

Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin

Hartman, Alwin M; Mondal, Milon; Radeva, Nedyalka; Klebe, Gerhard; Hirsch, Anna K H

Published in: International Journal of Molecular Sciences

DOI: 10.3390/ijms160819184

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Hartman, A. M., Mondal, M., Radeva, N., Klebe, G., & Hirsch, A. K. H. (2015). Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin. International Journal of Molecular Sciences, 16(8), 19184-94. https://doi.org/10.3390/ijms160819184

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Supplementary Information

Scheme S1. Synthesis of (a) hydrazide 10; and (b) achylhydrazones 2–9.

Figure S1. Schematic representation of the predicted binding modes of acylhydrazonebased inhibitors **1–9** in the active site of the endothiapepsin. These binding modes are the result of a docking run using the FlexX docking module with 30 poses and represent the top-scoring pose after HYDE scoring and careful visual inspection to exclude poses with significant inter- or intra-molecular clash terms or unfavorable conformations. The figure was generated with PoseView [21] as implemented in the LeadIT suite.

1. Experimental Procedures

1.1. (S,E)-2-Amino-3-(1H-indol-3-yl)-N'-(4-(trifluoromethyl)benzylidene)propanehydrazide (2)

The acylhydrazone **2** was synthesized according to **GP** by using (*S*)-2-amino-3-(1*H*-indol-3-yl) propanehydrazide (**10**) (408 mg, 1.87 mM) and 4-trifluoromethyl-benzaldehyde **11** (306 µL, 2.24 mM). After purification, the acylhydrazone **2** was obtained as a mixture of *E* and *Z* isomers (*E*:*Z* = 64:36) as a white solid (365 mg, 52%). m.p. 187–190 °C; $[\alpha]_D^{20} = +53.7$ (*c* = 0.114 in MeOH); ¹H NMR (400 MHz, CD₃OD) $\delta = 8.03$ (s, 1H, *E*), 7.92 (d, *J* = 8.2 Hz, 1H), 7.86 (s, 1H, *Z*), 7.70 (d, *J* = 8.2 Hz, 1H), 7.67–7.63 (m, 2H), 7.62 (s, 1H), 7.34 (d, *J* = 8.1 Hz, 1H, *E*), 7.24 (d, *J* = 8.1 Hz, 1H, *Z*), 7.15–7.06 (m, 2H), 7.05–6.97 (m, 1H), 4.74 (t, *J* = 6.7 Hz, 1H, *Z*), 3.73 (t, *J* = 6.7 Hz, 1H, *E*), 3.29–3.22 (m, 1H), 3.17–3.07 (m, 1H); ¹³C NMR (101 MHz, CD₃OD) $\delta = 178.5$, 174.5, 148.2, 144.1, 139.3, 138.2, 136.3, 129.2, 128.8, 124.7 (d, *J* = 25.9 Hz), 124.86, 124.61, 122.50 (d, *J* = 5.5 Hz), 119.8 (d, *J* = 17.7 Hz), 119.5 (d, *J* = 9.2 Hz), 112.4, 111.3, 111.0, 56.4, 52.7, 32.5 (d, *J* = 13.5 Hz); IR (cm⁻¹): 3283 (br), 3058, 2920, 1671, 1455, 743; ¹⁹F NMR (376 MHz, CD₃OD) $\delta = -64.31$, -64.39; HRMS (ESI) calculated for C₁₉H₁₇F₃N₄O [M + H]⁺: 375.1427, found: C 60.45, H 4.54, N 14.64.

Scheme S2. Structure of (S,E)-2-amino-3-(1H-indol-3-yl)-N-(4-(trifluoromethyl)benzylidene) propanehydrazide (2).

1.2. (S,E)-2-Amino-3-(1H-indol-3-yl)-N'-(3-(trifluoromethyl)benzylidene)propanehydrazide (3)

