,
university of groningen

University of Groningen

Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin

Hartman, Alwin M; Mondal, Milon; Radeva, Nedyalka; Klebe, Gerhard; Hirsch, Anna K H

Published in:
International Journal of Molecular Sciences

DOI:
10.3390/ijms160819184

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hartman, A. M., Mondal, M., Radeva, N., Klebe, G., \& Hirsch, A. K. H. (2015). Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin. International Journal of Molecular Sciences, 16(8), 19184-94. https://doi.org/10.3390/ijms160819184

[^0]Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Supplementary Information

(a)

(b)

Scheme S1. Synthesis of (a) hydrazide 10; and (b) achylhydrazones 2-9.

1

4

2

5

8

Figure S1. Schematic representation of the predicted binding modes of acylhydrazonebased inhibitors $\mathbf{1 - 9}$ in the active site of the endothiapepsin. These binding modes are the result of a docking run using the FlexX docking module with 30 poses and represent the top-scoring pose after HYDE scoring and careful visual inspection to exclude poses with significant inter- or intra-molecular clash terms or unfavorable conformations. The figure was generated with PoseView [21] as implemented in the LeadIT suite.

1. Experimental Procedures

1.1. (S,E)-2-Amino-3-(1H-indol-3-yl)-N'-(4-(trifluoromethyl)benzylidene)propanehydrazide (2)

The acylhydrazone 2 was synthesized according to GP by using (S)-2-amino-3-(1H-indol-3-yl) propanehydrazide (10) ($408 \mathrm{mg}, 1.87 \mathrm{mM}$) and 4-trifluoromethyl-benzaldehyde $\mathbf{1 1}(306 \mu \mathrm{~L}, 2.24 \mathrm{mM})$. After purification, the acylhydrazone $\mathbf{2}$ was obtained as a mixture of E and Z isomers $(E: Z=64: 36)$ as a white solid ($365 \mathrm{mg}, 52 \%$). m.p. $187-190{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+53.7(c=0.114$ in MeOH$) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.03(\mathrm{~s}, 1 \mathrm{H}, E), 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}, Z), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, E), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, Z), 7.15-7.06$ $(\mathrm{m}, 2 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, Z), 3.73(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, E), 3.29-3.22(\mathrm{~m}, 1 \mathrm{H})$, 3.17-3.07 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) ~ \delta=178.5,174.5,148.2,144.1,139.3,138.2,136.3$, $129.2,128.8,124.7(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 124.86,124.61,122.50(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 119.8(\mathrm{~d}, J=17.7 \mathrm{~Hz})$, $119.5(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 112.4,111.3,111.0,56.4,52.7,32.5(\mathrm{~d}, J=13.5 \mathrm{~Hz}) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3283$ (br), 3058, 2920, 1671, 1455, 743; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=-64.31,-64.39$; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 375.1427$, found: 375.1431; Elemental analysis, calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$ (\%): C 60.96, H 4.58, N 14.97. found: C 60.45, H 4.54, N 14.64 .

Scheme S2. Structure of (S, E)-2-amino-3-(1H-indol-3-yl)- $N^{\prime \prime}$-(4-(trifluoromethyl)benzylidene) propanehydrazide (2).

1.2. (S,E)-2-Amino-3-(1H-indol-3-yl)-N'-(3-(trifluoromethyl)benzylidene)propanehydrazide (3)

The acylhydrazone 3 was synthesized according to GP by using (S)-2-amino-3-(1H-indol-3-yl) propanehydrazide (10) (403 mg, 1.85 mM) and 3-trifluoromethyl-benzaldehyde $\mathbf{1 2}(297 \mu \mathrm{~L}, 2.22 \mathrm{mM})$. After purification, the acylhydrazone 3 was obtained as a mixture of E and Z isomers $(E: Z=60: 40)$ as a white solid ($332 \mathrm{mg}, 48 \%$). m.p. $67-71^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+39.1\left(c=0.097\right.$ in MeOH); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=8.08(\mathrm{~s}, 1 \mathrm{H}, E), 8.00(\mathrm{~s}, 1 \mathrm{H}, E), 7.91(\mathrm{~s}, 1 \mathrm{H}, Z), 7.89(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, E), 7.88(\mathrm{~s}, 1 \mathrm{H}$, $Z), 7.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, Z), 7.68-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, E), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, Z)$, $7.12(\mathrm{~s}, 1 \mathrm{H}, Z), 7.11(\mathrm{~s}, 1 \mathrm{H}, E), 7.05(\mathrm{dd}, J=15.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, E), 3.38-3.22 (m, 1H), 3.16-3.06 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=176.0,173.8,148.4$, $144.9,138.2(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 136.5(\mathrm{~d}, J=15.1 \mathrm{~Hz}), 133.8,132.3,130.7,130.7(\mathrm{~d}, J=210.9 \mathrm{~Hz}), 130.7$, $128.7,128.6,127.7(\mathrm{dd}, J=9.5,5.8 \mathrm{~Hz}), 127.5(\mathrm{dd}, J=7.8,4.0 \mathrm{~Hz}), 125.1(\mathrm{dd}, J=7.8,3.8 \mathrm{~Hz}), 124.4$, 122.6, 122.5, 120.0, 119.9, 119.4, 119.1, 112.4, 112.3, 110.7, 110.2, 56.2, 52.5, 32.1, 31.1, 25.3; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.82$; IR (cm^{-1}): 3332 (br), 2497 (br), 1668, 1326, 1120; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 375.1427$, found: 375.1429.

