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Abstract Coordination of birds in large flocks is amazing, especially, since individual birds
only interact with a few neighbors (the so-called ‘influential neighbours’). Yet, empirical
data show that fluctuations of velocity and speed of different birds are correlated beyond
the influential neighbours and are correlated over a larger distance in a larger flock. This
correlation between the correlation length of velocity or speed and flock size was found to
be linear, called a scale-free correlation. It depends on the way individuals interact in the
flock, for instance, on the number of influential neighbours and speed control. It is unknown
however, how exactly the number of influential neighbours affects this scale-free correlation.
Recent empirical data show that different degrees of control of speed affect the scale-free
correlation for speed fluctuations. Theoretically, based on statistical mechanics, it is predicted
that at very high speed control, the correlation is no longer scale-free but saturates at a certain
correlation length and this hampers coordination in flocks. We study these issues in a model,
called StarDisplay, because its behavioural rules are biologically inspired and many of its
flocking patterns resemble empirical data. Our results show that the correlation length of
fluctuations of velocity as well as speed correlate with flock size in a scale-free manner. A
higher number of influential neighbours causes a diminishing increase of the slope of the
scale-free correlation with velocity, resulting thus in flocks that coordinate more uniformly.
Similar to recent empirical data higher speed control reduces the correlation length of speed
fluctuations in our model. As predicted theoretically, at very high speed control the model
generates a non-scale free correlation, and although there are still flocks, they are in the
process of disintegrating.

Keywords Flocks of birds · Self-organization · Number of influential neighbours · Spatial
dynamics · Scale-free correlation · Speed control · Information transmission
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1 Introduction

Flocks of birds show remarkable coordination of movement among their members. Examples
are the coordinated aerobatics of dunlins (Calidris alpina) [1] and the complex aerial maneu-
vers of huge flocks of starlings (Sturnus vulgaris) at dawn above a roosting or sleeping site
[2–6]. This complex aerial maneuvering of starlings is amazing, because even though starling
flocks may be huge (more than 10.000 individuals), recent studies with the help of stereo-
photography above Rome [7,8], show that individuals appear to coordinate on average only
with a few influential neighbours, the topological range, of about 6 or 7 individuals [9,10].
Yet, individuals appear to be influenced indirectly by others over a longer range, beyond
the topological range: in larger flocks the correlation length of the fluctuations of velocity
and speed increase with flock size linearly [9]. Larger flocks thus comprise larger units of
which the members are observed to coordinate strongly. The size of the units with correlated
movement also depends on the number of neighbours with whom individuals interact [18].
The number of influential neighbours may differ between species [10–12]. As to biological
advantages, both a high and low numbers of influential neighbours may be adaptive in terms
of information transmission and protection against predator attacks [10,13–15].

The size of the clusters of individuals with correlated speed in flocks of starlings (correla-
tion length) have been shown to depend further on the speed control. The correlation length
becomes shorter with increasing speed control [16]. Studies in statistical physics predict that
at very high speed control the correlation with flock size is no longer scale-free and that this
lack of a scale-free correlation should be associated with impaired coordination in flocks of
birds [9,16].

To study how the correlation length depends on the number of influential neighbours and
speed control, we need a relevant computational model. We choose the computer model,
called StarDisplay, because this model concerns flocks whose patterns of flocking emerge
automatically from interactions among individuals steered by biologically inspired rules and
tuned to biologically relevant parameters and because its patterns of flocking remarkably
resemble those of huge flocks of real starlings when flying above the roost in Rome [7,8,17].
Indeed our computational model, StarDisplay, has shown that not only, like in empirical
data, in larger flocks the correlation length of the deviation of the velocity from the aver-
age is longer and linearly related to flock length, called a scale-free correlation [17], but
also that the slope of this correlation is steeper for a greater number of influential neigh-
bours [18]. It has not been studied systematically however how the correlation length and
the slope depend on the number of influential neighbours. This is of interest, because cor-
relation length probably affects information transmission. Neither has it been shown how
the correlation length of fluctuations of speed depend on flock length and on speed con-
trol.

