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Calling genotypes from public RNA-sequencing
data enables identification of genetic variants
that affect gene-expression levels
Patrick Deelen1,2†, Daria V Zhernakova1†, Mark de Haan1,2, Marijke van der Sijde1, Marc Jan Bonder1,
Juha Karjalainen1, K Joeri van der Velde1,2, Kristin M Abbott1, Jingyuan Fu1, Cisca Wijmenga1, Richard J Sinke1,
Morris A Swertz1,2† and Lude Franke1*†

Abstract

Background: RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect
gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific
expression (ASE) analysis. Given increasing numbers of RNA-seq samples in the public domain, we here studied to what
extent eQTLs and ASE effects can be identified when using public RNA-seq data while deriving the genotypes from the
RNA-sequencing reads themselves.

Methods: We downloaded the raw reads for all available human RNA-seq datasets. Using these reads we performed
gene expression quantification. All samples were jointly normalized and subjected to a strict quality control. We also
derived genotypes using the RNA-seq reads and used imputation to infer non-coding variants. This allowed us
to perform eQTL mapping and ASE analyses jointly on all samples that passed quality control. Our results were
validated using samples for which DNA-seq genotypes were available.

Results: 4,978 public human RNA-seq runs, representing many different tissues and cell-types, passed quality control.
Even though these data originated from many different laboratories, samples reflecting the same cell type clustered
together, suggesting that technical biases due to different sequencing protocols are limited. In a joint analysis on the
1,262 samples with high quality genotypes, we identified cis-eQTLs effects for 8,034 unique genes (at a false discovery
rate ≤0.05). eQTL mapping on individual tissues revealed that a limited number of samples already suffice to identify
tissue-specific eQTLs for known disease-associated genetic variants. Additionally, we observed strong ASE effects for 34
rare pathogenic variants, corroborating previously observed effects on the corresponding protein levels.

Conclusions: By deriving and imputing genotypes from RNA-seq data, it is possible to identify both eQTLs and ASE
effects. Given the exponential growth of the number of publicly available RNA-seq samples, we expect this approach
will become especially relevant for studying the effects of tissue-specific and rare pathogenic genetic variants to aid
clinical interpretation of exome and genome sequencing.

Background
Most disease-associated genetic variants in humans are
regulatory and affect gene-expression levels [1-3]. With
the availability of RNA-sequencing (RNA-seq) two strat-
egies are now commonly used to identify these effects:
(1) expression quantitative trait loci (eQTL) mapping to

identify common genetic variants that affect gene-
expression levels [4-8], and (2) allele-specific expression
(ASE) analysis to ascertain whether one allele is more
abundantly expressed than the other for heterozygous
samples. ASE can reveal significant effects even if only a
single sample is heterozygous, permitting investigation
of rare and low-frequency variants in coding regions
[9-11]. On the other hand, eQTL analyses can be used
for any genetic variant, but typically require the use of
dozens of samples in order to have sufficient individuals
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in the different genotype classes. Most eQTL studies so
far have focused on a single tissue with large sample
sizes [3,12,13] (thereby enabling identification of small
effects and entire networks of downstream genes, that is,
trans-eQTLs) or on a few tissues with limited sample
sizes [14-16] (enabling identification of tissue- and cell
type-specific cis-eQTLs). Although efforts are ongoing,
for instance by the GTEx consortium, to investigate lar-
ger numbers of different tissues [17], the number of
samples studied is still limited. Ideally, eQTL data on
many tissues and many different samples should be
available since this would permit eQTL mapping and
ASE analyses on rare and low-frequency variants within
different cell types. This is especially important for the
functional interpretation of clinically important rare var-
iants (particularly recessive Mendelian mutations, where
the mutant alleles have appreciable frequencies in the
general population [18]), but will also aid in the classifi-
cation of variants of unknown significance [19].

Fortunately, the raw data of many RNA-seq experi-
ments are being deposited in public databases, and the
number of available human RNA-seq samples is growing
exponentially, for example, in the European Nucleotide
Archive (ENA) (Figure 1a). Since it has recently been
shown that it is possible to derive reliable genotypes
from RNA-seq reads [20], leveraging publicly available
RNA-seq samples might be a viable strategy for obtain-
ing the sample sizes required to perform eQTL mapping
and ASE analyses on rare and low-frequency variants
across multiple cell types.
Here we present an approach to quantify, normalize

and genotype a large number of heterogeneous RNA-seq
samples. We show that it is possible to reliably identify
eQTLs across many different tissues and also to obtain
tissue-specific eQTLs by combining samples from a sin-
gle tissue derived from many different experiments. We
assess ASE in a large number of samples and identify
rare and low-frequency (pathogenic) variants that affect

Figure 1 Growth of publicly available RNA-seq data and analysis workflow. (a) Over the past years the number of available public RNA-seq samples
has increased exponentially (exponential fit r2 > 0.991). (b) General overview of the steps taken to process, quality control and integrate all samples.
LCL, lymphoblastoid cell line; PCA, principal component analysis. (c) Overview of the diversity of 4,978 samples used for expression clustering. Three
samples having read lengths >140 (365, 452, 151 bases) are omitted from the read length plot.
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gene-expression levels. We have made all our results
freely available online [21], allowing for easy querying of
genetic variants of interest.

