in the Bernoulliborg building in order to assess the

possible benefits of our approach. While here we demonstrate the experiments we

made with our system in an actutal environment, a previous version of the system

and outcomes of its testing in a semi-simulated setting are provided in (Georgievski

et al. 2013). Here we also evaluate the opinion of occupants of the environment

8https://www.docker.com/

https://www.docker.com/

7.4. Evaluation 171

Figure 7.5: Overview of the restaurant from the east and west sides.

with respect to several usability factors. Finally, we provide some insights into the

performance of SH given the domain model we demonstrated earlier.

The restaurant that we chose as an actual environment is shown in Figure 7.5. It

covers a total area of 251,50 m2 and has a capacity of 200 sitting places. The restaur-

ant has glass walls from three sides, enabling a significant amount of natural light

to come through when the weather conditions allow for it, of course. The restaurant

area is used for lunch in the period from 11:30 a.m. until 2:00 p.m. Outside these

hours, the area is used by staff, students or other visitors for working, meeting, or

other social activities.

The restaurant area is an open space divided in two sections by construction. We

make use of this division in our testing. The layout is illustrated together with the

locations of deployed sensors and electricity plugs in Figure 7.6. In particular, each

section has 15 controllable light fixtures (or lamps), making 30 in total. There are

several light fixtures that are uncontrollable and represent security lamps. While

we do not control these, we take into account the light that they provide. In addi-

tion, there are two types of controllable lamps. The first type are large lamps that

have 38W of power consumption each, and the second one are small lamps, each of

which has 18W. These lamps are controllable thanks to the actuators we installed

on them, which also serve as sensors by providing information about the fixture’s

power consumption. We installed 15 more sensors, one to measure the natural light

level, and the rest to detect people’s movement. In order to make a more meaning-

ful use of the restaurant space given the movement sensors, we divide each section

into smaller spaces, called areas. The areas are not necessarily of the same size, and

we embedded movement sensors in each area in positions that cover most of the

space of the respective area.

We conducted tests on the system over the course of five weeks in the months

of February, March, and April 2015, involving measurements from Monday to

Sunday. In the last three weeks in February, we recorded measures of energy con-

sumption of lamps in order to understand the typical behaviour of manual control

172 7. Modelling and realising ubiquitous computing environments

Figure 7.6: Schematic representation of the restaurant and deployed devices.

of lamps in the restaurant. This enables us to define a baseline. In the last week of

March and first week of April, we allowed our system to control the environment

in order to obtain the benefits of the system. Thus, manual control was disabled

and the system was running continuously without interruptions during these two

weeks.

The system offers interesting energy savings. These are due to the coordina-

tion of lamps given weather conditions, presence of people and a set of minimum

requirements for satisfactory level of light, and monetary savings, which result nat-

urally from the reduction of power consumption.

7.4.1 Energy savings

Observing the measurements gathered in February 2015, when the restaurant

was controlled manually, we find that the average time point when the lamps are

turned on is 6:30 a.m, and they usually stay turned on until 8 p.m. This means the

average consumption per working day in the restaurant is 14 kWh. For weekends,

there is no manual control of the lamps, thus no consumption.

The use of our system results in intelligent adaptations of the restaurant with

respect to the natural light and presence of people. The implication is that there

are a plenty of possibilities for lamps to be turned off. Thus, this provides for en-

ergy saving. Figure 7.7 shows the average energy consumption when the lamps in

the restaurant are manually controlled and when our system is used. In contrast

to the manual control, which assumes almost fixed time points for turning on/off

7.4. Evaluation 173

02:00 07:00 12:00 17:00 22:00

Time of day

P
o

w
er

 (
k

W
h

)
0.

00
0.

02
0.

04
0.

06
0.

08

manual
automated

Figure 7.7: Comparison of average energy consumption between manual control and our system.

lamps, our system reduces the consumption of these lamps by turning them on

only when really necessary. Figure 7.8 depicts this situation. The charts show the

intelligent use of lamps and therefore energy in each day. The upper part refers to

the first week of using our system, and the bottom one depicts the results for the

second week. We also include the estimations of consumption if manual control

would have been used. In addition, the figure includes weekends when there is no

manual control provided regularly. Though the presence in the restaurant at even-

ings and during weekends is rare, there are still special occasions that our system

encountered without any intervention (see Friday evening and Saturday on the up-

per part in Figure 7.8). This demonstrates that our system makes the restaurant truly

adaptable to the happenings within it. To have a fair comparison, we assumed that

in cases of special occasions, there would be manual control of the lamps provided

in the restaurant. Also, one can notice that Friday in the second week is a special

occasion too, that is, a holiday. In summary, the average savings of energy between

the scenario of manual control and the one with our system is in the order of 80%.

7.4.2 Economic savings

We can also have an insight into the amount of money that needs to be paid

for the periods of manual control versus our system. Of course, the proportion

between the two cases is the same as with the energy consumption, and the price

for an average day when our system is used is $0.37. Even in the worst case during

working hours, which would happen when weather conditions are worse than on

average and the restaurant is visited more than usual, the price resulting from the

use of our system stays strictly within the boundaries of the one paid if lamps are

manually controlled. Two situations, which do not occur in the case of manual

control but happen when using our system, may imply leakage of money to be

encountered during evenings in working days and on weekends. Assuming that

environment conditions require a higher level of light, the situations involve turning

174 7. Modelling and realising ubiquitous computing environments

02:00
12:00

22:00

M
o

n
d

a
y

Power (kWh)
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

02:00
12:00

22:00

T
u

e
sd

a
y

02:00
12:00

22:00

W
e
d

n
e
sd

a
y

02:00
12:00

22:00

T
h

u
rsd

a
y

02:00
12:00

22:00

F
rid

a
y

02:00
12:00

22:00

S
a
tu

rd
a
y

02:00
12:00

22:00

S
u

n
d

a
y

m
an

u
al

au
to

m
ated

T
im

e o
f d

ay

02:00
12:00

22:00

M
o

n
d

a
y

Power (kWh)
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

02:00
12:00

22:00

T
u

e
sd

a
y

02:00
12:00

22:00

W
e
d

n
e
sd

a
y

02:00
12:00

22:00

T
h

u
rsd

a
y

02:00
12:00

22:00

F
rid

a
y

02:00
12:00

22:00

S
a
tu

rd
a
y

02:00
12:00

22:00

S
u

n
d

a
y

m
an

u
al

au
to

m
ated

T
im

e o
f d

ay

F
ig
u
re

7
.8

:
C

o
m

p
ariso

n
o
f
en

erg
y

co
n
su

m
p
tio

n
b
etw

een
m

an
u
al

co
n
tro

l
an

d
o
u
r

sy
stem

fo
r

each
d
ay

d
u
rin

g
w

eek
o
n
e

(u
p
p
er

ch
arts)

an
d

w
eek

tw
o

(b
o
tt
o
m

ch
arts).

7.4. Evaluation 175

on lamps due to people passing through and not staying in the restaurant. It is

difficult to extrapolate such situations from the data, but one obvious example is

Sunday in week one. The price paid for this situation is negligible, or 0.78% from

the amount of money we save in an average day.

In summary, considering a monthly bill paid for it when manual control is used,

the use of the system implies economic savings such that allow for paying 7 months

in total using the same amount of money as in the bill for one month of manual

control.

7.4.3 Usability

The opinion of users regarding the use of our system in the restaurant is an

important factor. We consider usability as defined in Section 2.3.3, and we prepared

a questionnaire as a means to perform the usability testing. In order to have a well-

formed questionnaire and focused evaluation, we use the guidelines for creating

the evaluation from Section 2.3.3.

• Determine users, which involves identifying the set of possible user groups

with their own specific goals and varying levels of effectiveness, efficiency and

satisfaction. In our case, we focus on two groups of users, one experiencing

the system during lunch, and another one outside lunchtime.

• Determine user goals, which involves the following aspects:

– Acceptability, indicating the attitude of users towards our system. This

includes the use of sensors, switching lamps more often than usual, auto-

mation of tasks, etc.

– Learnability, referring to the need for users to understand how to use our

system. For example, do users know how they can trigger the lamps?

– System effectiveness, comprising the satisfaction of users with the overall

system.

– Efficiency, signifying the satisfaction of users with the time the system

takes to perform its tasks. While this aspect is more technical, users can

still evaluate how they perceive reactions of our system.

• Determine the context of use, which involves requirements of users based on

the reason of “use” of the system. Since the system is unobtrusively integ-

rated into the environment, there is no actual or intentional use of it. As for

the requirements, for example, users having lunch may not have the same ex-

pectations for the level of light as compared to the ones reading or working in

the restaurant outside lunchtime.

176 7. Modelling and realising ubiquitous computing environments

• Determine the level of importance, effectiveness, efficiency and satisfaction,

which involves deciding the rating scale in an informed way as this defines

the actual usability of the system. We use two Likert scales each with five

levels, thus ensuring a symmetry of categories and therefore clarity when ob-

serving (Likert 1932). The format of the first scale includes the categories:

totally disagree, disagree, neutral, agree and totally agree, while the second

one offers: not useful at all, not useful neutral, useful, and very useful. Some

questions have an additional category that captures the situation when users

do not have an answer for or cannot answer a respective questions. This cat-

egory can be either “I do not know” or “Does not apply”.

In the end, our questionnaire has 24 questions, two with multiple choices and

the rest with the items on the Likert scales.

Set-up

We conduct the survey on two groups of occupants, one experiencing the system

during lunch (L), and another one outside lunchtime when working/reading (W).

We collected inputs for the questionnaire from group L on April 7 and 9, 2015,

resulting in 54 entries in total. The majority of participants are visitors of the build-

ing (57%), while the others are occupants who are working (26%) or studying (17%)

in the building. Most participants of group L use the restaurant for lunch only (96%),

and the rest, beside using it for lunch, go there to study or work.

Group L consists of a high number of participants who believe that they are sus-

tainability aware (83%), and those that engage in environmentally friendly beha-

viour (80%). Knowing that participants are savvy about how their actions affect the

environment, we can expect with certainty that they appreciate a system for auto-

mated light control, and that they will not “use” the system unless it is really neces-

sary. In this context, a high percentage of participants are familiar with automated

control in buildings (65%), and the fact that lamps can be triggered by movement

sensors (83%).

We collected inputs from group W on May 4 and 7, 2015. The total number

of participants is 18. Most of the participants are students (72%) and the rest are

visitors of the building. This group uses the restaurant for both working/studying

and lunch (61%), some only for lunch (22%), 11% for playing games, and 6% for

doing some business.

Group W also has a high number of participants believing that they are aware

of sustainability issues (78%), and engaging in environmentally friendly behaviour

(89%). More than half of the group is familiar with automated control in buildings

(56%), and possibility that lamps are triggered through movement sensors (67%).

7.4. Evaluation 177

11,11
0,00 1,85 0,00

14,81

5,56

14,81 14,81

7,41

27,78
12,96 18,52

33,33 33,33 42,59

22,22

7,41 9,26

18,52

1,85

25,93 24,07

9,26

42,59

0%

20%

40%

60%

80%

100%

Awareness Learnability Acceptability Efficiency

Totally dissagree Disagree Neutral Agree Totally agree I do not know

Figure 7.9: Results from the occupants of the restaurant during lunch with respect to several aspects.

Results

We organise the results of the survey on the basis of awareness, perception, ac-

ceptability, learnability, efficiency, effectiveness, and usefulness. In the question-

naire, each aspect is represented by one or more questions. In the following, we

discuss the results of each aspect per user group.

Let us begin with group L whose results are shown in Figures 7.9 and 7.10. With

respect to the awareness, one third of the participants stated that they are aware of

our system, and one fourth is not aware, and another fourth did not answer the re-

spective question. We then ask people what their perception about the purpose and

capabilities of the system is. The majority of this group has a good understanding

of what the system does. In particular, 65% know that the system is able to save

energy and that it considers the natural light level (54%) and their presence (72%).

Though there is no explicit learning on how to use the system (learnability), 43%

stated that it is easy for them to use the system in a sense to let a movement sensor

know about their presence. 54% of the participants are neutral or do not know the

answer to the respective question. Considering acceptability, 71% find the system

to be good as it is, and 17% think that it causes distractions in terms of switching

lamps too often, sensors not capturing them (the need to wave), etc..

Looking at the efficiency of the system, the majority of participants do not know

whether the system reacts to changes or how fast it reacts, or their answer is neutral

(61%). Less than double of this percentage find the system efficient, while 15% think

that the system does not react immediately. In contrast to this and considering sys-

tem effectiveness, 59% are satisfied with the system, 31% are neutral, and only 6%

dissatisfied.

178 7. Modelling and realising ubiquitous computing environments

0,005,56

31,48

55,56

3,70
3,70

0%

20%

40%

60%

80%

100%

Effectiveness

Totally dissatisfied Dissatisfied Neutral

Satisfied Totally satisfied Does not apply

1,85

9,26

12,96

44,44

25,93

5,56

0%

20%

40%

60%

80%

100%

Usefulness

Not useful at all Not useful Neutral

Useful Very useful I do not know

Figure 7.10: Results from the occupants of the restaurant during lunch with respect to the effectiveness

and usefulness of the system.

16,67

0,00 0,00
0,00

11,11

0,00 0,00 5,56

11,11

5,56 5,56

11,11

22,22

55,56
44,44

16,67

16,67
11,11

38,89

5,56

22,22
27,78

11,11

61,11

0%

20%

40%

60%

80%

100%

Awareness Learnability Acceptability Efficiency

Totally dissagree Disagree Neutral Agree Totally agree I do not know

Figure 7.11: Results from the occupants of the restaurant outside lunchtime with respect to several

aspects.

Finally, the majority of participants (70%) find the system to be useful, 13% are

neutral regarding usefulness, and 11% are in opinion that the system is not useful.

The results of group W are illustrated in Figures 7.11 and 7.12. One can notice

that the results for the awareness have similarity to those for group L, and indicate

moderate awareness to our system. In particular, a bit more than one third of par-

ticipants (39%) are aware of the system, 26% are not aware, and 26% do not have

answer to the respective question. With respect to perception, the majority of the

group know that the system is able to save energy (78%), while it takes natural light

level (50%) and people’s presence into account (67%). This shows that the parti-

cipants of this group is well informed only with respect to energy efficiency and

presence detection.

7.4. Evaluation 179

0,000,00
11,11

66,67

5,56

16,67

0%

20%

40%

60%

80%

100%

Effectiveness

Totally dissatisfied Dissatisfied Neutral

Satisfied Totally satisfied Does not apply

0,000,005,56

33,33

50,00

11,11

0%

20%

40%

60%

80%

100%

Usefulness

Not useful at all Not useful Neutral

Useful Very useful I do not know

Figure 7.12: Results from the occupants of the restaurant outside lunchtime with respect to the effect-

iveness and usefulness of the system.

Regarding learnability, 66% of the group indicate that it is easy for them to learn

how the system works, while 33.33% are neutral or do not know the answer to the

respective question. Further, a large percentage of the participants accept the sys-

tem (83%), while none of them think that it distracts them.

Considering the efficiency of the system, the outcome is similar to the one for

group L. The majority do not know how the system reacts or give a neutral answer

(72%). Around 20% find the system efficient, and 6% do not agree that the system

is efficient. On the other hand, 72% of the participants are satisfied or very satisfied

with the system, 11% do not express a feeling for this issue, and none of them is

dissatisfied.

Finally, the majority of participants (83%) find the system to be useful, 6% are

neutral, and 11% do not how useful is the system.

7.4.4 Performance

During the run of our system in reality, we recorded the HTN planning problem

generated on each invocation of the planning system. The smallest planning prob-

lem consists of 177 state elements, while the biggest one of 207 state elements. The

types of elements and their associated size in the case of the biggest HPDL problem

description are shown in Table 7.2. The number of tasks in the initial task network

is constant and equals to 13 (one task for each area). Then, the size of HTN planning

problems encountered during the run varies between the ones of the smallest and

biggest planning problem.

The number of invocations of SH per day is shown in Figure 7.13. The average

number of HTN planning problems is 264, the average number per working day is

180 7. Modelling and realising ubiquitous computing environments

Table 7.2: Sets of state elements and their sizes in the biggest HTN planning problem encountered

during the run of the system.

Elements Size

Room variables 2

Area variables 13

Regular lamp variables 30

Security lamp variables 9

light-level functions 13

in predicates 52

near-by predicates 36

turned predicates 39

Initial task network 13

Total 207

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Day

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Figure 7.13: Number of invocations of SH during the two weeks of system run.

360, while the average number per weekends/holidays excluding exceptional situ-

ations is 31. In fact, two days are exceptions. One working day (Day 5) that has

almost twice times more invocations than the average number of invocations in

working days. The second one is a weekend day (Day 6) and has a number of in-

vocations unusual for weekends. Both cases are a result of the special occasions in

the restaurant.

Given the number of HTN planning problems that need to be solved per day,

and that planning is computationally expensive task, we execute a set of perform-

7.4. Evaluation 181

10 15 20 25 30

1
0
0

1
5
0

2
0
0

Number of activities

P
la

n
n
in

g
 t

im
e

(m
s)

Rooms=2, Lamps=7

30 40 50 60 70

2
0
0

6
0
0

1
0
0
0

Number of activities

P
la

n
n
in

g
 t

im
e

(m
s)

Rooms=5, Lamps=7

40 60 80 100 120

2
0
0

6
0
0

1
2
0
0

Number of activities

P
la

n
n
in

g
 t

im
e

(m
s)

Rooms=8, Lamps=7

10 15 20 25 30

1
0
0

3
0
0

5
0
0

Number of activities

D
ec

o
m

p
o
se

d
 t

as
k
s Rooms=2, Lamps=7

30 40 50 60 70

3
0
0

5
0
0

7
0
0

9
0
0

Number of activities

D
ec

o
m

p
o
se

d
 t

as
k
s Rooms=5, Lamps=7

40 60 80 100 120

2
0
0

6
0
0

1
2
0
0

Number of activities

D
ec

o
m

p
o
se

d
 t

as
k
s Rooms=8, Lamps=7

Figure 7.14: Performance results of SH when scaling the number of tasks in the initial task network

(the number of lamps per area).

ance tests. We want to see whether the planning system can remain practically

useful in larger and more complex environments. The tests have been run on a

Intel Core i7-3517U @1.90GHz, 8GB RAM machine running Windows 8.1 and Java

1.8.0_31. The tests are based on the HPDL problem description created during the

system run in the real environment, and use the same domain model. We run SH on

each HTN planning problem three times, and measure and present mean values.

We generated two sets of HTN planning problems by changing their load pro-

files. In the first set of tests, we evaluate the performance in terms of scalability of

the number of tasks in the initial task network under a constant number of lamps

per area. We are interested in the behaviour of SH when the size of the restaurant

increases. Figure 7.14 shows the scaling of SH. While the number of lamps per area

is fixed, the uppers charts indicate the planning time and the lower charts depict the

number of tasks decomposed both in function of the number of tasks in the initial

task network. In addition, moving from left to right charts, we increase the number

of rooms too. Looking at the upper part in Figure 7.14, it is difficult to assess the be-

haviour of the planning system from the leftmost chart. From the other two charts,

one can notice more or less a gradual rise of the planning time up until 70 activities

in the middle chart, and until 100 activities in the rightmost chart where the number

of rooms is higher. After these points, the planning time increases steeply where the

worst case is just above 1.5 seconds.

The lower part in Figure 7.14 demonstrates that the number of decomposed tasks

increases on a regular basis, though one can still notice zigzag curves.

182 7. Modelling and realising ubiquitous computing environments

50 100 150 200

0
1
0
0

3
0
0

Number of lamps

P
la

n
n
in

g
 t

im
e

(m
s)

Rooms=2, Activities=5

100 200 300 400 500

0
4
0
0

8
0
0

1
2
0
0

Number of lamps

P
la

n
n
in

g
 t

im
e

(m
s)

Rooms=5, Activities=5

200 400 600 800

0
1
0
0
0

2
0
0
0

3
0
0
0

Number of lamps

P
la

n
n
in

g
 t

im
e

(m
s)

Rooms=8, Activities=5

50 100 150 200

6
0

1
0
0

1
4
0

1
8
0

Number of lamps

D
ec

o
m

p
o
se

d
 t

as
k
s

Rooms=2, Activities=5

100 200 300 400 500

2
0
0

4
0
0

6
0
0

8
0
0

Number of lamps

D
ec

o
m

p
o
se

d
 t

as
k
s Rooms=5, Activities=5

200 400 600 800

4
0
0

8
0
0

1
2
0
0

Number of lamps

D
ec

o
m

p
o
se

d
 t

as
k
s Rooms = 8, Activities = 5

Figure 7.15: Performance results of SH when scaling the number of lamps per area.

In the second set of tests we evaluate the performance in terms of scalability

of the number of lamps under a constant number of areas and therefore activities.

Considering that lamps can be exclusively in one are or shared with other areas

through the near-by predicate, this increases the difficulty of solving a planning

problem. Thus, the number of predicates related to location properties increases

too. Figure 7.15 depicts the results. The organisation of the charts is the same as

in the previous figure. With respect to the planning time, one can notice that the

number of lamps and their relationships with the environment layout affect the

performance of SH. When the number of lamps is 200, the planning time is almost

the same in all three charts despite the fact that the number of rooms is increased.

The curves are gradually rising, and SH needs around 3 seconds to deal with 800

lamps.

In comparison with the lower part in Figure 7.14, the lower charts in Figure 7.15

do not present easily identifiable patterns. The middle chart depicts an oscillating

curve up until 400 lamps, when the number of decomposed tasks increases fast. In

the case of the rightmost chart, one extreme is at 400 lamps, when the number of

decomposed tasks drop gradually, and then a rising curve to the other extreme for

900 lamps.

In summary, given the domain we modelled and simulated problem specific-

ations, SH needs around 1.5 seconds and 3 seconds to deal with 120 tasks in the

initial task network and 800 lamps, respectively. With respect to the number of

decomposed tasks, there is no a clear correlation with the increasing factor.

7.4. Evaluation 183

7.4.5 Remarks

We remark that our system too consumes energy for its operation. It consists

of 30 Plugwise devices, 14 sensors, one thin client, and one server that consume 3.3

W, 6.7 W, 4 W, and 365 W, respectively. The amount of energy consumed by the

plugs and sensors represents a negligible fraction of the total consumption. While

the thin client is an additional component we had to consider, the server represents

a computer already in use, which adds little to its current consumption. As for the

thin client, we believe that its consumption can be paid back in a very short period of

time considering the savings obtained from average days of energy consumptions.

The Smart Meter and Scheduler presented in this chapter are contributions by Giuliano Andrea Pagani

and Viktoriya Degeler, respectively.

Chapter 8

Coordinating cost-aware offices

The awareness of ubiquitous computing environments to energy and monetary

costs is becoming a requirement rather than a coincidence. This means that in

addition to automating the coordination of devices embedded into the surround-

ing, the environments must incorporate another dimension, the one of price and

amount of energy used for such coordinated devices. This is especially true for the

environments that are or will be connected to the smart grid. This in fact is our main

motivation to bring another string into perspective, one of a different nature. That

is, we still deal with coordination in ubiquitous computing environments, but we

slightly deviate from planning and explore the benefits of an alternative approach

to it.