The aim of the present study is to examine these issues systematically in the model,
StarDisplay. In it three behavioral rules for coordination of movement based on avoid-
ance, alignment and attraction [19–24] have been combined with the following number
of characteristics of birds [8,17]. Modeled individuals fly according to simplified aerody-
namics, i.e. they experience lift, drag and the force of gravity [25]. In order to fly along
a curve, individuals roll, like real birds do, into the direction of the turn reaching a cer-
tain angle to the horizontal plane, the so-called banking angle [26]. The model is parame-
terized to empirical data of starlings, as regards body weight, speed, lift-drag coefficient
[27], roll rate [8], and the way in which the flocks remain above a site for sleeping of
size similar to that observed in Rome [2,7]. The resemblance to empirical data of flocking
patterns in the model concerns the relative proportions (aspect ratios) of the flocks, their
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Flocks of Birds 565

flat shape, their orientation, and their internal structure as regards the similarity in density
between front and back, and the distribution of distances and angles to the nearest neigh-
bours. As to the way flocks turn in the model, the orientation of the flock changes relative
to the direction of movement, individuals swap locations, the flock compresses and indi-
viduals in the model lose height during turning as in rock doves, starlings, pewits and in
steppe eagles [7,28–30]. Resemblance includes further the scale-free correlation between
flock size and the correlation length of velocity [17,18], which we study here in more
detail.

In the present paper, we show that, while keeping density constant, the correlation length
in velocity in flocks in the model increases not only with the flock size [17], but also with
the number of influential neighbours (topological range) [18]. We show further that the
correlation between the correlation length of fluctuations in speed and flock length is linear
and that the correlation length decreases with increasing speed control. At high values for
speed control its correlation with flock length saturates and thus becomes non-scale-free.
Although the flock still coordinates, it is in the process of collapsing into subgroups in line
with theoretical predictions [9,16].

2 Methods

2.1 The Model

2.1.1 General Outline of the Model

Because flying implies movement in all directions, we developed a model in three dimensions.
The behaviour of each individual in StarDisplay is based on its cruise speed, its social
environment (i.e. the position and heading of its nearby neighbours), its attraction to the
roost, the simplified aerodynamics of flight which includes banking while turning, reaction
time and random noise, indicating unspecified causes [8,17]. It comprises two causes of
error, the random noise and the reaction time, because while waiting to react, the birds still
continue to fly (Table 1). Following other studies [19,23,31], we model social coordination
in terms of (social) forces. We built the model in SI units and choose real parameter values
where available (Table 1). For details of the behavioural rules see Appendix.

2.1.2 Parameterization, Initial Condition and Experiments

We have parameterized individuals in the model to realistic data of birds, especially of
starlings, see our earlier version of StarDisplay (Table 1) [8]. Roll rate and banked turns were
tuned to those observed in movies of starlings and appear to be within the range measured
for other species [32] and to resemble empirical data in that individuals lose height during
turns and that they roll into the turn faster than that they roll back [32,33] (Appendix, Eqs.
(22) and (23)).

Note that we have kept the distance to the nearest neighbours constant in our simulation-
experiments. This is important because otherwise the number of influential neighbours may
influence the correlation length ξ via a difference in density.

We study the effect of the number of influential neighbours, i.e. topological range (Table
1). In order to study many flock sizes, we have drawn flock sizes from a geometric distribution
of 50.000 individuals. The geometric distribution is given by P(x = n) = p ·(1− p)n−1 with
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566 C. K. Hemelrijk, H. Hildenbrandt

Table 1 Parameters of the model

Parameter Description Value

N Flock size (# of individuals) 10–10,000

nc Number of interaction partners 2, 3, 4, 6.5, 15, 20, 25

rsep Separation radius 2.0, 2.3, 2.8, 4.0, 5.5, 7.0, 9.0, 10.0 m

NNDc Standard nearest neigbour distance 1.2 m

�t Integration time step 5 ms

�u Reaction time 50 ms

v0 Cruise speed 10 m/s

m Mass 0.08 kg

CL/CD Lift-drag coefficient 3.3

Lo Default lift 0.78 N

D0, T0 Default drag, default thrust 0.24 N

wβin Banking control 10

wβout Banking control 1

wsp Speed control 1, 0.5 0.1, 0.01, 0.001, 0 1/s

Rmax Max. perception radius 100 m

s Interpolation factor 0.1 �u

rh Radius of max. separation (“hard sphere”) 0.2 m

ws Weighting factor separation force 1 N

- Rear “blind angle” cohesion & alignment 2*45◦
wa Weighting factor alignment force 0.5 N

wc Weighting factor cohesion force 1 N

Cc Critical centrality below which an individual
is assumed to be in the interior of a flock.