Methods
Pipelines and QTL/ASE mapping software
We have made the pipeline and tools that we developed
freely available as open source software. The pipelines
are implemented in Molgenis compute [22] and can be
downloaded at [23]. The QTL/ASE mapping software is
publicly available at [24].

Downloading public RNA-seq experiments
We downloaded the samples from the ENA. The follow-
ing filter criteria were used to download the data: taxon,
human (9606); library strategy, RNA-Seq; library source,
transcriptomic; readcount ≥500,000. This was performed
on 16 January 2014 and resulted in 9,611 runs. We were
able to download FASTQ files for 9,527 runs for which
the md5sum was correct after downloading.

Read alignment
STAR 2.3.1 l [25] was used to align the reads of the
FASTQ files. It is known that read mapping to a com-
mon reference creates mapping bias: more reads will be
covering the reference allele than the alternative allele
[26]. To correct for this bias and allow the investigation
of allelic imbalance, we aligned RNA-seq reads to the
reference genome build 37 masked for SNPs with a
minor allele frequency (MAF) ≥1% in the Genome of
The Netherlands (GoNL) data. Only uniquely mapping
reads were included. We used a variable number of mis-
matches per run: for runs with a read length greater
than 90 bases we allowed 4 mismatches; for a read
length between 60 and 90 we allowed 3 mismatches; and
for shorter reads we allowed 2 mismatches. The runs
were filtered on their percentage of uniquely mapping
reads. We selected 5,499 runs, each having at least 60%
uniquely mapping reads. These filter criteria also en-
sured that all microRNA experiments were excluded.

Gene level quantification
We used HTSeq-count 0.5.4 [27] to quantify gene-
expression levels. Ensembl version 71 was used as gene
annotation database.

Identification of gene-expression outliers
We performed quantile normalization and log2 trans-
formation on the data from the 5,499 aligned runs. We
then performed a principal component analysis (PCA)
over the sample covariance matrix. This revealed 521
strong outliers for the first component (Additional file 1).
Close inspection of these 521 samples revealed that they
included 3 samples that were in fact DNA-seq runs, 312

samples annotated as single-cell sequencing runs, 97 sam-
ples that specifically targeted the HLA region and 1 sam-
ple was a Geuvadis run [28] that did not cluster near the
other Geuvadis samples. Based on this information we de-
cided to remove these 521 runs, leaving 4,978 runs. We
then corrected the expression data for GC content and
the total number of reads. After standardizing the expres-
sion levels for every gene we performed a new PCA
(Figure 2; Additional file 2). The raw and normalized ex-
pression data and the PCA results can be downloaded at
[21]. The annotations for each of these runs are summa-
rized in Additional file 3.

Genotyping
After removing low quality samples we recalculated the
PCA. The first two principal components show clear
separation between primary tissues, cell lines and
hematological tissues (Figure 2a). To select samples for
eQTL and ASE analyses we decided to exclude all
tumor-derived cell line samples (where genotype calling
is inherently difficult due to the presence of somatic
copy number aberrations), by excluding all non-
lymphoblastoid cell line (LCL) samples with a principal
score >0 for PC2 (Figure 2a).
For the genotyping we used a combination of the

Genome Analysis Toolkit (GATK) Unified Genotyper
2.8 [29] and imputation of the genotype likelihoods
using Beagle 4 r1230 [30], which is identical to methods
that have been proposed for low-coverage DNA sequen-
cing [31]. There are many samples that were sequenced
using multiple runs; in the cases where this had been
specifically mentioned in the sample annotation, we
merged all the aligned reads of the different runs to im-
prove genotyping quality. We called genotypes for each
sample individually for all 1000 Genomes, GoNL, and
ClinVar [32] SNPs. We outputted all variants regardless
of the calling quality or number of supporting reads. We
excluded known RNA-editing sites, variants near splice
junctions, and variants at repeat regions, as is recom-
mended when calling variants in RNA-seq data [20].
The genotype likelihoods for the variants with a

MAF ≥1% were used as input for imputation using
Beagle 4 with version 5 of GoNL [33,34] as a reference.
We performed imputation on all the samples merged to-
gether. The genotyping concordances of the Geuvadis
samples were determined by calculating the correlation
between the imputed RNA-seq dosages and the high-
quality genotype calls of the Omni2.5 genotyping chips (as
generated by the 1000 Genomes Project).
For all samples, we calculated heterozygosity rates

using the non-imputed genotypes while taking into ac-
count only SNPs with MAF ≥5% and a read coverage of
at least 10 reads. We excluded 100 samples with a het-
erozygosity rate below 0.2 (suggesting the presence of
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chromosomal aberrations, uniparental disomies or strong
inbreeding) or above 0.4 (suggesting potentially contami-
nated or pooled samples). This resulted in 1,980 genotyped
samples.