The smart grid as a power grid provides an infrastructure for two-way commu-

nication between providers and consumers, digital metering through smart meters,

inclusion of renewables, and dynamic pricing enabled by competing providers. A

ubiquitous computing environment can take advantage of these possibilities by ad-

apting its energy consumption to the price and availability of energy. In particular,

the possibility of having real-time pricing and to be equipped with renewable en-

ergy generators will change the way ubiquitous computing environments are con-

trolled. The first possibility is in line with the current trend in most countries, where

the single provider/single tariff system has been replaced with models with com-

peting providers and, basically, two prices over long-term contracts (usually in the

term of months). The second possibility, that is, renewables are and will be increas-

ingly present not only in a medium-large scale on the grid, but are also increas-

ingly available at the level of a single ubiquitous computing environment, lets say,

a building, as solar panels, wind and combined heat-power generators, and batter-

ies. The building has to be aware of the energy generated locally in order to decide

the proper policies to adopt: either use the energy produced for its local needs or

feed the energy into the power grid and receive a payment for it. Therefore, the in-

telligent elements inside the building have to be able to know the energy produced

on-site in order to eventually adapt their operations.

Here we present an approach to controlling an office building to save energy

186 8. Coordinating cost-aware offices

and overall energy bill costs; this assumes the availability of a smart grid that offers

dynamic prices from competing providers. The approach is based on (1) monitoring

the energy consumption at the device level, (2) monitoring energy production of

small-scale generating units, (3) associating policies for the devices that conform

with user requirements for comfort and productivity, (4) controlling in an optimal

way the energy consumption patterns of devices following the usage policies, and

(5) being able to acquire dynamically the prices of energy from different providers

and closing contracts for short-term time intervals.

For our approach, we design a system architecture consisting of several software

components responsible for the monitoring of devices; storing data about devices,

their policies and states, and energy providers; communicating with the smart grid;

and scheduling and controlling the devices. We coordinate the execution of these

components in a centralised manner. We have implemented the system in our own

offices at Bernoulliborg and tested over a short period as a proof of concept. This

initial investigation shows that automatic control of devices can reduce the over-

all energy consumption and, if coupled with dynamic pricing from the smart grid,

can provide considerable financial savings from the end user perspective; this con-

siders both the case of a building equipped with renewable-based small scale energy

sources and the case without such installation that provides a baseline for the study.

We do not investigate the provider’s point of view, but we conjecture that also the

provider will experience significant financial benefit if most of the end users would

be price driven in their energy use as following prices means supporting easier de-

mand/response, thus avoiding expensive energy peaks.

What follows is a presentation of the approach, including a model and general

architecture. We then specify the technologies we use to implement our approach

in an actual system, We also describe the living lab where the system was deployed,

and show the benefits of its use on a set of experiments.

8.1 Approach

Among ubiquitous computing environments, we here focus on office buildings.

The approach we take to save energy in buildings is based on a likely future evol-

ution of the smart grid and on the possibility of associating policies with energy

consuming devices.

8.1.1 Model

We assume that each building (or part of a building) is equipped with an in-

terface with the smart grid that offers information on the price of energy proposed

by different providers per time interval and possible maximum amount available

8.1. Approach 187

at that price. The time intervals are discrete and last one hour. Thus, contracts are

electronically signed on an hourly basis, as each hour the price and amounts can be

different.

From the point of view of the office devices, we assume that any energy consum-

ing apparatus, e.g., heater, fridge, printer, projector, can be measured in its electrical

energy consumption in kWh and can be controlled. Each device has an associated

state machine and an energy consumption level for each state. For example, a fridge

consumes about 10−3 kWh when idle, but about 0.63 kWh when actively cooling.

The system has full access to reading the state of a device and can trigger a state

transition. Data about energy consumption levels are obtained by analysis of his-

torical data for that type of device.

To avoid changing states of devices too often, we propose the notion of the min-

imum time unit. The minimum time unit is an adjustable parameter that tells the

system how rapidly the devices can be forced to change states.

For each device, there is an associated policy. A policy is a set of consistent

rules that hold for device operations. For example, “a fridge must work at least

15 minutes per hour” to be able to maintain its internal temperature below a certain

threshold temperature level. Policies can have different parameters, a few of which

are common to all: (tBegin, tEnd) – time period, when the policy is active; and sid –

state ID that the policy is applied to. State IDs are unique per device. In general, we

assume several possible states per device, together with associated actions to move

a device to these states. In the presented setting, each device has two states: “on”

and “off,” and two associated actions: “turn on” and “turn off.”

We define and use five types of policies, which represent common rules for

widely deployed devices. The five policies are summarised in Table 8.1 and defined

next.

REPEAT.The device must be operated cyclically by entering the state sid repeatedly

with a certain periodicity. For example, a fridge that should operate for 15 minutes

each hour is specified using this policy. Parameters specific to this policy are: tCycle

– a total cycle time; and tOn – a time during this cycle, when the device should be

in a state sid.

TOTAL. Specifies a total amount of time tOn that a device should be put in a state

sid. An example is a laptop that needs recharging for two hours; however the

exact time when it is going to happen does not matter, as long as it stays within

(tBegin, tEnd) bounds. This policy also assumes that the time when a device is in

the state sid can be split into several parts. For example, we can charge a laptop for

half an hour, then for another hour a little later, and for another half an hour even

later.

188 8. Coordinating cost-aware offices

Table 8.1: Device policies.

Policy type Associated device Description

REPEAT Fridge, Boiler
Device should be put to a specified state

repeatedly with a certain periodicity.

TOTAL Laptop
Device should operate for at least a certain

amount of time.

MULTIPLE Printer
Device should operate for the time that

allows for all scheduled jobs to be performed.

STRICT Projector A strict schedule is given in advance.

PATTERN Microwave An expected pattern of device operations.

SLEEP Any device
No demand for device during the scheduling

period.

MULTIPLE. Devices that schedule a number of jobs over a certain period of time

use theMULTIPLE policy. It has two specific parameters: nJobs – a total number

of jobs to be scheduled; and tDuration – a time needed to complete a single job.

An example is a printer that processes large batch jobs (e.g., printing a book): each

job needs 15 minutes to be completed, and a total of three jobs are required to be

performed. With such a policy it does not matter when a particular job is scheduled,

but it is important that the device is not turned off in the middle of performing a

job.

STRICT. To enforce a state sid to be active from tBegin to time tEnd, the STRICT

policy is used. An example is a projector that should be turned on at the beginning

of a meeting and turned off when a meeting ends. The policy firmly defines the

schedule for this device, as times are strict, so the system has no possibility to change

the energy consumption time of the device.

PATTERN. The PATTERN policy provides information about a way the device

consumes energy. Instead of offering the possibility of controlling the device, it

provides information on expected energy usage that can help to schedule other

devices. For example, while a microwave is never completely turned off, the en-

ergy consumption in stand by mode is much lower than the energy consumption

when it is actively in use. Historical data show that a higher level of energy con-

sumption is expected during lunchtime, so the system takes this into account when

scheduling other devices.

SLEEP. For a device for which there is no demand for operation during a given

period, the SLEEP policy can be used. The policy is used mostly at night, when

there is no activity in the office and many devices can be turned off in order to save

8.1. Approach 189

Coordinator

Scheduler

Repository Smart Meter

Controller

Gateway

Collector and

Executor

Environment

CommandData

DataAccess

Schedule

EnergyInformation

Figure 8.1: Component diagram of the architecture specified.

energy. There are no additional parameters for this policy.

8.1.2 Architecture

To take advantage of the dynamic pricing on the smart grid and the control-

lability of the devices, we design an architecture that goes from the hardware level

of energy measurement and control up to the scheduling logic. The overall archi-

tecture is shown in Figure 8.1. On the right is the Smart Meter, intended as the

interface to the smart grid and responsible for the two-way communication. At the

bottom sits the hardware responsible for the monitoring and control of energy use

(Environment), above which there is the Controller acting as a bridge between the

Coordinator and the hardware. On the left side, the Repository contains historical

data of energy use and the policies for the devices. This information is essential for

the Scheduler (on top), who needs to plan, based also on the information from the

smart grid, optimal control strategies for the office. The Coordinator component at

the centre of the figure acts as a facilitator between the devices, the smart grid, the

Scheduler, and the Repository.

190 8. Coordinating cost-aware offices

Smart Meter

A smart meter is a physical device that is able to measure consumed and pro-

duced energy, provide this information to the energy metering companies, and

change electricity tariffs according to the signals received by the energy companies

participating in the smart grid real-time tariff service. In the proposed architecture,

the Smart Meter is seen as the component that interacts with the smart grid in order

to receive the energy prices that are applied by the different energy providers for the

same hourly time interval. We envision a service, either from the smart grid itself or

from energy providers, to provide through the Internet the changing energy prices.

Once the information is received or retrieved, the Smart Meter component stores the

data in the Repository through the interaction with the Coordinator component.

Once the generation and consumption data are available, it is then easy for the

Smart Meter to provide this information either periodically or upon request to the

energy provider for accounting/billing purposes. In the current implementation,

we consider one smart meter in the office environment. However, the proposed

architecture supports, with minimal changes, more smart meters, for instance, a

smart meter per office floor, or per section of the building, or even per working

business unit.

Environment

The Environment, most usually realised as a Wireless Sensor Network, provides

the basic infrastructure for gathering the information on a device’s power consump-

tion, the device’s state, and controlling appliances. Typically, this type of energy

monitoring equipment is plugged into power sockets instead of running on battery.

In addition, it has embedded wireless chips that are sufficient to form a wireless

mesh network around the Gateway, providing a cost effective and dynamic high-

bandwidth network, with a relatively stable topology. One can also envision these

functionalities to be directly available at the appliance level (e.g., a laptop that offers

external control and energy consumption values as system calls that can be remotely

invoked (Kremer et al. 2003)).

Controller

The Controller consists of a Collector and Executor subcomponent and a Gate-

way between the Environment and the above components. The Gateway is in

charge of managing the network. It runs in the background, providing basic tools

to the Collector and Executor for gathering information as well as controlling the

devices. The Collector and Executor subcomponent, in turn, is responsible for the

collection and storage of the office information. On a regular basis, the Collector

8.1. Approach 191

Client

Repository

Database
Data Access

Object
WS Interface

DataAccess

Object Data

DataAccess

Figure 8.2: Overview of the Repository component.

collects the devices’ data gathered through the Gateway subcomponent. In order

to access lower-level tools of the Gateway in a more intuitive fashion, the Collector

and Executor subcomponent contains a wrapper that provides a standard interface

for interaction. The information received is then stored into a database.

Another responsibility of the Collector and Executor subcomponent is the exe-

cution of the actions over devices. It uses its wrapper to interact with the Gateway

in order to send the execution commands to the Environment.

Repository

The Repository component comprises two basic functionalities: (i) storage of

information provided by devices, policy manager and energy providers; and (ii)

retrieval of data queries issued by other components, namely by the Coordinator.

Communication between the Repository and Coordinator is enabled by exchanging

an agreed format of messages. In Figure 8.2, we schematise the internal architec-

ture: its configuration is abstracted into three subcomponents: Web Service (WS)

Interface, Data Access Object, and Database.

The WS Interface is a thin layer over the Repository that offers its capabilities

across the network in form of Web services. By designing such an interface, we sim-

plify the overall system architecture and the visibility of interactions is improved.

We view each Web service as a resource on which a set of actions can be performed.

Furthermore, such an action is mapped onto an operation of the lower-level Data

Access Object component. Data Access Object encapsulates and implements all of

the functionalities required to work with the data source. It persists the requests

and information provided by the client calls into the Database. Naturally, the back-

end database can be freely chosen.

192 8. Coordinating cost-aware offices

Scheduler

Through the Coordinator, the Scheduler receives the information about the

available supply and price of energy, and also the information about controllable

devices, their levels of energy consumption, and their policies (rules of operation).

Given this information, the Scheduler then finds the optimal solution with the min-

imum price paid for the total energy consumed over a certain period of time.

Prices on the market change regularly, say each hour, so the Scheduler takes

into account varying prices over the course of the day and tries to schedule devices

to operate at times, when the price per consumed kWh is the lowest. Generally,

those prices vary from provider to provider, and the system can choose a provider

to buy energy from. However, since providers have a finite energy supply, if many

devices are scheduled to operate at the same time, their total energy consumption

will likely be bigger than the cheapest energy supplier is ready to provide. That

will lead to the necessity to buy energy from a more expensive energy provider.

LetEP (t) = {epi} denote a set of energy providers at the time unit t, where each

energy provider is represented by a tuple epi = 〈cost, energy〉, cost is the cost of 1 kWh

of energy, and energy is the maximum amount of energy that the current provider

can provide at the time unit t.

To calculate the accumulated cost that an office building needs to pay for the

energy it consumes in a certain time unit, we need to sort energy providers by their

price. Since we assume that a smart meter can choose which provider to buy en-

ergy from, it first buys energy from the cheapest providers, and then continues to

more expensive providers, if the amount of energy the building needs to consume

is bigger than the amount offered by the cheapest energy providers.

Thus the total cost that the building pays at time unit t if it needs to consume an

amount of energy e is

cost(t, e) = min(

|EP (t)|∑
i=1

(ki ∗ epi.energy ∗ epi.cost))

such that
|EP (t)|∑
i=1

(ki ∗ epi.energy) = e,

where ki is the coefficient that shows a fraction of energy bought from energy pro-

vider epi. In practice, ki will be equal to 1 for the cheapest providers, then be in a

region [0, 1] for one of the other providers, and be equal to 0 for all more expensive

providers.

An example of cost calculation for the energy providers in Table 8.2 is shown

in Figure 8.3. For the consumption level of 2.1 kWh, the office building has to use

8.2. Coordination 193

Table 8.2: Example of energy providers and prices.

Provider Energy supply Price per kWh

Internal Wind Turbine 0.214292 0.0

Internal Solar Panel 0.302314 0.122916

COMED 2.755946 0.282973

ATSI 3.154828 0.357123

AEP 2.411659 0.360658

more providers …

Figure 8.3: Price per kWh given the energy consumption. Total price paid equals the area under the

graph.

energy from internal Wind Turbine and Solar Panels, and also buy some energy

from the cheapest provider COMED, resulting in a total of $0.485217 per hour.

8.2 Coordination

The underlying mechanism of the Coordinator component is shown in Al-

gorithm 5. The algorithm enables a coherent execution of the system as a whole. On

a regular basis, the Coordinator asks the Smart Meter to provide the energy price

information and sends gathered data to the Repository (lines 1-4). The Coordinator

serves as a client to the Controller. Once the Collector and Executor subcomponent

collects the device information, the Coordinator instance calls a specific Web service

to retrieve that description, and, in consequence, it sends the data to be stored into

the Repository to be available for later usage (line 6). The Coordinator also serves

as a client to the policy manager to provide the system with policies needed by the

Scheduler (line 8). At a point when all necessary input parameters for the Sched-

uler are secured, the Coordinator continues with the system execution flow by in-

stantiating the Scheduler component (line 10). The received schedule of actions is

controlled by this component too. Each action is scheduled for one-time execution

194 8. Coordinating cost-aware offices

Algorithm 5 Execution coordination

Input: x: time period

1: loop{once per day}

2: ei←InvokeSmartMeter₍currentDate₎

3: Set the information from energy providers ei in the Repository

4: end loop

5: loop{every x hours}

6: currentStates←InvokeController₍₎

7: Set the current states of devices currentStates in the Repository

8: devices←InvokeRepository₍₎

9: prices←InvokeRepository₍₎

10: schedule←InvokeScheduler₍devices, prices₎

11: for each action a in schedule do

12: ScheduleAction₍a.hour,a.minutes,a.mac,a.state₎

13: end for

14: end loop

by invoking the Collector and Executor component Web service to process changes

deeper into the physical layer (lines 11-13).

8.3 Implementation

We have implemented the proposed system in a prototype that we have de-

ployed in our own offices. Next we detail the realization of each component.

Interfacing with the smart grid

The smart grid has not yet been deployed and implemented for the end user,

but has been used just as proof-of-concepts (Lu et al. 2010), simulations of smart

grid customer behaviour (Taqqali and Abdulaziz 2010), or small scale pilot pro-

jects (Kok et al. 2008), and no generally available standards have been agreed yet

(though initiatives are underway from IEEE, NIST, and others); therefore, we sim-

ulate the dynamic pricing.

To make the simulation realistic, we use data and services obtained from real

markets and real energy generation installations. In particular, in order to simu-

late the variable energy tariffs, we use the energy prices coming from the PJM In-

terconnection1, which is a regional transmission organization that coordinates the

1http://www.pjm.com/

http://www.pjm.com/

8.3. Implementation 195

movement of wholesale electricity in more than 13 states of Eastern U.S.A. The data

extracted are the Day-Ahead Energy Market locational marginal pricing, which are

the prices of energy negotiated in the wholesale market for the following day by

energy companies at a specific location where energy is delivered or received. Data

contain the energy price for each energy unit ($ per MWh) for each hour of the day

agreed for the next day at 20 locations of delivery. We stipulate a maximum the-

oretical power consumption for our office building of little more than 4.2 kW; we

assume that each simulated energy provider can provide in an hour a quantity of

energy that is equal to a random value between 0 and 4.2 kWh. It is not then granted

that just one provider can satisfy the energy needs of the office building, but more

of them could be considered as energy providers at the same time.

Moreover, we consider the inclusion of micro-generation facilities as if they were

available on the building. We simulate the presence of a photovoltaic (PV) installa-

tion and a small-scale wind turbine. Again, to make the simulation realistic, we use

actual data coming from existing installations, a PV installation of 2.4 kW of power

in New York at Dalton School in Manhattan.2

We simulate the presence of a small-scale wind turbine on top of the same build-

ing considering the average annual wind speed experienced in New York and the

anemometer data obtained from the set of sensors measuring the environmental

conditions on top of Dalton School. We simulate the presence on site of a Proven

2.5 wind turbine3 which has a rating of 2.5 kW with a 12 m/s wind speed. We assume

to have the wind data every hour and constant during the whole hour.

Regarding the pricing of the energy produced locally, firstly, we consider the

wind turbine as a sunk cost, that is, the energy produced is for free, as its investment

has been already amortized. On the other hand, for the PV we assume a price of

$0.12 per kWh by considering the investment cost and the energy produced over

the expected lifetime of the PV array. Secondly, we estimate a production of energy

during the 40 years that is on average the same as the one produced in the previ-

ous years since the installation. Thirdly, the investment cost is based on the results

of Wiser et al. (2009), who investigated the cost of PV panels in the U.S.A. The cost

that emerges from their analysis, considering the cost for PV panels, inverters, and

installation once the incentives applied by the U.S. government are subtracted, is

$5.1 for each installed watt of power.

2http://www.dalton.org/
3http://www.windandsun.co.uk/Wind/wind_proven.htm

http://www.dalton.org/
http://www.windandsun.co.uk/Wind/wind_proven.htm

196 8. Coordinating cost-aware offices

Environment

We use Plugwise adapters consisting of plug-in adapters that fit between a

device and the power socket (Plugwise 2015). The adapters can turn the plugged

mains device on and off, and can at the same time measure the power consumption

of the device that is attached. The plugs are called “Circles” and they form a wire-

less ZigBee mesh network around a coordinator (called “Circle+”). The network

communicates with the Controller through a link provided by a USB stick device

(called “Stick”).

Gateway

The Gateway is a process running in the background, providing two function-

alities: (i) Information gathering, reporting power consumption and state of con-

trolled devices; (ii) Device control, used to turn the devices on and off. It is written

in Perl using xPL Protocol.4 In a subcomponent, Application interfaces allow the in-

teroperation of devices (based on possibly different protocols such as ZigBee, X10,

Bluetooth, Infrared) and the xPL Protocol. There is the xPL Hub that can bridge

various application interfaces and is responsible for passing on the message to the

application level for information gathering. It also collects back device control in-

structions that need to be forwarded to the Environment.

Repository, Collector and Executor

The Repository and the Collector and Executor components are implemented

as a Web server that can be accessed with a simple standard protocol, namely, the

Jetty5, HTTP Java-based server, and Representational State Transfer (REST) (Field-

ing and Taylor 2002) for the communication. Each resource is mapped to a cer-

tain resource identifier, usually a Uniform Resource Identifier (URI). For example,

assuming the Repository Web server is installed on a local host, the Web ser-

vice for getting the device’s information can be accessed by calling the URI http:
//localhost:8080/repository/services/devices. A client can access these re-

sources and transfer the content using methods that describe the actions to be per-

formed on the resource. The methods are analogous to typical HTTP methods such

as GET and POST that describe read and update actions. Each method from the

WS interface component calls an appropriate operation from the Data Access Ob-

ject component, see Figure 8.2. The Data Access Object implements operations that

store and retrieve information. It also forms appropriate XML data representa-

4http://xplproject.org.uk/
5http://eclipse.org/jetty/

http://localhost:8080/repository/services/devices
http://localhost:8080/repository/services/devices
http://xplproject.org.uk/
http://eclipse.org/jetty/

8.3. Implementation 197

tion needed for other components in the architecture. We use Java Architecture

for XML Binding6 as a technique to map model objects to an XML representation or

vice versa. Data Access Object achieves data persistence by using Hibernate frame-

work (Bauer and King 2006) that enables transparent and automatic mapping of

the system domain object model into a database. We use MySQL7 as a relational

database management system for all databases.

Scheduler

The Scheduler is a standalone program module written in Scala that is called

by the Coordinator whenever there is a need to create a schedule for the following

time period. The Scheduler obtains the information about the energy supply and

prices from the smart grid via the Coordinator in XML format. Also, it uses the

information about the devices and their policies, presented in this format as well.

The schedule, created as an XML object, is returned to the Coordinator, and contains

a set of actions that should be performed with each device during the next time

period.

Coordinator

The Coordinator plays a role of a client to the Repository and to the Controller

through the Collector and Executor subcomponent. We use the same technology

as for the Repository and Collector and Executor, that is, a Jersey-based client to

consume HTTP-based REST Web services requests.

Discussion

The wireless network of plug-in adapters presents a relatively stable topology.

We experienced in general a quite good stability during system performance of

data collection and command execution. Having a ZigBee network deployed in our

building environment, we faced some communication issues due to the radio dis-

turbed environment. In particular, we observed that the microwave, while in work-

ing mode, affects the transmission of data through the frequency band of the ZigBee

network. In most such cases, the data delivery ratio is lower than 100% (e.g., from

166720 collections, we expected to collect 1000320 measures, but we received 977724

measures), i.e., the information for a particular device or devices is lost. We did not

try to solve this issue because the system collects data fairly often so that it does not

lose the records of any important state changes. However, one possible solution for

6http://jaxb.java.net/
7http://www.mysql.com/

http://jaxb.java.net/
http://www.mysql.com/

198 8. Coordinating cost-aware offices

the transmission loss would be to displace the microwave far enough not to inter-

fere with the wireless network of Plugwise devices. Unfortunately, relocating the

microwave in our environment was not possible due to space limitations. Another

way to improve data transmissions would be to use an acknowledgement process

included within the communication (Simek et al. 2011).

Similarly, we noticed another inconvenience when at times the system would

not execute the controlling commands for the devices. In fact, there were two reas-

ons for this behaviour. The first relates to the above-described radio disturbances.

The other corresponds to the responsiveness of the Plugwise devices themselves.

In particular, as the system is collecting data continuously, the execution of a com-

mand performed at the same moment as the collection of data was not successful.

To resolve the responsiveness issue, we employed programmatically a simple form

of reliable messaging with message acknowledgement. In this way, the system re-

executes the command until the plug-in adapter is turned into the desired state.

8.4 Evaluation

We have deployed the system in our own offices at Bernoulliborg in order to

assess the possible savings obtainable with such a system. The test site consists of

three offices occupied by permanent and PhD staff, a coffee corner/social area, and

a printer area. The layout is illustrated together with the ZigBee network and the

electrical appliances in Figure 8.4. In particular, we include in our testing six avail-

able devices (a fridge, a laptop, a printer, a projector, a microwave, and a water

boiler). The rated power plate consumptions of the fridge and the laptop are 70 W

and 90 W respectively, while that for the printer is 100 W. The projector consumes

252 W when working, while the microwave 1500 W. The water boiler consumes

when heating up to 2200 W. Four other sensor nodes are also comprised in the net-

work to strengthen the mesh network connections. We use a set of Plugwise plugs

in the same way as described in Section 7.3.