0.35

wξ Weighting factor random force 0.01 N

RRoost Boundary radius 150 m

wRoost H Weighting factor horizontal boundary force 0.01 N/m

wRoostV Weighting factor vertical boundary force 0.2 N

Top section concerns the parameters in the present study, namely flock size and number of influential neigh-
bours. In order to keep the distance to the nearest neighbours (NND) constant at 1.2 m for higher numbers of
influential neighbours, larger radii of separation were used. Bottom section comprises the default parameters
of the model [8,17]

p = 0.1, obtaining flock sizes ranging between 10 and 10.000 individuals (Table 1). In order
to study purely effects of number of flock members and influential neighbours and not of
differences in flock density (that usually accompany a higher number of influential neighbours
[34]), we increase the separation radius rsep if the number of influential neighbours is higher
(Table 1) so that we maintain approximately the same nearest neighbour distance NNDc for
the different numbers of influential neighbours.

We investigated values of speed control wsp in Eq. (3) of 0, 1 and 100 (Table 1), by default
we used wsp = 1 or wsp = 0.

At the beginning of each simulation, individuals start with random orientations at random
positions inside a cylinder with radius, RRoost . In order to omit effects of initial condition,
we have studied patterns after a transitive period of 2 minutes.
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Fig. 1 Correlation length of the deviation from the average of velocity ξu and speed ξsp among individuals in
the flocks [17]. a, c Calculation of a single case of the correlation length is shown for velocity ξu (a) and speed
ξsp (c) for an arbitrary flock size of 1,574 individuals and flock length (largest distance between two flock
members) of 45 m and the number of influential neighbours is 6.5. The dotted line shows where the correlation
function is zero, which indicates the correlation length. b, d The relation between correlation length and flock
size L (in m) is shown for velocity (b) and speed (d). This includes the case for the flock at the left. The slope
au of the regression line (solid line) for velocity in the model is 0.44 (Pearson’s correlation test: n = 344, r
= 0.98, P < 0.001) and for speed it is asp = 0.41 (Pearson’s correlation test: n = 340, r = 0.96, P < 0.001).
Shown as dashed lines are the corresponding empirical regression lines from [9] where the slope for velocity
au is 0.35 and for speed asp is 0.36

2.2 Measurements

We measured the following properties of a flock: (a) the flock size in terms of its maximum
length L , and (b) the correlation length of the fluctuations of the velocity ξu and of speed ξsp

among its group members (Fig. 1). Each point in Fig. 1b, d and in the measurement of Fig.
1a, c, corresponds to a time-average of a specific flocking event.

2.2.1 The Maximum Length of the Flock

The maximum length of the flock L is given as the largest distance between two flock members
as was done in the empirical study of starling flocks [9].

2.2.2 The Correlation Length of the Fluctuations of the Velocity and Speed

The correlation length of the fluctuations of the velocity among group members ξu reflects
the size of the domains or sub-flocks of individuals that are temporarily closely correlated
in their velocity. We calculate the correlation length ξu in three steps as was done for real
starlings [9]. First, the deviation ui of the velocity of each group member i of that of the
average velocity is calculated Eq. (1)

ui = vi − v̄ Deviation from flock velocity (1)
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568 C. K. Hemelrijk, H. Hildenbrandt

Here, vi is the velocity of individual i , v̄ is the velocity of the centre of gravity. Further, the
correlation function of the fluctuations of velocity among all individuals Cu(d) measures the
average inner product of the fluctuations of velocity between individuals at distance d Eq.
(2):

Cu(d) = 1

c0

∑
i j ui u jδ(d − di j )
∑

i j δ(d − di j )
correlation function (2)

Here, δ(d − di j ) is a smoothed Dirac δ-function, di j is the distance between two birds and
c0 is a scaling factor such that Cu(0) = 1. High values of Cu(d) indicate strong correlations
in velocity among all flock members at a certain distance. As is typical in flocks the values
of the correlation are greater for short distances and become negative for large distances.
The correlation length ξu is the distance among birds for which the correlation function is
zero (Fig. 1a, c). This value reflects the average size of the correlated domains (i.e. the size
of the temporary sub-flocks with strongly coordinated movement). The correlation length of
fluctuations in the modulus of velocity, namely speed, ξsp is calculated similarly replacing
velocity by speed. For an example of both, see Fig. 1a, c. Note that in case of high speed
control (Fig. 4) where the function Csp(d) drops fast, the function may cross zero at several
points. Here, we estimate ξsp by fitting a line through the points surrounding the average
crossing point. We establish ξsp as the point where this line crosses zero.

