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OPEN

REVIEW

Immune and neurotrophin stimulation by electroconvulsive
therapy: is some inflammation needed after all?
EM van Buel1,2,5, K Patas1,3,5, M Peters1, FJ Bosker4, ULM Eisel1,4,6 and HC Klein2,4,6

A low-grade inflammatory response is commonly seen in the peripheral blood of major depressive disorder (MDD) patients,
especially those with refractory and chronic disease courses. However, electroconvulsive therapy (ECT), the most drastic
intervention reserved for these patients, is closely associated with an enhanced haematogenous as well as neuroinflammatory
immune response, as evidenced by both human and animal studies. A related line of experimental evidence further shows that
inflammatory stimulation reinforces neurotrophin expression and may even mediate dramatic neurogenic and antidepressant-like
effects following exposure to chronic stress. The current review therefore attempts a synthesis of our knowledge on the
neurotrophic and immunological aspects of ECT and other electrically based treatments in psychiatry. Perhaps contrary to
contemporary views, we conclude that targeted potentiation, rather than suppression, of inflammatory responses may be of
therapeutic relevance to chronically depressed patients or a subgroup thereof.

Translational Psychiatry (2015) 5, e609; doi:10.1038/tp.2015.100; published online 28 July 2015

ELECTROCONVULSIVE THERAPY
Major depressive disorder (MDD) is one of the major causes of
disability in the Western world, accounting for 6% of the total
burden of disease in Europe as measured by loss of disability-
adjusted life years.1

The pathogenesis of MDD is elusive. This is testified by the
number of hypotheses articulated over the years, which have
taken into account perturbations in monoamine metabolism,
neuroendocrine function, glutamatergic neurotransmission, hip-
pocampal neurogenesis and overall neurotrophic support.2–5 Yet,
one of the latest additions to the puzzle—the inflammatory theory
—aspires to bring these pieces together.6,7

Electroconvulsive therapy (ECT)—the induction of convulsive
seizures via epicranial electrodes placed unilaterally or bilaterally
—is one of the most effective treatment strategies for MDD,
showing superior efficacy compared with antidepressant medica-
tion in numerous studies.8 One of the main indications for ECT is
treatment-resistant depression, in which it can reach remission
rates of up to 50%.9 In addition, as its onset of action is much
faster than for conventional antidepressants, ECT may be a
suitable choice in patients with a high suicide risk requiring
immediate clinical improvement.10 Furthermore, there are indica-
tions that off-label use of ECT may be beneficial in other
neuropsychiatric disorders as well, including schizophrenia,
Parkinson’s disease and Huntington’s disease.11–13

Despite this range of action, the mechanisms by which ECT
exerts its beneficial effects remain largely unknown. Lately,
however, animal studies have demonstrated that electroconvul-
sive seizures (ECS, the animal model for ECT) induce structural

changes within the brain at the cellular and molecular levels. Of
particular interest is the observation that both ECS and ECT induce
several changes in neurotrophin and immune signaling, both in
the central nervous system (CNS) and in peripheral tissues. This
might explain the effect range of ECT, as all conditions that have
been reported to improve by ECT have been linked to immune
dysregulation and/or neurotrophic deficits.11–20

The immune and neurotrophic systems influence each other in
complicated ways that are just beginning to be understood. This
paper attempts a synthesis of our knowledge on the neurotrophic
and immunological aspects of ECT.

NEUROTROPHIC ASPECTS OF ECT
ECT enhances hippocampal neurogenesis
The subgranular zone of the hippocampus is one of the few sites
in the adult mammalian brain where neurogenesis takes place.
Several lines of preclinical evidence associate MDD with impaired
neurogenesis (reviewed in Miller and Hen21). Indirect evidence
from human studies is in line with the neurogenic theory of MDD.
For instance, magnetic resonance imaging studies have shown a
decrease in hippocampal volume in MDD patients, which
correlated with the duration of illness.22 Moreover, there is
evidence of hippocampal dysfunction in MDD, resulting in
memory impairment.23 The neurogenic theory of MDD is further
reinforced by the finding that the behavioral effects of anti-
depressants are largely dependent on their ability to stimulate
hippocampal neurogenesis in animal models.24 Importantly, there
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is now direct preclinical evidence for the role of impaired
neurogenesis in the emergence of a depressive phenotype.25