Scheme S3. Structure of (S,E)-2-amino-3-(1H-indol-3-yl)- $N^{\prime \prime}$-(3-(trifluoromethyl)benzylidene) propanehydrazide (3).

1.3. (S,E)-2-Amino-N'-(2-fluorobenzylidene)-3-(1H-indol-3-yl)propanehydrazide (4)

The acylhydrazone 4 was synthesized according to GP by using (S)-2-amino-3-(1H-indol-3-yl) propanehydrazide (10) ($363 \mathrm{mg}, 1.66 \mathrm{mM}$) and 2-fluorobenzaldehyde $\mathbf{1 3}(210 \mu \mathrm{~L}, 1.99 \mathrm{mM})$. After purification, the acylhydrazone 4 was obtained as a mixture of E and Z isomers ($E: Z=58: 42$) as a white solid ($237 \mathrm{mg}, 44 \%$). m.p. $175-176{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+75.5\left(c=0.200\right.$ in MeOH) ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.27(\mathrm{~s}, 1 \mathrm{H}, E), 8.17-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-6.94(\mathrm{~m}, 9 \mathrm{H}), 4.73(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}, Z), 3.72(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, E), 3.26(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=178.1,174.2,164.2,161.7,142.7,139.1,139.0,138.2,133.4(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=8.5 \mathrm{~Hz})$, $128.8(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 128.7,128.1,125.7,124.7(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 123.0,122.5,119.8$ (d, $J=15.3 \mathrm{~Hz})$, $119.5,116.7$ (dd, $J=21.2,8.6 \mathrm{~Hz}$), 112.4, 111.2, 110.9, 56.3, 52.6, 32.3; ${ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=-123.17(\mathrm{~m}),-123.34(\mathrm{~m})$; IR $\left(\mathrm{cm}^{-1}\right): 3286(\mathrm{br}), 3056,2921,1673,1615,1455,1357$, 1238, 743; HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 325.1459$, found: 325.1465.

Scheme S4. Structure of (S,E)-2-amino- $N^{\prime \prime}$-(2-fluorobenzylidene)-3-(1H-indol-3-yl)propanehydrazide (4).

1.4. (S,Z)-2-Amino-N'-(2-hydroxy-3-methylbenzylidene)-3-(1H-indol-3-yl)propanehydrazide (5)

The acylhydrazone 5 was synthesized according to GP by using (S)-2-amino-3-(1 H -indol-3-yl) propanehydrazide (10) ($410 \mathrm{mg}, 1.88 \mathrm{mM}$) and 2-hydroxy-3-methylbenzaldehyde $\mathbf{1 4}(273 \mu \mathrm{~L}, 2.25 \mathrm{mM})$. After purification, the acylhydrazone 5 was obtained as a mixture of E and Z isomers ($E: Z=93: 7$) as a yellow solid ($246 \mathrm{mg}, 39 \%$). m.p. $86-90{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+103.0\left(c=0.146\right.$ in MeOH); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.28(\mathrm{~s}, 1 \mathrm{H}, E), 8.11(\mathrm{~s}, 1 \mathrm{H}, Z), 7.97(\mathrm{~s}, 1 \mathrm{H}, E), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.81$ (dd, $J=10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, Z), 3.27(\mathrm{dd}, J=14.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (dd, $J=14.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=173.3,157.6,152.6,149.6$, 138.1, 134.0, 130.0, 128.7, 126.9, 124.8, 122.5, 120.1, 119.9, 119.4, 118.2, 112.3, 111.0, 56.3, 32.4, 15.7; IR (cm^{-1}): 3351 (br), 2475 (br), 2216, 2071, 1120, 972; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 337.1659$, found: 337.1664.