3 Results

3.1 Flock Size

An example of the measurement of the correlation length of velocity ξu and of speed ξsp

is shown in Fig. 1a, c. For both, velocity and speed, we find that the correlation length is
larger in larger flocks. This increase is a positive, linear scale-free correlation between the
correlation length of the deviation from the average of the velocity ξu and of speed ξsp with
the flock size (Fig. 1b, d). Thus, ξu = au L and ξsp = asp L , whereby a represents the slope of
the correlation.These scale-free correlations strongly resemble the correlations in empirical
data, but their slope a is greater in the model than in empirical data [9]. Thus, temporary
sub-flocks are larger.

For studying the effect of the number of influential neighbours, we confine ourselves to
the correlation length of velocity ξu , because its correlation with flock length L is better
understood than that of speed [16].The effects of flock size on the correlation length ξu or
temporary sub-flocks, can be observed in Fig. 2 and in movies S1–S4 where the deviations
of the velocity from the average are colour-coded. Blue indicates no deviation of the average
velocity and red indicates the biggest deviation. By comparing for 6 or 7 influential neighbours
in the subfigures in Fig. 2a, c and in the movies S1 and S2, the larger flock with the smaller
one we see that in the larger flock the size of the temporary sub-flocks (of a single colour),
and thus correlation length ξu , is larger, the size of the deviations is greater (more red) and
that the shape of the flock is more complex.

3.2 Number of Influential Neighbours

For studying the effect of influential neighbours, we increase their number in the model
by making individuals interact with 2 up to 25 of their closest neighbours. We do so for
flock sizes with the same density drawn from a geometric distribution comprising 10–10.000
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Fig. 2 Snapshots of the deviations of velocity from its average in flocks of different sizes (with 2,000 and
5,000 individuals) and with different number of influential neighbours (topological range 6.5 and 25). For
effects of flock size compare snapshots within each column, for effects of number of influential neighbours
compare snapshots within each row. Global velocity deviations from the average range between 0 (blue) to
1.5 (red), see color scale

individuals. The correlations between correlation length of deviation of velocity ξu and flock
size L are linear in each case. At larger numbers of influential neighbours, this correlation is
steeper (Fig. 3) as is visible from the larger correlation length ξu (Fig. 2, movies and compare
S1 versus S3 and S2 vs S4). By comparing figures within rows in Fig. 2 and movie S3 versus
S1 and movie S4 against S2, we see that the higher number of influential neighbours causes
the size of the temporary sub-flocks to be larger and the flock shape to be simpler (being
more circular and less convoluted at the border). The slope au does neither depend on the
number of influential neighbours as a power function (log–log plot in inset of Fig. 3) nor as
a logarithmic function (results available in request).

3.3 Speed Control

As to the scale-free correlation between fluctuations of speed and flock size, we investigate
whether the correlation length ξsp reduces at larger values of speed control like in the empirical
study (Fig. 4) [16]. In our model a similar parameter of speed control is wsp in Eq. (3). We
confirm that indeed, increasing this parameter wsp results in our model in a shorter correlation
length ξsp (inset of Fig. 4) and a lower deviation of speed. In our model we cannot study
extreme values for the speed control wsp as studied theoretically by Bialek and co-authors

123



570 C. K. Hemelrijk, H. Hildenbrandt

0 5 10 15 20 25
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Number of interaction partners

a u

100 110

10-0.5

10-0.4

Number of interaction partners

a u
Log-Log

Fig. 3 The effect of the numbers of influential neighbours (topological range) on slope au of the linear
relationship between the correlation length of velocity ξu and the flock size L . Inset shows the double-
logarithmic plot of the same data. (For calculating the slope we allocated per data-point 50.000 individuals to
flocks of different sizes by drawing them from a geometric distribution, see Sect. 2.1.2)

0 5 10 15 20 25 30
-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

d [m]

C
sp

(d
)

w
sp

= 0

w
sp

= 0.001

w
sp

= 0.01

w
sp

= 0.1

w
sp

= 0.5

w
sp

= 1

0 0.2 0.4 0.6 0.8 1
5

10

15

20

wsp

ξ s
p [

m
]