We have used the system over three weeks in the months of October and Novem-

ber 2011, and one week in the month of March 2012, performing measurements from

Monday to Friday (as in the weekend there is irregular presence). In particular, in

the first 2 weeks (W1-W2) we measured energy use in order to define a baseline.

The third week (W3) in 2011 and the fourth week (W4) in 2012, we let our system

control the environment in order to measure the actual savings.

We used the REPEAT policy for the fridge (turn on for 15 minutes each hour) and

the boiler (turn on for 15 minutes each two hours). The printer used the MULTIPLE

policy, and was assigned three jobs over the course of four hours. The microwave

used the PATTERN policy, so we used the statistical information from the previ-

8.4. Evaluation 199

Figure 8.4: Living lab setup.

ously collected data to calculate the expected level of microwave consumption at

each hour of the day. The laptop used the TOTAL policy, so it had to be charged

for a total one hour during four hours scheduled slots. During week W3, we used

the laptop each day. During week W4, we introduced variability of policies usage,

so the laptop was used during Tuesday and Thursday. Projector used the STRICT

policy to strictly follow the agenda of presentations. During week W3, presenta-

tions were given each day from 2 p.m. to 3 p.m. During week W4 presentations

were given on Tuesday and Wednesday from 2 p.m. to 4 p.m., thus two hours each.

Next, we present the results in terms of economic savings (due to the varying

prices of the smart grid) and of energy savings (due to the introduction of device

policies).

8.4.1 Economic savings

The goal of the system is to save money for the office by taking advantage of the

smart grid. Therefore, the first evaluation we make is based on taking the energy

bill for a week using the system versus a week without it. We have considered two

situations for office environments to evaluate the economic benefits of the proposed

device scheduling policy: (1) an intelligent office building that interacts with the

smart grid Demand-Response tariff service and has small scale renewable installa-

tions in its premises that provide power (W3 simulation), and (2) a more ordinary

office that has no renewable-based power installation that provide power (W4 sim-

ulation) and that benefits only from the tariff differentiation of the smart grid. To

obtain a fair comparison in the two simulations, we use the energy prices of the

third week (W3) and fourth week (W4) and apply those same retrieved prices for

200 8. Coordinating cost-aware offices

Figure 8.5: Average price ($ per kWh) comparison between non-scheduled (upper chart) and scheduled

(lower chart) appliances for each work day (W3 experiment).

the energy consumed in the other two weeks (W1-W2).

In the first set of simulations (office with on site small-scale renewable sources),

the situation between each working day of the two weeks (average) without

scheduling policies and the week where the policy has been applied is shown in

Figure 8.5, where the price of energy ($ per kWh) is shown versus the time of the

day (from Monday to Friday). It is interesting to notice the difference in the aver-

age price paid for each kWh of energy in the situation without device scheduling

and, on the other hand, considering scheduling. The chart is shown in Figure 8.8

(top chart). On average, the price in $ per kWh drops by more than 27% in the two

situations. An interesting day where the savings on energy expenses are partic-

ularly significant is between the three consecutive Thursdays monitored (October

20th, 27th, and November 3rd). Comparing these three days, the money savings

are on average more than 50%. A comparison between the price paid for energy in

each hour between the situation in October 27th and November 3rd is shown in Fig-

ures 8.6 and 8.7, respectively. In particular, one can see the cut-off of unnecessary

energy expenses related to those consumptions that happen during non-working

time (late evening or during the night) by devices that are not strictly necessary

(most notably the hot water boiler). Another optimisation the system achieves is

the most efficient schedule of devices, when the energy generated by photovoltaic

panel is more intense and whose cost is generally smaller than energy provisioning

on the market.

To validate the scheduling policy, in W4 we consider an office without renew-

able energy sources (whose price is generally cheaper than energy provision mar-

ket). Results comparing the day-by-day average price between the scheduling situ-

ation and the non-scheduling one are shown in Figure 8.10, while the daily average

is shown in Figure 8.8 (bottom chart). One can see that the average price paid when

8.4. Evaluation 201

Figure 8.6: Price of energy ($ per kWh) during non-scheduled day October 27th.

Figure 8.7: Price of energy ($ per kWh) during scheduled day November 3rd.

scheduling is active is usually lower than the non-scheduled situation (cf. the con-

tinuous and dashed line in Figure 8.8); the overall economic savings between the

situation when the schedule is implemented and when it is not is about 22%. The

lower savings compared to the W3 experiment are due to the absence of renewable

sources in the energy mix of the office, which we have assumed cheaper than the

traditional energy market provider prices.

8.4.2 Energy savings

Although energy use reduction is not the primary aim of the system, but rather

economic savings based on dynamic pricing, the use of policies for devices alone

provides for energy saving in absolute terms. Figure 8.9 (top chart) shows the aver-

age energy consumption (kWh) considering the use and the absence of our system

comparing W1-W2 and W3 scenarios and Figure 8.9 (bottom chart) compares W1-

202 8. Coordinating cost-aware offices

Figure 8.8: Average price ($ per kWh) comparison between scheduled (continuous line) and non-

scheduled (dashed line) situations (top W3 experiment, bottom W4 experiment).

Figure 8.9: Average energy usage (kWh) comparison between scheduled (continuous line) and non-

scheduled (dashed line) situations (top W3 experiment, bottom W4 experiment).

W2 and W4 scenarios. The scheduling reduces the consumption of devices that are

not used during non-working hours and that do not impact the habits of the users

(e.g., keeping the hot water boiler working at night); in addition, the Scheduler tries

to use at best the cheap electricity coming from the solar panels during daylight

hours. Figure 8.11 visually reinforces the idea of reducing loads when unnecessary

among the normal (first upper chart) and the scheduled solutions (the middle and

bottom charts): one notices a more compact chart in which energy is used mostly

during daytime (8 a.m.-6.30 p.m.) in each day of the week. The average savings

of energy consumed between the situation without the scheduling policy and the

situation considering it, is more than 15% (W1-2 versus W3 experiment) and about

11% (W1-2 versus W4 experiment), respectively. We ascribe the small difference in

percentage to the unpredictable usage of equipment in the living lab between the

8.4. Evaluation 203

Figure 8.10: Average price ($ per kWh) comparison between non-scheduled (upper chart) and sched-

uled (lower chart) appliances for each work day (W4 experiment).

Figure 8.11: Energy (per kWh) comparison between non-scheduled (upper chart) and scheduled

(middle and bottom chart respectively W3 and W4) appliances for each work day.

two weeks (e.g., microwave use).

8.4.3 Remarks

We remark that the system itself consumes energy to operate; it consists of 10

Plugwise devices and one desktop computer that respectively consume a maximum

power of 1.1 W and 365 W, respectively. The value of the plugs is insignificant with

respect to the overall consumption. As for the computer, a few remarks are in order:

firstly, the optimisation program does not need to run on a dedicated computer, so

it could add little consumption to the already active computers. Secondly, in a real

204 8. Coordinating cost-aware offices

operational environment, the system would schedule many more devices; thus, its

energy consumption would be amortized over larger savings. For these reasons,

we have not included these energy consumptions in the current evaluation.

Chapter 9

Composing applications ready for
deployment

Consider the two systems we built for coordination in ubiquitous computing

environments. Both represent distributed applications that consist of several

components. The components offer their capabilities as services, resulting in ap-

plications composed of services. The applications are usually composed manually,

as in our cases, or with some predefined scripts. In reality, either way makes the

composition process a difficult problem due to several factors. First, although each

service is responsible for a separate aspect of the systems, the services are highly

interrelated. Second, each service may have multiple versions each of which in-

cludes a different set of requirements for communication, exchange of information,

and capabilities of other services. Third, each service may have multiple instances

running in the same setting – a real situation rather than a vision. To illustrate

this better, just imagine the system we build for coordinating offices. There are 300

offices in the building, distributed on four floors. A single instance of a service

cannot deal with such scaling of the environment. This implies that the number of

services in the configuration of the system for an actual deployment may vary and

increase, which is a fourth factor.

A solution to this problem is to build distributed applications automatically,

that is, automating the process of service composition. Luckily, we can resort to

planning to accomplish this. The main assumption that enables planning to be used

for composing services is that they are discoverable and need to be associated with

semantic annotations that define their functionality. There are two possibilities for

this, and we look at each in the following.

Nowadays, services usually reside on the Web or in the Cloud. Web ser-

vices are distributed on the Internet, publicly available through standard protocols

(e.g., HTTP), and registered in some repository, such as the Universal Description,

Discovery and Integration (UDDI) registry. The main issue with Web services lies

in the lack of a consistent semantic annotation, such that it is feasible in practice.

Even though there are existing ways to describe Web services (e.g., SOAP, WSDL,

OWL-S), the reality of Web services is that they are associated only with syntactic

206 9. Composing applications ready for deployment

specifications and free-text descriptions, leading to the consideration of public ser-

vices as nothing more than data sources (Fan and Kambhampati 2005).

Cloud services are not necessarily accessible over a network that is open for

public use. In most scenarios, Cloud services are only accessible by corporations

providing them with greater control and privacy. Services in such well-controlled

environments have different characteristics from the services rendered for the Web.

This includes services to be more structured and to have annotations given by

the providers using a consistent ontology. There are also cases where machine-

interpretable annotations may be provided. In fact, corporations tend to make use

of well-established standards and best practices they gain in the domain of service-

oriented architectures to support a standardised way of access to Cloud services.

All this foregrounds the possibility to make service composition feasible.

We expect that distributed applications ready for deployment, such as those for

ubiquitous computing environments, will evolve as Cloud applications rather than

Web applications. While various planning techniques are already well studied for

building the latter ones (i.e., Web service composition), the use of planning for com-

posing services for the Cloud is scarce. Though there are similarities between the

two, for example, the satisfaction of interdependencies between services, the com-

position of Cloud services may in addition involve configuration processes that en-

able correct service instantiations, valid state transitions of services, etc.

We introduce an approach based on HTN planning that automatically composes

applications ready for Cloud deployment. We suggest that HTN planning is suit-

able for this due to its rich domain knowledge, modularity, recursive structures, and

natural representation of causality. We use an existing formal model to describe a

deployment problem, and then we propose a strategy to create an HTN planning

problem from the deployment one. Further, we implement our approach using the

SH planning system and perform a set of experiments to assess the feasibility of our

approach.

In addition, we look at Web service composition too. We analyse in more details

the challenges of Web service composition, and derive a general model for compos-

ing Web services via planning. Based on this general model, we look at a concrete

relationship between Web service composition and HTN planning. We then dis-

cuss the state of the art, aiming to identify the shortcomings of current HTN-based

approaches. In what follows, we use ‘service’ and ‘component’ interchangeably.

9.1 Composition of Cloud applications

Cloud computing brings new interesting perspectives to the conventional way

of creating, manipulating, and using everyday applications (Hayes 2008, Vaquero

9.1. Composition of Cloud applications 207

et al. 2008). The applications are no longer installed and run on a single machine, but

they are composed of assorted services that are deployed and distributed on differ-

ent machines of Cloud infrastructures. A class of problems is associated exactly

with the process of composing and deploying such modern applications. Given

some initial configuration of a Cloud infrastructure in terms of already deployed

services, a set of deployment actions, such as start and stop a service, and a desired

application, a deployment problem consists of finding a sequence of deployment

actions over services that compose the desired application.

While the deploying aspect of this process is already fully automated, the com-

position of application components is yet to be improved, being still performed

either manually or semi automatically with some predefined scripts. The scripts

may ease the process to a certain degree, but their use is limited as they are ex-

clusively dedicated to specific services and applications. Moreover, even a small

number of components can make the composition process already strenuous and

difficult. Thus, the difficulty increases further with the number of services to be con-

figured, especially when the services are delivered in different builds and releases

with different compatibilities among each other. The process of satisfying interde-

pendencies between services then can no longer be performed manually or with the

mainstream tools.

We use HTN planning to address the problem of automated composition of ap-

plication components. We propose a strategy to create an HTN planning problem

from a deployment problem. We use a so-called Aeolus model (Cosmo et al. 2012)

to define the deployment problem. In this model, components are resources of

various kinds that require and provide functionalities through ports. Requiring

and providing functionalities implies establishment of interdependencies between

components. A requested application is realised by a sequence of low-level actions,

such as create instance, start instance, bind port, and so forth. We demonstrate the

applicability and feasibility of this approach through an experimental evaluation,

and we show that general-purpose planners, such as an HTN one, can be likened

to specialised ones to a certain degree, contrary to the results presented in (Lascu

et al. 2013).

9.1.1 Deployment model

One way to define the problem of configuring and deploying applications on the

Cloud is by using the Aelous model (Cosmo et al. 2012). The main element of the

model is a component, describing a manageable resource that provides and requires

functionalities. Through the use of state machines, the Aeolus model provides a

way to encode specific components declaratively by specifying how functionalit-

208 9. Composing applications ready for deployment

RunningInstalledUninstalled

terminateComponent stopComponent

runComponentstartComponent

Figure 9.1: FSM depicting the state transitions of a component specified in UML.

ies are accomplished. We consider a component as the Finite State Machine (FSM)

shown in Figure 9.1. The FSM defines the state transition processes of a compon-

ent, i.e., the states and the order in which a component can transition from one state

to another. A component is initially in an unintalled state. Upon start, it transitions

into an installed state, and then to a running state. State transitions are accomplished

using deployment actions. For example, given some component in its initial state, it

is installed by invoking the startComponent action.

In most cases, however, a component can transition in some state only if the

functionalities that particular state requires through require ports are communicated

by components that can provide them through provide ports. We can observe such

transitions in configuration patterns (see Figure 9.2). A pattern contains a set of

components interrelated among each other through the ports on the level of states.

The components are abstract, meaning that they will be replaced by concrete com-

ponents, or instances, at runtime. A single configuration pattern therefore defines a

number of actual compositions.

A component c is a 5-tuple 〈Q, q0, U, P,R〉, whereQ is a finite set of states, q0 is the

initial state, U ⊆ Q × Q is the set of state transitions, P is the set of provide ports,

and R is the set of require ports. We denote the set of all available components as

C, and the set of all ports as F . The set A consists of the deployment actions used

upon the elements in C and F . A configurationD is a tuple 〈C, I, φ,B〉, where C is a

set of available components, I is a set of currently deployed component instances,

φ is a function that associates i ∈ I with a pair 〈c, q〉, where c ∈ C and q ∈ Q is the

current component state; and B ⊆ F × I × I is a set of bindings.

A deployment problem consists of an initial configuration, a set of deployment

actions, and a request for a new configuration (i.e., application). The solution to

the problem is a deployment run representing a sequence of deployment actions on

components that, when deployed, produce the required configuration.

9.1. Composition of Cloud applications 209

u – uninstalled i – installed r - running active port inactive port

i

r

u

i

r

u

i

r

u

Figure 9.2: Example of a pattern for a WordPress application.

9.1.2 Hierarchical planning domain model

We introduce an approach to create an HTN planning problem from a deploy-

ment problem. We provide a running example that helps in demonstrating the

structures we encode in the domain model. We use the Hierarchical Planning Defin-

ition Language (HPDL) (Fernández-Olivares et al. 2006) when describing the plan-

ning structures. In the following, we refer to a state transition that does not depend

on any functionality provided by other components as simple transition. Otherwise,

we use the term complex transition.

A running example

Figure 9.2 graphically represents an Aeolus pattern for composing a WordPress1

application in a running state. The main and top-level component represents Word-

Press, which is a popular blogging system. WordPress operates using several soft-

ware services among which essential ones are a Web server and an SQL database.

The application requires a database to store all blog information (e.g., posts, com-

ments, meta-data). The most commonly used database is MySQL, but other data-

bases, such as MariaDB and Percona Server, are compatible too. A recommended

server is Apache, but any other server that supports PHP and MySQL is suitable

too. We use MySQL and Apache2 as components that WordPress depends on.

1https://wordpress.org/

https://wordpress.org/

210 9. Composing applications ready for deployment

Components, states and ports of components

We encode components, instances, ports as domain types

component instance port, which are all subtypes of the type object. In

fact, each component type, such as WordPress is represented as an object of type

component.

While FSMs associate components with states abstractly, component instances

are the ones to be in a specific state at planning time. We encode an instance state

using a predicate “(state instance)”, where state is a string representing the type of

an FSM state, and instance is a variable representing the component instance. An

example of a WordPress instance w1 in an installed state is (installed w1).

A component state may be associated with require and provide ports. To repres-

ent the association of a port to a state, we use a predicate “(statePort component port)”,

where statePort is a string representing the type of port in a specific state, compon-

ent is a variable representing the type of component that requires or provides a port

represented by the variable port. For example, ifWordPress requires the httpd port in

the installed state, we encode it as (installed-require wordpress httpd). Such

knowledge holds for all instances of the respective component. These predicates

are therefore grounded in the initial state and static during planning.

Creating new component instances

One of the features of the composition of Aeolus applications is that one or more

component instances must be created from existing (abstract) components. Con-

trary to the approach taken in (Sohrabi et al. 2013), where an assignment expres-

sion in the precondition of an operator is used to create a new object, we address

the creation of new uninitialised instances using a domain function. This function

returns a number that we use to represent instance variables in a special predicate

(instance ?iNum - number). The instance-number function practically serves us

as a counter to keep track of the current value that can be assigned for new in-

stances. The domain function does not take arguments. We use an additional pre-

dicate (type ?iNum - number ?c - component) to associate the instance with a

particular component. We increase the instance number, and assert the association

by manipulating the effect of the operator that creates new instances as showed in

the following encoding.

(:action createInstance
:parameters (?c - component)
:precondition ()
:effect (and (instance (instance-number))

(type (instance-number) ?c)

9.1. Composition of Cloud applications 211

(increase (instance-number) 1)))

Deployment actions

In addition to createInstance, we consider the actions that accomplish simple

transitions. These are the deployment actions, including the binding ones. The

binding actions are responsible for low-level binding of ports – the require ports

are bound to the provide ports. We encode all these actions as HTN operators. The

parameters of operators corresponds either to a component instance variable or to

variables of a port and two instances (in the case of binding actions). The precondi-

tions and effects of each operator capture the semantics of the respective action. The

following is an operator that corresponds to the startComponent deployment action,

which makes the state of a instance to become installed and activates all the ports

associated with the installed state of the component which the current instance be-

longs to.

(:action start
:parameters (?i - instance)
:precondition (and (not (installed ?i)))
:effect (and (installed ?i)

(forall (?p - port) (when
(and (installed-provide ?c ?p)

(type ?i ?c))
(active ?p ?i)))))

Other deployment actions are encoded similarly. As for the binding ones, the

bind operator creates a binding between the provide port of some instance and the

require port of another one, and the unbind operator deletes an already established

binding between two components’ instances.

Configuration processes

Although each different type of an application has its own installation and run-

ning configuration pattern, the process of configuring applications is general and

can be abstracted away. Let us detail how we can accomplish that.

The process of configuring an application requires satisfaction of the dependen-

cies to functionalities provided by components. Let us assume that an instance in

an uninstalled state cannot have requirements to be satisfied. We may then consider

two abstractions for complex transitions of components. The first abstraction refers

to acquiring a component functionality in the installed state, while the second one

refers to establishing a functionality in the running state. We point out that complex

212 9. Composing applications ready for deployment

transitions representing other configuration types can be easily incorporated in the

current domain model with minor modifications (see Section 1.1.2).

We encode each abstraction as a task in the domain model, namely install and

run tasks. Each method of these tasks encodes a specific case. One such method in-

volves port activation. If a component state is associated with one or more require

ports, the port activation process makes sure that the need of the current instance

for specific functionalities is addressed. That is, if the current component instance

has require ports that are not active, the method first activates each port and calls

recursively its corresponding task until all necessary ports are activated. The actual

process of port activation is encoded in a separate task. The task not only activates

a required functionality, but also finds and installs (or runs) a component instance

that provides that functionality. An instance with active require ports can then use

the functionalities of other components with active provide ports. This is accom-

plished by another method that involves port binding. The process of port binding

binds require ports to appropriate provide ports. For this process, the method de-

pends directly on the binding actions. Once we have methods that involve port ac-

tivation and binding, we can proceed to the method that deals with the case when

all require ports are active and bound. To address the satisfaction of all require

ports, we use a forall expression in the method for both tasks, install and run. The

following expression is used for the install task.

(forall (?p - port) (and (installed-require ?c ?p)
(bound ?p ?i ?i1))))

After this constraint check, we are ready to start or run an instance. In the case of

the run task, when running an instance, we have to deactivate the ports that will

be no longer provided by the instance in the installed state. The process of port

deactivation is accomplished using a separate task with multiple methods. Each

method represents a different case to be handled, such as a provide port that is

bound but needed for the running state, a provide port free to be unbound, etc. The

port deactivation task uses port unbinding. The process of port unbinding is more

complex than the binding one, and requires checking for constraint violation. That

is, we have to take care of active provide ports bound to active require ports. We

use a separate task for this process, that is, unbindPorts. This task does nothing

when the port is bound and needed for the next transition. When all necessary con-

straints are satisfied, it unbinds a specific port and recursively calls itself, shown in

the following encoding. Being a recursive task, it includes a base case that performs

phantomisation (Georgievski and Aiello 2015a).

:tasks (sequence (unbind ?p ?i ?i1) (unbindPorts ?i))

9.1. Composition of Cloud applications 213

There are methods in the install and run tasks that deal with the case when

there are no required functionalities for an instance. This means that we have a

simple transition which can be handled by installing the component instance dir-

ectly. In the case of running an instance, we invoke the port deactivation task to

ensure a valid transition to the running state.

The modelling of the transitions from a running state to an installed state and

further to an uninstalled state is analogous to the encoding of the tasks we described

so far.

One of the features of these kinds of compositions is that a cycle may occur

between states of different component instances. That is, an instance is expected

to provide a functionality at a specific point in the composition, but it is not pos-

sible because at the same point the instance is required to change its state (Lascu

et al. 2013). We address this feature using the process of instance duplication. In-

stance duplication deals with such cycles by creating as many instances of the same

component as needed, and deploying them in different states at the same time. We

encode instance duplication as a separate method. The method makes sure that the

current component instance is in a specific state and it has at least one provide port

bound. Consequently, a new component instance is created either in an installed

state or in a running state, depending on the type of configuration.

Algorithm 6 shows the high-level steps of the strategy we described for the cre-

ation of an HTN domain model.

Algorithm 6 Transformation of an Aeolus model into an HTN planning domain

model

Input: a set of components C, a set of deployment actions A

Output: HTN planning domain model 〈O, T 〉
1: Encode component, instance, port as types

2: Choose c = 〈Q, q0, U, P,R〉 from C

3: for j = 1 to |Q| do
4: Create state predicate and port predicates for qj , qj ∈ Q
5: end for

6: Encode an operator o for creating instances

7: for j = 1 to |A| do
8: Encode aj as an operator oj , aj ∈ A
9: end for

10: Ask the user questions regarding the configuration processes in 〈C,A〉, and en-

code the corresponding tasks

214 9. Composing applications ready for deployment

9.1.3 Deployment-based HTN planning problem

A deployment problem PD is a tuple 〈D0, A,G〉, where D0 is the initial config-

uration, A is the set of deployment actions, and G is the requested configuration. δ

is a satisfying deployment run for PD if and only if δ is a sequence of deployment

actions that transformD0 intoG. A requested configuration,G, is achievable if and

only if there exists at least one satisfying deployment run for it.

Given a deployment problem PD, we define the corresponding deployment-

based HTN planning problemP according to Definition 5.2, where 1) s0 is the initial

state consisting of a list of the following ingredients derived from D0: components

and ports as objects, component states, currently deployed instances, the current

state of deployed instances and bindings as the special predicates we defined in the

HTN planning domain model. s0 also contains a domain function initialised to 0.

