

University of Groningen

Software product line engineering for consumer electronics

Hartmann, Herman

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Hartmann, H. (2015). Software product line engineering for consumer electronics: Keeping up with the speed of innovation [Groningen]: University of Groningen

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Software Product Line Engineering for Consumer Electronics

Keeping up with the speed of innovation

Proefschrift

ter verkrijging de graad van doctor aan de Rijksuniversiteit Groningen op gezag van de rector magnificus prof. dr. E. Sterken en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

vrijdag 9 oktober 2015 om 12.45 uur

door

Johan Herman Hartmann

geboren op 28 september 1966 te Onstwedde

Promotor

Prof. dr. ir. J. Bosch

Beoordelingscommissie

Prof. dr. ir. P. Avgeriou Prof. dr. ir. I. Crnkovic Prof. dr. J.C. van Vliet

Software Product Line Engineering for Consumer Electronics

Keeping up with the speed of innovation

Herman Hartmann

Abstract

During the last decade consumer electronics products have changed radically. Traditionally, these products were used for a few dedicated tasks, and were implemented through hardware. Nowadays, these products are used for a variety of tasks and most of the functionality is implemented through software. Furthermore there is an increasing amount of variants needed to serve the market and a continuous pressure on development cost, quality, and time-to-market. These trends have caused a significant impact on the way that software product lines for consumer electronics are being developed.

This thesis starts in part I with an exploration of the problem space: namely the challenges that are caused by the changing industry structures. This analysis shows that due to the increasing amount of software and high speed of innovation it is unfeasible for an individual company to develop the software on its own. As a consequence, consumer electronics products are built using components from a large variety of specialized firms. A model of five industry structure types is introduced that describes the transition and the consequences for software architectures. It is shown that software supply chain is the dominant industry structure for developing the software that is embedded in these products. This is because the modularization of the architecture is limited and because resource constrained devices require variants of software that are optimized for different hardware configurations.

To support applications from third parties, many consumer electronics firms offered a stable interface towards the 3rd party applications. In this way these firms transitioned from software product line engineering in an intra-organizational context to ecosystems for these 3rd party applications. Three types of ecosystems are identified that are currently used: vertically integrated hardware/software platforms, closed source software platforms and open source software platforms. A first step towards a decision support method is introduced that can determine which type of ecosystem is most suitable for a specific type of consumer electronics product from a software engineering perspective.

Part II of this thesis presents solutions to the challenges for variability management that arise when the software is developed through a supply chain. When a supplier delivers products to multiple customers, this may lead to multiple product lines. In this thesis a modelling approach is introduced that captures the context as a separate tree of a feature model, which makes it possible to model multiple product lines in software supply chains.

A company that is in the middle of a supply chain, has to integrate components from suppliers and offer (partly configured) products to its customers. To satisfy the variability requirements by each customer it may be necessary to use components from different suppliers, partly offering the same feature set, thus leading to overlapping feature models. This thesis introduces a supplier independent feature model. In this concept, dependency relations between the supplier independent feature model and the feature models of the individual suppliers are used to capture the variability of the combined product line. The use of alternative components from suppliers partly may also lead to a product line with components which are using different mechanisms for interfacing, binding and variability. A model-driven approach is introduced for automating the integration between components. This approach reduces the development costs and time-to-market.

As a result of the growing number of variation points, feature models often become too complex to deal with. This thesis evaluates a textual variability language which shows that the readability of models using a textual language is easier than with graphical languages, especially when many constraints between features are used, which is common for feature models in software supply chains.

Part III of this thesis presents solutions to the challenge of ensuring a sufficient quality with a high pressure on time-to-market, as identified in the part I. This last part focusses on testing, the last phase in a development process. The consequence for testing is that due to the increasing amount of faults, of which many are caused by a mismatch between components from different suppliers, and the limited time for testing, it is not feasible to remove all faults before market introduction.

In this thesis a statistical model is introduced that determines the benefits of using operation profiles, which is a method to increase the test efficiency based on the quantitative usage by the end users. The analysis shows that using operational profiles improves the test efficiency, however not when a high reliability is required. The analysis of risk based testing, which is a method to focus testing on those areas that have the biggest impact on end user and business, shows that when the usage frequency is treated as a separate dimension of the risk matrix, the efficiency can be further improved.

To reduce the test effort caused by the high amount of variability, this thesis introduces risk based testing for software product line engineering, which extends risk based for single system engineering with a dimension that captures the percentage of product variants that use a particular development artefact. This method provides the means to guide the test effort for different test levels and set priorities during domain and application engineering.

Because operational profiles cannot be directly applied to testing of highly innovative consumer electronics products, as it focuses primarily on technical reliability risks, this thesis proposes an enhanced framework to analyze unexpected user-product interaction. In this framework, product, user as well as environmental conditions are used to analyze user-product interaction which will help reducing non-technical failures.