Fig. 4 The correlation function Csp(d) at different values of speed control wsp . Inset shows correlation
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[16], for two reasons. First, we cannot decrease the speed control to the very low values,
because not only the parameter wsp controls speed in our model (Eq. 3), but also the relative
amount of drag and thrust do so (Eqs. 18, 20). Second, we cannot apply extremely strong speed
control wsp , because above a certain value of speed control, wsp >100, flocks disintegrate
too fast (Fig. 5a). At a reasonably high value of speed control in our model, at wsp=1, the scale

123



Flocks of Birds 571

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

Time [s]

# 
Fl

oc
ks

w
sp

= 0

w
sp

= 100

0 5 10 15 20 25 30 35 40
0

5

10

15

20

L [m]

ξ sp
 [m

]

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

L [m]

ξ u [m
]

(a)

(b)

(c)
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over time, starting with a single flock of 10.000 individuals) at different speed controls of wsp = 0 and
100. b Correlation between correlation length of the deviation from the average speed ξsp among individuals
and flock length L for different degrees of speed control, wsp = 0, 1, 100. At the highest speed control, the
correlation is no longer scale-free. Note that wsp = 0 (black dot), wsp = 1 (open star) and wsp = 100 (black
squares). c At the highest speed control (wsp = 100) the relation between correlation length ξu and flock size
L (in m) is scale free for velocity fluctuations
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free correlation between speed fluctuations ξsp and flock length L is still present (Pearson’s
correlation wsp = 1, n = 155, r = 0.88, P < 0.001) with a reduced slope of au = 0.29 (Fig.
5b), but at our highest speed control, wsp = 100, the correlation between speed fluctuations
ξsp and flock length L is no longer scale free (Fig. 5b). Yet even at this high speed control
the correlation with velocity fluctuations is still scale free (Fig 5c, with a reduced slope
asp = 0.19, Pearson correlation between flock length L and correlation length of velocity
deviations, n=492, r = 0.659; P < 0.001).

4 Discussion

Our main findings are: First, the correlation lengths of fluctuations of both velocity and speed
are associated with flock size in a scale free manner. Second, when the number of influential
neighbours is higher, this increases the correlation length and increases the slope of the scale
free correlation between the correlation length of velocity fluctuations and flock size. Third,
increased speed control reduces the correlation length of speed fluctuations and at its highest
value testable in the model (wsp = 100), our model shows that the correlation length saturates
with increasing flock length. Thus generating a non-scale free correlation. This happens while
the flocks are in the process of collapsing.

This scale-free correlation for velocity and speed fluctuations has also been found in an
individual-based model with a mixture of topological and metric interaction partners [35].

The greater deviations of velocity from the average of the flock as observed in larger
flocks cause the formation of a complex, convoluted border of the flock, because temporarily
sub-flocks move in a different direction from their surrounding flock members.

These results resemble those of our models of fish schooling, where schools are simpler
in shape if schools are smaller (below 200 individuals) [36].

The slope a of the scale free correlation between correlation length of speed and velocity
with flock length strongly resembles those correlations in empirical data, but the slope a is
greater in the model than in empirical data [9]. This may be a consequence of the absence
of disturbance in the model by, e.g., predators, obstacles and wind [17] and may be due to
insufficient speed control.

The steepening of the slope au with a higher number of influential neighbours implies that
for the same flock size a greater number of influential neighbours causes the flocks to be more
synchronised, meaning that temporary sub-flocks are larger and fewer. In other words, flocks
move in greater unison when there are more influential neighbours (see movies). This general
pattern is in line with our earlier reported instance that in a flock a higher number of influential
neighbours resulted in higher synchronisation and therefore in stronger polarisation and in
a flock shape that is more static [17]. It is also in line with our findings in models of fish
schools [37].

As to the explanation for the longer correlation length with a higher number of influential
neighbors, the larger domains of strongly correlated movement are a direct consequence of
the adjustment of movement and orientation of individuals to a larger number of neighbors.
Because each of the neighbors is also adjusting to more influential neighbors (thus over a
longer topological range) the domain of correlated movement (thus the correlation length ξ )
obviously increases. Our explanation is mechanistic in terms of the behavior of the individual
birds. Here it differs from the explanations inspired by statistical physics [9,16].