2) tn0 is the initial task network encoding the requested configurationG; 3)O is the

set of operators that represent actions in A, and T is the set of tasks derived from

the configuration processes with respect to Algorithm 6. A plan π is a solution to P
according to Definition 5.3.

₉.₁ Theorem. Let PD be a deployment problem and P be the corresponding HTN planning

problem. If a requested configuration G is achievable, then there exist a plan π for P .

Let δ be a satisfying deployment run for PD such thatG is achievable. Under the

assumption that the user provides reasonable answers – there is a correspondence

between PD and P as defined previously, then there must exist a solution for P .

We can now obtain that the solution of the deployment-based HTN planning

problem is a deployment run for the corresponding deployment problem.

₉.₂ Theorem. Let PD be a deployment problem and P be the corresponding HTN planning

problem such that Theorem 9.1 holds. We can then construct a sequence of deployment

actions based on π that is a satisfying deployment run for PD.

Let us present a constructive proof for which we consider the deployment

problem PD shown in Figure 9.2. Let P be the corresponding deployment-

based HTN planning problem. Furthermore, consider the following plan for P :

[createInstance(w0), createInstance(a1), start(a1), bind(httpd,w0,a1), start(w0), cre-

ateInstance(m2), start(m2), run(m2), bind(mysql-up,w0,a2), run(w0)]. We can con-

struct a deployment run in which the actions from the plan are deployment actions.

The resulting deployment run is a satisfying deployment run for PD.

9.1.4 Evaluation

We have two main objectives with our experimentation: 1) to evaluate the ap-

plicability of our approach for composing Cloud applications, and 2) to counter the

9.1. Composition of Cloud applications 215

prior negative results of the performance of general-purpose planners in the com-

position of Cloud applications (Lascu et al. 2013).

To address our objectives, we generate deployment problems of increasing num-

ber of components varying from 3 to 220 components, resulting in more than 50

problems. We apply our approach to create the corresponding HTN planning prob-

lems, and examine the performance of SH on them. The HTN planning problems

are constructed from deployment problems of varying difficulty. For example, the

difficulty of a problem can be increased if there is a need for instance duplication.

Also, for SH, an HTN problem can be more difficult if the requested configuration

appears deeply in the search space. To that end, we construct two cases of deploy-

ment problems mainly following the test pattern provided in (Lascu et al. 2013).

For both test cases, we use a set of components c1, . . . , cn, where each ci has require

and provide ports as follows. Given that we want to have the rightmost component

cn in its running state, the dependencies between components will require to first

create instances for components from c1 to cn, then to perform transition from unin-

stalled to installed state in the reverse order of component instances, and finally, to

transition from installed to running state in the order from c1 to cn. We modify the

second test case in such a way to require instance duplication. In particular, we ran-

domly select several components and, for a selected component ci, we remove the

activation of a provide port p1i from its running state. The removal requires another

instance of ci to be created so as to satisfy the requirements of ci−1 and ci+1.

We show a subset of our results in Table 9.1. The left-hand side of Table 9.1

shows the results of the first test case without instance duplication, while the right-

hand side shows the results with instance duplication. Columns three and six show

the time in seconds needed to find a solution. For each problem, we show the plan

length as an indication of the difference between the number of operators creating

instances and the number of other deployment actions. In the case without duplica-

tion, the number of generated instances equates to the number of components, while

in the latter case it is strictly greater than the number of components. With the cre-

ation of a new instance, we increase the size of the state by adding two predicates,

and modify the state by updating the domain function.

All problems are solved within 17 seconds. When the number of components

is larger than 120, the need for instance duplication degrades the performance of

SH as compared to the case without instance duplication. However, in typical ap-

plications, there are hardly any scenarios with more than 100 components for which

case SH can find a solution in about 2 seconds with and without instance duplic-

ation. The results also show that the planner runs out of memory when the prob-

lem has more than 200 components with instance duplication and 220 components

without duplication. This is mainly due to the implementation of the core part of

216 9. Composing applications ready for deployment

Table 9.1: Evaluating the applicability of our approach by usingSH under increasing problem difficulty

(“OM” signifies “out of memory”).

Without duplication With duplication

Problem Plan length Time (sec) Problem Plan length Time (sec)

3 12 0.077 3 16 0.017

6 27 0.032 6 35 0.004

10 47 0.041 10 55 0.012

20 97 0.193 20 109 0.046

30 147 0.226 30 171 0.113

50 247 0.354 50 287 0.389

70 347 0.784 70 399 0.898

100 497 1.957 100 577 2.34

120 597 3.112 120 693 3.871

150 747 5.791 150 863 7.182

180 897 9.625 180 1037 11.916

200 997 12.897 200 - OM

220 1097 16.918 220 - OM

SH, which employs recursion (in these test cases, the number of recursive calls in-

creases rapidly), and the need for creation and maintenance of a large set of objects.

These results also address our second objective and show that general-purpose

planners can exhibit a satisfactory performance in composing Cloud applications.

Compared with the results of the two general-purpose planners reported in (Lascu

et al. 2013), our HTN planner outperforms both planners significantly. Compared

with the specialised planner, our planner falls behind the specialised one only after

a reasonably high number of components.

9.1.5 Related work

The communities of AI planning and cloud computing have explored the auto-

mated composition of components.

Planning. Many studies use automated planning to compose Web services

(e.g., (Kaldeli et al. 2011)), and to automatically generate information flows (Riabov

and Liu 2005, Sohrabi et al. 2013), which is an analogous problem to Web service

composition. Among those studies, HTN planning is employed to represent and

compose Web services in multiple approaches, which we discuss in Section 9.2.

The most common one translates the service knowledge from Web Ontology Lan-

guage for Services (OWL-S) (Martin et al. 2007) to HTNs (Sirin et al. 2004). The

9.1. Composition of Cloud applications 217

main difference between OWL-S and Aeolus lies in that the latter is envisioned for

capturing deployment processes of distributed Cloud applications, while OWL-S is

specifically designed to support the discovery, composition and monitoring of Web

services.

There are also attempts to use automated planning for composing Cloud applic-

ations. Arshad et al. (2003) describe a deployment problem of software components,

and use general-purpose temporal-based planner to find the most optimal plan with

respect to plan duration. Lascu et al. (2013) represent a deployment problem using

a simplified Aeolus model, and develop a specialised planner to search for a solu-

tion. While the former study does not define the planning problem on any formal

ground, we use the simplified Aeolus formal model as in the latter study to derive

our HTN planning problem. Contrary to (Lascu et al. 2013), where domain-related

processes and features are implemented and embodied in the planning process, we

use a general-purpose HTN planner, and encode the specific knowledge into the

domain model.

Cloud computing. Juve and Deelman (2011) propose a system that provisions,

configures, and manages deployments of virtual machines in a Cloud. They also

describe their experiences using the system to provision resources for scientific

workflow applications. Kirschnick et al. (2012) describe an architecture that enables

automatic provisioning of services in the Cloud, the language used to describe the

services to be deployed, and how a new service is managed.

While there is also a number of automated tools for Cloud creation and Cloud

management available, we here list the most popular ones. Chef2 automates build,

deploy, and manage processes on a Cloud infrastructure. CFEngine3 is a configur-

ation management system that provides a framework for automated management

of an IT infrastructure. Puppet4 makes fast and repeatable changes, and automat-

ically enforces the consistency of systems and devices across physical and virtual

machines, both on the premise or in a Cloud. AWS CloudFormation5 gives de-

velopers and systems administrators an easy way to create and manage a collection

of related AWS resources, provisioning and updating them in an orderly and pre-

dictable fashion.

There is also open-source software for creating public and private clouds. Euca-

lyptus6 is software for building private clouds that are compatible with AWS APIs.

2https://www.chef.io/chef/
3http://cfengine.com/
4http://puppetlabs.com/
5http://aws.amazon.com/cloudformation/
6https://www.eucalyptus.com

https://www.chef.io/chef/
http://cfengine.com/
http://puppetlabs.com/
http://aws.amazon.com/cloudformation/
https://www.eucalyptus.com

218 9. Composing applications ready for deployment

Apache CloudStack7 is software designed to deploy and manage large networks of

virtual machines as a highly available and highly scalable cloud computing plat-

form. OpenStack8 is software that controls large pools of compute, storage, and

networking resources throughout a data centre, managed by a dashboard or via

the OpenStack API.

9.2 Web service composition

Web services are software components that implement specific business logic,

and are distributed over the Web to be used as Web resources for machine-to-

machine interaction. For instance, travel agencies may provide a number of Web

services, such as booking a flight ticket, reserving a hotel, renting a car, or organ-

ising sightseeing. The interaction is usually initiated by a client request which has

to be satisfied by the functionalities that Web services offer. However, in cases when

no single service can accomplish the request, a composition of several Web services

might give a value-added functionality, and provide a way to request satisfaction.

For example, a service to arrange a complete trip to some tourist destination might

be of an exceptional use to the commercial travel agencies, and thus, it will not be

offered as a Web service.

The AI community tries to automate the process of Web service composition by

viewing the composition problem as a planning problem (Aiello et al. 2002, Sirin

et al. 2004, Lazovik et al. 2004, Dustdar and Schreiner 2005, Kuter et al. 2005, Med-

jahed and Bouguettaya 2005, Klusch and Gerber 2005, Sohrabi et al. 2006, Paik and

Maruyama 2007, Kaldeli et al. 2009, 2011). The general assumption is that plan-

ning operators correspond to functionalities of Web services, while the goal, in the

simplest example, is aggregated from the client request. If the client’s objective, for

example, is not only to reserve a hotel, but to arrange a complete trip, which includes

also booking a flight, renting a car, and sightseeing, then, definitely, the complexity

of services and their composition becomes an interesting and challenging task.

The environment of Web services offers more exciting challenges that make the

effective selection and composition of services far from being plain and straightfor-

ward planning processes. In particular, Web services exist in a dynamic environ-

ment in which the availability of services is not guaranteed. This behaviour reflects

the availability of information which, on the other hand, is assumed by planners to

be complete and obtainable before the planning process is initiated. Furthermore,

the environment of Web services favours techniques that are able to deal with un-

certainty in terms of 1) incomplete information about the initial state; 2) uncertainty

7http://cloudstack.apache.org/
8http://www.openstack.org/

http://cloudstack.apache.org/
http://www.openstack.org/

9.2. Web service composition 219

over the many possibilities for completion of missing information by invoking some

sensing services at planning and/or execution time; 3) non-determinism caused by

failed invocations of Web services (e.g., renting a car is not viable at the moment of

invocation), a service not responding at all, a service yielding an undesired outcome

(e.g., booking a flight provides only business-class tickets); 4) services that show un-

expected behaviour (e.g., Byzantine failure). Moreover, complex goals possibly in the

form of a workflow or conditioned with some organisational regulations or aug-

mented with user preferences are the norm rather than exception. Finally, the high

cardinality of the set of Web services available on the Web implies a large space to

be searched by a planner.

9.2.1 WSC via planning

A general approach towards composing Web services via planning without re-

strictions to specific external and internal service representations, or a particular

planning technique has the following steps. A Web service is usually described in

some (external) language. The WSC problem consisting of such services is provided

to a translator that creates an appropriate (internal) representation, that is, a plan-

ning problem. Consequently, the planning problem is given to a planner to search

for a solution. If there is a solution found (i.e., a plan), it is passed for execution and

monitoring for potential faults. In case of a fault, appropriate actions are taken.

• Service description: The description of Web services offered to the global

market usually consists of three parts. The first part refers to the information

about the data transformation during the execution of a service. The inform-

ation is presented in form of input, output and possibly exceptions. The in-

put contains the information required for service execution, while the output

presents the information the service provides after its execution. The second

part refers to when and how a service transforms the world. This part consists

of preconditions, that is, requirements that must be satisfied for the service to

be invoked, and postconditions, that is, physical changes to be made to the

world. The last part contains the non-functional properties of a service, such

as cost, reliability, and service quality.

• Translator: Services described in a standard Web service language appear

to be hard to handle by planning systems unless they are translated into an

understandable form. The translator accepts service descriptions and converts

them into formal and unambiguous encoding. The result of the translation is

a planning problem. In fact, this component enables the relationship between

Web service composition and automated planning.

220 9. Composing applications ready for deployment

• Planning system: It takes the planning problem and tries to find a solution.

Many planning systems distinguish between world-altering and sensing ac-

tions. The former can change the world when executed, while the latter can-

not modify the state, but only acquire additional information needed to sup-

port the planning process. The most common approach is to perform off-line

planning, that is, to simulate the execution of world-altering actions, and to

do sensing. The solution, if it exists, consists of world-altering actions only.

Many planning systems make several assumptions while planning. These as-

sumptions simplify the planning process, but impose restrictions about what

might happen in the world and distance further from the reality. The assump-

tions are:

A1: The world is static – it can be modified only by the actions resulted from

the planning process, and not by some external agent or event. All in-

formation about the world is expected to be valid till the end of the exe-

cution.

A2: Sensing actions succeed – the execution of a sensing action will always

return the acquired information.

A3: Sensing actions are repeatable – the first sensed information is assumed

to be valid for each action (service) further in the planning process.

A4: No changes are made to services – service’s functional properties are con-

stant during the planning and execution processes.

• Execution Monitoring and Contingency Handling: Considering that the

world is dynamic and uncertain, the execution of actions might not proceed as

expected. A contingency may be inconsistent sensed information, failures of

service invocations, timeouts, or unexpected change in the world. These ob-

servations suggest that the problem of Web service composition should not be

tackled decoupled from the process of action execution. Monitoring of execu-

tion and contingency handling appears to be suitable to address the aforemen-

tioned issues. Execution monitoring checks the validity of off-line calculated

actions when executed and, in case of contingency, reacts appropriately. For

example, if the execution time of some service takes too long, then it might

be possible to proceed with the execution of subsequent actions. Other types

of contingency may require repair of the existing plan, or even planning from

scratch.

9.2. Web service composition 221

9.2.2 WSC problem as an HTN planning problem

We now make a concrete and strong connection between WSC and HTN plan-

ning by choosing OWL-S as a service description language upon which we define

the problem of Web service composition and its corresponding HTN planning prob-

lem. OWL-S (Martin et al. 2007) is a Web ontology (Horrocks et al. 2003) for Web

services used to support automated discovery, enactment and composition of Web

services. The OWL-S ontology has three components: service profile, process model

and service grounding. The service profile indicates the purpose of a service, and

comprises the elements of part one and part three described in ‘Service description’

step in the framework. The process model indicates how to accomplish the service

purpose, how to invoke the service, and what happens after the service execution.

The service grounding specifies the way of interaction with the service, including a

communication protocol.

The similarity of OWL-S with HTN planning lies in the services that OWL-S per-

ceives as processes. OWL-S differentiates three classes of processes: atomic, simple

and composite. An atomic process has no sub-processes, has a grounding associ-

ated with it, and can be executed in a single step. Then, a simple process provides

an abstraction for an existing service, and has no associated grounding. Finally, a

composite process consists of other processes via the control constructs.

The services described in OWL-S need to be encoded in corresponding HTN ele-

ments. Intuitively, each atomic process is translated to an operator, and each simple

and composite process is translated to a method (Sirin et al. 2004). If we consider

that PW = (s0,K,C) is a WSC problem described in OWL-S, where s0 is an initial

state of the world,K is a collection of OWL-S process models, and C is a composite

OWL-S process defined in K, then the following relationship could be established

(adopted from (Sohrabi 2013)).

₉.₃ Definition (WSC relationship to HTN planning). Let PW = (s0,K,C) be an

OWL-S WSC problem. Then, the sequence p1, . . . , pn, where each pi is an atomic process

defined inK is a solution to PW if and only if t1, . . . , tn is a solution to an HTN planning

problem P = (Q,O,M, tn0, s0), where

• Q,O,M are generated by an OWL-S to HTN translation for the OWL-S process

modelsK,

• tn0 is generated by an OWL-S to HTN translation for the OWL-S process C, and

• each ti is a primitive task that corresponds to an atomic process pi defined by some

OWL-S to HTN translation.

222 9. Composing applications ready for deployment

9.2.3 Overview of planners

With the general model of planning for Web service composition, and the con-

crete relation between the WSC OWL-S problem and HTN planning problem, we

can classify and examine the studies employing HTN planning for WSC. This en-

ables us to identify the shortcomings of current HTN-based approaches to WSC.

Table 9.2 summarises the studies with respect to indicators extracted from the

model (a detailed discussion on each study can be found in (Georgievski and Ai-

ello 2014)). Some indicators are associated with ratings. The ratings range from

’H’, indicating limited focus or limited support for a respective indicator, to ’HHH’,

specifying comprehensive focus or extended support for the corresponding indic-

ator. If a cell contains ‘5’, it means that the planner does not support the indic-

ator under inspection. If a cell is empty, it denotes that we were not able to extract

the information for the respective indicator from the literature. Service description

provides the language for describing Web services assumed by the study being ana-

lysed, whileTranslation gives the dual information. First, it indicates how well and

exactly the translation process is described, and second, which format is the Web

service description translated to. HTN model tells whether state-based HTN or

plan-based HTN planning is employed, and which HTN planner is used for the

implementation of the taken approach. Beside the extent to which it is supported,

Sensingmay indicate whether the execution of a sensing action blocks the planning

process, and whether sensing actions are performed during planning or they may be

interleaved with world-altering ones during execution. Assumptions concern the

degree of assumptions made to guarantee a successful composition with respect to

composing, sensing and executing actions. Contingencies refers to unexpected be-

haviour of a composition at execution time, including Web service failures or time

outs, and events or information changes made by some external agents. Each ap-

proach is evaluated with respect to the extent to which the support is implemented,

and the type of contingency the approach can handle.

In Table 9.2, we group the studies into two categories. In the upper part, we

analyse approaches that employ HTN planning exclusively in the attempt to solve

the problem of Web service composition. In the lower part, we observe approaches

that combine HTN planning with another technique, such as description logic and

constraint satisfaction, to compose services.

Most of the approaches assume OWL-S description of Web services, and provide

sound translation algorithms to an appropriate internal representation. With re-

spect to the HTN model, all approaches but one employ state-based HTN plan-

ning. From the state-based HTN approaches, one uses the SIADEX planner, one the

SH planner, while the rest exploit SHOP, its Java version (JSHOP), or its successor

9.2. Web service composition 223
T
a
b
le
9
.2

:
S
u
m

m
ar

y
o
f
H

T
N

-b
as

ed
ap

p
ro

ac
h
es

to
W

eb
se

rv
ic

e
co

m
p
o
si

ti
o
n
.

S
tu
d
y

S
e
rv
ic
e

d
e
sc
ri
p
ti
o
n

T
ra
n
sl
a
ti
o
n

(R
e
p
re
se
n
ta
ti
o
n
)

H
T
N
m
o
d
e
l

(P
la
n
n
e
r)

S
e
n
si
n
g

(P
ro
p
e
rt
ie
s)

A
ss
u
m
p
ti
o
n
s

C
o
n
ti
n
g
e
n
ci
e
s

(T
y
p
e
s)

(W
u

et
al

.2
00

3,

S
ir

in
et

al
.2

00
4,

K
u
te

r
et

al
.2

00
5)

D
A

M
L
-S

O
W

L
-S

H
H

H

(S
H

O
P
2)

st
at

e-
b
as

ed

(e
x
te

n
d
ed

S
H

O
P
2)

H
H

(b
lo

ck
in

g
/n

o
n
-b

lo
ck

in
g
,

d
u
ri

n
g

p
la

n
n
in

g
)

A
1-

A
4

5

(n
o
t
d
is

cu
ss

ed
)

(M
ad

h
u
su

d
an

an
d

U
tt
am

si
n
g
h

20
06

)

H (S
H

O
P
)

st
at

e-
b
as

ed

(e
x
te

n
d
ed

S
H

O
P
)

H

(i
n
te

rl
ea

v
in

g
)

A
1,

A
2

H
H

(r
ep

la
n
n
in

g
fo

r

fa
il
u
re

s,
ti
m

e
o
u
ts

)

(F
er

n
án

d
ez

-

O
li
v
ar

es
et

al
.

20
07

)

O
W

L
-S

H
H

(H
P
D

L
)

st
at

e-
b
as

ed

(S
IA

D
E
X

)
H

H

(d
u
ri

n
g

p
la

n
n
in

g
)

H
H

(r
ep

la
n
n
in

g
fo

r

fa
il
u
re

s,
ti
m

e
o
u
ts

)

(K
u
te

r
an

d

G
o
lb

ec
k

20
09

)

O
W

L
-S

5
st

at
e-

b
as

ed

(e
x
te

n
d
ed

S
H

O
P
2)

5

(n
o
t
d
is

cu
ss

ed
)

A
4,

o
th

er
5

(n
o
t
d
is

cu
ss

ed
)

(S
o
h
ra

b
i
an

d

M
ci

lr
ai

th
20

09
,

S
o
h
ra

b
i
an

d

M
cI

lr
ai

th
20

10
)

O
W

L
-S

H
H

H

(S
H

O
P
2,

P
D

D
L
,L

T
L
)

st
at

e-
b
as

ed

(e
x
te

n
d
ed

S
H

O
P
2)

H
H

(d
u
ri

n
g

p
la

n
n
in

g
)

A
1-

A
3

5

(n
o
t
d
is

cu
ss

ed
)

(U
sz

o
k

et
al

.2
00

4)
O

W
L
-S

p
la

n
-b

as
ed

(O
-P

la
n
2/

I-
X

/I
-

P
la

n
)

H

(d
u
ri

n
g

p
la

n
n
in

g
)

A
1

5

(n
o
t
d
is

cu
ss

ed
)

(S
ir

in
an

d
P
ar

si
a

20
04

,S
ir

in
et

al
.

20
05

)

O
W

L
-S

H
H

H

(S
H

O
P
,D

L
)

st
at

e-
b
as

ed

(J
S
H

O
P

+
P
el

le
t)

5

(n
o
t
d
is

cu
ss

ed
)

5

(n
o
t
d
is

cu
ss

ed
)

(P
ai

k
an

d

M
ar

u
y
am

a
20

07
)

H

(S
H

O
P
2,

C
S
P
)

st
at

e-
b
as

ed

(J
S
H

O
P
2

+
C

S
P

S
o
lv

er
)

5

(n
o
t
d
is

cu
ss

ed
)

5

(n
o
t
d
is

cu
ss

ed
)

(L
in

et
al

.2
00

8)
O

W
L
-S

H
H

H

(S
H

O
P
,D

L
,P

D
D

L
)

st
at

e-
b
as

ed

(e
x
te

n
d
ed

JS
H

O
P

+

P
el

le
t)

5

(n
o
t
d
is

cu
ss

ed
)

5

(n
o
t
d
is

cu
ss

ed
)

224 9. Composing applications ready for deployment

(Wu et al. 2003)

(Sirin et al. 2004)

(Sirin and Parsia 2004)

(Kuter et al. 2005)

(Kuter and Golbeck 2009)

(Fernández-Olivares et al. 2007)

(Sohrabi and McIlraith 2009) (Sohrabi and McIlraith 2010)

(Sirin et al. 2005) (Lin et al. 2008)

(DAML-S, SHOP2)

extension

to OWL-S

extension

with DL

(OWL-S, SHOP2,

blocking sensing)

(OWL-S, SHOP2, non-blocking sensing)

(OWL-S, SHOP2, social trust)

(OWL-S, SIADEX, temporal constraints, sensing)

(OWL-S, SHOP2, regulations) (OWL-S, SHOP2, preferences, sensing)

extension

extension

04)

(O
inspiration for translation

inspiration for

translation

(OWL-S, JSHOP, Pellet)
)

extension extension

(OWL-S, JSHOP, Pellet, templates) (OWL-S, JSHOP, Pellet,

preferences)

extension

Figure 9.3: Relations between studies that employ HTN planning for Web service composition.