Preclinical studies further show that chronic administration of
ECS is associated with an increased number of hippocampal
granule cells26 and granule cell mossy fiber sprouting.27 The
neurogenic effect of ECS is stronger than that of pharmacological
antidepressants, and the onset is faster, being comparable to the
fast onset of clinical improvement upon ECT in MDD patients.26

Direct evidence of ECS-induced neurogenesis comes also from
studies in nonhuman primates.28 In humans though, a neurogenic
effect of ECT can only be indirectly deduced by studies showing a
volumetric increase in the hippocampus.29 Of note, ECT-induced
volumetric changes in humans are not specific to this anatomical
region,30 suggesting that brain plasticity mechanisms beyond
neurogenesis may also be involved in the action of ECT.

ECT induces BDNF upregulation
Hippocampal neurogenesis is regulated by a variety of neuro-
trophic factors (reviewed in Lee and Son31). One of the most
studied neurotrophic factors is brain-derived neurotrophic factor
(BDNF). The ‘neurotrophic hypothesis’ of depression postulates
that MDD may result from stress-induced decreases in BDNF and
homologous factors within CNS networks critically involved in the
pathophysiology and/or treatment of the disorder.32 Indeed,
antidepressants increase hippocampal BDNF levels and this
increase is thought to be critical for their therapeutic effects.33,34

In addition, BDNF administration into the hippocampus induces
neurogenesis and has antidepressant effects in animal models of
depression.35 These antidepressant-like effects may be mediated
by altered sensitivity to stress, as the sensitivity to stress-induced
depression-like behavior has been shown to be related to
hippocampal BDNF expression in mice with altered expression
of the glucocorticoid receptor.36

Several lines of evidence demonstrate that ECT alters BDNF
levels and/or BDNF signaling, suggesting that this neurotrophin
may be involved in the antidepressant effects of ECT as well. In
rodents, ECS increases BDNF mRNA and protein in cortical and
hippocampal areas.37–39 In addition to BDNF, ECS upregulates
mRNA expression of the BDNF receptor, TrkB (tyrosine receptor
kinase B), in several cortical and hippocampal areas39 as well as
intracellular signaling cascades activated by TrkB, such as the Ras–
Raf–MEK–ERK pathway and the PI3K/Akt pathway.40–42 These
pathways stimulate a variety of intracellular processes, including
processes involved in the regulation of proliferation and survival.
Interestingly, numerous clinical studies have demonstrated

reduced peripheral levels of BDNF in untreated MDD patients
compared with both antidepressant-treated patients and healthy
controls.43 Although it is generally believed that these findings are
peripheral manifestations of the neurotrophic hypothesis, experi-
mental data from rodent studies show that even widespread
elevations of central BDNF are not necessarily reflected in the
periphery.44 Furthermore, neurotrophins are widely expressed in
non-neuronal tissues,45 thereby further complicating the use of
blood BDNF as a proxy marker for central processes. Most
importantly, animal studies have demonstrated that peripherally
administered BDNF is rapidly taken up by CNS tissues46 and exerts
both neurogenic and antidepressant-like effects,47 strongly
suggesting that central changes of BDNF levels and/or signaling
may be, in part, driven by peripheral BDNF fluctuations. In line
with this possibility, Sartorius et al.48 suggested that blood-borne
BDNF contributes to parenchymal BDNF after repeated ECS in rats.
In patients, several studies observed increased serum or plasma

BDNF levels after ECT,49–54 whereas others have found unaltered
or decreased levels.55–57 The difference in outcome may be due to
the difference in the time lag between treatment and blood
sampling. In general, in studies that found increased BDNF levels
upon ECT, this time lag was longer than in studies that did not find

such an effect, indicating that although ECT does increase
peripheral BDNF levels, these levels may only reach their
maximum in the circulation 1 week to 1 month after completion
of therapy. This view is in line with a recent study in MDD patients
undergoing ECT, showing that the increase in peripheral BDNF
levels is positively correlated to both seizure quality markers as
well as the interval between the last ECT session and the blood
withdrawal.58 The authors suggested that this might be due to a
delayed (46 days) and increased equilibrium of peripheral BDNF
that is secondary to an early central rise of the neurotrophin. This
interpretation, however, is not mutually exclusive with the
possibility that peripheral sources of BDNF are concurrently
mobilized by ECT.