The acylhydrazone **3** was synthesized according to **GP** by using (*S*)-2-amino-3-(1*H*-indol-3-yl) propanehydrazide (**10**) (403 mg, 1.85 mM) and 3-trifluoromethyl-benzaldehyde **12** (297 µL, 2.22 mM). After purification, the acylhydrazone **3** was obtained as a mixture of *E* and *Z* isomers (*E*:*Z* = 60:40) as a white solid (332 mg, 48%). m.p. 67–71 °C; $[\alpha]_D^{20} = +39.1$ (*c* = 0.097 in MeOH); ¹H NMR (400 MHz, CD₃OD): $\delta = 8.08$ (s, 1H, *E*), 8.00 (s, 1H, *E*), 7.91 (s, 1H, *Z*), 7.89 (d, *J* = 4.1 Hz, 1H, *E*), 7.88 (s, 1H, *Z*), 7.71 (d, *J* = 7.7 Hz, 1H, *Z*), 7.68–7.47 (m, 3H), 7.31 (d, *J* = 8.1 Hz, 1H, *E*), 7.25 (d, *J* = 8.1 Hz, 1H, *Z*), 7.12 (s, 1H, *Z*), 7.11 (s, 1H, *E*), 7.05 (dd, *J* = 15.1, 8.0 Hz, 1H), 7.01–6.95 (m, 1H), 3.76 (t, *J* = 6.8 Hz, 1H, *E*), 3.38–3.22 (m, 1H), 3.16–3.06 (m, 1H); ¹³C NMR (101 MHz, CD₃OD): $\delta = 176.0$, 173.8, 148.4, 144.9, 138.2 (d, *J* = 8.5 Hz), 136.5 (d, *J* = 15.1 Hz), 133.8, 132.3, 130.7, 130.7 (d, *J* = 210.9 Hz), 130.7, 128.7, 128.6, 127.7 (dd, *J* = 9.5, 5.8 Hz), 127.5 (dd, *J* = 7.8, 4.0 Hz), 125.1 (dd, *J* = 7.8, 3.8 Hz), 124.4, 122.6, 122.5, 120.0, 119.9, 119.4, 119.1, 112.4, 112.3, 110.7, 110.2, 56.2, 52.5, 32.1, 31.1, 25.3; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -62.82$; IR (cm⁻¹): 3332 (br), 2497 (br), 1668, 1326, 1120; HRMS (ESI) calculated for C₁₉H₁₇F₃N₄O [M + H]⁺: 375.1427, found: 375.1429.

Scheme S3. Structure of (*S*,*E*)-2-amino-3-(1*H*-indol-3-yl)-*N*'-(3-(trifluoromethyl)benzylidene) propanehydrazide (**3**).

1.3. (S,E)-2-Amino-N'-(2-fluorobenzylidene)-3-(1H-indol-3-yl)propanehydrazide (4)

The acylhydrazone **4** was synthesized according to **GP** by using (*S*)-2-amino-3-(1*H*-indol-3-yl) propanehydrazide (**10**) (363 mg, 1.66 mM) and 2-fluorobenzaldehyde **13** (210 µL, 1.99 mM). After purification, the acylhydrazone **4** was obtained as a mixture of *E* and *Z* isomers (*E*:*Z* = 58:42) as a white solid (237 mg, 44%). m.p. 175–176 °C; $[\alpha]_D^{20} = +75.5$ (*c* = 0.200 in MeOH); ¹H NMR (400 MHz, CD₃OD) $\delta = 8.27$ (s, 1H, *E*), 8.17–8.08 (m, 1H), 7.71 (d, *J* = 7.5 Hz, 1H), 7.68 (d, *J* = 3.4 Hz, 1H), 7.67–7.60 (m, 1H), 7.49–7.39 (m, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.31–6.94 (m, 9H), 4.73 (t, *J* = 6.6 Hz, 1H, *Z*), 3.72 (t, *J* = 6.6 Hz, 1H, *E*), 3.26 (m, 1H), 3.17–3.00 (m, 1H); ¹³C NMR (101 MHz, CD₃OD) $\delta = 178.1$, 174.2, 164.2, 161.7, 142.7, 139.1, 139.0, 138.2, 133.4 (d, *J* = 8.6 Hz), 132.8 (d, *J* = 8.5 Hz), 128.8 (d, *J* = 9.5 Hz), 128.7, 128.1, 125.7, 124.7 (d, *J* = 16.2 Hz), 123.0, 122.5, 119.8 (d, *J* = 15.3 Hz), 119.5, 116.7 (dd, *J* = 21.2, 8.6 Hz), 112.4, 111.2, 110.9, 56.3, 52.6, 32.3; ¹⁹F NMR (376 MHz, CD₃OD) $\delta = -123.17$ (m), -123.34 (m); IR (cm⁻¹): 3286 (br), 3056, 2921, 1673, 1615, 1455, 1357, 1238, 743; HRMS (ESI) calculated for C1₈H₁₇FN₄O [M + H]⁺: 325.1459, found: 325.1465.

Scheme S4. Structure of (S,E)-2-amino-N'-(2-fluorobenzylidene)-3-(1H-indol-3-yl)propanehydrazide (4).