SHOP2. From the plan-based HTN approaches, I-X/I-Plan9 is employed, which is an

HTN planner based on O-Plan2. Most of the approaches give actual contributions

to HTN planning by extending the existing algorithms or providing new algorithms

on top of the existing planners. With respect to sensing, only a few approaches de-

vote appropriate attention to it and provide a clear description. We can observe and

conclude that sensing is done during planning and, in some cases, in a non-blocking

manner. While planning, sensing and possibly executing Web services, several ap-

proaches make some of the restricting assumptions, at least those that we were able

to identify from the descriptions provided. Finally, little attention is devoted to

execution monitoring and handling of contingencies at execution time with the ex-

ception of the work on using O-Plan2/I-X/I-Plan alongside policy enforcement Web

service composition and execution monitoring (Uszok et al. 2004).

Figure 9.3 gives another perspective of approaches that assume OWL-S descrip-

tion of Web services and provide clear translation to the planning-level represent-

ation. The lower part specifies the studies that employ HTN planning only. Sirin

et al. (Sirin et al. 2004) appears to be the most influential and inspiring study. Two

of them are a direct extension of the study, while the other two draw inspiration

from the study with respect to the translation process. The upper part depicts the

studies that combine HTN planning with DL reasoning. All studies are a continu-

ation of the work presented in the first paper on HTN planning for Web service

composition (Wu et al. 2003).

9http://www.aiai.ed.ac.uk/project/i-k-c/

http://www.aiai.ed.ac.uk/project/i-k-c/

Chapter 10

Conclusions

W ith the growth in complexity, computing everywhere is in need of tech-

niques that can advance the computation in an automated, dynamic, and

intelligent way. AI planning has the potential to provide such techniques and to

bring intelligence everywhere. In this context, our work focused on studying three

complementary topics: the field of planning for ubiquitous computing, hierarch-

ical planning as a specific technique relevant for coordination everywhere, and the

design and realisation of systems for computing everywhere and the benefits of us-

ing them.

10.1 Reflection on planning for ubiquitous computing

Part of our work was set out to explore the field of planning for ubiquitous com-

puting. We first sought to know whether some abstract view of planning for ubi-

quitous computing can be developed to enhance primarily the understanding of

the field. We constructed a model that characterises the concepts constituting the

field and the relationships among them. Since the model is grounded in the existing

literature, a fit with existing approaches of planning for ubiquitous computing is en-

sured. While the model provides a consistent way to interpret existing ubiquitous

computing systems based on planning, it is also intended to foster more efficient

design and development of future systems in ubiquitous computing. Nevertheless,

the model can be used as an effective means for communicating with an audience,

scientific or non-scientific, that has no prior knowledge in this field.

Another question we set to find an answer to is about what the complexity of

solving planning problems in ubiquitous computing is. To that end, we formally

defined a general planning domain for ubiquitous computing also grounded in ex-

isting literature. Our findings suggest that planning problems in this domain are in

NP in the worst possible case. While complexity results for other planning domains

already exist (e.g., block-worlds (Gupta and Nau 1992) and logistics (Helmert 2003)),

to the best of our knowledge, our contribution is first for the domain of ubiquitous

computing.

226 10. Conclusions

10.2 Reflection on HTN planning

The choice to work with hierarchical planning is made principally due to its rich

domain knowledge and the benefits resulting from it. Though practically useful,

this long-lived planning technique is associated with controversy and confusion re-

lated to issues in both theory and practice. Knowing this, we set out to find answers

to the questions of what kind of models of HTN planning exist, which concepts and

how they characterise the search space of HTN planners, and what are the proper-

ties that describe HTN planning from aspects of domain modelling, expressiveness,

competence, computation, and applicability. Our findings indicate that HTN plan-

ning can be categorised in plan-based HTN planning and state-based HTN plan-

ning, considering the space the search for a solution is performed in. This categor-

isation differs from the two versions of hierarchical planning discussed by Ghallab

et al. (2004) in that our models are distinct styles of HTN planning, each perform-

ing search in a different space. In (Ghallab et al. 2004), Simple Task Network (STN)

planning is considered as a simplified version of their definition of HTN planning.

While our formal models are more specific than the definitions of those two ver-

sions, plan-based HTN planning and state-based HTN planning are consistent with

their HTN planning and STN planning, respectively.

We constructed a conceptual model demonstrating the concepts that affect the

search space and how they are interrelated among each other. Considering the

model, we synthesise the following findings:

• Plan-based HTN planners search more complex spaces than state-based HTN

planners.

• Plan-based HTN planners have not well-defined task decomposition: Vague

information is reported in the literature for nearly all plan-based HTN plan-

ners included in our work.

• State-based HTN planners lack non-determinism: In SHOP2 and SIADEX,

the task decomposition deterministically chooses a method for the task being

currently decomposed.

• Plan-based HTN planners are tightly coupled planning systems: The mechan-

isms implemented in these planners and used to search, resolve interactions

and handle constraints are all highly dependent on each other.

• Plan-based HTN planners make use of various explicit conditions, while state-

based HTN planners depend on preconditions: Explicit conditions in plan-

based HTN planners support the search process. On the other hand, the whole

10.2. Reflection on HTN planning 227

reasoning power of state-based HTN planners is encapsulated in the precon-

ditions of both primitive and compound tasks.

With respect to the properties of HTN planners, we synthesise the following:

• Knowing the description language of a plan-based HTN planner is not a suffi-

cient condition to author domain knowledge: To encode knowledge, one

needs to first understand planners’ underlying mechanisms, such as expecta-

tions of what the system would do in a particular situation.

• State-based HTN planners require elaborate domain knowledge: While this is

supported by the analysis of results shown in Figure 4.2, additional evidence

is the criticism of SHOP2 planner that it is a problem-solving programming

language rather than a planner (Schattenberg 2009).

• Rich domain knowledge is a requirement of HTN planners: Though this fact

is widely known and accepted in the AI planning community, we supported

it by analysing the state-of-the-art HTN planners. Given this, we remark the

following observation.

“[Compared with classical planners,] the primary advantage of

HTN planners is their sophisticated knowledge representation [and

reasoning capabilities] (Ghallab et al. 2004).”

Uncertain is the meaning of “sophisticated”. Does it refer to the complex-

ity, richness or some other attribute of the representation? If we assume that

it refers to the so-called “knowledge-rich” representation (Wilkins and Des-

jardins 2001), then the second concern is on HTN planners taking advantage of

the use of knowledge-rich encodings. On the one hand, this could be correct,

if we consider that these planners improve their performance (over classical

planners) thanks to their domain knowledge (Long and Fox 2003). On the

other hand, why are HTN planners an advantage if we do not know at what

expense, in terms of encoding effort, we obtain that improvement?

• Both categories of HTN planners are able to address a similar level of express-

iveness.

• Scarcity of performance evidence: For most of HTN planners, the perform-

ance and pairwise comparison are unknown.

• HTN planning is a widely applied planning technique: HTN planning has,

so far, been employed in more than 50 applications. More than half of them

are tackled with plan-based HTN planning, and SHOP2 is the most applied

HTN planner, while O-Plan2 is the most applied plan-based HTN planner.

228 10. Conclusions

In addition to clarifying or rectifying some aspects of HTN planning, the ex-

ploration of the field provided a perspective on which features can be improved

and are not currently addressed. In the context of state-based HTN planning, even

though SHOP2 and SIADEX support numerical expressions, the semantics in both

planners are left unspecified. Additionally, the model of state-based HTN planning

we defined does not include details on numerical expressions either. We there-

fore sought to develop a formalism that defines these expressions. The resulting

model accommodates well-defined numerical expressions in both preconditions

and effects of tasks. The model is consistent with HPDL, which is the description

language of SIADEX, and based on PDDL. This model also supports the syntax of

SHOP2, though it restricts some expressions that are otherwise allowed by the plan-

ner, but are less typical for AI planners. To some extent, our model can be seen as a

complement to the formalisation developed for SHOP-style of planners (Nau et al.

1999).

The next issue relates to the domain knowledge provided to state-based HTN

planners. We showed that these planners require well-conceived knowledge,

which, in some cases, such as recursive tasks, involves phantomisation, that is, re-

cognising and dealing with already accomplished facts. While in most plan-based

HTN planners such situations are automatically recognised and handled, state-

based HTN planners require explicit domain knowledge. We set out to find an

answer to the question of how can phantomisation be automated in these planners.

We defined the basic notions needed for phantomisation, and extend the algorithm

of JSHOP2 to support the phantomisation process. The main implication of the ex-

tended planner is that it requires simpler and smaller domain knowledge than what

would JSHOP2 need otherwise to solve the same planning problems. On the other

hand, the extension of JSHOP2 needs more time to plan than JSHOP2 spends on the

same planning problems with explicit knowledge about phantomisation.

Part of our work on state-based HTN planning was set out to explore how tasks

help in expressing a certain attitude towards the risk of using a given resource. We

defined the framework of utility-based HTN planning in which tasks are associated

with utilities that represent some risk attitude. The framework consists of several

functions and an algorithm that finds an optimal solution with respect to the re-

source consumed. Some of the functions are consistent with the ones in (Kuter and

Golbeck 2009), where they are used to compute social trust of Web service compos-

itions. This may be considered as a specific case of using utilities in HTN planning.

The ability of AI planners to be easily integrated in larger systems and interop-

erate with other components of those systems is essential to planners’ adoption and

use in actual applications. We sought to know how can planners support distribu-

tion, evolution and interoperation in an easy and unified way. We proposed the

10.3. Reflection on the developed systems 229

concept of planning as a service, which is based on the service-orientation prin-

ciple. This means that the functionalities of planners are designed, implemen-

ted and offered as services, respecting the common design principles of service-

orientation (Erl 2007). Having planning functionalities as services would provide

many of the benefits that Service-Oriented Computing guarantees, such as rapid

prototyping, easy addition of new functionalities, scalability, reuse, etc. (Papazo-

glou and Georgakopoulos 2003). Our concept of planning as a service is consistent

with the planning services designed for the domain of space missions (Fratini et al.

2013). It also answers the questions related to runtime behaviour, interoperabil-

ity, and scalability of planners in ubiquitous computing raised but not answered

in (Marquardt and Uhrmacher 2009b).

10.3 Reflection on the developed systems

We designed and developed SH to be an HTN planning system that accepts a

well-defined syntax, and can integrate in a wide range of large and distributed sys-

tems. SH accepts planning problems specified in HPDL, and offers its functionalit-

ies as services. In contrast to JSHOP2, SH is a simple and flexible implementation

characterised by many of the benefits of service-oriented systems. We used and

integrated the planner in a ubiquitous computing system, and employed it in the

domain of Cloud applications. On the other hand, we tested and compared SHwith

JSHOP2 in solving planning problems from several domains. The results show that

SH can perform better or worse than JSHOP2, depending on the evaluated domain.

One of the main objectives of our work was to establish a correspondence

between ubiquitous computing and HTN planning, and to employ HTN planning

in an actual application. We proposed a correct correspondence between a ubiquit-

ous computing problem and an HTN planning problem. The implication of this is

the fact that the plan computed for the HTN planning problem is indeed a solution

to the underlying ubiquitous computing problem. Additionally, we enhanced this

approach with a feature, called orchestration, to answer the question of how to deal

with inconsistencies happening at execution time.

To evaluate the feasibility of the approach, we designed a system architecture

and implemented a system prototype. We deployed and used the prototype in the

Bernoulliborg restaurant. The results indicate that HTN planning with its rich do-

main knowledge is a usable and effective technique for automated coordination of

ubiquitous services. The effectiveness is demonstrated through energy and mon-

etary savings in a matter of 80%. The feasibility of the approach is also confirmed

through evaluations of the usability of the prototype and performance of SH. The

usability evaluation shows that the majority of the participants find the system use-

230 10. Conclusions

ful and effective. The performance evaluation shows that the time required for com-

puting plans in realistic situations is in order of milliseconds, and in extreme cases

several seconds can be spent for computation.

Part of our work focused on examining the problem of optimising costs of ubi-

quitous computing environments connected to the smart grid. We proposed a cent-

ralised approach based on scheduling to control appliances in such environments.

To evaluate the feasibility of the approach, we designed and realised another sys-

tem prototype, which we deployed in offices on the fifth floor of Bernoulliborg. The

results show that our approach provides an effective way to coordinate the use of

devices while balancing the use of power in peak hours. The effectiveness of the

prototype is expressed through savings of up to 50% in money and 15% in energy.

Finally, we sought to know how can the process of composing Cloud applica-

tions ready for deployment be automated using HTN planning. We established a

correspondence between a deployment problem and an HTN planning problem,

allowing to demonstrate the completeness of our approach. To evaluate the feas-

ibility of the approach, we encoded domain knowledge in HPDL and used SH to

solve deployment-based HTN planning problems. We tested the planner on a set

of problems and the results show that the solutions produced by SH are consistent

with those reported in (Lascu et al. 2013). The performance results show that HTN

planning with its rich domain knowledge is able to solve deployment problems in a

matter of few seconds. The results contradict the proposition that general-purpose

planners, such as SH, show unsatisfactory performance when composing Cloud

applications (Lascu et al. 2013). Considering the results of the planner specifically

created for solving this kind of problems presented in the same study, SH falls be-

hind the specialised planner only after a reasonably high number of components.

10.4 Limitations

The conceptual model of planning for ubiquitous computing paves the way to-

wards defining the scope and objective of the field, and can facilitate efficient design

and development of future ubiquitous computing systems. The model however

gives only a broad perspective of the field, leaving out many details and more spe-

cific aspects of this phenomenon. The specification of the conceptual model is based

on UML classes without any attributes that may characterise better the concepts

represented by them. While we used standard UML constructs, some extension of

UML specifically designed for constructing conceptual models, such as (Guizzardi

2005), may provide better insights into the concepts and their relationships.

The results on complexity of planning in ubiquitous computing are also general

indications, leaving space for a more insightful analysis. Given our general plan-

10.4. Limitations 231

ning domain for ubiquitous computing, one can further develop more specific do-

mains within ubiquitous computing. For example, the complexity can be analysed

with respect to five features: the number of controllables, sources, applications, hu-

mans, and robots. Since each of these features can be quantified, the result will be

a set of domains with varying difficulty. Consequently, the complexity results may

be refined and appear to be different than the one for the general planning domain.

In the context of state-based HTN planning, our framework for utility-based

HTN planning should be further extended to support the case of recursive tasks, as

a powerful construct in HTNs. In the current framework, we assume that primitive

tasks have predefined costs, which are used to calculate utilities using a provided

set of utility functions. While this is a practical approach, it may not reflect actual

situations. Learning the costs and utilities directly from the environment and atti-

tude of people, may offer a broader and more useful perspective of utility-based

HTN planning. The realisation of the framework in a prototype and recognising

the actual benefits of its use are yet to be considered.

Considering the SH planner, there might be some domains in which the planner

will demonstrate less satisfactory performance, as showed in the comparison with

JSHOP2. One possibility for improvement of the performance is to consider heurist-

ics that can speed up the search, something in the manner of, for example, (Sohrabi

et al. 2008, Alford et al. 2014). Moreover, the plans that SH generates can only be

totally ordered. While this ordering appears to be sufficient for our case in ubiquit-

ous computing, most of real-world domains require a better quality of plans. If, for

example, a Cloud application has a deployment run of partially ordered compon-

ents, some of the components can be deployed in parallel reducing the deployment

time of the application drastically. Furthermore, the services that SH offers cur-

rently include only basic modelling and problem-solving functionalities. Extend-

ing the list of services and possibly having them available in public can make the

planner more capable, integrable, and useful.

In the context of HTN planning for ubiquitous computing, we took a pragmatic

approach towards dealing with uncertainty during runtime. While this approach

was sufficient for the environments of our interest, more capable HTN-based tech-

niques, such as those developed for healthcare domains (Sánchez-Garzón et al. 2011,

Fernández-Olivares et al. 2012, Sánchez-Garzón et al. 2013), may prove to be appro-

priate for ubiquitous computing too. Though we defined basic execution semantics,

a provable sound and complete algorithm for execution is still needed.

In reality, the components of Cloud applications have capacity constraints.

Though such constraints are not take into account by our approach, it is straight-

forward to provide an extension that will support this feature. For the coordination

of the deployment of application components, we assumed that there is only one

232 10. Conclusions

server available for the deployment. However, interesting and real is the case when

the coordination is performed with respect to available resources, such as the num-

ber of servers, their available space, CPU, etc.

10.5 Future directions

To further develop the field of planning for ubiquitous computing, there is a

need for more studies on several subjects. More specifically, we find preferences,

and spatial and temporal properties insufficiently investigated. Preferences are

important for people because they enhance their experience in the environments.

Through preferences, people can customise the environments according to their

needs and depending on their context, social status, etc. User preferences are also

challenging because they represent sensitive information that must be considered

with care (Bettini and Riboni 2015). The current attention given to preferences is

almost non-existing with the exception of (Ranganathan and Campbell 2004).

The most common way of dealing with spatial information in planning for ubi-

quitous computing is by representing it abstractly. The main issue with the abstract

spatial representation is realisibility, that is, locations have to be topologically con-

nected and nothing can travel between locations at infinite speed (Pfender and Zie-

gler 2004). This can be achieved by purely spatial representation and represents a

possibility for future work. In addition, the spatial information about people con-

sidered during planning is usually based on spatial generalisation (Mascetti et al.

2014). Spatial generalisation decreases the precision of location information, and in

the case of planning approaches, it usually involves the relative location of people.

This approach appears to be limiting as it neglects the physical constraints, posture

and orientation of humans, which are important in many scenarios in ubiquitous

computing (e.g., emergency situations). The main concern of using such informa-

tion relates to the involved personal data, people’s movements, their behavioural

habits, and so forth. This implies that the spatial information has to be acquired

and reasoned over considering the privacy of people. People need to be aware of

the use of their personal data and the manner in which that data is used in ubiquit-

ous computing systems (Bettini and Riboni 2015).

Considering temporal properties, totally ordered plans have appeared to be

practically sufficient for the environment we dealt with. However, it would be inter-

esting to observe the practical benefits of partial order, which is identified as useful

for plan representation in ubiquitous computing, e.g., (Mastrogiovanni et al. 2010,

Bidot et al. 2011, Kaldeli et al. 2012, Pajares Ferrando and Onaindia 2013, Heider

2003, Milani and Poggioni 2007). Additionally, we find limitations in the current

use of metric and qualitative relations. Elementary use of metric constraints is re-

10.5. Future directions 233

ported in (Bajo et al. 2009, Sánchez-Garzón et al. 2012, Fraile et al. 2013), and of

qualitative relations in (Rocco et al. 2014).

The typical, manual process of creating domain knowledge is strenuous, becom-

ing even worse and impractical when the planning system is envisioned to be used

in more than one ubiquitous computing setting. For the correspondence between

HTN planning and ubiquitous computing, we assumed that the environment condi-

tions encoded and maintained in HTNs are derived from standards, policies, etc. as-

sociated with the respective ubiquitous computing environment. Currently, this is

all accomplished manually, leaving space for uncovered situations and error-prone

encodings. So, one can benefit, at least practically, from tools that support engin-

eering, automated creation, and learning domain knowledge, such as those repor-

ted in (Grześ et al. 2014, Ortiz et al. 2013). In the context of HTN planning, there

is a number of systems that use different approaches to learn domain knowledge

from examples: one approach learns preconditions of SHOP-like methods given the

method structure as input to the system (Ilghami and Nau 2002), another one learns

incrementally approximate preconditions (Ilghami et al. 2005), an approach learns

very general HTNs by learning from expert traces (Nejati et al. 2006), or another one

that learns HTNs with a better balance between generality and specificity (Nejati

et al. 2009). Some approaches acquire methods by analysing a set of planning prob-

lems together with their solutions and a set of annotated tasks in a given determin-

istic domain (Hogg et al. 2008), and others may learn knowledge for domains that

include primitive tasks with multiple possible outcomes (Hogg et al. 2009). Some

recent approaches learn tasks by using a set of partially observed plan traces and

a set of annotated tasks together with some constraints (Zhuo et al. 2014), or learn

probabilistic HTNs that capture user preferences on plans by observing the user

behaviour (Li et al. 2014).

Automatically created planning problems may capture better ubiquitous com-

puting environments assuming that diverse constructs, such as conditional effects,

multi-type elements, numeric-valued fluents, etc. are available and supported.

When the support for an extensive set of such constructs is in question, finding

the right balance between the expressiveness and complexity of planning is crucial.

Thus, there is space for analysis of the constructs needed to support ubiquitous

computing environments and the effect of their use. Related to the representation

issues is the one of having a taxonomy for planning in ubiquitous computing. A

common taxonomy may provide for consistency in descriptions of proposed ap-

proaches, understanding better what others have accomplished, and comparisons

of different planning techniques. In this context, our conceptual model and general

planning domain can foster the use of standard terms.

New models can be considered for further categorisation of HTN planning, such

234 10. Conclusions

as those recently investigated in (Alford et al. 2012). Also, new concepts, e.g., land-

marks (Elkawkagy et al. 2010, 2011, 2012), can be plugged into the framework of

concepts concerning the search space of planners. We are of the opinion that a com-

mon syntax should be used for specifying HTN planning problems. A single lan-

guage for both categories of planners seems illusory ambitious, but each category

can make use of its own language. We contributed to this by choosing to work

with HPDL. In this way, research improvements and performance evaluation of

HTN planners can be stimulated, a direct comparison of the planners on possibly

standardised set of problems can be enabled, and finally, help in understanding

the expressive power of HTN planners can be provided. Furthermore, we recog-

nise that HTN planners can be improved in the area of goals, such as extended

goals (Lago et al. 2002), hybrid goals (Estlin et al. 2001), and active goal reason-

ing (Shivashankar et al. 2013).

In our approach of using HTN planning for ubiquitous computing, an HTN

planning problem depends on the activities happening in ubiquitous computing

environments and derived by specialised activity-recognition techniques. Some of

these techniques use rules or conditions to reason for activities. Since HTN plan-

ning already has rich domain knowledge, perhaps, instead of using additional rules,

HTNs can be used so as to recognise activities, something in the manner of recog-

nising goals in (Pattison and Long 2010). In this way, we may avoid defining and

maintaining knowledge at multiple points in systems.

Coordinating devices in offices connected to the smart grid might be possible

using HTN planning. The device policies that the scheduler uses represent domain-

specific knowledge that can fit into HTNs. Also, since the information coming from

energy providers is known in advance for each day, it may be used during planning

to choose the one provider that offers the best combination of price and energy.

To summarise, we gave Theodore a real chance to have Samantha as an intel-

ligent system present everywhere. Samantha can now coordinate ubiquitous ser-

vices automatically and dynamically, but she may also consider the price of energy

that Theodore has to pay for coordinated devices. This implies improved quality

of Theodore’s life in terms of comfort, well-being, and economics. Nevertheless,

Theodore can express his requirements and needs for his home, and Samantha can

automatically upgrade herself with the necessary Cloud services in no time.

Our work was motivated by the need to have more capable, adaptive, and pro-

active ubiquitous computing systems, that is, to bring intelligence everywhere.

Though Theodore has Samantha to absorb intelligently many of his needs, we won-

der, what if he aspires for something like J.A.R.V.I.S. (Just a Rather Very Intelligent

System)?1 Where and how will AI planning fit into systems such as J.A.R.V.I.S.?

1J.A.R.V.I.S. is an AI system in the film “Iron Man” (Bettany 2008) and its sequels.