ECT induces VEGF and angiogenesis
Another factor believed to be important in ECS-induced
neurogenesis is vascular endothelial growth factor (VEGF). VEGF
stimulates neuronal proliferation via its receptor, fetal liver
kinase 1 (Flk-1).59,60

VEGF infusions directly increase the number of neuronal
progenitor cells in the rat hippocampus.61 Importantly, ECS-
induced neuronal proliferation can be blocked by inhibition of
VEGF-Flk1 signaling, indicating that VEGF is indispensable for ECS-
induced neurogenesis.61 Animal studies have further shown that
VEGF has antidepressant-like properties.62 However, it is unclear
whether these antidepressant-like properties are causally related
to the neurogenic effects of VEGF. Alternatively, VEGF-induced
antidepressant-like effects may be related to neuronal plasticity.
Indeed, it has been demonstrated that memory-related effects of
VEGF are mediated by synaptic plasticity rather than
neurogenesis.63 As reduced synaptic plasticity is believed to be
related to symptoms of depression as well,64 the ability of VEGF to
stimulate neuronal plasticity may have a role in its antidepressant-
like effects.
VEGF is also a potent stimulator of angiogenesis. This is of

interest as hippocampal angiogenesis is closely linked to
neurogenesis.65,66 In fact, it is believed that most neurotrophic
factors possess at least some angiogenic properties. Angiogenesis
may be essential for the supply of nutrients and other blood-
borne growth factors necessary for ECT-induced neurogenesis. It is
also possible that proliferating endothelial cells are an additional
non-neuronal source of growth factors during ECT.67,68

In patients, serum VEGF was demonstrated to be increased
upon ECT and this increase correlated with clinical
improvement,69 further suggesting that VEGF is an important
component of the antidepressive efficacy of ECT.

IMMUNOLOGICAL ASPECTS OF ECT
Rapid stimulating effects of ECT on circulating cytokines
Increased cytokine mobilization in the peripheral blood, for
example, increased levels of tumor necrosis factor-alpha (TNF-α)
and interleukin-6 (IL-6), is a common immunological finding in
MDD patients70,71 or a subgroup thereof.72 Inflammation-related
genes have also been found to be upregulated in postmortem
frontal cortex of medication-free MDD patients,73 suggesting focal
inflammatory processes in the CNS.
Numerous preclinical studies in rodents as well as clinical

studies in patients undergoing treatment with interferon-alpha
have suggested a role for inflammatory cytokines in MDD.6,74

However, one must keep in mind that the intensity of endogenous
inflammation seen in the peripheral blood of MDD patients is
comparably much less pronounced than that seen in classical
inflammatory, autoimmune or interferon-treated disorders.75

Perhaps counterintuitively, single ECT induces a transient (15–
30min) increase in the expression of pro-inflammatory cytokines,
such as TNF-α, IL-1β and IL-6.76,77 Acute ECT was also found to
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render peripheral blood monocytes of MDD patients more
sensitive to a proliferating stimulus (lipopolysaccharide), as shown
by a more enhanced secretion of TNF-α and IL-6 from these cells.78

Importantly, these cytokine elevations were observed in patient
monocytes upon both the fifth and the eleventh of a series of ECT
sessions, suggesting that this short-term pro-inflammatory com-
ponent of ECT is integral to every session and is not moderated
throughout repetitive treatments.
However, Hestad et al.77 followed ECT-treated MDD patients

using a longer longitudinal protocol and showed that although
ECT indeed increases TNF-α 1 h after the first session, repeated
treatments gradually reduce TNF-α levels. For proper interpreta-
tion, it should be noted that the observed reduction of plasma
TNF-α in this study was most pronounced 1 week after the last ECT
session, thereby precluding acute effects of the electrostimulus on
cytokine measures. In addition, the majority of the patients had
clinically responded to ECT by that time point.
Thus, overall, individual ECT sessions acutely upregulate

circulating inflammatory cytokines, suggesting an immediate
and strong induction of systemic innate immune responses,
possibly associated with robust somatic manipulations. On the
other hand, multi-session ECT may over time result in the
normalization of peripheral blood cytokine measures. Never-
theless, it is unclear whether such a normalization results from a
direct suppressing effect of the treatment on the immune system
or whether it is merely secondary to clinical remission.