Removing duplicate samples
In order to identify duplicate samples that are not anno-
tated as such by ENA we selected the high-quality
imputed genotypes. We selected all variants with an
estimated dosage r2 above 0.95, a MAF of 0.05 and a
genotyping rate of 0.95. We performed pruning using
Plink 1.07 [35] (−−indep −−pairwise 1000 5 0.2) to

select independent variants. We then calculated the
pairwise genotype concordance for the remaining
variants. Based on the resulting distribution we found
that a cutoff of 78% was appropriate in order to deem
samples duplicates (Additional file 4).
If two or more samples were marked as duplicates we

gave first priority to the Geuvadis samples, second prior-
ity to samples from tissues for which we had most other
samples, and finally, those showing the highest number
of expressed genes. Among the 1,264 unique samples
that were eventually selected there were two samples
that we excluded manually because they showed deviating

Figure 2 PCA on expression data of all 4,978 samples that passed expression quality control. (a) The first two expression components show clear
separation between primary tissue samples in green, cell lines (HeLa, K562, Hep G2, and so on) in blue and hematologic tissues and cell types in
different shades of red and yellow. (b-d) The two best discriminating components for the different primary tissues. Each letter represents a
sample from a distinct study showing that this clustering is not driven by a study-specific effect. For each of these three primary tissues, we show
an example eQTL effect specific to these tissues. LCL, lymphoblastoid cell line; PBMC, peripheral blood mononuclear cell.
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expression levels from what we expected for their pre-
sumed tissue and because they had barely passed various
other filter criteria. It is also worthwhile to note that these
were among the eight SOLID samples that had passed the
rest of the quality control (QC). All our criteria finally re-
sulted in 1,262 unique samples that we used for further
analyses.
We subsequently investigated XIST gene-expression

levels and overall chromosome Y expression levels and
observed that the expression levels of these samples cor-
responded well to the gender annotations (available for
41% of the samples; Additional file 5).

Genotype PCA
The genotype PCA was performed on the 1,262 selected
unique samples. The variant filtering and pruning were
performed using the same settings as for removing the
duplicates.

eQTL mapping
Before we performed eQTL mapping, we selected the
best RNA-seq run per sample by choosing the run with
the highest number of expressed genes. The runs were
normalized using trimmed mean of M-values (TMM)
[36] and log2 transformation, centering and scaling. Fi-
nally, we corrected our data for the number of mapped
reads, the GC percentage, the first 4 genotype compo-
nents, and the first 100 expression components. We
grouped our samples using the genotype PCA into three
different groups (Europeans (n = 948), Africans (n = 197)
and Asians (n = 117)) and treated this as a meta-analysis
when performing the eQTL mapping. We used our pre-
viously described eQTL mapping pipeline [3] and
mapped cis-eQTL within 250 kb of the gene center. We
only included variants with an expected dosage r2 ≥ 0.8
for the eQTL mapping.
To correct for multiple testing and in order to get reli-

able false discovery rates (FDRs), we usually employ
a permutation strategy where we define the null-
distribution of eQTL effects by randomly assigning the
genotype sample identifiers to expression sample identi-
fiers and redoing the eQTL analysis. This is only effect-
ive when the genotype data have been generated
independently of the expression data, no population
stratification exists, and samples reflect the same cell
type or tissue. Here, however, the genotype data and ex-
pression data have been derived from the same sample,
and therefore a different permutation strategy is re-
quired, because if a gene is not expressed at all, no geno-
types can be derived (and it could well be that
subsequent imputation might not be able to resolve this
as well either). It is essential, therefore, to only permute
sample identifier labels within sets of samples that re-
flect the same cell type or tissue. In order to do so, we

permuted the sample identifiers within each of the dif-
ferent studies, because nearly all the studies concentrate
on a single tissue. By using this approach we lower the
chance that unknown confounders might cause false
positives. This is further alleviated by the fact that we
have already accounted for most of the differences in ex-
pression between cell types and tissues by correcting the
expression data for 100 principal components.
The replication analysis was performed using the

Geuvadis DNA-seq samples where we treated each
Geuvadis population separately in a meta-analysis. For
each replication analysis we only tested the most signifi-
cant SNP for each significant gene.
We also performed tissue-specific eQTL mapping in

four tissues. We selected only the samples coming from
one population, which resulted in 42 European brain
samples, 50 European breast samples, 42 European liver
samples, and 45 Asian bladder samples. We ran eQTL
mapping in the same manner as described above, with
the exception that we performed a normal permutation
since all samples were from the same tissue, and we
tested whether the identified eQTLs were detectable in
the Geuvadis LCL eQTL data.