Bibliography

Aarup, M., Arentoft, M. M., Parrod, Y., Stokes, I., Vadon, H. and Stader, J.: 1994,

OPTIMUM-AIV: A knowledge-based planning and scheduling system for space-

craft AIV, Conference on Knowledge Based Scheduling, pp. 451–469.

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M. and Steggles, P.: 1999,

Towards a better understanding of context and context-awareness, International

Symposium on Handheld and Ubiquitous Computing, HUC’99, pp. 304–307.

Advantic Sys.: 2015. Online: accessed May 2015, http://www.advanticsys.com/.

Agosta, J. M.: 1996, Constraining influence diagram structure by generative plan-

ning: An application to the optimization of oil spill response, International Con-

ference on Uncertainty in Artificial Intelligence, UAI’96, pp. 11–19.

Aiello, M., Papazoglou, M. P., Yang, J., Carman, M., Pistore, M., Serafini, L. and Tra-

verso, P.: 2002, A request language for Web services based on planning and con-

straint satisfaction, International Workshop on Technologies for E-Services, Springer,

pp. 76–85.

Aiello, M., Pratt-Hartmann, I. and van Benthem, J.: 2007a, Handbook of spatial logics,

Springer.

Aiello, M., Pratt-Hartmann, I. and Van Benthem, J.: 2007b, What is spatial logic?,

Handbook of spatial logics, Springer, pp. 1–11.

Alexander, I. and Maiden, N.: 2004, Scenarios, stories, use cases: Through the systems

development life-cycle, John Wiley & Sons.

Alford, R., Shivashankar, V., Kuter, U. and Nau, D.: 2014, On the feasibility of plan-

ning graph style heuristics for HTN planning, International Conference on Auto-

mated Planning and Scheduling, pp. 2–10.

236 BIBLIOGRAPHY

Alford, R., Shivashankar, V., Kuter, U. and Nau, D. S.: 2012, HTN problem spaces:

Structure, algorithms, termination, Annual Symposium on Combinatorial Search,

pp. 2–9.

Allen, J. F.: 1983, Maintaining knowledge about temporal intervals, Comm. ACM

26(11), 832–843.

Amigoni, F., Gatti, N., Pinciroli, C. and Roveri, M.: 2005, What planner for ambient

intelligence applications?, IEEE Transactions on Systems, Man and Cybernetics, Part

A 35(1), 7–21.

Andréka, H., Madarász, J. X. and Németi, I.: 2007, Logic of space-time and relativity

theory, Handbook of spatial logics, Springer, pp. 607–711.

Andrews, S., Kettler, B., Erol, K. and Hendler, J.: 1995, UM Translog: A planning

domain for the development and benchmarking of planning systems, Technical

Report CS-TR-3487, Computer Science Department, University of Maryland.

Arshad, N., Heimbigner, D. and Wolf, A.: 2003, Deployment and dynamic recon-

figuration planning for distributed software systems, International Conference on

Tools with Artificial Intelligence, ICTAI’03, pp. 39–46.

Asunción, M. d. l., Castillo, L., Fernádez-Olivares, J., García-Pérez, O., González,

A. and Palao, F.: 2005, SIADEX: An interactive artificial intelligence planner for

decision support and training in forest fire fighting, Artificial Intelligence Commu-

nications 18(4), 257–268.

Bacchus, F.: 2001, The AIPS ’00 Planning Competition, AI Magazine 22(3), 47–56.

Bacchus, F. and Kabanza, F.: 1996, Using temporal logic to control search in a for-

ward chaining planner, in M. Ghallab and A. Milani (eds), New directions in AI

planning, IOS Press, pp. 141–153.

Bacchus, F. and Kabanza, F.: 2000, Using temporal logics to express search control

knowledge for planning, Artif. Intell. 116(1–2), 123–191.

Bäckström, C. and Nebel, B.: 1995, Complexity results for SAS+ planning, Compu-

tational Intelligence 11(2-3), 625–655.

Bajo, J., de Paz, J. F., de Paz, Y. and Corchado, J. M.: 2009, Integrating case-based

planning and RPTW neural networks to construct an intelligent environment for

health care, Expert Syst. Appl. 36(3), 5844–5858.

Bauer, C. and King, G.: 2006, Java persistence with hibernate, Manning Pubs Co.

BIBLIOGRAPHY 237

Benthem, J. F. A. K. v.: 1991, The logic of time: A model-theoretic investigation into

the varieties of temporal ontology and temporal discourse, 2nd edn, Kluwer Academic

Publishers.

Benthem, J. v.: 1983, The logic of time: A model-theoretic investigation into the varieties

of temporal ontology and temporal discourse, Springer.

Benton, J., Coles, A. J. and Coles, A.: 2012, Temporal planning with preferences and

time-dependent continuous costs, International Conference on Automated Planning

and Scheduling, pp. 2–10.

Berardi, D., Cheikh, F., Giacomo, G. D. and Patrizi, F.: 2008, Automatic service

composition via simulation, International Journal of Foundations of Computer Sci-

ence 19(2), 429–451.

Bettany, P.: 2008, Iron Man, Directed by Jon Favreau. Marvel Studios, Fairview En-

tertainment, USA. Film.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.

and Riboni, D.: 2010, A survey of context modelling and reasoning techniques,

Pervasive Mob. Comput. 6(2), 161–180.

Bettini, C. and Riboni, D.: 2015, Privacy protection in pervasive systems: State of

the art and technical challenges, Pervasive Mob. Comput. 17, Part B(0), 159–174.

Bidot, J., Goumopoulos, C. and Calemis, I.: 2011, Using AI planning and late

binding for managing service workflows in intelligent environments, Interna-

tional Conference on Pervasive Computing and Communications, PERCOM ’11, IEEE,

pp. 156–163.

Blaylock, N. and Allen, J.: 2005, Generating artificial corpora for plan recognition,

International Conference on User Modeling, UM’05, Springer, pp. 179–188.

Blaylock, N. and Allen, J.: 2006, Hierarchical instantiated goal recognition, AAAI

Workshop on Modeling Others from Observations, pp. 8–15.

Bonet, B. and Geffner, H.: 2000, Planning with incomplete information as heuristic

search in belief space, International Conference on Artificial Intelligence Planning and

Scheduling.

Booch, G., Rumbaugh, J. and Jacobson, I.: 2005, The unified modeling language user

guide, 2nd edition, Addison-Wesley Professional.

Bratko, I.: 2001, Prolog (3rd Ed.): Programming for Artificial Intelligence, Addison-

Wesley Longman Publishing Co., Inc.

238 BIBLIOGRAPHY

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. and Yergeau, F.: 2008, Ex-

tensible markup language (XML) 1.0 (Fifth edition). Online: accessed Sep 2014,

http://www.w3.org/TR/REC-xml/.

Brenner, M. and Nebel, B.: 2009, Continual planning and acting in dynamic multia-

gent environments, Autonomous Agents and Multi-Agent Systems 19(3), 297–331.

Brnsted, J., Hansen, K. M. and Ingstrup, M.: 2010, Service composition issues in

pervasive computing, Pervasive Computing, IEEE 9(1), 62–70.

Bulterman, D. C. A.: 2001, Smil 2.0 part 1: Overview, concepts, and structure, Mul-

tiMedia, IEEE 8(4), 82–88.

Butz, A.: 2010, User interfaces and HCI for ambient intelligence and smart en-

vironments, Handbook of Ambient Intelligence and Smart Environments, Springer,

pp. 535–558.

Bylander, T.: 1994, The computational complexity of propositional STRIPS plan-

ning, Artif. Intell. 69(1-2), 165–204.

Carolis, B. and Cozzolongo, G.: 2007, Planning the behaviour of a social robot act-

ing as a majordomo in public environments, Congress of the Italian Association for

Artificial Intelligence on AI*IA 2007: Artificial Intelligence and Human-Oriented Com-

puting, pp. 805–812.

Casati, R. and Varzi, A. C.: 1999, Parts and places: The structures of spatial representa-

tion, MIT Press.

Castillo, L. A., Fernández-Olivares, J., García-Pérez, Ó. and Palao, F.: 2005, Tem-

poral enhancements of an HTN planner, Conference of the Spanish Association for

Artificial Intelligence, Current Topics in AI, pp. 429–438.

Castillo, L. A., Fernández-Olivares, J., García-Pérez, Ó. and Palao, F.: 2006, Effi-

ciently handling temporal knowledge in an HTN planner, International Conference

on Automated Planning and Scheduling, ICAPS’06, AAAI, pp. 63–72.

Castillo, L., Armengol, E., Onaindía, E., Sebastiá, L., González-Boticario, J.,

Rodríguez, A., Fernández, S., Arias, J. D. and Borrajo, D.: 2008, samap: An

user-oriented adaptive system for planning tourist visits, Expert Syst. Appl.

34(2), 1318–1332.

Castillo, L., Morales, L., González-Ferrer, A., Fernández-Olivares, J., Borrajo, D. and

Onaindía, E.: 2010, Automatic generation of temporal planning domains for e-

learning problems, J. of Scheduling 13(4), 347–362.

BIBLIOGRAPHY 239

Chenoweth, S. V.: 1991, On the NP-hardness of blocks world, National Conference on

Artificial Intelligence, AAAI’91, pp. 623–627.

Cirillo, M., Karlsson, L. and Saffiotti, A.: 2012, Human-aware planning for robots

embedded in ambient ecologies, Pervasive Mob. Comput. 8(4), 542–561.

ConsortiumW3C, W. W. W.: 2005, Web service semantics: WSDL-S.

Cook, D. and Das, S.: 2004, Smart environments: Technology, protocols and applications

(Wiley Series on Parallel and Distributed Computing), Wiley-Interscience.

Corbin, J. M. and Strauss, A.: 1990, Grounded theory research: Procedures, canons,

and evaluative criteria, Qualitative Sociology 13(1), 3–21.

Corbin, J. and Strauss, A.: 2008, Basics of qualitative research: Techniques and procedures

for developing grounded theory, Sage.

Cosmo, R. d., Zacchiroli, S. and Zavattaro, G.: 2012, Towards a formal component

model for the cloud, International Conference on Software Engineering and Formal

Methods, SEFM’12, pp. 156–171.

Courtemanche, F., Najjar, M., Paccoud, B. and Mayers, A.: 2008, Assisting elders

via dynamic multi-tasks planning: A markov decision processes based approach,

International Conference on Ambient Media and Systems, pp. 1–8.

Currie, K. and Tate, A.: 1991, O-Plan: The open planning architecture, Artif. Intell.

52(1), 49–86.

Curry, M. R.: 1996, The work in the world - Geographical practice and the written word,

University of Minnesota Press.

Degeler, V. and Lazovik, A.: 2013, Dynamic constraint reasoning in smart environ-

ments, IEEE International Conference on Tools with Artificial Intelligence, ICTAI.

Degeler, V., Lopera Gonzalez, L. I., Leva, M., Shrubsole, P., Bonomi, S., Amft, O. and

Lazovik, A.: 2013, Service-oriented architecture for smart environments, IEEE

International Conference on Service Oriented Computing and Applications, SOCA’13,

pp. 99–104.

Ding, Y., Elting, C. and Scholz, U.: 2006, Seamless integration of output devices

in intelligent environments: Infrastructure, strategies and implemeentation, IET

International Conference on Intelligent Environments, pp. 21–30.

Do, M. B. and Kambhampati, S.: 2003, Sapa: A multi-objective metric temporal

planner, J. Artif. Int. Res. 20(1), 155–194.

240 BIBLIOGRAPHY

Drabble, B., Dalton, J. and Tate, A.: 1997, Repairing plans on-the-fly, NASA Work-

shop on P&S for Space.

Drummond, M. E., Currie, K. W. and Tate, A.: 1988, O-Plan meets T-SAT: First res-

ults from the application of an AI planner to spacecraft mission sequencing, Tech-

nical report, Artificial Intelligence Applications Institute, University of Edinburgh.

Dustdar, S. and Schreiner, W.: 2005, A survey on Web services composition, Int. J.

Web Grid Serv. 1(1), 1–30.

Edelkamp, S. and Helmert, M.: 2001, MIPS: the model-checking integrated planning

system, AI Magazine 22(3), 67–72.

Elkawkagy, M., Bercher, P., Schattenberg, B. and Biundo, S.: 2011, Landmark-aware

strategies for hierarchical planning,Workshop on Heuristics for Domain-independent

Planning (HDIP 2011) at ICAPS 2011, pp. 73–79.

Elkawkagy, M., Bercher, P., Schattenberg, B. and Biundo, S.: 2012, Improving hier-

archical planning performance by the use of landmarks, AAAI Conference on Ar-

tificial Intelligence, pp. 1763–1769.

Elkawkagy, M., Schattenberg, B. and Biundo, S.: 2010, Landmarks in hierarchical

planning, European Conference on Artificial Intelligence, IOS Press, pp. 229–234.

Embley, D. W. and Thalheim, B.: 2011, Handbook of conceptual modeling: Theory, prac-

tice, and research challenges, Springer.

Erl, T.: 2007, SOA principles of service design, Prentice Hall PTR.

Erol, K.: 1996, Hierarchical task network planning: Formalization, analysis, and imple-

mentation, PhD thesis, Computer Science Department, University of Maryland.

Erol, K., Handler, J. and Nau, D. S.: 1996, Complexity results for HTN planning,

Annals of Mathematics and AI 18(1), 69–93.

Erol, K., Hendler, J. and Nau, D. S.: 1994a, HTN planning: Complexity and

expressivity, National Conference on Artificial Intelligence - Volume 2, AAAI,

pp. 1123–1128.

Erol, K., Hendler, J. and Nau, D. S.: 1994b, Semantics for hierarchical task network

planning, Technical Report UMIACS-TR-94-31, University of Maryland, Institute

for Advanced Computer Studies.

Erol, K., Hendler, J. and Nau, D. S.: 1994c, UMCP: A sound and complete proced-

ure for hierarchical task network planning, International Conference on AI Planning

Systems, pp. 249–254.

BIBLIOGRAPHY 241

Erol, K., Nau, D. S. and Subrahmanian, V. S.: 1995, Complexity, decidability and un-

decidability results for domain-independent planning, Artif. Intell. 76(1-2), 75–88.

Estlin, T. A., Chien, S. A. and Wang, X.: 2001, Hierarchical task network and

operator-based planning: Two complementary approaches to real-world plan-

ning, Journal of Experimental and Theoretical Artificial Intelligence 13(4), 379–395.

European Committee for Standardization: 2011, Light and lighting - Lighting of

work places - Part 1: Indoor work places, European standard, Official Journal of

the European Union.

Fan, J. and Kambhampati, S.: 2005, A snapshot of public web services, SIGMOD

Rec. 34(1), 24–32.

Fernández-Olivares, J., Castillo, L., García-Pérez, O. and Palao, F.: 2006, Bringing

users and planning technology together. Experiences in SIADEX, International

Conference on Automated Planning and Scheduling, ICAPS’06, pp. 11–20.

Fernández-Olivares, J., Cózar, J. A. and Castillo, L.: 2008, Automating oncology

therapy plans by means of temporal hierarchical task networks planning, ECAI

Workshop on Knowledge Management for Healthcare Processes.

Fernández-Olivares, J., Garzón, T., Castillo, L., García-Pérez, O. and Palao, F.: 2007,

A middle-ware for the automated composition and invocation of Semantic Web

services based on temporal HTN planning techniques, in D. Borrajo, L. Castillo

and J. Corchado (eds), Current Topics in Artificial Intelligence, Vol. 4788 of Lecture

Notes in Computer Science, Springer, pp. 70–79.

Fernández-Olivares, J., Sánchez-Garzón, I., González-Ferrer, A., Cózar, J. A., Fdez-

Teijeiro, A., Cabello, M. R. and Castillo, L.: 2012, Task network based model-

ing, dynamic generation and adaptive execution of patient-tailored treatment

plans based on smart process management technologies, International Conference

on Knowledge Representation for Health-Care, KR4HC’11, pp. 37–50.

Fielding, R. T. and Taylor, R. N.: 2002, Principled design of the modern web archi-

tecture, ACM Trans. Internet Technol. 2(2), 115–150.

Fikes, R. E. and Nilsson, N. J.: 1971, STRIPS: A new approach to the application

of theorem proving to problem solving, International Joint Conference on Artificial

Intelligence, IJCAI’71, pp. 608–620.

Foulser, D. E., Li, M. and Yang, Q.: 1992, Theory and algorithms for plan merging,

Artif. Intell. 57, 143–181.

242 BIBLIOGRAPHY

Fox, M. and Long, D.: 2003, PDDL2.1: An extension to PDDL for expressing tem-

poral planning domains, Journal of Artificial Intelligence Research 20(1), 61–124.

Fraile, J. A., Paz, Y., Bajo, J., Paz, J. F. and Pérez-Lancho, B.: 2013, Context-aware

multiagent system: Planning home care tasks, Knowledge and Information Systems

pp. 1–33.

Fratini, S., Policella, N. and Donati, A.: 2013, A service oriented approach for the

interoperability of space mission planning systems, Workshop on Knowledge En-

gineering for Planning and Scheduling, pp. 39–43.

Gancet, J., Hattenberger, G., Alami, R. and Lacroix, S.: 2005, Task planning and con-

trol for a multi-UAV system: architecture and algorithms, IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 1017–1022.

Garey, M. R. and Johnson, D. S.: 1990, Computers and intractability; A guide to the

theory of NP-completeness, W. H. Freeman & Co.

Garro, A., Greco, S. and Palopoli, F.: 2008, Smart agents and smart environments:

A predictive approach to replanning, Intelligent Agents and Services for Smart En-

vironments (IASSE) as part of the Artificial Intelligence and Simulation of Behaviour

(AISB) Convention, pp. 7–12.

Geier, T. and Bercher, P.: 2011, On the decidability of HTN planning with task in-

sertion, International Joint Conference on Artificial Intelligence - Volume 3, IJCAI’11,

AAAI, pp. 1955–1961.

Georgievski, I.: 2013, HPDL: Hierarchical Planning Definition Language, JBI Pre-

print 2013-12-3, Uni. of Groningen.

Georgievski, I. and Aiello, M.: 2014, An overview of hierarchical task planning,

Technical report, CoRR, abs/1403.7426.

Georgievski, I. and Aiello, M.: 2015a, HTN planning: Overview, comparison, and

beyond, Artif. Intell. 222, 124–156.

Georgievski, I. and Aiello, M.: 2015b, Planning in ubiquitous computing: Classes,

model, and complexity, JBI Preprint 2013-12-2, Uni. of Groningen.

Georgievski, I., Degeler, V., Pagani, G. A., Nguyen, T. A., Lazovik, A. and Aiello,

M.: 2012, Optimizing energy costs for offices connected to the smart grid, IEEE

Transactions on Smart Grid 3, 2273–2285.

Georgievski, I. and Lazovik, A.: 2014, Utility-based HTN planning, European Con-

ference on Artificial Intelligence, IOSPress, pp. 1013–1014.

BIBLIOGRAPHY 243

Georgievski, I., Lazovik, A. and Aiello, M.: 2011, Task interaction in an HTN plan-

ner, Technical report, CoRR, abs/1111.7025.

Georgievski, I., Nguyen, T. A. and Aiello, M.: 2013, Combining activity recognition

and ai planning for energy-saving offices, International Conference on Ubiquitous

Intelligence and Computing, IEEE, pp. 238–245.

Gerevini, A. and Long, D.: 2006, Preferences and soft constraints in PDDL3, ICAPS

Workshop on Planning with Preferences and Soft Constraints.

Gerevini, A. and Saetti, A.: 2008, An interactive environment for plan visualiza-

tion and generation: InLPG, International Conference on Automated Planning and

Scheduling (System Demo).

Gerevini, A., Saetti, A. and Serina, I.: 2006, An approach to temporal planning

and scheduling in domains with predictable exogenous events, J. Artif. Int. Res.

25(1), 187–231.

Gerevini, A. and Serina, I.: 2002, LPG: A planner based on local search for planning

graphs with action costs, International Conference on Artificial Intelligence Planning

Systems, pp. 13–22.

Ghallab, M., Nau, D. S. and Traverso, P.: 2004,Automated planning: Theory& practice,

Morgan Kaufmann Publishers Inc.

Glaser, B. G. and Strauss, A. L.: 2009, The discovery of grounded theory: Strategies for

qualitative research, Aldine de Gruyter.

Goldman, R. P.: 2006, Durative planning in HTNs, International Conference on Auto-

mated Planning and Scheduling, ICAPS’06, pp. 382–385.

González-Ferrer, A., Fernández-Olivares, J. and Castillo, L.: 2013, From business

process models to hierarchical task network planning domains, Knowledge Eng.

Review 28(2), 175–193.

Grześ, M., Hoey, J., Khan, S. S., Mihailidis, A., Czarnuch, S., Jackson, D. and Monk,

A.: 2014, Relational approach to knowledge engineering for pomdp-based as-

sistance systems as a translation of a psychological model, International Journal of

Approximate Reasoning 55(1, Part 1), 36–58.

Guesgen, H. W. and Marsland, S.: 2010, Spatio-temporal reasoning and context

awareness, in H. Nakashima, H. Aghajan and J. Augusto (eds), Handbook of Am-

bient Intelligence and Smart Environments, Springer US, pp. 609–634.

Guizzardi, G.: 2005, Ontological foundations for structural conceptual models, PhD

thesis, Centre for Telematics and Information Technology, University of Twente.

244 BIBLIOGRAPHY

Gupta, N. and Nau, D. S.: 1992, On the complexity of blocks-world planning, Artif.

Intell. 56(2-3), 223–254.

Ha, Y.-G., Sohn, J.-C., Cho, Y.-J. and Yoon, H.: 2005, Towards a ubiquitous robotic

companion: Design and implementation of ubiquitous robotic service frame-

work, Electronics and Telecommunications Research Institute Journal 27(6), 666–676.

Hammond, K. J.: 1989, Case-based planning: Viewing planning as a memory task, Aca-

demic Press Professional, Inc.

Harrington, A. and Cahill, V.: 2011, Model-driven engineering of planning and

optimisation algorithms for pervasive computing environments, Pervasive Mob.

Comput. 7(6), 705–726.

Hayes, B.: 2008, Cloud computing, Commun. ACM 51(7), 9–11.

Heider, T.: 2003, Goal-oriented assistance for extended multimedia systems and

dynamic technical infrastructures, IASTED International Conference on Internet and

Multimedia Systems and Applications.

Heider, T. and Kirste, T.: 2002, Supporting goal-based interaction with dynamic

intelligent environments, European Conference on Artificial Intelligence, ECAI’02,

pp. 596–600.

Helmert, M.: 2003, Complexity results for standard benchmark domains in plan-

ning, Artif. Intell. 143(2), 219–262.

Helmert, M.: 2009, Concise finite-domain representations for PDDL planning tasks,

Artif. Intell. 173(5-6), 503–535.

Hewitt, C., Bishop, P. and Steiger, R.: 1973, A universal modular ACTOR formal-

ism for Artificial Intelligence, International Joint Conference on Artificial Intelligence,

IJCAI’73, pp. 235–245.

Hidalgo, E., Castillo, L., Madrid, R. I., García-Pérez, O., Cabello, M. and Fdez-

Olivares, J.: 2011, ATHENA: Smart process management for daily activity plan-

ning for cognitive impairment, in J. Bravo, R. Hervás and V. Villarreal (eds),

Ambient Assisted Living, Vol. 6693 of Lecture Notes in Computer Science, Springer,

pp. 65–72.

Hoekstra, M.: 2013, Web-based interface for domain manipulation in smart offices, Bach-

elor’s thesis, University of Groningen.

Hoffmann, J.: 2002, Extending FF to numerical state variables, European Conference

on Artificial Intelligence, pp. 571–575.

BIBLIOGRAPHY 245

Hoffmann, J.: 2003, The Metric-FF planning system: Translating ”ignoring delete

lists” to numeric state variables, J. Artif. Int. Res. 20(1), 291–341.