1.4. (S,Z)-2-Amino-N'-(2-hydroxy-3-methylbenzylidene)-3-(1H-indol-3-yl)propanehydrazide (5)

The acylhydrazone **5** was synthesized according to **GP** by using (*S*)-2-amino-3-(1*H*-indol-3-yl) propanehydrazide (**10**) (410 mg, 1.88 mM) and 2-hydroxy-3-methylbenzaldehyde **14** (273 µL, 2.25 mM). After purification, the acylhydrazone **5** was obtained as a mixture of *E* and *Z* isomers (*E*:*Z* = 93:7) as a yellow solid (246 mg, 39%). m.p. 86–90 °C; $[\alpha]_D^{20} = +103.0$ (*c* = 0.146 in MeOH); ¹H NMR (400 MHz, CD₃OD) $\delta = 8.28$ (s, 1H, *E*), 8.11 (s, 1H, *Z*), 7.97 (s, 1H, *E*), 7.63 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.19 (d, *J* = 7.3 Hz, 1H), 7.13 (s, 1H), 7.11–7.05 (m, 2H), 7.04–6.98 (m, 1H), 6.81 (dd, *J* = 10.0, 5.1 Hz, 1H), 3.72 (t, *J* = 6.7 Hz, 1H, *Z*), 3.27 (dd, *J* = 14.2, 6.8 Hz, 1H), 3.12 (dd, *J* = 14.2, 6.8 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CD₃OD) $\delta = 173.3$, 157.6, 152.6, 149.6, 138.1, 134.0, 130.0, 128.7, 126.9, 124.8, 122.5, 120.1, 119.9, 119.4, 118.2, 112.3, 111.0, 56.3, 32.4, 15.7; IR (cm⁻¹): 3351 (br), 2475 (br), 2216, 2071, 1120, 972; HRMS (ESI) calculated for C₁₉H₂₀N₄O₂ [M + H]⁺: 337.1659, found: 337.1664.

Scheme S5. Structure of (S,Z)-2-amino-N'-(2-hydroxy-3-methylbenzylidene)-3-(1H-indol-3-yl) propanehydrazide (5).

1.5. (S,E)-2-Amino-N'-(2-bromobenzylidene)-3-(1H-indol-3-yl)propanehydrazide (6)

The acylhydrazone **6** was synthesized according to **GP** by using (*S*)-2-amino-3-(1H-indol-3-yl) propanehydrazide (**10**) (345 mg, 1.58 mM) and 2-bromobenzaldehyde **15** (220 µL, 1.89 mM). After purification, the acylhydrazone **6** was obtained as a mixture of *E* and *Z* isomers (*E*:*Z* = 55:45) as a white solid (315 mg, 52%). m.p. 80–86 °C; $[\alpha]_D^{20} = +54.8$ (*c* = 0.091 in MeOH); ¹H NMR (400 MHz, CD₃OD) $\delta = 7.98$ (s, 1H, *E*), 7.92 (s, 1H, *E*), 7.83 (s, 1H, *Z*), 7.82 (s, 1H, *Z*), 7.68 (d, *J* = 6.0 Hz, 1H, *E*), 7.66–7.61 (m, 1H), 7.56 (ddd, *J* = 7.9, 2.8, 1.8 Hz, 1H), 7.49 (d, *J* = 7.9 Hz, 1H, *Z*), 7.37–7.31 (m, 1H), 7.31–7.26 (m, 1H), 7.13 (d, *J* = 4.3 Hz, 1H), 7.10–7.05 (m, 1H), 7.01 (t, *J* = 7.4 Hz, 1H), 4.77 (t, *J* = 7.7 Hz, 1H, *Z*), 3.73 (t, *J* = 6.7 Hz, 1H, *E*), 3.31–3.24 (m, 1H), 3.17–3.00 (m, 1H); ¹³C NMR (101 MHz, CD₃OD) $\delta = 177.4$, 174.1, 148.3, 144.6, 138.2, 138.1, 137.7, 134.2, 134.0, 133.4, 131.6, 131.5, 131.1, 130.3, 128.7, 127.7, 127.4, 124.8, 123.8, 123.5, 122.5, 122.5, 120.1, 119.9, 119.4, 119.3, 112.4, 112.3, 110.9, 110.8, 56.3, 52.5, 32.3, 32.0; IR (cm⁻¹): 3287 (br), 3056, 2920, 1673, 1561, 744; HRMS (ESI) calculated for C₁₈H₁₇BrN40 [M + H]⁺: 387.0638, found: 387.0639.