We confirm the empirical findings that stronger speed control results in a lower deviation
of speed and shorter correlation length [16]. This is understandable in our model because
stronger speed control causes the birds to be aligned a much longer period of time and over
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a much larger area than lower speed control. At the highest speed control where birds still
temporarily flock coherently in our model, but are in the process of slowly disintegrating, the
model generates a non-scale free correlation for speed. Yet here the correlation between the
correlation length for the fluctuations of velocity ξu and flock length L is still scale free. This
is in line with the theoretical predictions based on models from statistical physics [9,16].

5 Conclusion

In this paper we study in a computer model, StarDisplay, the internal spatial dynamics in terms
of the correlation length of velocity and speed in flocks of birds. The model, StarDisplay, is
based on simple behavioural rules (concerned with coordination and with flying) [8,17]. We
chose it, because in earlier papers we have shown that flocking patterns emerge in this model
that resemble significantly those of real flocks as regards their shape, orientation, turning
behaviour and internal dynamics and structure. New results of the present paper are: First,
the slope of the scale-free correlation between the correlation length of the fluctuations of
velocity and flock length is steeper the higher the number of influential neighbours. Second,
in larger flocks the correlation length of the deviation from the average of speed increases
linearly, as in flocks of real starlings [9]. Third, when speed is controlled more, the deviation
of speed and the correlation length of speed fluctuations decrease like in empirical data;
in line with theoretical predictions, at very high speed control, the model generates a non-
scale free correlation regarding speed fluctuations and flock length, but still a scale free
correlation regarding velocity fluctuations and flock length. Here, the flocks are in the process
of collapsing [9,16].

Acknowledgments We are grateful for the grants that have been supporting this research, Hemelrijk’s Startup
Grant of her Rosalind Franklin Fellowship and her Grant in the European Project of the 7th framework, StarFlag
for the work by Hanno Hildenbrandt. We thank the self-organization group for regular discussions.

Appendix: Details of Behavioural Rules

Here, we present the details of the behavioral rules as described in earlier papers [8,17]. Each
individual is characterised by its mass, m, its speed, v, and its location, p. Its orientation in
space is given by its local coordinate system (ex , ey, ez). Following the model by Reynolds
[31], its orientation is indicated by its forward direction, ex , its sideward direction, ey , and
its upward direction, ez , which it changes by rotating around these three principal axes (roll,
pitch and yaw).

To augment the control over the speed of the individuals that is implicit to the aerodynamic
equations (18 and 20), a force, fτi Eq. (3) is added that brings an individual back to its cruise
speed v0 after it has deviated from it [23].

fτi = m wsp(v0 − vi ) · exi Speed control (3)

where wsp is a scaling factor, m is the mass of the individual i and v0 its cruise speed, vi is
its speed, and exi its forward direction.

To make each individual interact with a specific constant number of its closest neighbours
(i.e. topological range), each individual i in the model adjusts its metric interaction range,
Ri (t) [23] following Eqs. (4) and (5).
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Ri (t + �u) = (1 − s) Ri (t) + s

(

Rmax − Rmax
|Ni (t)|

nc

)

Adaptive interaction range

(4)

Ni (t)
de f= { j ∈ N ; di j ≤ Ri (t); j �= i} Neighbourhood of an individual (5)

where �u is the reaction time, s is an interpolation factor, Rmaxis the maximal metric inter-
action range, Ni (t) is the neighbourhood of individual i at time t , i.e. the set of neighbours of
an individual i which is composed of |Ni (t)| neighbours from the total flock, nc is the fixed
number of topological influential neighbours it strives to have and di j is the distance between
individual i and j given by

∥
∥p j − pi

∥
∥ where pi gives the position of an individual i . Thus,

the radius of interaction at the next step in reaction-time, Ri (t + �u), increases whenever
the number of influential neighbours |Ni (t)| is smaller than the targeted number nc, and it is
decreased if it is larger than that; it remains as before if |Ni (t)| equals nc. Here Ri can neither
decrease below the hard sphere in which individuals are maximally avoiding each other rh

Eq. (6) nor increase beyond Rmax. s, the interpolation factor, determines the step-size of the
changes and thus, the variance of the number of actual influential neighbours.