Allele-specific expression analysis
We performed ASE analysis by fitting per SNP a bino-
mial distribution using maximum likelihood estimation
and subsequently assessed significance by using a likeli-
hood ratio test. The FDR was controlled using the
Benjamini-Hochberg procedure. During our initial ASE
analysis (not shown) we observed a strong reference bias
for low-frequency variants that had not been previously
masked. We therefore again performed the masking of
the reference genome using all 1000 Genomes, GoNL
and ClinVar variants and performed a new mapping of
the 1,262 samples selected for the ASE analysis. We used
Samtools mpileup 0.1.19 [37] and a custom script to ob-
tain the read counts from these bam files, using only
bases with a quality score of at least 17 (the use of a
more stringent quality score of at least 30 resulted in
fewer reads that we could use, and hence fewer signifi-
cant ASEs that we could detect, but did not observe dif-
ferences in the direction of the ASE effects; data not
shown). We excluded variants in known RNA editing
sites, near splice junctions and in repeat regions in the
same way as when we did the genotyping.
We checked for each sample genotype if the GATK

deemed the individual heterozygous for this variant,
thereby only using genotypes with a Phred-scaled geno-
type quality (GQ) score above 30. For ASE analysis we
selected the SNPs that were heterozygous in at least 5
samples, had at least 10 reads per allele, and at least 2%
of all reads supporting each allele. We removed the sites
that had a mappability score <1 according to the UCSC
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mappability track (CGR Alignability of 50mers) [28,38].
Using these criteria to select variants we tested for ASE
in 56,825 SNPs when only interrogating the Geuvadis
samples and tested for ASE in 225,562 SNPs when using
all 1,262 samples.

Results and discussion
Expression quantification
We downloaded all publicly available human RNA-seq
data from the ENA and aligned the reads for each of
these samples. We identified 4,978 RNA-seq runs that
passed our strict QC (see Methods). We performed sev-
eral analyses to ascertain whether these sequence runs,
produced in many laboratories around the world, jointly
describe biologically coherent patterns. We first con-
ducted PCA to obtain a global view on how the different
samples clustered together. A PCA on the sample cor-
relation matrix showed that components 1 and 2 permit
near-perfect discrimination between primary tissues, cell
lines, and hematopoietic tissues (Figure 2). Other com-
ponents permit accurate identification of many tissue
types such as brain (Figure 2b, components 4 and 10),
liver (Figure 2c, components 14 and 11) and bladder
(Figure 2d, components 4 and 38), even though the
RNA-seq data for these tissues had been generated in at
least six different laboratories, with often quite pro-
nounced technical differences (for example, in sequencer
model, read layout, read length, and total number of
reads, Figure 1c). Together, these results indicate that
heterogeneous RNA-seq datasets that have been aligned,
normalized and quality controlled in a systematic man-
ner yield gene-expression profiles that very clearly de-
scribe biologically coherent phenomena. These results
also indicate that researchers who would like to learn
more about one specific tissue could combine different
(small-scale) RNA-seq data for that tissue into one large
dataset.

Genotyping and imputation
We then assessed whether genotypes could be accurately
derived from the samples, which would permit eQTL
and ASE analysis. After removing genetically identical
samples and additional QC (see Methods), we had a
diverse data set of 1,262 unique individuals (Additional
file 6). We genotyped 321,415 common SNPs that had a
GQ ≥30, a call rate ≥80% and a MAF ≥0.05. We ob-
served that the total number of high-quality genotype
calls that could be made per sample strongly correlated
with the total number of sequenced bases per sample
(Pearson r2 = 0.85; Figure 3a; Additional file 7a). As ex-
pected, genotypes could only be called in regions where
genes are expressed (Figure 3b; Additional file 8).
To ascertain the accuracy of the genotype calls, we

compared the RNA-seq-derived genotypes with actual

DNA-based genotype calls that were available for 459
Geuvadis [28] LCL samples that were part of the 1,262
samples. For the ASE analyses we only used high-quality
genotype calls (GQ ≥30; see Methods), and for this sub-
set of SNPs we observed a median concordance of 1
over all MAF ranges (mean concordance = 0.96).
In order to perform eQTL analysis using non-coding