This thesis has the following key contributions:

- A classification of different industry structures and ecosystems for consumer electronics is introduced along with their architectural challenges.
- Solutions for managing the variability in software supply chains have been created and for managing large and complex feature models.
- Methods are introduced to improve the test efficiency for software product lines and for highly innovative consumer electronics products.

Acknowledgements

Doing a PhD is a journey that one cannot successfully bring to an end without the help of many. This is especially the case in which a PhD is pursued during a regular job. The list of persons that have helped me during the PhD is long, whether it is in the research itself, creating the right environment or giving personal support. Most likely I will have forgotten to mention many.

First of all, I would like to thank Jan Bosch. Jan was an inspiring promotor and he understands what it is like to do a PhD while working in the industry. His encouragements and optimism were essential to keep me motivated. I learned from Jan how to write papers that were business and strategy oriented. With a few questions he helped me to focus and structure my papers. Some of those questions and remarks, I always keep in mind when writing a paper.

Secondly, I would like to thank Tim Trew. Tim actively supported my ambition to do a PhD during my time at NXP Research and he taught me how to be thorough in writing scientific papers. His reviewing capacity is unparalleled and every time I review a paper, I try to do this as precise as Tim does.

My ambition to do research and a PhD started when I was working at Philips CFT. During that period I worked closely together with the Technical University of Eindhoven and I was collaborating on research projects and making my first steps in doing research and writing my own papers. In particular, I want to thank: Elke den Ouden, Vincent Ronteltap, Aarnout Brombacher, Lu Yuan, Guillaume Stollman, Peter Sonnemans, and Wim Geudens.

I joined NXP Research and pursuing a PhD was an important reason for that. Ad ten Berg was a very supportive department leader, despite the general business trends that were not in favor of scientific research. I also want to thank Clara Otero-Perez who continued this support as a department leader.

Doing research, and especially writing papers, is most of the time a solitary activity. When you can write papers together with others this makes the work much more pleasurable, as well as allows you to exchange experience. Therefore, I want to thank the co-authors of my papers, i.e. the persons that have not been mentioned above: Aart Matsinger, Arnaud Hubaux, Aylin Koca, Frank van der Linden, Jarmila Bökkerink, Julia Rubin, Mila Keren, Patrick Heymans, Quentin Boucher, Raphaël Michel and Tali Yatzkar-Haham.

Case studies are an essential pre-requisite for research in the engineering sciences, which often requires the help of persons that are taking part in these case studies, provide the required resources or give advice. Therefore, I would like to thank the following persons: Alan Hartman, Arjan den Hartog, Asaf Shaar, Bart Caerts, Gaëtan Delannay, Hans den Boer, Itay Maman, Jacques Flamand, Jean-Marie Trager, Jack Goossen, Jos Hegge, Michiel Mennen, Ofir Brukner, Peter van Loon, Rob van Ommering, Rob van Twist, Rob Wieringa,

Shiri Kremer-Davidson, Somasundaram Venkatachalam, Uri Avraham and Wouter Batelaan.

I would like to thank the reading committee for providing me useful feedback on my thesis: Paris Avgeriou, Ivica Crnkovic and Hans van Vliet. I also want to thank the many anonymous reviewers of the journals and conferences. Often I received very useful feedback which helped me to improve my publications.

I would like to thank the many colleagues at Philips CFT, NXP Research and NXP R&D IT, who provided me a pleasant daily working environment without which it wouldn't be possible to work many evenings and weekends on writing the papers.

Some persons were specifically of importance for my PhD and during my career: Jos Gerards, Paul Meeuwissen and Thérèse Schoenmakers.

Over the years, I have got acquainted with many fine people, during my career or during my personal life, some of those have become good friends. I can recall many conversations on my research. While not all of my friends were able to understand the details of my research, the fact that I was able to share my ideas, and explain the objectives, helped me to formulate the contributions more clearly and encouraged me to continue with the research. For these conversations and for being good friends or fine colleagues, I want to thank: Abhijit Kumar Deb, Caro Afman, Carolyne Trew, Liesbeth Steffens, Manvi Agarwal, Peter Meyer, Peter Reuvekamp, Razvan Dinu, Renee van Liempd and Yanja Dajsuren.

I have always had the luck of being surrounded by a heartwarming family. Without their support, doing a PhD wouldn't have been possible. I therefore want to thank: Martha, Toolsi, Bida, Marie, Maureen, Erik, Ben, Liesbeth, Asha, Johan, Annie, Surita, Lauran Heleen, Remke, Soeris, Hans, Monique. Every time they asked me about my work and research, I regained new energy.