As to separation, individual i is led by a force fsi to move in the opposite direction of
the average direction of the locations of the |Ni (t)| others in its neighbourhood. Following
others [19,38], we have omitted the blind angle at the back Eq. (6). We gave individuals a
hard sphere with radius rh as mentioned above, in which they avoid each other maximally Eq.
(6). Outside the hard sphere, but inside the radius of separation rsep , the degree of avoidance
of others decreases with the distance to the neighbour following a halved Gaussian, g(x),
with σ the standard deviation of the Gaussian set so that at the border of the separation zone
the force is almost zero, g(rsep) = 0.01 Eq. (6).

fsi = − ws

|Ni (t)|
∑

i∈Ni (t)

g(di j ) di j ;
{

g(di j ) =
1 ; di j ≤ rh

exp
(
− (di j −rh)2

σ 2

)
; di j > rh

Separation (6)

Here, |Ni (t)| is the number of individuals in the neighbourhood of interaction Eq. (5) and di j

is the distance from individual i to individual j . The direction from individual i to individual
j is specified by the unit vector di j = (p j − pi )/

∥
∥p j − pi

∥
∥ and ws is the weighting factor

for separation (Tab. 1).
As to cohesion, individual i is attracted by a force fci to the direction of the centre of

mass (i.e. the average x , y, z position) of the group of
∣
∣N∗

i (t)
∣
∣ individuals located in its

topological neighbourhood, but not in its blind angle, in a way similar to models of others
[19,20,22,24,39]. Here, wc is the weighing factor for cohesion Eq. (7) (Table 1). Within
the radius of the hard sphererh , we ignore cohesion with others Eq. (7). To represent fear of
predators [40] and build a sharp boundary of the flock [7], we make individuals cohere more
strongly when they are at the border of the flock than in its interior by multiplying the force
of cohesion by a factor indicating the degree to which an individual is peripheral Eqs. (7)
and (9). This factor, called ‘centrality’ in the group, Ci (t), we calculate as the length of the
average vector of the direction of all its neighbours βin relative to the individual i [41]. A
high value indicates that the individual is peripheral; a lower value indicates that it is located
more in the centre of the group. The ‘neighbouring’ individuals are all |NG(t)| individuals
in a radius of twice the actual perceptual distance of the individual i Eq. (9).

fci = Ci (t)
wc

|N∗
i (t)|

∑

j∈N∗
i

Xi j dij; Xi j =
{

0 ; di j ≤ rh

1 ; di j > rh
Cohesion (7)
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N∗
i (t) = { j ∈ Ni (t) ; j not in the ‘blind angle′ of i } Reduced neighbourhood (8)

Ci (t) = 1

|NG(t)|

∥
∥
∥
∥
∥
∥

∑

j∈NG (t)

dij

∥
∥
∥
∥
∥
∥

; NG(t) = { j ∈ N ; di j ≤ 2Ri (t); j �= i} (9)

As regards its alignment behaviour Eq. (10), individual i feels a force, fai , to align with the
average forward direction of its

∣
∣N∗

i (t)
∣
∣ interaction neighbours (the same neighbours as to

whom it is attracted).

fai = wa

⎛

⎝
∑

j∈N∗
i (t)

exj − exi

⎞

⎠
/

∥
∥
∥
∥
∥
∥

∑

j∈N∗
i (t)

exj−exi

∥
∥
∥
∥
∥
∥

Alignment (10)

Here, exi and ex j are the vectors indicating the forward direction of individuals direction of
individuals i and j and wa is the fixed weighting factor for alignment (Table 1).

The ‘social force’ is the sum of these three forces Eq. (11).

FSociali = fsi + fai + fci Social force (11)

Individuals fly at a similar height above the sleeping site like real starlings [2], because we
made them experience both in a horizontal and vertical direction a force of attraction fRoost

to the ‘roosting area’ Eqs. (12, 13, 14). The strength of the horizontal attraction, fRoost H , is
greater, the more radially it moves away from the roost; it is weaker if it is already returning.
The strength is calculated using the dot product, i.e. the angle between the forward direction
of individual i , exi , and the horizontal outward-pointing normal n of the boundary. The range
of the result [−1..1] is transformed to [0..1] by halving the dot product and summing it with a
1/2. The actual direction of the horizontal attraction force to the roost is given by eyi which is
the individual’s lateral direction. The sign in Eq. (13) is chosen to reduce the outward heading.
The actual direction of the horizontal attraction force is given by eyi which is the individual’s
lateral direction. Vertical attraction, fRoostV , is proportional to the vertical distance from the
preferred height z0 above the roost (arbitrarily called the zero level). Here z is the vertical
unit vector. wRoost H and wRoostV are fixed weighting factors.

