

University of Groningen

Total variation	error bounds for	convex ap	pproximations	of two-stage	mixed-integer	recourse
models		•	•	J	J	

Romeijnders, Ward

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Romeijnders, W. (2015). Total variation error bounds for convex approximations of two-stage mixed-integer recourse models [Groningen]: University of Groningen, SOM research school

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

Total variation error bounds for convex approximations of two-stage mixed-integer recourse models

Ward Romeijnders

Publisher: University of Groningen

Groningen, The Netherlands

Printed by: Ipskamp Drukkers B.V.

Enschede, The Netherlands

ISBN: 978-90-367-7893-0 (printed version)

978-90-367-7892-3 (electronic version)

© 2015, Ward Romeijnders

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted in any form or by any means, electronic, mechanical, now known or hereafter invented, including photocopying or recording, without prior written permission from the copyright owner.

Total variation error bounds for convex approximations of two-stage mixed-integer recourse models

PhD thesis

to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans.

This thesis will be defended in public on

Monday 7 September 2015 at 12.45 hours

by

Ward Romeijnders

born on 5 September 1988 in Groningen

Supervisors

Prof. M.H. van der Vlerk Prof. W.K. Klein Haneveld

Assessment committee

Prof. D. den Hertog Prof. R.T. Rockafellar

Prof. I.F.A. Vis

Preface

This thesis is the result of four years of research at the Department of Operations at the University of Groningen. I want to take the opportunity to thank everyone who has contributed to this thesis or who has supported me during this period. The Netherlands Organisation for Scientific Research (NWO) is gratefully acknowledged for its financial support.

I wish to express my sincere gratitude to my supervisors Maarten van der Vlerk and Wim Klein Haneveld for their excellent and patient guidance. I have enjoyed our research discussions and I greatly value our collaboration.

I want to thank Professors Dick den Hertog, Terry Rockafellar, and Iris Vis for their willingness to be part of the Assessment committee and for their time and effort spent reading this thesis. Furthermore, I wish to thank the coauthors who contributed to parts of this thesis or to any of our joint journal publications. Special thanks are due to David Morton and Rüdiger Schultz for their hospitality during research visits to the University of Texas at Austin (in the fall of 2013) and to the University of Duisburg-Essen (on several occasions).

I am grateful to my colleagues at the Department of Operations for providing a pleasant work environment. In particular, I want to mention Bram de Jonge and Arjan Dijkstra, with whom many lengthy discussions finally resulted in a journal publication, and Gerlach van der Heide, with whom I shared an office these past four years. I am happy that Gerlach and Arjan have agreed to be my paranymphs.

I want to thank my family and friends, whose interest in my work I greatly appreciate. I apologize if I have not been able to explain what I am exactly doing. Finally, I wish to thank my parents Johan and Elma for always being there for me, and my wife Anouk for her unconditional love and support.

Groningen, 2015.

Contents

1	Intr	roduction	1
	1.1	Main contribution	2
	1.2	Stochastic programming models	4
	1.3	Mathematical properties and solution methods	8
		1.3.1 Continuous recourse models	8
		1.3.2 Mixed-integer recourse models	11
	1.4	Convex approximations	12
	1.5	Outline	15
2	Cor	nvex hull approximation of TU integer recourse models	19
	2.1	Introduction	19
	2.2	The convex approximation of Van der Vlerk	21
	2.3	Rectification of a false claim on the convex hull	24
		2.3.1 Counterexamples	25
		2.3.2 Error in the proof	26
	2.4	Additional assumptions for Proposition 2.1	29
	2.5	Density functions with a strictly decreasing right tail	32
	2.6	Discussion	34
3	Cor	nvex approximations for TU integer recourse models	35
	3.1	Introduction	35
	3.2	Convex approximations and literature review	37
	3.3	Piecewise flattening of density functions without increasing total variation	42
	3.4	Uniform error bound for one-dimensional round-up functions	46
	3.5	TU integer recourse models with independent random variables	57

		3.5.1	Tight bounds for simple integer recourse models	64
		3.5.2	Numerical study of $ Q - Q_{\alpha} _{\infty}$ and its upper bound	66
	3.6	TU in	teger recourse models with dependent random right-hand side	
		param	eters	70
	3.7	Comp	lete integer recourse models	73
	3.8		ary and conclusions	74
4	Tot	al vari	ation bounds on the expectation of periodic functions	77
	4.1	Introd	uction	78
		4.1.1	Properties of $M(\varphi, B)$ and $N(\varphi, B)$	79
	4.2	Packed	d densities and total variation	80
	4.3	Period	lically monotone functions	88
		4.3.1	Flattening of monotone functions	88
		4.3.2	Flattening of density functions	91
		4.3.3	Exact worst-case bounds for periodically monotone functions .	93
		4.3.4	Periodic functions with monotone amplitude	100
	4.4	Appro	eximations of two-stage recourse models	102
		4.4.1	Dual representations	104
		4.4.2	Extending total variation bounds to a multidimensional setting	105
		4.4.3	Discrete approximations for continuous recourse models	109
		4.4.4	Convex approximations for totally unimodular integer recourse	
			models	119
		4.4.5	Lipschitz constant for pure integer recourse models	124
	4.5	Summ	ary and conclusions	127
5	\mathbf{Ass}	essing	the quality of convex approximations using sampling 1	31
	5.1	Introd	uction	132
	5.2	Litera	ture review	134
		5.2.1	Solution methods for integer recourse models	134
		5.2.2	Assessing the quality of candidate solutions using sampling	140
	5.3	Intege	r newsvendor problem	142
		5.3.1	Problem definition and analysis	142
		5.3.2	Numerical experiments	145
	5.4	Fleet	allocation and routing problem	150
		5.4.1	Problem definition and model formulation	150

Contents v

		5.4.2	Concave approximation	154
		5.4.3	Computational study	161
	5.5	Summ	ary and conclusions	163
6	A c	onvex	approximation for mixed-integer recourse models	167
	6.1	Introd	uction	168
	6.2	Asymp	ototic periodicity in mixed-integer linear programming	170
		6.2.1	The Gomory relaxation v_B	171
		6.2.2	Properties of the Gomory relaxation v_B	172
		6.2.3	Asymptotic periodicity in mixed-integer programming problems	175
	6.3	Conve	x approximation of the recourse function	177
		6.3.1	The approximating second-stage value function \hat{v}	178
		6.3.2	Properties of the approximating value function \hat{v}	181
	6.4	Total v	variation bounds	184
		6.4.1	Probability bound	185
		6.4.2	Bounds on the expectation of B -periodic functions	187
	6.5	Error 1	bound for convex approximation \hat{Q}	190
	6.6	Discus	sion	193
7	Tota	al varia	ation, dual norms, and convex optimization	197
	7.1	Intuiti	ve introduction	197
	7.2	Genera	al background on normed vector spaces	199
		7.2.1	Normed vector spaces X	199
		7.2.2	Riesz Representation Theorem $\ \ldots \ \ldots \ \ldots \ \ldots$	201
	7.3	A suita	able vector space of real-valued functions of bounded variation $$.	202
		7.3.1	The dual of $M(x^*,B)$	205
		7.3.2	Total variation in finite-dimensional vector spaces $\ \ \ldots \ \ldots \ \ .$	206
		7.3.3	Expressions for the dual norm $\ \cdot\ ^d$	212
	7.4	Bound	s on $M(x^*, B)$ for periodic functions x^*	213
	7.5	Discus	sion	219
8	Sun	nmary	and conclusions	223
Bi	bliog	graphy		229
S -	men	vatting	g en conclusies (Summary and conclusions in Dutch)	239