SNPs as well, we used genotype imputation (see Methods)
to increase the number of common SNPs to 1,081,155
(predicted dosage r2 (DR2) ≥0.8 and MAF ≥0.05). Since
most of the Geuvadis samples (used for determining the
genotyping concordance) are part of the 1000 Genomes
Project [39], we did not use the 1000 Genome refer-
ence panel, but used an independent panel - the
GoNL [33,34] - to ensure that the genotype concordance
measurements were not artificially inflated. The median
genotype concordance r2 for the 1,081,155 imputed SNPs
for the European Geuvadis samples was r2 = 0.92. When
also including the African Geuvadis samples, the genotype
concordance decreased somewhat (median r2 = 0.83), be-
cause the GoNL imputation reference panel only con-
tained Dutch samples. The genotype concordance of
directly genotyped common variants (irrespective of the
genotype quality) showed an increased genotype concord-
ance in 95% of the cases after imputation (Figure 3c). We
also observed that, prior to imputation, there is a large
difference in genotype concordance of variants in low-
expressed genes compared with variants in highly
expressed genes, where genotype calling is easier. How-
ever, this difference became much smaller after imput-
ation, indicating that it is often possible to accurately call
genotypes of SNPs that map within low-expressed genes
by using imputation (Additional file 9).
PCA on the imputed genotypes confirmed that the

major components correctly captured the different an-
cestries of the individual samples (Figure 3d). These re-
sults also permitted us to stratify the samples into three
different groups corresponding to European, African and
Asian individuals, and to perform eQTL meta-analyses,
which are more robust than conducting an eQTL ana-
lysis on all samples combined in regions of the genome
where allele frequencies differ substantially between
populations.

Cis-eQTL mapping
We then ascertained the reliability of conducting eQTL
analysis when using genotypes derived solely from the
RNA-seq data. To do so, we tested how many cis-eQTLs
could be found in the Geuvadis LCL samples when using
the RNA-seq-derived and imputed genotypes, and
also how far they could be replicated using the actual
DNA-based genotypes that were available for these
samples. An eQTL meta-analysis on the Geuvadis sam-
ples using the RNA-seq derived and imputed genotypes
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(see Methods) resulted in 8,765 unique genes with a sig-
nificant cis-eQTL effect (at a FDR ≤0.05; Table 1). Of
these, 95% could be replicated significantly using the ac-
tual DNA-based genotypes (99.95% with the same allelic
direction), indicating that eQTL mapping using RNA-
seq-derived genotypes is certainly possible for datasets
that reflect one sequencing strategy (paired-end 75 bp
reads) and one cell type.
We then performed eQTL analyses (all at FDR ≤0.05)

on the non-Geuvadis samples while attempting to repli-
cate the identified eQTLs in the Geuvadis data (DNA-
based genotypes). We realized that these replication
rates would be partly influenced by tissue-specific eQTL
effects and therefore first investigated the non-Geuvadis
LCL samples (n = 55). Given the sample size, we only
identified 80 significant eQTL genes, but we could repli-
cate 93% of these in the Geuvadis samples, all with the

same allelic direction (Table 1). Subsequently we per-
formed eQTL mapping using all the hematological non-
Geuvadis samples (n = 210), in which we identified 982
significant eQTL genes, of which 82% could be repli-
cated in the Geuvadis samples (98.51% with identical al-
lelic direction). Finally, we also included the primary
tissue non-Geuvadis samples and identified 3,291 signifi-
cant eQTL genes, of which 71% could be replicated in
the Geuvadis LCL samples (98.34% with identical allelic
direction).
We then performed an eQTL analysis on all the

Geuvadis and non-Geuvadis samples, which identified
significant cis-eQTLs for 8,034 unique genes (of which
84% were replicated in the Geuvadis DNA-seq-based
eQTL data, 99.87% with identical allelic direction). This
is fewer than in the analysis on only the Geuvadis sam-
ples due to the fact we were dealing with many different

Figure 3 Genotype concordance and genotype PCA on the 1,262 unique individuals that passed genotype QC. (a) We observe a strong
correlation between the number of sequenced bases and the number of high-quality genotype calls. (b) Genotyping is only possible in regions
with gene expression. DR2, dosage r2. (c) In 95% of the variants imputation increased genotyping concordance. (d) PCA on the genotypes of all
1,262 samples reveals population structure with the expected European, Asian and African clusters.
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tissues in the combined analyses: the small Geuvadis
LCL-specific eQTL effects became diluted by the non-
LCL samples, leading to fewer cis-eQTL effects.
On comparing the 8,765 eQTL genes identified in the

Geuvadis samples to the 3,291 eQTL genes identified in
the non-Geuvadis samples, we observed that 2,374 genes
were identified in both datasets (Figure 4). As expected,
the expression levels of the 903 genes that could not be
identified in the Geuvadis data were significantly lower
in the Geuvadis data (Wilcox P-value 4.05 × 10−61) than
in the non-Geuvadis samples.