Scheme S6. Structure of (S,E)-2-amino-N'-(2-bromobenzylidene)-3-(1H-indol-3-yl)propanehydrazide (6).

1.6. (S,E)-2-Amino-3-(1H-indol-3-yl)-N'-(2-methylbenzylidene)propanehydrazide (7)

The acylhydrazone **7** was synthesized according to **GP** by using (*S*)-2-amino-3-(1*H*-indol-3-yl) propanehydrazide (**10**) (200 mg, 0.92 mM) and *o*-tolualdehyde **16** (160 µL, 1.38 mM). After purification, the acylhydrazone **7** was obtained as a mixture of *E* and *Z* isomers (*E*:*Z* = 60:40) as a white solid (130 mg, 44%). m.p. 96–98 °C; $[\alpha]_D^{20} = +38.4$ (*c* = 0.208 in MeOH); ¹H NMR (400 MHz, CD₃OD) $\delta = 8.29$ (s, 1H, *E*), 8.23 (s, 1H, *Z*), 7.95 (d, *J* = 7.5 Hz, 1H, *E*), 7.70 (d, *J* = 7.6 Hz, 1H, *Z*), 7.68–7.59 (m, 1H), 7.37–7.25 (m, 2H), 7.25–7.15 (m, 2H), 7.13 (d, *J* = 5.7 Hz, 1H), 7.11–7.05 (m, 1H), 7.05–6.94 (m, 1H), 4.73 (dd, *J* = 7.7, 5.5 Hz, 1H, *Z*), 3.71 (t, *J* = 6.8 Hz, 1H, *E*), 3.31–3.21 (m, 1H), 3.16–3.01 (m, 1H), 2.44 (s, 1H), 2.38 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 171.0$, 147.0, 137.3, 136.5, 136.4, 131.8, 131.1, 130.8, 130.3, 130.1, 127.6, 127.1, 126.4, 123.7, 123.5, 122.1, 122.1, 119.7, 119.4, 119.1, 118.9, 111.5, 55.3, 52.1, 30.7, 25.4, 19.9, 19.5; IR (cm⁻¹): 3300 (br), 3057, 2923, 2461 (br), 1667, 1455, 744; HRMS (ESI) calculated for C₁₉H₂₀N4O [M + H]⁺: 321.1710, found: 321.1714.

Scheme S7. Structure of (S,E)-2-amino-3-(1H-indol-3-yl)-N'-(2-methylbenzylidene)propanehydrazide (7).

1.7. (S,E)-2-Amino-N'-(2,6-dimethylbenzylidene)-3-(1H-indol-3-yl)propanehydrazide (8)

The acylhydrazone **8** was synthesized according to **GP** by using (*S*)-2-amino-3-(1*H*-indol-3-yl) propanehydrazide (**10**) (136 mg, 0.62 mM) and 2,6-dimethylbenzaldehyde **17** (114 mg, 0.85 mM). After purification, the acylhydrazone **8** was obtained as a mixture of *E* and *Z* isomers (*E*:*Z* = 42:50) as a white solid (76 mg, 37%). m.p. 90–97 °C; $[\alpha]_D^{20} = +28.6 (c = 0.084 \text{ in MeOH})$; ¹H NMR (400 MHz, CD₃OD) $\delta = 8.35$ (s, 1H, *E*), 8.30 (s, 1H, *Z*), 7.64 (d, *J* = 8.0 Hz, 1H, *Z*), 7.52 (d, *J* = 8.1 Hz, 1H, *E*), 7.35 (d, *J* = 8.0 Hz, 1H, *Z*), 7.30 (d, *J* = 8.1 Hz, 1H, *E*), 7.23–6.99 (m, 6H), 6.89–6.82 (m, 1H, *E*), 4.65 (dd, *J* = 7.6, 5.3 Hz, 1H, *E*), 3.72 (t, *J* = 6.8 Hz, 1H, *Z*), 3.30–3.21 (m, 1H), 3.18–3.04 (m, 1H), 2.43 (s, 3H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CD₃OD) $\delta = 177.1$, 173.6, 150.2, 146.6, 138.9, 138.8, 138.2, 132.4, 132.2, 130.2, 130.1, 129.8, 129.5, 128.8, 128.8, 124.9, 124.7, 122.5, 122.4, 119.9, 119.7, 119.5, 112.3, 110.9, 110.8, 56.3, 52.9, 32.5, 31.5, 21.5, 21.1; IR (cm⁻¹): 3283 (br), 3058, 2971, 2922, 1672, 1334, 1237, 742; HRMS (ESI) calculated for C₂₀H₂₂N₄O [M + H]⁺: 335.1866, found: 335.1870.