Scheme S5. Structure of (S,Z)-2-amino- $N^{\prime \prime}$-(2-hydroxy-3-methylbenzylidene)-3-(1H-indol-3-yl) propanehydrazide (5)

1.5. (S,E)-2-Amino- N^{\prime}-(2-bromobenzylidene)-3-(1H-indol-3-yl)propanehydrazide (6)

The acylhydrazone 6 was synthesized according to GP by using (S)-2-amino-3-(1H-indol-3-yl) propanehydrazide (10) ($345 \mathrm{mg}, 1.58 \mathrm{mM}$) and 2-bromobenzaldehyde $\mathbf{1 5}(220 \mu \mathrm{~L}, 1.89 \mathrm{mM})$. After purification, the acylhydrazone 6 was obtained as a mixture of E and Z isomers ($E: Z=55: 45$) as a white solid ($315 \mathrm{mg}, 52 \%$). m.p. $80-86^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+54.8(c=0.091$ in MeOH$) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=7.98(\mathrm{~s}, 1 \mathrm{H}, E), 7.92(\mathrm{~s}, 1 \mathrm{H}, E), 7.83(\mathrm{~s}, 1 \mathrm{H}, Z), 7.82(\mathrm{~s}, 1 \mathrm{H}, Z), 7.68(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, E)$, $7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=7.9,2.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, Z), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, Z), 3.73(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, E), 3.31-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=177.4,174.1,148.3,144.6,138.2,138.1,137.7,134.2,134.0,133.4,131.6,131.5$, 131.1, 130.3, 128.7, 127.7, 127.4, 124.8, 123.8, 123.5, 122.5, 122.5, 120.1, 119.9, 119.4, 119.3, 112.4, $112.3,110.9,110.8,56.3,52.5,32.3,32.0$; IR (cm^{-1}): 3287 (br), 3056, 2920, 1673, 1561, 744; HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 387.0638$, found: 387.0639 .

Scheme S6. Structure of (S, E)-2-amino- $N^{\prime \prime}$-(2-bromobenzylidene)-3-(1H-indol-3-yl)propanehydrazide (6).

1.6. (S,E)-2-Amino-3-(1H-indol-3-yl)-N'-(2-methylbenzylidene)propanehydrazide (7)

The acylhydrazone 7 was synthesized according to GP by using (S)-2-amino-3-(1 H -indol-3-yl) propanehydrazide (10) ($200 \mathrm{mg}, 0.92 \mathrm{mM}$) and o-tolualdehyde $\mathbf{1 6}(160 \mu \mathrm{~L}, 1.38 \mathrm{mM})$. After purification, the acylhydrazone 7 was obtained as a mixture of E and Z isomers $(E: Z=60: 40)$ as a white solid (130 mg, 44\%). m.p. $96-98{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+38.4(c=0.208$ in MeOH$) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.29(\mathrm{~s}, 1 \mathrm{H}, E), 8.23(\mathrm{~s}, 1 \mathrm{H}, Z), 7.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, E), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, Z), 7.68-7.59$ $(\mathrm{m}, 1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H})$, $7.05-6.94(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}, Z), 3.71(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, E), 3.31-3.21(\mathrm{~m}, 1 \mathrm{H})$, 3.16-3.01 (m, 1H), $2.44(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=171.0,147.0,137.3$, $136.5,136.4,131.8,131.1,130.8,130.3,130.1,127.6,127.1,126.4,123.7,123.5,122.1,122.1,119.7$, $119.4,119.1,118.9,111.5,55.3,52.1,30.7,25.4,19.9,19.5$; IR (cm ${ }^{-1}$): 3300 (br), 3057, 2923, 2461 (br), 1667, 1455, 744; HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 321.1710$, found: 321.1714.

Scheme S7. Structure of (S, E)-2-amino-3-(1H-indol-3-yl)- N^{\prime}-(2-methylbenzylidene)propanehydrazide (7).

1.7. (S,E)-2-Amino- N^{\prime}-(2,6-dimethylbenzylidene)-3-(1H-indol-3-yl)propanehydrazide (8)

The acylhydrazone $\mathbf{8}$ was synthesized according to GP by using (S)-2-amino-3-(1 H -indol-3-yl) propanehydrazide (10) ($136 \mathrm{mg}, 0.62 \mathrm{mM}$) and 2,6-dimethylbenzaldehyde $\mathbf{1 7}(114 \mathrm{mg}, 0.85 \mathrm{mM})$. After purification, the acylhydrazone $\mathbf{8}$ was obtained as a mixture of E and Z isomers $(E: Z=42: 50)$ as a white solid ($76 \mathrm{mg}, 37 \%$). m.p. $90-97{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+28.6(c=0.084$ in MeOH$) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.35(\mathrm{~s}, 1 \mathrm{H}, E), 8.30(\mathrm{~s}, 1 \mathrm{H}, Z), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, Z), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, E)$, 7.35 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, Z), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, E)$, 7.23-6.99 (m, 6H), 6.89-6.82 (m, 1H, E), $4.65(\mathrm{dd}, J=7.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}, E), 3.72(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, Z), 3.30-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.04(\mathrm{~m}, 1 \mathrm{H})$, 2.43 (s, 3H), 2.37 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=177.1,173.6,150.2,146.6,138.9,138.8$, $138.2,132.4,132.2,130.2,130.1,129.8,129.5,128.8,128.8,124.9,124.7,122.5,122.4,119.9,119.7$, $119.5,112.3,110.9,110.8,56.3,52.9,32.5,31.5,21.5,21.1$; IR (cm ${ }^{-1}$): 3283 (br), 3058, 2971, 2922, 1672, 1334, 1237, 742; HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 335.1866$, found: 335.1870.