Hoffmann, J. and Brafman, R. I.: 2006, Conformant planning via heuristic forward

search: A new approach, Artif. Intell. 170(6–7), 507–541.

Hoffmann, J., Edelkamp, S., Thiébaux, S., Englert, R., dos Santos Liporace, F. and

Trüg, S.: 2006, Engineering benchmarks for planning: The domains used in the

deterministic part of ipc-4, J. Artif. Int. Res. 26(1), 453–541.

Hoffmann, J. and Nebel, B.: 2001, The FF planning system: Fast plan generation

through heuristic search, J. Artif. Int. Res. 14(1), 253–302.

Hogg, C., Kuter, U. and Muñoz Avila, H.: 2009, Learning hierarchical task networks

for non-deterministic planning domains, International Joint Conference on Artifical

Intelligence, IJCAI’09, pp. 1708–1714.

Hogg, C., Muñoz Avila, H. and Kuter, U.: 2008, HTN-MAKER: Learning HTNs

with minimal additional knowledge engineering required, National Conference on

Artificial Intelligence - Volume 2, AAAI, pp. 950–956.

Horrocks, I., Patel-Schneider, P. F. and van Harmelen, F.: 2003, From SHIQ and

RDF to OWL: The making of a Web ontology language, Web Semantics: Science,

Services and Agents on the World Wide Web 1(1), 7–26.

Iivari, J. and Venable, J. R.: 2009, Action research and design science research - Seem-

ingly similar but decisively dissimilar, European Conference on Information Systems.

Ilghami, O.: 2006, Documentation for JSHOP2, Technical report, Department of Com-

puter Science, University of Maryland.

Ilghami, O. and Nau, D. S.: 2002, CaMeL: Learning method preconditions for HTN

planning, International Conference on AI Planning and Scheduling, pp. 131–141.

Ilghami, O., Nau, D. S. and Aha, D. W.: 2005, Learning preconditions for planning

from plan traces and HTN structure, Computational Intelligence 21(4), 388–413.

Irwin, B.: 2014, Interstellar, Directed by Chirstopher Nolan. Legendary Pictures,

Syncopy, Lynda Obst Productions, UK and USA. Film.

Jeusfeld, M. A., Jarke, M. and Mylopoulos, J.: 2009, Metamodeling for method engin-

eering, The MIT Press.

Jih, W., Chen, L. and Hsu, J. Y.: 2007, A context-aware service platform in a smart

space, ACM International Workshop on Agent-Based Ubiquitous Computing.

246 BIBLIOGRAPHY

Jih, W., Hsu, J. Y., Lee, T. and Chen, L.: 2007, A multi-agent context-aware service

platform in a smart space, Journal of Computers 18(1), 45–60.

Juve, G. and Deelman, E.: 2011, Automating application deployment in infrastruc-

ture clouds, International Conference on Cloud computing technology and science,

CloudCom’11, IEEE, pp. 658–665.

Kaldeli, E.: 2013,Domain-independent planning for services in uncertain and dynamic en-

vironments, PhD thesis, Faculty of Mathematics and Natural Sciences, University

of Groningen.

Kaldeli, E., Lazovik, A. and Aiello, M.: 2009, Extended goals for composing ser-

vices, International Conference on Automated Planning and Scheduling, ICAPS’09,

pp. 362–365.

Kaldeli, E., Lazovik, A. and Aiello, M.: 2011, Continual planning with sensing for

Web service composition, AAAI Conference on Artificial Intelligence, pp. 1198–1203.

Kaldeli, E., Warriach, E. U., Lazovik, A. and Aiello, M.: 2012, Coordinating the web

of services for a smart home, ACM Transactions on the Web 7(2).

Kambhampati, S.: 1995, A comparative analysis of partial order planning and task

reduction planning, SIGART Bull. 6, 16–25.

Karlsson, L.: 2001, Conditional progressive planning under encertainty, Interna-

tional Joint Conference on Artificial Intelligence - Volume 1, IJCAI’01, pp. 431–436.

Kautz, H. and Selman, B.: 1999, Unifying SAT-based and graph-based planning,

International Joint Conference on Artifical Intelligence - Volume 1, IJCAI’99, Morgan

Kaufmann Publishers Inc., pp. 318–325.

Kelly, J., Botea, A. and Koenig, S.: 2008, Offline planning with hierarchical task

networks in video games,Artificial Intelligence and Interactive Digital Entertainment

Conference.

Khan, S., Gillis, W., Schmidt, C. and Decker, K.: 2003, A multi-agent system-driven

AI planning approach to biological pathway discovery, International Conference on

Automated Planning and Scheduling), ICAPS’03, pp. 246–255.

Kim, S. H., Kim, S. W. and Park, H.: 2003, Usability challenges in ubicomp environ-

ment, International Ergonomics Association.

Kingston, J., Shadbolt, N. and Tate, A.: 1996, CommonKADS models for knowledge

based planning, National Conference on Artifical Intelligence, AAAI, pp. 11–6.

BIBLIOGRAPHY 247

Kirschnick, J., Alcaraz Calero, J. M., Goldsack, P., Farrell, A., Guijarro, J., Loughran,

S., Edwards, N. and Wilcock, L.: 2012, Towards an architecture for deploying

elastic services in the cloud, Softw. Pract. Exper. 42(4), 395–408.

Kitchenham, B. and Charters, S.: 2007, Guidelines for performing systematic lit-

erature reviews in software engineering, Technical Report EBSE 2007-001, Keele

University and Durham University Joint Report.

Klassen, T. P., Jadad, A. R. and Moher, D.: 1998, Guides for reading and interpreting

systematic reviews: I. getting started, Archives of Pediatrics & Adolescent Medicine

152(7), 700–704.

Klusch, M. and Gerber, A.: 2005, Semantic Web service composition planning with

OWLS-XPlan, International AAAI Fall Symposium on Agents and the Semantic Web,

pp. 55–62.

Koenig, S. and Simmons, R. G.: 1994, Risk-sensitive planning with probabilistic de-

cision graphs, International Conference on Principles of Knowledge Representation and

Reasoning, pp. 363–373.

Kok, K., Derzsi, Z., Jaap, G., Hommelberg, M., Warmer, C., Kamphuis, R. and Ak-

kermans, H.: 2008, Agent-based electricity balancing with distributed energy re-

sources: A multiperspective case study, Hawaii International Conference on System

Sciences, pp. 173–173.

Kontchakov, R., Pratt-Hartmann, I. and Zakharyaschev, M.: 2014, Spatial reason-

ing with RCC8 and connectedness constraints in euclidean spaces, Artif. Intell.

217, 43–75.

Kotsovinos, E. and Vukovic, M.: 2005, su-chef: Adaptive coordination of intelligent

home environments, Joint International Conference on Autonomic and Autonomous

Systems and International Conference on Networking and Services, IEEE, pp. 74–74.

Kremer, U., Hicks, J. and Rehg, J.: 2003, A compilation framework for power and en-

ergy management on mobile computers, inH. Dietz (ed.), Languages and Compilers

for Parallel Computing, Vol. 2624 of Lecture Notes in Computer Science, Springer,

pp. 115–131.

Krüger, F., Ruscher, G., Bader, S. and Kirste, T.: 2011, A context-aware proactive

controller for smart environments, I-COM 10, 41–48.

Kuter, U. and Golbeck, J.: 2009, Semantic Web service composition in social envir-

onments, International Semantic Web Conference, ISWC ’09, Springer, pp. 344–358.

248 BIBLIOGRAPHY

Kuter, U., Sirin, E., Parsia, B., Nau, D. and Hendler, J.: 2005, Information gathering

during planning for Web service composition, Web Semantic 3, 183–205.

Lago, U. D., Pistore, M. and Traverso, P.: 2002, Planning with a language for exten-

ded goals, AAAI/IAAI, pp. 447–454.

Larman, C.: 2004, Applying UML and patterns: An introduction to object-oriented ana-

lysis and design and iterative development, 3 edn, Prentice Hall PTR.

Lascu, T. A., Mauro, J. and Zavattaro, G.: 2013, A planning tool supporting the

deployment of cloud applications, International Conference on Tools with Artificial

Intelligence, ICTAI’13, pp. 213–220.

Lazovik, A.: 2006, Interactingwith service compositions, PhD thesis, International Doc-

torate School in Information and Communication Technologies, Trento Univ.

Lazovik, A., Aiello, M. and Papazoglou, M.: 2003, Planning and monitoring the exe-

cution of web service requests, inM. E. Orlowska, S. Weerawarana, M. P. Papazo-

glou and J. Yang (eds), Service-Oriented Computing - ICSOC 2003, Vol. 2910 of Lec-

ture Notes in Computer Science, Springer, pp. 335–350.

Lazovik, A., Aiello, M. and Papazoglou, M.: 2004, Associating assertions with busi-

ness processes and monitoring their execution, International Conference on Service-

Oriented Computing, ICSOC ’04, ACM, pp. 94–104.

Lee, T. J. and Wilkins, D.: 1996, Using SIPE-2 to integrate planning for military air

campaigns, IEEE Expert 11(6), 11–12.

Lekavý, M. and Návrat, P.: 2007, Expressivity of STRIPS-like and HTN-like plan-

ning, KES International Symposium on Agent and Multi-Agent Systems: Technologies

and Applications, KES-AMSTA’07, Springer, pp. 121–130.

Lemon, O. and Pratt, I.: 1997, Spatial logic and the complexity of diagrammatic

reasoning, Machine Graphics and Vision 6(1), 89–108.

Li, N., Cushing, W., Kambhampati, S. and Yoon, S.: 2014, Learning probabilistic

hierarchical task networks as probabilistic context-free grammars to capture user

preferences, ACM Trans. Intell. Syst. Technol. 5(2), 29:1–29:32.

Liang, H., Liu, A., Chen, Y. and Leon Lee, C.: 2010, Device collaboration in

smarthomes as service delivery, SICE Annual Conference, pp. 30–34.

Likert, R.: 1932, A technique for the measurement of attitudes,Archives of Psychology

22(140), 1–55.

BIBLIOGRAPHY 249

Lin, N., Kuter, U. and Sirin, E.: 2008, Web service composition with user prefer-

ences, European Semantic Web Conference on The Semantic Web: Research and Applic-

ations, ESWC’08, pp. 629–643.

Long, D. and Fox, M.: 2003, The 3rd International Planning Competition: Results

and analysis, J. Artif. Int. Res. 20, 1–59.

Long, D., Fox, M. and Howey, R.: 2009, Planning domains and plans: Validation,

verification and analysis, ICAPS’09 Workshop on Verification and Validation of P&S

Systems.

Lu, G., De, D. and Song, W.-Z.: 2010, SmartGridLab: A laboratory-based smart grid

testbed, International Conference on Smart Grid Communications, IEEE, pp. 143–148.

Luo, J., Zhu, C., Zhang, W. and Liu, Z.: 2013, Messy genetic algorithm for optimum

solution search of HTN planning, JICS 10(5), 1303–1313.

Madhusudan, T. and Uttamsingh, N.: 2006, A declarative approach to composing

Web services in dynamic environments, Decis. Support Syst. 41(2), 325–357.

Madkour, M., El Ghanami, D. and Maach, A.: 2013, Context-aware service adapt-

ation: An approach based on fuzzy sets and service composition, J. Inf. Sci. Eng.

29(1), 1–16.

Marco, D. D., Janssen, R., Perzylo, A., Van de Molengraft, M. J. and Levi, P.: 2013,

A deliberation layer for instantiating robot execution plans from abstract task de-

scriptions, International Conference onAutomated Planning and Scheduling (Workshop

on Planning and Robotics), pp. 12–19.

Marquardt, F., Reisse, C., Uhrmacher, A. and Kirste, T.: 2008, A two-way approach

to service composition in smart device ensembles, Advanced Topics in Telecommu-

nication, pp. 49–60.

Marquardt, F. and Uhrmacher, A.: 2009a, Creating AI planning domains for

smart environments using PDDL, in D. Tavangarian, T. Kirste, D. Timmermann,

U. Lucke and D. Versick (eds), Intelligent Interactive Assistance and Mobile Multi-

media Computing, Vol. 53 of Communications in Computer and Information Science,

Springer, pp. 263–274.

Marquardt, F. and Uhrmacher, A. M.: 2009b, An ai-planning based service compos-

ition architecture for ambient intelligence., Intelligent Environments (Workshops),

Vol. 4 of Ambient Intelligence and Smart Environments, pp. 145–152.

Marquardt, F. and Uhrmacher, A. M.: 2009c, An AI-planning based service compos-

ition architecture for ambient intelligence, Workshop of the International Conference

on Intelligent Environments, pp. 145–152.

250 BIBLIOGRAPHY

Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K.,

Mcguinness, D. L., Sirin, E. and Srinivasan, N.: 2007, Bringing semantics to Web

services with OWL-S, World Wide Web 10(3), 243–277.

Mascetti, S., Bertolaja, L. and Bettini, C.: 2014, Safebox: Adaptable spatio-

temporal generalization for location privacy protection, Transactions on Data Pri-

vacy 7(2), 131–163.

Masellis, R. D., Ciccio, C. D., Mecella, M. and Patrizi, F.: 2010, Smart home planning

programs, International Conference on Service Systems and Service Management, IC-

SSSM, pp. 1–6.

Mastrogiovanni, F., Scalmato, A., Sgorbissa, A. and Zaccaria, R.: 2010, Affordance-

based planning for assisting humans in daily activities, International Conference on

Intelligent Environments, pp. 19–24.

McCluskey, T. L.: 2002, Knowledge engineering: Issues for the AI planning com-

munity, The AIPS-2002Workshop on Knowledge Engineering Tools and Techniques for

AI Planning.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D.

and Wilkins, D.: 1998, PDDL - The planning domain definition language, Tech-

nical report, CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision

and Control.

Medjahed, B. and Bouguettaya, A.: 2005, A multilevel ccmposability model for

Semantic Web services, IEEE Transactions on Knowledge and Data Engineering

17, 954–968.

Milani, A. and Poggioni, V.: 2007, Planning in reactive environments, Computational

Intelligence 23(4), 439–463.

Muñoz Avila, H., Aha, D. W., Breslow, L. and Nau, D. S.: 1999, HICAP: An in-

teractive case-based planning architecture and its application to noncombatant

evacuation operations.

Muñoz Avila, H., Gupta, K., Aha, D. W. and Nau, D. S.: 2002, Knowledge-based

project planning, in R. Dieng-Kuntz and N. Matta (eds), Knowledge Management

and Organizational Memories, Springer, pp. 125–134.

Musliner, D. J., Durfee, E. H. and Shin, K. G.: 1991, Execution monitoring and re-

covery planning with time, Conference on Artificial Intelligence Applications, IEEE,

pp. 385–388.

BIBLIOGRAPHY 251

Myers, K. L.: 1996, Strategic advice for hierarchical planners, International Conference

on Principles of Knowledge Representation and Reasoning, pp. 112–123.

Myers, K. L.: 2000, Planning with conflicting advice, International Conference on Ar-

tificial Intelligence Planning Systems, pp. 355–362. Poster paper.

Mylopoulos, J.: 1992, Conceptual modelling and Telos, John Wiley & Sons, Inc.

Nareyek, A., Freuder, E. C., Fourer, R., Giunchiglia, E., Goldman, R. P., Kautz, H.,

Rintanen, J. and Tate, A.: 2005, Constraints and AI planning, IEEE Intelligent Sys-

tems 20, 62–72.

Nau, D. S.: 2007, Current trends in automated planning, AI Magazine 28(4), 43–58.

Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Wu, D., Yaman, F., Muñoz Avila, H. and

Murdock, J. W.: 2005, Applications of SHOP and SHOP2, IEEE Intelligent Systems

20(2), 34–41.

Nau, D. S., Cao, Y., Lotem, A. and Muñoz Avila, H.: 1999, SHOP: Simple hierarchical

ordered planner, International Joint Conference on Artificial Intelligence, IJCAI’99,

pp. 968–975.

Nau, D. S., Cao, Y., Lotem, A. and Muñoz Avila, H.: 2000, SHOP and M-SHOP:

Planning with ordered task decomposition, Technical Report CS-TR-4157, Com-

puter Science Department, University of Maryland.

Nau, D. S., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D. and Yaman, F.: 2003,

SHOP2: An HTN planning system, J. Artif. Int. Res. 20(1), 379–404.

Nau, D. S., Smith, S. J. and Erol, K.: 1998, Control strategies in HTN planning: The-

ory versus practice, National Conference on Artificial Intelligence/Conference on In-

novative applications of Artificial Intelligence, AAAI, pp. 1127–1133.

Nejati, N., Könik, T. and Kuter, U.: 2009, A goal- and dependency-directed al-

gorithm for learning hierarchical task networks, International Conference on Know-

ledge Capture, ACM, pp. 113–120.

Nejati, N., Langley, P. and Konik, T.: 2006, Learning hierarchical task networks by

observation, International Conference on Machine Learning, ACM, pp. 665–672.

Neumann, J. v. and Morgenstern, O.: 1947, Theory of games and economic behavior,

Princeton University Press.

Newell, A. and Simon, H. A.: 1976, Computer science as empirical inquiry: Symbols

and search, Commun. ACM 19(3), 113–126.

252 BIBLIOGRAPHY

Nguyen, T. A., Raspitzu, A. and Aiello, M.: 2014, Ontology-based office activity

recognition with applications for energy savings, Journal of Ambient Intelligence

and Humanized Computing 5(5), 667–681.

Nilsson, N. J.: 1980, Principles of Artificial Intelligence, Morgan Kaufmann Publishers

Inc.

Nizamic, F., Degeler, V., Groenboom, R. and Lazovik, A.: 2012, Policy-

based scheduling of cloud services, Scalable Computing: Practice and Experience

13(3), 187–199.

Odersky, M., Spoon, L. and Venners, B.: 2011, Programming in Scala: A comprehensive

step-by-step guide, 2nd edition, Artima Incorporation.

Odersky, M. and Zenger, M.: 2005, Scalable component abstractions, SIGPLANNot.

40(10), 41–57.

Ortiz, J., García-Olaya, A. and Borrajo, D.: 2013, Using activity recognition for build-

ing planning action models, International Journal of Distributed Sensor Networks

2013.

Osis, J., Asnina, E. and Grave, A.: 2007, Formal computation independent model

of the problem domain within the MDA, International Conference on Information

System Implementation and Modeling, pp. 47–54.

Pagani, G. A.: 2014, From the grid to the smart grid, topologically, PhD thesis, Faculty

of Mathematics and Natural Sciences, University of Groningen.

Pai, M., McCulloch, M., Gorman, J. D., Pai, N., Enanoria, W., Kennedy, G., Tharyan,

P. and Colford, J. M.: 2004, Systematic reviews and meta-analyses: An illustrated,

step-by-step guide, 17(2), 89–95.

Paik, I. and Maruyama, D.: 2007, Automatic Web services composition using com-

bining HTN and CSP, IEEE International Conference on Computer and Information

Technology, pp. 206–211.

Pajares Ferrando, S. and Onaindia, E.: 2013, Context-aware multi-agent planning in

intelligent environments, Inf. Sci. 227, 22–42.

Papazoglou, M. P. and Georgakopoulos, D.: 2003, Introduction: Service-oriented

computing, Commun. ACM 46(10), 24–28.

Pattison, D. and Long, D.: 2010, Domain independent goal recognition, Starting AI

Researchers’ Symposium, STAIRS, pp. 238–250.

BIBLIOGRAPHY 253

Pednault, E. P. D.: 1989, ADL: Exploring the middle ground between STRIPS and

the situation calculus, International Conference on Principles of Knowledge Represent-

ation and Reasoning, pp. 324–332.

Peffers, K., Tuunanen, T., Rothenberger, M. and Chatterjee, S.: 2007, A design sci-

ence research methodology for information systems research, J. Manage. Inf. Syst.

24(3), 45–77.

Penberthy, J. S. and Weld, D. S.: 1992, UCPOP: A sound, complete, partial order

planner for ADL, KR, pp. 103–114.

Petticrew, M. and Roberts, H.: 2006, Systematic reviews in the social sciences: A practical

guide, Blackwell Publishing.

Pfender, F. and Ziegler, G. M.: 2004, Kissing numbers, sphere packings, and some

unexpected proofs, Notices-American Mathematical Society 51, 873–883.

Phoenix, J. and Johansson, S.: 2013, Her, Directed by Jonze Spike. Annapurna Pic-

tures, Los Angeles. Film.

Plugwise: 2015. Online: accessed May 2015, http://www.plugwise.com/.

Puterman, M. L.: 1994, Markov decision processes: Discrete stochastic dynamic program-

ming, 1st edn, John Wiley & Sons.

Python: 2014. Online: accessed Jan. 2014, http://www.python.org/getit/re-

leases/3.4.0/.

Qasem, A., Heflin, J. and Muñoz-avila, H.: 2004, Efficient source discovery and ser-

vice composition for ubiquitous computing environments, Workshop on Semantic

Web Technology for Mobile and Ubiquitous Applications, ISWC’04.

Ranganathan, A. and Campbell, R. H.: 2004, Autonomic pervasive computing based

on planning, International Conference on Autonomic Computing, ICAC’04, pp. 80–87.

Riabov, A. and Liu, Z.: 2005, Planning for stream processing systems, National Con-

ference on Artificial Intelligence, AAAI, pp. 1205–1210.

Riboni, D. and Bettini, C.: 2011, COSAR: Hybrid reasoning for context-aware activ-

ity recognition, Personal and Ubiquitous Computing 15(3), 271–289.

Richardson, L. and Ruby, S.: 2007, Restful Web Services, first edn, O’Reilly.

Robie, J., Cavicchio, R., Sinnema, R. and Wilde, E.: 2013, Restful service description

language RSDL.

254 BIBLIOGRAPHY

Rocco, M. D., Sathyakeerthy, S., Grosinger, J., Pecora, F., Saffiotti, A., Cavallo, F.,

Manuele, B., Limosani, R., Manzi, A., Teti, G. and Dario, P.: 2014, A planner for

ambient assisted living: From high-level reasoning to low-level robot execution

and back, AAAI Spring Symposium, pp. 10–17.

Russell, S. J. and Norvig, P.: 2003, Artificial intelligence: A modern approach, Pearson

Education.

Sacerdoti, E. D.: 1975a, A structure for plans and behavior, PhD thesis, Standford Uni-

versity, AI Center. AAI7605794.

Sacerdoti, E. D.: 1975b, The nonlinear nature of plans, International Joint Conference

on Artificial Intelligence - Volume 1, IJCAI’75, pp. 206–214.

Saldana, J.: 2009, The coding manual for qualitative researchers, Sage Publications Ltd.

Sánchez-Garzón, I., Fernández-Olivares, J. and Castillo, L.: 2011, Monitoring, repair

and replanning techniques to support exception handling in HTN-based therapy

planning systems, Workshop on Artificial Intelligence in Healthcare and Biomedical

Applications.

Sánchez-Garzón, I., Fernández-Olivares, J. and Castillo, L.: 2013, An approach for

representing and managing medical exceptions in care pathways based on tem-

poral hierarchical planning techniques, in R. Lenz, S. Miksch, M. Peleg, M. Reich-

ert, D. Riano and A. Teije (eds), Process Support and Knowledge Representation in

Health Care, Vol. 7738 of Lecture Notes in Computer Science, Springer, pp. 168–182.

Sánchez-Garzón, I., Milla-Millán, G. and Fernández-Olivares, J.: 2012, Context-

aware generation and adaptive execution of daily living care pathways, Interna-

tional Conference on Ambient Assisted Living and Home Care, Springer, pp. 362–370.