Stimulating effects of ECT on peripheral innate immune cells
In terms of cellular immune parameters, numerous clinical studies
have shown in the past that MDD patients may exhibit relatively
increased numbers of neutrophil granulocytes (neutrophilia) as
well as signs of functional immunosuppression, as exemplified by
reduced mitogen-induced T-cell proliferation and reduced natural
killer cell cytotoxicity.79 It is thus interesting to note the effect of
ECT on such parameters.
Fluitman et al.78 showed that acute ECT (15–30min after the

electrostimulus) induces a leukocytosis in MDD patients, driven by
significant increases in absolute numbers of granulocytes,
monocytes and natural killer cells. By contrast, T cells were
reduced in absolute counts. A similar leukocyte pattern of
polymorphonuclear leukocytosis and relative lymphopenia was
observed 2 h after a single ECT in a previous study.80 When a
longer interval was used, mitogen-induced proliferative responses
of lymphocytes were also found decreased after repeated ECT.81

Although overall reductions in lymphocyte counts and prolif-
erative responses seem to be associated with ECT, the percentage
and absolute numbers of activated T cells were found increased
upon completion of another ECT study in MDD patients.82

Furthermore, there are consistent indications that natural killer
cell activity is transiently but significantly boosted in MDD patients
upon both single and repeated ECT.78,82,83

Animal studies seem to recapitulate some of the observations of
the human studies, especially the stimulating effects on the
monocyte and neutrophil compartments. For instance, chronic
treatment with ECS has been reliably shown to induce a sustained
increase in proliferation and metabolic activity of rat peritoneal
macrophages as well as lipopolysaccharide-stimulated mixed
splenocytes.84,85 A marked increase of phagocytic activity was
also evident in rats following focal repeated electrical stimulation
of the hippocampus.86 Intriguingly, the innate cellular response to
electrical CNS stimulation is not only seen in peripheral tissues but
also in the CNS vasculature, as increased trafficking of blood-
derived macrophages (but no CNS infiltration) has been observed
in hippocampal vessels following repeated ECS in rats.87

Stimulating effects of ECS on microglial activity
Microglia—the resident macrophages of the CNS—take charge in
the active immune surveillance of the healthy brain and respond
accordingly to changes in the microenvironment. They are,
therefore, considered the most sensitive sensors of changes in
CNS homeostasis (reviewed in Graeber and Streit88). Accordingly,
one would expect an enhanced responsiveness of these cells
to ECT.
Indeed, studies in rodents have consistently shown that ECS

increases glial proliferation in several brain areas, including the
hippocampus, amygdala, prefrontal cortex and hypothalamus.89–92

Although most studies suggested that these cells remain in an
inactive state, two studies have demonstrated changes indicative
of increased microglial activity after ECS.89,93 Jansson et al.89 have
shown increased numbers of activated microglia as early as 2 h
following the last of a series of ECS. Microglial activation was
transient in most CNS areas; however, in the hippocampus, the
number of activated microglial cells remained increased for up to
4 weeks after ECS. These results coincide with the study of Jinno
and Kosaka,93 who have found reduced microglial process density
in the hippocampus 24 h after a single or repeated ECS. One
month after ECS, microglial process density was still decreased in
the repeated ECS group, but not in the single ECS group. Retraction
of microglial processes is commonly associated with microglial
activation, and therefore these results likely indicate increased
microglial activity.
Thus, while some studies indicate that ECS does not influence

microglial activity,90–92 other studies suggest that there is an effect
on microglial activity.89,93 A reason for this discrepancy may have
been methodological. Although Wennström et al.90–92 and Jinno
and Kosaka93 both based their results on morphological
examination; the microglial marker used for this examination
differed between these studies. Instead, Jansson and co-workers
investigated the presence of markers specific for activated
microglia.89 In addition, Jinno and Kosaka93 used different
electrical intensities during the ECS treatments than the one used
in the other studies, and considering that they reported several
mice dying during ECS, one might question whether the intensity
chosen was perhaps too high and might have resulted in CNS
damage. Moreover, the species that was used (mice or rats) and
the time point at which animals were killed differed between
these studies.
A pro-inflammatory effect of electrical fields propagating in the

CNS has also been demonstrated in a rat model of transcranial
direct current stimulation.94 In specific, an increase of proliferating
cells and upregulation of activated microglia in the cortex
ipsilateral to the stimulation site was evident following daily
administration of transcranial direct current stimulation for 5
consecutive days. Importantly, this early innate immune response
was not associated with cortical lesions or astrogliotic scarring.