Tissue-specific eQTL mappings
Since the public RNA-seq data represent many different
tissues, we assessed whether it is possible to perform
tissue-specific eQTL mapping on samples of the same
tissue generated by different laboratories. We performed
separate eQTL mapping on four tissues: brain (42 sam-
ples from 7 studies), liver (42 samples from 8 studies),
bladder (45 samples from 3 studies) and breast (50 sam-
ples from 4 studies), since they had eQTL data available
on at least 40 samples. This resulted in 121 unique cis-
regulated genes in brain (32% not detected in Geuvadis),
86 genes in liver (37% not detected in Geuvadis), 65
genes in bladder (38% not detected in Geuvadis) and 43
genes in breast (19% not detected in Geuvadis). As ex-
pected, for genes with eQTLs that did not replicate in
Geuvadis, we found that the expression in the respective
tissues was higher (Additional file 10). A representative
example is shown for SNP rs11101999, which showed
a cis-eQTL effect only in brain tissue, on glutathione
S- transferase mu 5 (GSTM5), a gene that is specifically
expressed in brain (Figure 2b; Additional file 11a).
We saw that various genome-wide association study

(GWAS) disease-associated genetic variants showed
tissue-specific eQTL effects: in the liver samples we
found rs2739330, which significantly cis-regulates the

D-dopachrome tautomerase-like gene (DDTL), which
is known to be associated with concentrations of liver
enzymes in plasma (Figure 2c; Additional file 11b) [40].
Another example is rs1045605, which affects prostate stem
cell antigen (PSCA) gene-expression levels in bladder sam-
ples (Figure 2d; Additional file 11c) and which is in near-
perfect linkage disequilibrium with rs2294008 (r2 = 0.98
and D’ = 0.998), a variant that is associated with both gas-
tric [41] and bladder [42] cancers.

Allele-specific expression
We mapped ASE by fitting a binomial distribution per
SNP using maximum likelihood estimation and then
assessed significance by using a likelihood ratio test.
Similar to our study of the eQTLs, we first investigated
the Geuvadis samples and identified 16,217 ASE SNPs
(FDR ≤0.05) using the RNA-seq-derived high-quality
genotypes (GQ ≥30). We compared these results to an
ASE analysis using the actual DNA-based genotypes of
the Geuvadis samples. Out of the 9,341 (99%) ASE
SNPs that could be tested, 9,221 were replicated using
DNA-based genotypes (99.87% with identical allelic
direction). Vice versa, on using the Omni DNA geno-
types to detect ASE effects, only 232 of them were not
found when using RNA-seq genotyping. We next
assessed the concordance with the eQTL results: since
eQTL mapping and ASE analysis both test the associ-
ation between genetic variation and gene expression,
we expected the same allele to be more highly
expressed in both methods. Indeed, we observed that
for 93% of the 1,552 SNPs that showed significant
ASE and eQTL effects on the same gene, the allelic
direction was consistent. This percentage is similar to
another comparison of ASE and eQTL effects, in which
90% of the overlapping eQTL and ASE effects were in the
same direction [43].

Table 1 Overview of identified eQTL genes (FDR <0.05) that were significant in different subsets of the data

Dataset Number of
European
samples

Number of
African
samples

Number of
Asian
samples

Number of
unique eQTL
genes

Number of eQTLs
replicated in Geuvadis
LCLs, based on DNA
derived genotypes

Replication Percentage
replicated with
identical allelic
direction

Geuvadis LCLs, RNA-seq
derived genotypes

371 88 0 8,765 8,301 95% 99.95%

Non-Geuvadis LCLs, RNA-seq
derived genotypes

29 26 0 80 74 93% 100%

Non-Geuvadis hematological
samples (including LCLs),
RNA-seq derived genotypes

129 81 0 982 803 82% 98.51%

All non-Geuvadis samples,
RNA-seq derived genotypes

577 109 117 3,291 2,345 71% 98.34%

All samples, RNA-seq derived
genotypes

948 197 117 8,034 6,728 84% 99.87%

eQTL, expression quantitative trait locus; LCL, lymphoblastoid cell line.
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To gain maximum power to detect ASE effects we
then performed an analysis on all 1,262 samples and
identified 71,214 significant ASE SNPs (FDR ≤0.05), of
which 4,781 pertained to rare SNPs with a MAF <0.01
and to 9,018 low-frequency SNPs with a MAF between
0.01 and 0.05. We again compared these ASE SNPs with
the eQTL mapping performed on all samples and ob-
served that for 85% of the 1,956 SNPs that showed both

significant ASE and eQTL effects on the same gene, the
allelic direction was consistent.
It has been reported that nonsense SNPs show ASE

with lower expression of the deleterious allele due to
nonsense-mediated decay [9,28]. To investigate this, we
annotated the ASE SNPs using SnpEff [44] and indeed
found that, for nonsense SNPs, the alternative allele is
often less expressed than the reference allele (Figure 5),