Scheme S8. Structure of (S,E)-2-amino-N'-(2,6-dimethylbenzylidene)-3-(1H-indol-3-yl)propanehydrazide (8).

1.8. (S,E)-2-Amino-N'-benzylidene-3-(1H-indol-3-yl)propanehydrazide (9)

The acylhydrazone **9** was synthesized according to **GP** by using (*S*)-2-amino-3-(1*H*-indol-3-yl) propanehydrazide **10** (213 mg, 0.98 mM) and benzaldehyde **18** (120 µL, 1.18 mM). After purification, the acylhydrazone **9** was obtained as a mixture of *E* and *Z* isomers (*E*:*Z* = 52:48) as a white solid (117 mg, 39%). m.p. 146–149 °C; $[\alpha]_D^{20} = +62.3$ (*c* = 0.132 in MeOH); ¹H NMR (400 MHz, CD₃OD) $\delta = 7.92$ (s, 1H, *E*), 7.86 (s, 1H, *Z*), 7.69–7.55 (m, 3H), 7.38–7.26 (m, 4H), 7.11–6.95 (m, 3H), 4.76–4.69 (m, 1H, *Z*), 3.71 (t, *J* = 6.8 Hz, 1H, *E*), 3.29–3.21 (m, 1H), 3.11–2.98 (m, 1H); ¹³C NMR (101 MHz, CD₃OD) $\delta = 177.3$, 173.8, 150.3, 146.5, 138.0, 135.3, 135.2, 131.5, 131.1, 129.7, 128.7, 128.2, 124.8, 122.5, 119.9, 119.8, 119.4, 56.1, 52.5, 32.2, 31.8; IR (cm⁻¹): 3280 (br), 3058, 2922, 1670, 1455, 743, 692; HRMS (ESI) calculated for C₁₈H₁₈N₄O [M + H]⁺: 307.1553, found: 307.1557.

Scheme S9. Structure of (S,E)-2-amino-N'-benzylidene-3-(1H-indol-3-yl)propanehydrazide (9).

2. NMR Spectra

Figure S3. ¹³C NMR spectrum of compound 2.

Figure S4. ¹⁹F NMR spectrum of compound 2.

Figure S5. ¹H NMR spectrum of compound 3.

Figure S6. ¹³C NMR spectrum of compound **3**.

Figure S7. ¹⁹F NMR spectrum of compound 3.

Figure S9. ¹³C NMR spectrum of compound 4.

Figure S10. ¹⁹F NMR spectrum of compound 4.

Figure S11. ¹H NMR spectrum of compound 5.

Figure S12. ¹³C NMR spectrum of compound 5.

Figure S13. ¹H NMR spectrum of compound 6.

Figure S14. ¹³C NMR spectrum of compound 6.

Figure S15. ¹H NMR spectrum of compound 7.

Figure S17. ¹H NMR spectrum of compound 8.

Figure S18. ¹³C NMR spectrum of compound 8.

Figure S19. ¹H NMR spectrum of compound 9.

3. HPLC Chromatograms

Figure S21. Chromatogram of compound 2.

<Peak Table>

PDA Ch1 254nm									
P	eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
	1	14,202	892868	140530	99,766		S		
	2	14,439	2094	655	0,234		Т		
	Total		894963	141185					

PDA Chi 254nm										
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
1	12,840	1335566	165876	100,000						
Tota		1335566	165876							

Figure S23. Chromatogram of compound 4.

PDA Ch1 254nm									
P	eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
	1	13,397	562783	110582	92,635				
	2	15,041	44742	7185	7,365				
	Total		607525	117767					

Figure S25. Chromatogram of compound 6.

<Peak Table>

PDA Ch1 254nm											
F	Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name			
Γ	1	13,229	696429	76568	92,347						
Γ	2	13,873	57712	5992	7,653						
Γ	Total		754141	82560							

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13,913	861093	122365	95,113		S	
2	15,578	44246	6156	4,887			
Total		905338	128520				

Figure S27. Chromatogram of compound 8.

<Peak Table> PDA Ch1 254nm

PDA C	h1 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11,446	45236	2157	5,281			
2	12,684	811378	79707	94,719			
Total		856614	81864				

Figure S28. Chromatogram of compound 9.