THE IMMUNE AND NEUROTROPHIN SYSTEMS MUTUALLY
INFLUENCE EACH OTHER
Immune cells produce neurotrophins in an activation-dependent
manner
Intriguingly, BDNF and its corresponding receptor TrkB are widely
expressed by lymphoid organs and virtually all major subsets of
immunocompetent cells (see for reviews: Tabakman et al.95 and
Vega et al.96). Most importantly, literature from the field of
neuroimmunology points to a generalized increase in the
availability of humoral neurotrophins, including BDNF, in response
to immune stimulation. For instance, both human and rodent
peripheral blood mononuclear cells (that is, lymphocytes, natural
killer cells, monocytes) constitutively transcribe BDNF mRNA and
secrete neuroactive BDNF protein, while producing significantly
enhanced levels of the neurotrophin upon both antigen-specific
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and nonspecific stimulation.97–99 Furthermore, IL-6 and TNF-α are
able to stimulate BDNF secretion from human monocytes in a
dose-dependent manner.100 Accordingly, a positive association
between peripheral IL-6 and BDNF has been recently shown to
exist in a subgroup of MDD patients, but not in non-depressed
controls.101

Interestingly, immune-cell derived BDNF is considered to have a
protective role in neuroimmunological disorders such as multiple
sclerosis and CNS injury,95,99,102 and this notion has been
extended to psychiatric disorders.103 Indeed, clinical data indicate
that leukocyte BDNF gene expression is decreased in MDD
patients,104,105 whereas serum BDNF restoration and clinical
improvement in these patients are paralleled by increases
in leukocyte BDNF expression following antidepressant
treatment.106,107

It is currently unknown whether ECT/ECS specifically upregu-
lates BDNF expression in peripheral blood leukocytes. However, it
is tempting to hypothesize that the generalized immune
stimulation induced by this treatment (see sections ‘Rapid
stimulating effects of ECT on circulating cytokines’ and ‘Stimulat-
ing effects of ECT on peripheral innate immune cells’) renders the
innate immune system a vector of peripheral BDNF increases.
Such increases may in turn contribute to central enhancement of
BDNF (see section ‘ECT induces BDNF upregulation’).
In support of this hypothesis, a recent report shows that the

CNS and peripheral leukocytes are equally affected by transcranial
magnetic stimulation, a non-convulsive modality of brain stimula-
tion which involves induction of intracranial electrical currents by
externally applied magnetic fields. Although much less invasive
than ECT, repetitive transcranial magnetic stimulation was able to
enhance BDNF-TrkB signaling in the CNS as well as in peripheral
lymphocytes.108 This effect was confirmed in both animals and
human subjects and the magnitudes of activation in the two
anatomical sites were significantly correlated. Of note, this study
once more suggested that transcranial magnetic stimulation-
induced upregulation of plasma BDNF is not driven by central
BDNF ‘spillover’ to the periphery.

Neurotrophins stimulate immune function
Despite their name, neurotrophins can also be seen as potent
autocrine- or paracrine-acting immunotrophins, with multiple
functions in the circulation as well as in lymphoid organs. For
instance, BDNF can modulate cytokine expression in human
peripheral blood mononuclear cells,109 as well as in the bone
marrow microenvironment.110 In addition, BDNF was shown to
increase survival of mouse thymocyte precursors.111 Similarly,
impaired B cell development was observed in BDNF-deficient
mice112 and conditional deletion of BDNF in T cells and
macrophages resulted in reduced T-cell activation and cytokine
production.102

The immunostimulant properties of neurotrophins can also be
seen in the rodent CNS, as microglia-derived BDNF can have
a positive autocrine effect, promoting further microglial
activation.113 However, neuron-derived BDNF negatively affects
the antigen-presenting potential of microglia,114 suggesting
that the central immune effects of neurotrophins are tightly
regulated in vivo.