a

c

b

Figure 4 Geuvadis eQTLs versus non-Geuvadis eQTLs. (a)When performing eQTL analysis on the non-Geuvadis samples we identify 3,559 significant
eQTL genes (FDR <0.05). Of these genes, 903 are not detected when using the Geuvadis samples. (b) Comparing the expression levels of the genes
not identified in the Geuvadis samples we observe that, in general, these genes are much more abundantly expressed in the non-Geuvadis samples.
(c) Example eQTL effect of rs7252798 affecting expression levels of ZNF100 that is only identified in the non-Geuvadis samples.
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whereas for other variants we did not observe this bias
(Wilcoxon P-value 2.19 × 10−60). We also investigated
the effect and expected functional impact of the ASE
SNPs as predicted by SnpEff. We observed that the SNPs
with an expected high functional impact according to
SnpEff (Wilcoxon P-value 7.52 × 10−3) and those that
introduce a stop codon (Wilcoxon P-value 3.66 × 10−3)
again showed less expression of the alternative allele
(Additional file 12).
We further investigated the functional consequences

of common ASE variants by assessing if they were
present in the GWAS catalog [45]. We identified 5 ASE
variants with GWAS associations (Additional file 13).
For example, rs12203592 is located in the IRF4 gene and
the T allele increases the risk of non-melanoma skin
cancers [40] and increases expression levels (Figure 5a;
Additional file 14b).
Since ASE mapping also permits the identification

of rare and low-frequency variants, we were able to
identify 34 variants known to be pathogenic in a
Mendelian setting according to the ClinVar database
(Additional file 13) [32]. One example is rs72550870,
located in the MASP2 gene, where we observed an
ASE effect (Figure 5b). It has already been shown
that the alternative C allele causes MASP2 deficiency
with a recessive inheritance pattern and that hetero-
zygous individuals have significantly lower MASP2
protein levels than individuals homozygous for the
wild-type allele [46]. Our ASE results show exactly
the same effect on gene-expression levels. Here it is
important to note that the MASP2 gene is predomin-
antly expressed in the liver (Additional file 14a) and
that all the samples showing this ASE effect were
liver samples, demonstrating the power of a dataset
containing multiple tissue types to target a variety of
diseases.
The ASE effects obtained can be queried at [21] using

the MOLGENIS software platform [47]. It is possible to
query a specific variant or search for all ASE variants as-
sociated with a specific gene. All our data are available
for downloading from this website, including the geno-
types, expression data, principal components, eQTLs
and ASE effects.

a

b

c

Figure 5 Example ASE effects and direction of ASE effects over
different functional classes. (a) ASE of rs12203592 located within the
IRF4 gene. The T allele is more abundantly expressed and increases
the risk of non-melanoma skin cancers. (b) rs72550870, located in
MASP2, shows lower expression for the alternative C allele, known to
cause MASP2 deficiency. (c) All significant ASE SNPs were annotated
with functional class information. As expected, nonsense mutations
often lead to lower expression levels, in contrast to ASE effects in
other functional classes.
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Conclusions
We have shown that it is possible to reliably map eQTLs
and perform ASE analyses by calling genotypes directly
from RNA-seq data of 1,262 human samples, despite the
fact that these data originated from different tissues,
were obtained from different laboratories, and were gen-
erated using different sequencing techniques.
We called genotypes using GATK, and subsequently

imputed using Beagle, while using the GoNL reference
panel, to permit unbiased genotype concordance ana-
lyses for the Geuvadis samples. We observed that imput-
ation improved the genotype concordance substantially.
We find that it is more difficult to impute non-European
samples, which is due to our imputation towards the
GoNL reference panel. Although GoNL has been shown
to yield high-quality imputation for European samples
[33], its performance has not yet been assessed on non-
European populations. It is unreasonable, therefore, to
expect it to perform equally well for Asian or African
samples. We expect that a more diverse reference panel
will help to resolve this issue in the future.
In this study we had to annotate each sample manually

because we found that the annotations available for the
different sequence runs were typically limited and incon-
sistent in terminology. A second reason was that the
sample annotations were scattered over multiple data-
bases. Thirdly, although in general the ENA provided
better-structured annotations, the information in the Se-
quence Read Archive was typically more extensive, pro-
viding a total of 572 different annotation fields, of which
16 could refer to the tissue of origin. We expect that
with more consistency in sample annotation, future
large-scale integration of public RNA-seq datasets using
automated sample annotation will become feasible.
We have demonstrated that it is possible to run tissue-

specific eQTL mapping in public RNA-seq data. We
showed that when using only 42 liver samples (originating
from eight different labs), it was possible to identify eQTLs
that are liver-specific, some of which had been detected by
earlier GWASs as associated with liver-specific traits. Al-
though the concept of tissue-specific eQTLs is not new,
our results demonstrate that different research groups in-
vestigating a specific disease in a particular tissue can com-
bine their data in order to conduct joint eQTL mapping.
This strategy will certainly prove useful for tissues that are
difficult to obtain.
We were able to identify ASE effects for various rare