Finally I want to thank Amita, my wife, girlfriend and mate. Amita supported me all the way. She knew that doing a PhD was my longtime ambition. Many evenings and weekends I couldn't be the husband that I wanted to be, but she understood why I was doing this and accepted it. While doing the PhD and not being able to spend much time with her, I again realized what the most important thing in life is.

Contents

Abstract.	
Acknowle	edgementsvi
List of Fig	guresxiii
List of Ta	blesxiv
Chapter 1	l. Introduction1
1.1	Market Trends1
1.2	Problem Statement
1.3	Research Objectives
1.4	Research Methodology4
1.5	Research Questions
1.6	Thesis Outline and Article Overview
1.7	Applicability of the Research Results
1.8	Detailed Overview of Research Processes and Methods
1.9	Related Publications
1.10	Contributions to the Articles
Part I:	Industry Structures for Software Development
Chapter 2 Consume	2. The Changing Industry Structure of Software Development for r Electronics
2.1	Introduction
2.2	Background
2.3 Phones	Case Studies: Transition in the Development of Digital Televisions and Mobile
2.4 Electro	Model of Industry Structures for Software Development in Consumer nics
2.5	Transitions in the Development of Digital Televisions
2.6	Transition in the Mobile Phone Industry
2.7	Related Work

2.8	Conclusions and Future Research	51
Chapter	3. Consumer Electronics Software Ecosystems	55
3.1	Introduction	55
3.2	Background on Consumer Electronics Products	57
3.3	A Classification of Ecosystem Types	58
3.4	Towards a Multi-Criteria Decision Support Method	60
3.5	Case Studies	68
3.6	Comparison with Related Art	78
3.7	Conclusions and Further Research	78
Part II:	Variability Management in Software Supply Chains	81
Chapter	4. Using Context Variability to Model Multiple Product Lines	83
4.1	Introduction	83
4.2	Related work	85
4.3	Feature Models for Multiple Product Lines	
4.4	Context Variability in Software Supply Chains	90
4.5	Merging MPL-Feature models	93
4.6	Comparison with Related Work	96
4.7	Preliminary experimental results	97
4.8	Discussion and Further Research	98
4.9	Conclusions	98
Chapter	5. Supplier Independent Feature Modelling	
5.1	Introduction	99
5.2	Background	101
5.3	Integrating Feature Models	101
5.4	Supplier Independent Feature modelling	105
5.5	ZigBee Case Study	110
5.6	Tool support	112
5.7	Discussion and Alternatives	113
5.8	Related Work	114
5.9	Conclusions	114

Chapter	6. Using MDA for Integration of Heterogeneous Components in S	oftware
Supply C	hains	117
6.1	Introduction	117
6.2	Problem Description	119
6.3	ZigBee Case Study	
6.4	MDA for the Integration of Heterogeneous Components	127
6.5	Development Roles	137
6.6	Discussion and Further Research	138
6.7	Evaluation	141
6.8	Comparison with Related Art	143
6.9	Conclusions	144
Chapter '	7. Evaluating a Textual Feature Modelling Language	145
7.1	Introduction	145
7.2	Related Work	147
7.3	TVL	149
7.4	Research Method	150
7.5	Results	156
7.6	Findings	159
7.7	Threats to Validity	163
7.8	Conclusion	164
Part III:	Software Testing	165
Chapter 8	8. A Statistical Analysis of Operational Profile Driven Testing and	l Risk
Based Te	sting	167
8.1	Introduction	167
8.2	Background	169
8.3	A Statistical Model to Estimate the Improvement on Test Efficiency	172
8.4	Simulations of the Test Efficiency when using Operational Profiles	174
8.5	Case Study: Philips HealthCare	177
8.6	A Statistical Analysis of Risk Based Testing.	
8.7	Discussion and Further Research	

8.8	Comparison with Related Art	185	
8.9	Conclusions	186	
Chapter 9	9. Risk Based Testing for Software Product Line Engineering	187	
9.1	Introduction	187	
9.2	Background	189	
9.3	Applying Risk Based Testing to Product Line Engineering	192	
9.4	Case Study: Philips Healthcare	195	
9.5	Tool Support	198	
9.6	Comparison with Related Art	202	
9.7	Conclusions and Further Research	203	
9.8	Appendix: Consistency Rules of Quantified Feature Models	204	
Chapter 1	10. Towards a More Systematic Analysis of Uncertain User-Produc	et	
Interactio	ons		
10.1	Introduction	207	
10.2	Issues when Applying Operational Profiles for CE Products	209	
10.3	Modelling Unexpected User-Product Interaction: an Initial Step	210	
10.4	First implementation	213	
10.5	Conclusion	219	
Chapter 1	11. Conclusions	221	
11.1	Research Questions and Answers	221	
11.2	Threats to Validity	232	
11.3	Generalization	233	
11.4	Key Contributions of this Thesis	235	
11.5	Further Research	237	
Bibliogra	phy	241	
Samenvat	ting	261	
Curriculu	Curriculum Vitae26		