Sando, M. and Hishiyama, R.: 2011, Human-centered planning for adaptive user

situation in ambient intelligence environment, International Conference on Agents

in Principle, Agents in Practice, PRIMA’11, Springer-Verlag, pp. 520–531.

Santofimia, M. J., Fahlman, S. E., del Toro, X., Moya, F. and López, J. C.: 2011, A

semantic model for actions and events in ambient intelligence, Eng. Appl. Artif.

Intell. 24(8), 1432–1445.

Santofimia, M. J., Fahlman, S. E., Moya, F. and López, J. C.: 2010, A common-sense

planning strategy for ambient intelligence, International Conference on Knowledge-

based and Intelligent Information and Engineering Systems: Part II, pp. 193–202.

Schattenberg, B.: 2009, Hybrid planning and scheduling, PhD thesis, Institute of Arti-

ficial Intelligence, Ulm University.

BIBLIOGRAPHY 255

Shivashankar, V., Alford, R., Kuter, U. and Nau, D.: 2013, Hierarchical goal net-

works and goal-driven autonomy: going where AI planning meets goal reason-

ing, Goal Reasoning: Papers from the ACS Workshop, pp. 95–110.

Shivashankar, V., Kuter, U., Nau, D. S. and Alford, R.: 2012, A hierarchical goal-

based formalism and algorithm for single-agent planning, International Confer-

ence on Autonomous Agents and Multiagent Systems, International Foundation for

Autonomous Agents and Multiagent Systems, pp. 981–988.

Simek, M., Fuchs, M., Mraz, L., Moravek, P. and Botta, M.: 2011, Measurement of

LowPAN network coexistence with home microwave appliances in laboratory

and home environments, International Conference on Broadband, Wireless Comput-

ing, Communication and Applications, IEEE, pp. 292–299.

Simon, H. A.: 1996, The sciences of the artificial, 3 edn, MIT Press.

Simpson, R. C., Schreckenghost, D., LoPresti, E. F. and Kirsch, N.: 2006, Plans and

planning in smart homes, Designing Smart Homes, pp. 71–84.

Simpson, R. M., McCluskey, T. L., Zhao, W., Aylett, R. S. and Doniat, C.: 2001, GIPO:

An integrated graphical tool to support knowledge engineering in AI planning,

European Conference on Planning.

Sirin, E. and Parsia, B.: 2004, Planning for Semantic Web Services, Semantic Web

Services Workshop at 3rd ISWC.

Sirin, E., Parsia, B. and Hendler, J.: 2005, Template-based composition of Semantic

Web services, AAAI Fall Symposium on Agents and the Semantic Web, pp. 85–92.

Sirin, E., Parsia, B., Wu, D., Hendler, J. and Nau, D. S.: 2004, HTN planning for Web

service composition using SHOP2, Web Semantic 1, 377–396.

Smidts, C., Mutha, C., Rodríguez, M. and Gerber, M. J.: 2014, Software testing with

an operational profile: Op definition, ACM Comput. Surv. 46(3), 39:1–39:39.

Smith, D. E., Frank, J. and Jónsson, A. K.: 2000, Bridging the gap between planning

and scheduling, Knowl. Eng. Rev. 15(1), 47–83.

Smith, D. E. and Weld, D. S.: 1999, Temporal planning with mutual exclusion reas-

oning, International Joint Conference on Artificial Intelligence, IJCAI’99, pp. 326–337.

Smith, S. J. J., Hebbar, K., Nau, D. S. and Minis, I.: 1997, Integrating electrical and

mechanical design and process planning.

Sohrabi, S.: 2013, Customizing the composition of Web services and beyond, PhD thesis,

Depart. of Computer Science, Univ. of Toronto.

256 BIBLIOGRAPHY

Sohrabi, S., Baier, J. A. and McIlraith, S. A.: 2008, HTN planning with quantitative

preferences via heuristic search, Workshop on Oversubscribed Planning and Schedul-

ing at ICAPS.

Sohrabi, S., Baier, J. A. and McIlraith, S. A.: 2009, HTN planning with preferences,

International Joint Conference on Artifical Intelligence, IJCAI’09, pp. 1790–1797.

Sohrabi, S. and Mcilraith, S. A.: 2008, On planning with preferences in HTN, Inter-

national Workshop on Non-Monotonic Reasoning, pp. 241–248.

Sohrabi, S. and Mcilraith, S. A.: 2009, Optimizing Web Service composition

while enforcing regulations, International Semantic Web Conference, ISWC ’09,

pp. 601–617.

Sohrabi, S. and McIlraith, S. A.: 2010, Preference-based Web service composition: A

middle ground between execution and search, International Semantic web Confer-

ence on The semantic web - Volume Part I, ISWC’10, pp. 713–729.

Sohrabi, S., Prokoshyna, N. and Mcilraith, S. A.: 2006, Web service composition via

generic procedures and customizing user preferences, International Semantic Web

Conference, ISWC’06, pp. 597–611.

Sohrabi, S., Udrea, O. and Riabov, A.: 2013, HTN planning for the composition of

stream processing applications, International Conference on Automated Planning and

Scheduling, ICAPS’13, pp. 443–451.

Song, S. and Lee, S.-W.: 2013, A goal-driven approach for adaptive service compos-

ition using planning, Mathematical and Computer Modelling 58(1-2), 261–273.

Stavropoulos, T. G., Vrakas, D. and Vlahavas, I.: 2011, A survey of service compos-

ition in ambient intelligence environments, Artificial Intelligence Review pp. 1–24.

Stefik, M.: 1981, Planning with constraints (MOLGEN: Part 1), Artif. Intell.

16(2), 111–140.

Stillman, J., Arthur, R. and Deitsch, A.: 1993, Tachyon: A constraint-based temporal

reasoning model and its implementation, SIGART Bull. 4(3), 1–4.

Sutcliffe, A.: 2003, Scenario-based requirements engineering, International Require-

ments Engineering Conference, pp. 320–329.

Taqqali, W. M. and Abdulaziz, N.: 2010, Smart grid and demand response techno-

logy, International Energy Conference and Exhibition, IEEE, pp. 710–715.

Tate, A.: 1976, Project planning using a hierarchic non-linear planner, Technical Re-

port 25, Department of Artificial Intelligence, University of Edinburgh.

BIBLIOGRAPHY 257

Tate, A.: 1977, Generating project networks, International Joint Conference on Artificial

Intelligence - Volume 2, IJCAI’77, pp. 888–893.

Tate, A.: 1994, Key concepts in the O-Plan2 knowledge based plan representation,

UK Planning and Scheduling.

Tate, A.: 2007, Planning and doing things, AISB Quarterly pp. 7–8.

Tate, A. and Dalton, J.: 2003, O-Plan: A common Lisp planning Web service, Inter-

national Lisp Conference.

Tate, A., Dalton, J. and Levine, J.: 1998, Generation of multiple qualitatively differ-

ent plan options, International Conference on AI Planning Systems, AAAI, pp. 27–35.

Tate, A., Dalton, J. and Levine, J.: 2000, O-Plan: A Web-based AI planning agent,

National Conference on Artificial Intelligence/Conference on Innovative Applications of

Artificial Intelligence, AAAI, pp. 1131–1132.

Tate, A., Drabble, B. and Dalton, J.: 1994, The use of condition types to restrict search

in an AI planner, National Conference on Artificial Intelligence - Volume 2, AAAI,

pp. 1129–1134.

Tate, A., Drabble, B. and Dalton, J.: 1996, O-Plan: A knowledge-based planner and

its application to logistics, ARPI, pp. 259–266.

Tate, A., Drabble, B. and Kirby, R.: 1994, O-Plan2: An open architecture for com-

mand, planning and control, Intelligent Scheduling, pp. 213–239.

Tate, A. and Lesley, D.: 1982, A retrospective on the ’Planning: A Joint AI/OR Ap-

proach‘ project, Technical Report Working paper 125, Department of Artificial Intel-

ligence, University of Edinburgh.

Tate, A., Levine, J., Jarvis, P. and Dalton, J.: 2000, Using AI planning technology for

army small unit operations, Artificial Intelligence Planning and Scheduling Systems

Conference, pp. 379–386. Poster paper.

Thalheim, B.: 2010, Towards a theory of conceptual modelling, Journal of Universal

Computer Science 16(20), 3102–3137.

Thalheim, B.: 2011, The art of conceptual modelling, in J. Henno, Y. Kiyoki, T. Tok-

uda, H. Jaakkola and N. Yoshida (eds), European-Japanese Conference on Information

Modelling and Knowledge Bases, Vol. 237 of Frontiers in Artificial Intelligence and Ap-

plications, pp. 149–168.

Tsuneto, R., Erol, K., Hendler, J. and Nau, D. S.: 1996, Commitment strategies in

hierarchical task network planning, National Conference on Artificial Intelligence -

Volume 1, AAAI’96, AAAI, pp. 536–542.

258 BIBLIOGRAPHY

Tsuneto, R., Hendler, J. and Nau, D. S.: 1998, Analyzing external conditions to im-

prove the efficiency of HTN planning,National Conference on Artificial Intelligence/-

Conference on Innovative Applications of Artificial Intelligence, AAAI, pp. 913–920.

Urbieta, A., Barrutieta, G., Parra, J. and Uribarren, A.: 2008, A survey of dynamic

service composition approaches for ambient systems, Ambi-Sys Workshop on Soft-

ware Organisation and MonIToring of Ambient Systems, SOMITAS’08, pp. 1:1–1:8.

Uszok, A., Bradshaw, J. M., Jeffers, R., Tate, A. and Dalton, J.: 2004, Applying KAoS

services to ensure policy compliance for Semantic Web services workflow com-

position and enactment, International Semantic Web Conference, pp. 425–440.

Vaquero, L. M., Rodero-Merino, L., Caceres, J. and Lindner, M.: 2008, A break

in the clouds: Towards a cloud definition, SIGCOMM Comput. Commun. Rev.

39(1), 50–55.

Veloso, M. M., Pollack, M. E. and Cox, M. T.: 1998, Rationale-based monitoring

for planning in dynamic environments, International Conference on Artificial Intel-

ligence Planning Systems, pp. 171–180.

Vukovic, M., Kotsovinos, E. and Robinson, P.: 2007, An architecture for rapid,

on-demand service composition, Service Oriented Computing and Applications

1(4), 197–212.

Walsh, J. D., Bordeleau, F. and Selic, B.: 2007, Domain analysis of dynamic system

reconfiguration, Software & Systems Modeling 6(4), 355–380.

Weerdt, M. d. and Clement, B.: 2009, Introduction to planning in multiagent sys-

tems, Multiagent Grid Syst. 5(4), 345–355.

Weiser, M.: 1999, The computer for the 21st century, SIGMOBILE Mob. Comput.

Commun. Rev. 3(3), 3–11.

Weld, D. S.: 1994, An introduction to least commitment planning, AI Magazine

15(4), 27–61.

Weser, M., Off, D. and Zhang, J.: 2010, HTN robot planning in partially observ-

able dynamic environments, International Conference on Robotics and Automation,

pp. 1505–1510.

Whitehead, A. N.: 2010, Process and reality, Simon and Schuster. First edition 1929.

Wichansky, A. M.: 2000, Usability testing in 2000 and beyond, Ergonomics

43(7), 998–1006.

BIBLIOGRAPHY 259

Wilkins, D. and Desimone, R. V.: 1992, Applying an AI planner to military opera-

tions planning, Intelligent Scheduling, pp. 685–709.

Wilkins, D. E.: 1988, Practical planning: Extending the classical AI planning paradigm,

Morgan Kaufmann Publishers Inc.

Wilkins, D. E.: 1991, Can AI planners solve practical problems?, Comput. Intell.

6, 232–246.

Wilkins, D. E. and Desjardins, M.: 2001, A call for knowledge-based planning, AI

Magazine 22(1), 99–115.

Wilkins, D. E., Lee, T. and Berry, P.: 2003, Interactive execution monitoring of agent

teams, Journal of Artificial Intelligence Research 18, 217–261.

Wiser, R., Barbose, G. and Peterman, C.: 2009, Tracking the sun: The installed cost

of photovoltaics in the U.S. from 1998-2007, Technical report, Lawrence Berkeley

National Laboratory.

Wooldridge, M.: 2009, An introduction to multi-agent systems, Wiley Publishing.

Wu, D., Parsia, B., Sirin, E., Hendler, J. and Nau, D. S.: 2003, Automating DAML-

S Web services composition using SHOP2, International Semantic Web Conference,

ISWC’03, pp. 195–210.

Wyatt, D.: 2013, Akka Concurrency, Artima Incorporation.

Yaman, F. and Nau, D. S.: 2002, Timeline: An HTN planner that can reason about

time, AIPS’02 Workshop on Planning for Temporal Domains, pp. 75–81.

Yang, Q.: 1992, A theory of conflict resolution in planning, Artif. Intell.

58(1), 361–392.

Yordanova, K.: 2011, Modelling human behaviour using partial order planning

based on atomic action templates, International Conference on Intelligent Environ-

ments, pp. 338–341.

Zhuo, H. H., Muñoz Avila, H. and Yang, Q.: 2014, Learning hierarchical task

network domains from partially observed plan traces, Artificial Intelligence

212(0), 134–157.

Samenvatting

Ubiquitous computing wordt in toenemende mate gerealiseerd door het hebben van

diverse geïntegreerde apparatuur en alom aanwezige toepassingen in onze omge-

ving. Zo is elke kamer in je huis is voorzien van diverse huishoudelijke apparaten,

zoals een TV in de woonkamer. Ook kan het huis worden verrijkt met een tal van on-

opvallende apparatuur, zoals radio-frequency identification tags, temperatuur en

gas-lekkage sensoren, actuatoren om lampen te bedienen, etc. Deze apparaten bie-

den verschillende soorten van informatie en middelen ter bediening via een breed

scala aan communicatie en integratie technologieën, doorgaans zichtbaar door een

tal van services. Een service is een abstractie van een autonoom software compo-

nent vanuit zijn implementatiedetails. Een lamp heeft bijvoorbeeld services voor

zowel het aftasten en wijzigen van zijn toestand. De echte voordelen van dergelijke

verrijkte en geabstraheerde omgevingen komen naar voren wanneer de focus ligt

op de afstemming van services ten behoeve van het grotere geheel, zoals het ver-

beteren van; de ervaring en kwaliteit van leven van de mens, energie en monetaire

besparingen, of veiligheid.

Service afstemming behelst het selecteren en combineren van services ten be-

hoeve van een bepaald verzoek. Gezien het feit dat diensten snel oplopen, bijvoor-

beeld doordat nieuwe apparaten worden toegevoegd in het huis, hun beschikbaar-

heid constant verandert, en verzoeken aangepast kunnen worden, wordt de afstem-

ming van services een complex proces dat autonoom en intelligent moet worden uit-

gevoerd. Het domein van Artificial Intelligence planning kan middelen verstrekken

voor het geautomatiseerd en dynamisch afstemmen van services omdat planning

betrekking heeft op het selecteren en combineren van acties door de overweging

van hun resultaten om een gegeven doelstelling automatisch te realiseren. Daarmee

komen acties overeen met services en doelstellingen met verzoeken. De fundamen-

tele en evidente overeenkomst tussen planning en ubiquitous computing omgevin-

262 Samenvatting

gen wordt benut in een aantal bestaande studies. Wat schijnbaar minder voor de

hand ligt is de hoe ubiquitous computing gerelateerd is aan planning buiten ser-

vices en gebruikersverzoeken. Daarom hebben we een conceptueel model van het

planningsdomein voor ubiquitous computing gemaakt die de entiteiten waaruit het

domein bestaat, en de relaties tussen hen, kenmerkt. Gezien dat het model geba-

seerd is op al bestaande literatuur wordt de aansluiting bij bestaande benaderingen

gewaarborgd. Het model dient ter bevordering van een meer efficiënter ontwerp

en ontwikkeling van toekomstige systemen in ubiquitous computing. Verder het

over het algemeen niet duidelijk waaruit een planning taak bij ubiquitous compu-

ting kan bestaan en wat de complexiteit van het oplossen van een dergelijke taak

is. We hebben daarom een algemeen planning domein voor ubiquitous computing

gedefinieerd, en verschaffen initiële complexiteitsresultaten voor het oplossen van

planningsproblemen binnen dat domein.

Vanuit het aanbod aan planning technieken richten we ons op Hierarchical Task

Network (HTN) planning, hoofdzakelijk vanwege de bijkomende omvangrijke do-

mein kennis en de voordelen die daaruit voortvloeien. Hoewel HTN planning al

lang bestaat en op grote schaal wordt gebruikt, wordt het gekenmerkt door contro-

verse en het ontbreken van algemeen begrip. Deze situatie kan niet probleemloos

worden verklaard, aangezien de huidige literatuur over HTN planning, weliswaar

omvangrijk, weinig tot niets rapporteert over de problematiek. We verhelpen dit

door het verzamelen van informatie over de formele modellen, concepten en eigen-

schappen van bestaande planners en studies. Onze bijdrage bestaat uit categorisa-

ties van het onderzoeksveld, en ophelderingen van de vele misvattingen geassoci-

eerd aan deze techniek. Verder verbeteren we HTN planning met een aantal nieuwe

eigenschappen: Toepassingen die nuttig zijn voor domeinen met grote wint of ver-

liest van middelen, zoals energie in ubiquitous computing, automatic phantomisa-

tion om een domein ontwerper te ontlasten met het identificeren en coderen van

een aantal specifieke situaties, en service-oriëntatie om eenvoudigere integratie van

planners in service-oriented systemen mogelijk te maken. Ook ontwerpen en ont-

wikkelen we een HTN planning systeem, genaamd Scalable Hierarchical (SH) plan-

ner, die een goed gedefinieerde syntaxis accepteert, en kan worden geïntegreerd in

een breed scala aan grote en gedistribueerde systemen. We gebruiken de planner

in de domeinen van ubiquitous computing en cloud computing.

Een van onze hoofddoelen is om een verband tussen ubiquitous computing en

HTN planning vast te stellen, en om HTN planning te gebruiken voor een prakti-

sche toepassing. We stellen daarom een juiste overeenkomst tussen een ubiquitous

computing probleem en een HTN planning probleem voor. Het gevolg hiervan is

het feit dat het service plan berekend voor het HTN planning probleem inderdaad

een oplossing voor het onderliggende ubiquitous computing probleem is. Daar-

Samenvatting 263

naast verbeteren we deze benadering met een functie, genaamd orchestration, om

de vraag, hoe om te gaan met tegenstrijdigheden tijdens executie, te beantwoorden.

Om de haalbaarheid van de benadering te evalueren, ontwerpen we een systeem-

architectuur en implementeren we een systeemprototype. We implementeren en

passen het prototype toe op het restaurant in de Bernoulliborg van de universiteit

van Groningen. De resultaten duiden erop dat HTN planning met zijn rijke domein

kennis een bruikbare en effectieve techniek voor de afstemming van alom geïnte-

greerde services is. De effectiviteit wordt aangetoond door energie en monetaire

besparingen. De haalbaarheid van de benadering wordt bevestigd door middel

van gebruiksvriendelijkheidsevaluaties en prestatiebeoordelingen. Uit de gebruiks-

vriendelijkheidsevaluaties blijkt dat de meerderheid van de deelnemers vindt dat

het systeem nuttig en effectief is. Uit de prestatiebeoordelingen blijkt dat de beno-

digde tijd voor het berekenen van plannen in realistische situaties in de orde van

milliseconden ligt, en in extreme gevallen enkele seconden bedraagt.

We richten ons mede op het onderzoeken van de problematiek rond het optima-

liseren van de monetaire- en energiekosten voor ubiquitous computing omgevin-

gen aangesloten op het smart grid. We stellen een gecentraliseerde benadering voor

op basis van het plannen van diensten ter besturing van apparaten binnen derge-

lijke omgevingen. Om de haalbaarheid van de benadering te evalueren, ontwerpen

en realiseren we een tweede systeemprototype, dat we inzetten in kantoren op de

vijfde verdieping van de Bernoulliborg. De resultaten tonen aan dat onze bena-

dering een effectieve manier biedt om apparaat services af te stemmen terwijl het

gebruik van energie in de piekuren wordt afgewogen. De effectiviteit van het sys-

teemprototype komt tot uitdrukking in de besparingen van tot wel 50% aan geld en

15% aan energie.

Tot slot streven we ernaar om te weten hoe het proces van het samenstellen

van “ready to use” cloud-applicaties kan worden geautomatiseerd met behulp van

HTN planning. Derhalve komen we tot een overeenkomst tussen een deployment

probleem en een HTN planning probleem. Om de haalbaarheid van de benade-

ring te evalueren, coderen we cloud services in HTN domeinkennis en gebruiken

de SH planner om deployment-gebaseerde HTN planning problemen op te los-

sen. We testen SH op een reeks problemen waarvan de prestatieresultaten laten

zien dat HTN planning met zijn rijke domeinkennis in staat is om de deployment-

gebaseerde HTN planning problemen op te lossen in een kwestie van enkele secon-

den.

Kortom, we dragen bij met een intelligent systeem dat alom aanwezig kan zijn.

Het systeem stemt de alom vertegenwoordigde services automatisch en dynamisch

af, maar kan ook rekening houden met de prijs van de energie die men moet betalen

voor de afgestemde apparaten. Dit impliceert een betere kwaliteit van leven van

264 Samenvatting

mensen in termen van comfort, welzijn en economie. Desalniettemin kan men hun

eisen en behoeften voor hun huis uiten, en kan het systeem zichzelf in korte tijd

automatisch upgraden met de nodige cloud diensten.

	Acknowledgements
	Introduction
	Coordination via AI planning
	Characterisation of planning for ubiquitous computing
	Hierarchical task network planning

	A closer look at HTN planning
	Establishing relationships with ubiquitous computing
	Ubiquitous computing systems
	A way to compose applications automatically
	Thesis scope, approach, and organisation

	Systematisation of planning for ubiquitous computing
	Classical planning
	Methodology
	Classes of properties
	Environments
	Planning
	Interpretation

	Remarks

	Model and complexity of planning for ubiquitous computing
	Conceptual modelling
	Model specification
	Complexity
	Analysis of existing domains
	Ubiquitous computing task and domain
	Results

	Summary

	Hierarchical planning revisited
	Methodology
	Models
	Plan-based HTN planning
	State-based HTN planning

	Concepts
	Task decomposition
	Constraints
	Explicit conditions
	Overview of planners

	Properties
	Domain authoring
	Expressiveness
	Competence
	Computation
	Applicability
	Overview of planners

	Remarks

	Reinforcing state-based HTN planning
	Numerically extended state-based HTN planning
	Phantomisation
	Approach
	Example

	Utilities
	Utility theory
	Framework
	Algorithm

	Summary

	Planning as a service
	Service-orientation
	Services
	Modelling services
	Problem-solving services
	Management and utility services

	Engineering SH
	Syntax processing
	User-friendly domain manipulation
	Implementation and services
	Discussion

	Modelling and realising ubiquitous computing environments
	From environments to HTN planning
	Model of ubiquitous computing environments
	Ubiquitous-based HTN planning problem

	Orchestration
	Model
	Algorithm

	Implementation
	Evaluation
	Energy savings
	Economic savings
	Usability
	Performance
	Remarks

	Coordinating cost-aware offices
	Approach
	Model
	Architecture

	Coordination
	Implementation
	Evaluation
	Economic savings
	Energy savings
	Remarks

	Composing applications ready for deployment
	Composition of Cloud applications
	Deployment model
	Hierarchical planning domain model
	Deployment-based HTN planning problem
	Evaluation
	Related work

	Web service composition
	WSC via planning
	WSC problem as an HTN planning problem
	Overview of planners

	Conclusions
	Reflection on planning for ubiquitous computing
	Reflection on HTN planning
	Reflection on the developed systems
	Limitations
	Future directions

	Bibliography
	Samenvatting