Stimulated microglia may exhibit neuroprotective and
antidepressive properties
It is noteworthy that microglia-derived BDNF has been shown to
stimulate axonal regeneration in the context of experimental
spinal cord injury115 or exert long-term neuroprotection via
sustained neurogenesis in an animal model of stroke.116 However,
prolonged or out-of-proportion exposure to microglial activation
may pave the way for inflammation-mediated neurodegeneration
(reviewed by Correale117).

This ambivalent character of microglial activation seems to be
dictated by the degree of needs arising in the microenvironment.
For instance, Lai and Todd118 demonstrated that primary microglia
stimulated neuronal survival after exposure to media from
moderately injured neurons. This effect was not observed after
exposure to media from mildly or severely injured neurons.
Interestingly, classical pro-inflammatory cytokines were upregu-
lated by microglia only in response to mild injury, whereas BDNF
was upregulated in response to all degrees of neuronal injury.
The beneficial potential of microglial activation in the context of

MDD has been recently demonstrated in a translationally relevant
study that used a chronic unpredictable stress paradigm in
rodents.119 In particular, it was shown that after an initial short
period of microglial activation, chronic stress leads to subsequent
hippocampal microglial apoptosis, decline in cell numbers and
dystrophic morphology. In addition, higher suppression of the
microglial compartment following chronic stress was associated
with higher suppression of neurogenesis and greater depressive-
like behavior.
Strikingly, peripherally induced microglial activation (for exam-

ple, by an acute intraperitoneal injection of lipopolysaccharide)
had a dramatic neurogenic effect in the hippocampus, produced
an overall increase in microglial cell numbers and reversed the
depressive-like phenotype of chronically stressed animals.119

Although neurotrophin assessments were not reported in this
study, it is very likely that the neurogenic and antidepressant-like
consequences of microglial stimulation were, at least in part,
mediated by an activated neuroprotective microglia phenotype.
The perspective of antidepressant-like effects mediated by

inflammatory stimulation of the chronically challenged CNS is
corroborated by both preclinical and clinical studies showing that
broadly used nonsteroidal anti-inflammatory drugs may negatively
interfere with the mode of action and the efficacy of clinically used
antidepressive strategies, such as first-line antidepressive
medications120,121 and deep-brain electrical stimulation.122

In contrary to popular belief, the above-mentioned findings
suggest that potentiation—rather than suppression—of pro-
inflammatory responses may be of therapeutic relevance to
chronically depressed patients or a subset thereof. Of note,
disease chronicity is associated with higher endogenous inflam-
mation and metabolic dysregulation in antidepressant-treated
MDD patients.123,124 Given that ECT is usually a second-line
intervention reserved for refractory MDD, it is conceivable that the
patients amenable to this treatment are—despite peripheral
inflammation—in a prolonged state of microglial suppression
elicited by disease chronicity. In light of the study by Kreisel
et al.,119 higher peripheral inflammation in these chronically
depressed patients could be reconceptualized as an allostatic
attempt of the peripheral innate immune system to stimulate
microglia-derived repair and antidepressant capacities in the CNS.
This, however, would inevitably come about at the expense of
somatic health.125

CONCLUDING REMARKS
Maintenance of bodily tissues depends on graded inflammatory
responses—what differentiates advantageous from pathological
inflammation is the intensity and the timing of its appearance.126

This is particularly relevant to the maintenance of CNS plasticity
during both health and disease.127 The findings mentioned above
are well in line with the neuroprotective properties of inflamma-
tion that have been extensively described in the general field of
neuroimmunology.128 We believe this calls for a balanced
appreciation of the significance and the role of inflammation in
psychiatric disorders as well.
As described in this review, there is compelling evidence that

ECT is closely related to an enhanced innate neuroinflammatory as
well as haematogenous immune response. A related set of
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experimental evidence further shows that immune stimulation
reinforces neurotrophin expression and possibly vice versa,
thereby suggesting one possible route by which bouts of
inflammation may mobilize endogenous neuroprotection (see
Figure 1). However, we are far from understanding how such an
effect could be ‘isolated’ from the detrimental consequences of
inflammation.
Overall, ECT and other electrically based CNS treatments may

not only serve as drastic therapeutic modalities in psychiatry but
may also represent an opportunity to study and possibly exploit
the salutary facets of inflammation. To this end, both clinical and
translationally relevant animal studies will be needed.
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