Scheme S8. Structure of (S,E)-2-amino- $N^{\prime \prime}$-(2,6-dimethylbenzylidene)-3-(1H-indol-3-yl)propanehydrazide (8).

1.8. (S,E)-2-Amino-N'-benzylidene-3-(1H-indol-3-yl)propanehydrazide (9)

The acylhydrazone 9 was synthesized according to GP by using (S)-2-amino-3-($1 H$-indol-3-yl) propanehydrazide $\mathbf{1 0}(213 \mathrm{mg}, 0.98 \mathrm{mM})$ and benzaldehyde $\mathbf{1 8}(120 \mu \mathrm{~L}, 1.18 \mathrm{mM})$. After purification, the acylhydrazone 9 was obtained as a mixture of E and Z isomers $(E: Z=52: 48)$ as a white solid ($117 \mathrm{mg}, 39 \%$). m.p. $146-149{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{20}=+62.3\left(c=0.132\right.$ in MeOH); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=7.92(\mathrm{~s}, 1 \mathrm{H}, E), 7.86(\mathrm{~s}, 1 \mathrm{H}, Z), 7.69-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.11-6.95(\mathrm{~m}, 3 \mathrm{H})$, 4.76-4.69 (m, 1H, Z), $3.71(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, E), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.11-2.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=177.3,173.8,150.3,146.5,138.0,135.3,135.2,131.5,131.1,129.7,128.7$, $128.2,124.8,122.5,119.9,119.8,119.4,56.1,52.5,32.2,31.8$; IR (cm^{-1}): 3280 (br), 3058, 2922, 1670, 1455, 743, 692; HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 307.1553$, found: 307.1557.

Scheme S9. Structure of (S, E)-2-amino- N^{\prime}-benzylidene-3-(1H-indol-3-yl)propanehydrazide (9).

2. NMR Spectra

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$.

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2.

Figure S4. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound 2.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 .

Figure S7. ${ }^{19} \mathrm{~F}$ NMR spectrum of compound 3.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4.

Figure S9. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4.

Figure S10. ${ }^{19}$ F NMR spectrum of compound 4.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 .

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 .

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6 .

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6 .

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7.

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 .

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 8 .

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 8 .

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9 .

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 9 .

3. HPLC Chromatograms

<Chromatogram>
mAU

<Peak Table>
PDACh1 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark

Figure S21. Chromatogram of compound 2.
<Chromatogram>
mAU

<Peak Table>

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14,202	892868	140530	99,766		S	
2	14,439	2094	655	0,234		T	
Total		894963	141185				

Figure S22. Chromatogram of compound 3.
<Chromatogram>
mAU

<Peak Table>

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12,840	1335566	165876	100,000			
Total		1335566	165876				

Figure S23. Chromatogram of compound 4.
<Chromatogram>
mAU

<Peak Table>

PDA Ch1 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark
Total

Figure S24. Chromatogram of compound 5.
<Chromatogram>
mAU

<Peak Table>

$\frac{\text { PDA Ch }}{\text { Peak\# }}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13,397	562783	110582	92,635			
2	15,041	44742	7185	7,365			
Total		607525	117767				

Figure S25. Chromatogram of compound 6.
<Chromatogram>
mAU

<Peak Table>
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark
1	13,229	696429	76568	92,347		
2	13,873	57712	5992	7,653		
Total		754141	82560			

Figure S26. Chromatogram of compound 7.

<Peak Table>

$\begin{aligned} & \text { PDA Ch } \\ & \hline \text { Peak\# } \end{aligned}$	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13,913	861093	122365	95,113		S	
2	15,578	44246	6156	4,887			
Total		905338	128520				

Figure S27. Chromatogram of compound 8.
<Chromatogram>
mAU

<Peak Table>
PDA Ch1 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark
1	11,446	45236	2157	5,281		
2	12,684	811378	79707	94,719		
Total		856614	81864			

Figure S28. Chromatogram of compound 9.

[^0]: Copyright
 Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