disease-causing variants using only 1,262 samples. We
expect our approach will also be useful for studying
many other rare pathogenic variants in the near future,
because the number of publicly available RNA-seq sam-
ples is growing exponentially: at the end of July 2014,
the ENA contained 14,831 human RNA-seq samples,
which is over 1.5 times the number of samples that we

investigated here. Additionally, the read depth and read
length per sample are steadily increasing (Additional
file 7b), permitting more sensitive eQTL and ASE ana-
lyses (on less expressed genes) on the newly deposited
samples. Although a subset of the 1,262 samples used
for ASE analysis reflect cancer samples, inclusion or ex-
clusion of cancer samples did not result in fewer signifi-
cant SNPs that showed an ASE effect (proportional to
the number of samples omitted), nor in differences in
the direction of ASE effects (data not shown).
We anticipate that, with more samples available, eQTL

and ASE effects will be detectable for many more (rare)
variants. These will be of particular relevance for rare
genetic variants that have been identified in patients by
exome or genome sequencing but for which the clinical
significance remains unknown. If such rare alleles are
also present in any of the publicly available RNA-seq
samples and they are seen to reduce expression levels
strongly, this might suggest they have a loss-of-function
effect, strongly warranting clinical follow-up. As such, our
approach could well complement existing computational
prediction algorithms (that have so far been based primar-
ily on allele frequencies and conservation information),
and help speed up the identification of disease-causing mu-
tations, leading to better treatment options and well-
informed decisions for patients and their families.

Additional files

Additional file 1: Figure S1. PCA on expression values shows strong
outliers that are removed from the analysis. The 521 outliers of the first
component (left of the red line) were removed from our analyses.

Additional file 2: Figure S2. Correlation of principal components
versus different confounders.

Additional file 3: Table S1. Table with sample annotations for the
4,978 samples that passed quality control.

Additional file 4: Figure S3. Identification of duplicate samples. We
used a cutoff of 78% identity to select duplicate markers. By using this
cutoff level we could identify all the duplicates, which we expected
based on the annotations. The reason that we have multiple peaks above
this cutoff is due to the difference in genotyping quality among the
samples. Panel (b) is the enlargement of the lower part of panel (a).

Additional file 5: Figure S4. Expression of XIST and chromosome Y
genes. We show a clear separation of males and females using both XIST
expression and chromosome Y expression. In two cases, the samples
were annotated as male but clustered within the females; these are likely
mis-annotations.

Additional file 6: Figure S5. Overview of the properties of the 1,262
samples used for eQTL and ASE analyses. Here we show that the samples
which we successfully genotyped and used for the eQTL and ASE
analysis still show high heterogeneity in sequencer models (a), read
layout (b), sampled tissue (c), cancer status (d), total number of reads (e),
and read length (f).

Additional file 7: Figure S6. The relation between sequencing depth
and the number of high quality genotypes. (a) We observe a strong
relation between the number of sequenced bases and the number of
high quality genotypes, we do not observe that paired end sequencing
improves genotyping. (b) We observe that newer samples usually have
more bases sequenced.
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Additional file 8: Figure S7. Overview of genotyping accuracy and
gene expression over all chromosomes.

Additional file 9: Figure S8. Relation between gene-expression levels
and genotype concordance before and after imputation. Genotype
concordances in all Geuvadis samples (a) and European Geuvadis
samples (b) of common SNPs (MAF ≥0.05, DR2 ≥ 0.8) before and
after imputation grouped by the median expression levels of their genes.

Additional file 10: Figure S9. Expression of tissue-specific cis-eQTL
genes versus Geuvadis expression. We find that genes with tissue-specific
cis-eQTLs are more abundantly expressed in the respective tissues
compared with the Geuvadis samples in which we did not observe
the cis-eQTLs.

Additional file 11: Figure S10. Expression of example tissue-specific
eQTL in different tissues. Here we show three examples of tissue-specific
eQTL genes. (a) GSTM5, brain-specific. (b) DDTL, liver-specific. (c) PSCA,
bladder-specific.

Additional file 12: Figure S11. Predicted functional impact of ASE
variants. The annotation of ASE SNPs predicted impact and effect
was performed using SnpEff. (a) Most of the high-impact SNPs have
lower expression of the alternative allele. (b) The majority of the SNPs
introducing a stop codon have lower expression of the alternative allele.

Additional file 13: Table S2. Overview of detected ASE variants with
ClinVar or GWAS annotation.

Additional file 14: Figure S12. Expression of the MASP2 gene is
liver-specific and the expression of the IRF4 gene is hematopoietic-specific.
(a) The MASP2 gene has higher expression in liver compared with other
tissues. (b) The IRF4 gene has higher expression in hematopoietic cells
compared with other tissues.
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