fRoosti = fRoost Hi + fRoostVi Roost attraction (12)

fRoost Hi = ±wRoost H

(
1

2
+ 1

2
(exi · n)

)

· eyi Horizontal (13)

fRoostVi = −wRoostV (pxi − z0) · z; z = (0, 0, 1)T Vertical (14)

The random force indicates unspecified stochastic influences Eq. (15) with ζ being a random
unit vector from a uniform distribution and wζ being a fixed scaling factor. The sum of the
social force, the forces that control speed and ranging and the random force is labeled as
‘steering force’ Eq. (16).

fξi = wξ · ξ Random force (15)

FSteeringi = FSociali + fτi + fRoosti + fζi Steering force (16)

Physics of flight in the model follows the standard equations of fixed wing aerodynamics
which link the lift L , the drag D and the thrust T produced by a bird to attain its current
speed v Eq. (17):
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L = 1

2
ρSv2CL D = 1

2
ρSv2CD Lift and drag (17)

L0 = 1

2
ρSv2

0CL = mg; D0 = 1

2
ρSv2

0CD = T0 Lift and drag at cruise speed v0

(18)

Li = v2
i

v2
0

L0 = v2
i

v2
0

mg; Di = CD

CL
Li = CD

CL

v2
i

v2
0

mg Simplified lift and drag (19)

where ρ is the density of the air and S represents the wing area of the bird (of identical size
for all birds). The quotient of CL and CD of the dimensionless lift and drag coefficients in
the model is fixed, resembling the almost fixed ratio in reality [25]. When a bird is flying
horizontally while maintaining a constant cruise speed v0 its lift balances its weight mg (mass
times gravity) and its thrust balances its drag Eq. (18). Division of L by L0 and of D by L
in Eqs. (17) and (18) yields Eq. (19) in which the lift and the drag only depend on the actual
speed.

Gravity is directed towards the global ‘down’ direction, g = (0, 0,−g), the lift upwards
operates towards the local ‘up’ direction ez of the bird and the drag is pointing in the direction
opposite to its actual ‘forward’ direction ex . Thus, the flight forces are:

FFlighti =(Li +Di +T0 + mg); Li =Li · ezi ; Di =−Di · exi ; T0 =T0 · exi Flight forces

(20)

Note that the force Di + T0 counteracts deviations from cruise speed. This speed control
remains if we set wsp to zero (3).

Real birds roll into the turn in order to make turns [26]. Because in the absence of external
influence we assume that birds ‘intend’ to fly with their wings at a horizontal level in order to
move straightforward, we give the model-birds a tendency to roll back. To represent banked
turns, we first calculate the degree to which individuals want to turn, i.e. their lateral accel-
eration, al , which is exerted by the steering force. Banking implies that the individual rolls
around its forward axis in the direction of its lateral acceleration, al . The lateral acceleration
follows the first law of Newton (F = m · a),

ali =
(

FSteeringi · eyi

m

)

· eyi Lateral acceleration (21)

tan(βini ) = wβin

∥
∥ali

∥
∥ �t Roll in (22)

tan(βouti ) = wβout sin(βi )�t Roll out (23)

βi (t + �t) = βi (t) + βini − βouti Banking angle (24)

where βi is the actual banking angle, wβin and wβout , respectively are the weights for rolling
in and out the curve of turning, �t is the update time and βin and βout are the angles over
which an individual intends to move inwards and outwards. The tendency to roll into the
turn increases with the strength of the tendency to turn sideways, which is due to the urge to
coordinate with its topological neighbours (via attraction, alignment and avoidance) and to
stay above the roost Eq. (22). Once an individual has banked in the model, its tendency to roll
back to the horizontal is proportional to its actual banking angle Eq. (23). The actual banking
angle Eq. (24) is the sum of the current angle and the tendencies to roll-in and to roll-out. The
ratio of wβin and wβout determines the roll rate. Note that by banking the individual creates
a centripetal force at the cost of lift. Consequently it temporarily tends to move downwards.
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After summing the forces of steering and flying, we use Euler integration to calculate the
position and velocity at the end of each time-step �t :

vi (t + �t) = vi (t) + 1

m

(
FSteeringi (t) + FFlighti (t)

)
�t (25)

pi (t + �t) = pi (t) + vi (t + �t) · �t (26)

where vi is the velocity of individual i , m its mass, pi its location, and �t is the update time.
For the default values, see Table 1.
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