List of Figures

Figure 1 Research process	5
Figure 2 Article overview and their main relations	11
Figure 3 Changing structure in the computer industry	24
Figure 4 Example of a software supply chain	26
Figure 5 Model of industry structure types, visualized	32
Figure 6 Forces of moving from one industry type to another	34
Figure 7 Reference software architecture of a TV developed in a single company	37
Figure 8 Reference software architecture of a TV developed in a supply chain	39
Figure 9 Middleware and platform with glue layer	42
Figure 10 Split of glue software and platform	42
Figure 11 Anticipated mobile industry transition	46
Figure 12 Software architecture EMP	47
Figure 13 System architecture of consumer electronics products that support 3rd party	
applications	58
Figure 14 Classification of ecosystem types with examples from smart phones	59
Figure 15 Multi-Criteria Decision Support Method	61
Figure 16 Multiple product line feature diagram	86
Figure 17 Feature diagram car infotainment system	87
Figure 18 Context variability diagram of the car infotainment system	88
Figure 19 Multiple product line-feature diagram of the car infotainment system	89
Figure 20 Generating specialized feature models	91
Figure 21 MPL-feature diagram for CarA budget	92
Figure 22 MPL-feature diagram of CarA with merged infotainment system	95
Figure 23 Car-infotainment suppliers	.100
Figure 24 Integrating functional areas	.102
Figure 25 Feature models from the suppliers	.102
Figure 26 Alternative subtrees	.103
Figure 27 Merged models with dependencies	.104
Figure 28 Composed SIFM and SSFMs (CSFM)	.106
Figure 29 ZigBee reference architecture.	
Figure 30 Infotainment high level component diagram	.120
Figure 31 Homogeneous and heterogeneous component integration.	.120
Figure 32 Example feature diagram with links to development artifacts, together with i	ts
configuration space	
Figure 33 Layers in the ZigBee protocol with pofiles	.124
Figure 34 Integration of Network and MAC layers	.126
Figure 35 Model transformations for integration and configuration of components	.128

Figure 36 Process overview	129
Figure 37 SVP's of the case study	130
Figure 38 Conceptual model of entities used	130
Figure 39 Meta-model for a glue component	133
Figure 40 Wizards for the interface map configuration process	134
Figure 41 Snippet library	135
Figure 42 Example of the generated glue code for the ZigBee case	136
Figure 43 Component composition and configuration with reachability analysis	139
Figure 44 Feature diagram of the PhoneMeeting voting component	146
Figure 45 Interview protocol	155
Figure 46 Fault tree of software failures	169
Figure 47 Example of a risk matrix	172
Figure 48 Risk matrix with 5 functions	182
Figure 49 Quantified feature model of a digital television	188
Figure 50 Example of a risk matrix	191
Figure 51 Feature model with linked components	192
Figure 52 Risk matrix for reusable components	194
Figure 53 Philips Medical Workspot platform development	196
Figure 54 Risk matrix for Philips Medical Workspot platform	197
Figure 55 Screenshot of a feature a family model with quantification and consistency	
checking	200
Figure 56 The enhanced user-product interaction model	212
Figure 57 ANOM results of the test data	217

List of Tables

Table 1 Applicability of the research results	14
Table 2 Overview of types of ecosystems and their strengths and challenges	67
Table 3 Example of a decision support matrix	68
Table 4 Decision support matrix for gaming consoles	69
Table 5 Decision support matrix for digital photo cameras	71
Table 6 Decision support matrix for digital televisions and set-top boxes	72
Table 7 Decision support matrix for smart watches	74
Table 8 Decision support matrix for smart phones	75
Table 9 Decision support matrix for tablets	76
Table 10 Decision support matrix for personal computers	77
xiv	

Table 11 ZigBee suppliers	111
Table 12 Feature set of selected suppliers	
Table 13 Differences between the technologies used in the ZigBee case study	
Table 14 Quality criteria for the evaluation of TVL	151
Table 15 Profiles of the 5 participants	
Table 16 Results of the evaluation of TVL	
Table 17 Definitions in software reliability	
Table 18 Fictitious operational profile	
Table 19 Comparison of MTBF with uniform versus OP distribution	
Table 20 Comparison with large amount of test cases	
Table 21 Operational profile for the orthopedists	
Table 22 Simulations of allocating test cases to different medium type risks	
Table 23 Comparison of risk analysis processes	
Table 24 Collecting information related to user-product interaction	214
Table 25 Data collected from the consumer test	
Table 26 Results of ANOVA of the test data.	