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Network models are useful tools for studying the dynamics of social interactions in a structured population.
After a round of interactions with the players in their local neighborhood, players update their strategy based on
the comparison of their own payoff with the payoff of one of their neighbors. Here we show that the assumptions
made on strategy updating are of crucial importance for the strategy dynamics. In the first step, we demonstrate
that seemingly small deviations from the standard assumptions on updating have major implications for the
evolutionary outcome of two cooperation games: cooperation can more easily persist in a Prisoner’s Dilemma
game, while it can go more easily extinct in a Snowdrift game. To explain these outcomes, we develop a general
model for the updating of states in a network that allows us to derive conditions for the steady-state coexistence of
states (or strategies). The analysis reveals that coexistence crucially depends on the number of agents consulted
for updating. We conclude that updating rules are as important for evolution on a network as network structure
and the nature of the interaction.

DOI: 10.1103/PhysRevE.91.042101 PACS number(s): 02.50.Le, 87.10.−e, 87.23.Ge, 89.75.Hc

I. INTRODUCTION

Network theory has provided important insights into the
dynamics of interactions in a structured population. In this
framework, population structure is represented by a network,
the nodes of which represent the individual agents while
the links correspond to the possible interactions [1–4]. The
agents can be molecules, individual organisms, or groups of
individuals, and the interactions can also be highly diverse,
ranging from chemical reactions among molecules to the
exchange of goods or knowledge among groups [5–8]. To fix
ideas, we will here focus on the evolution of social interactions
among individuals. In this context, network models typically
assume that each agent is endowed with a certain strategy
(corresponding to the agent’s “state”) that determines the
agent’s behavior in interactions with their neighbors in the
network and the resulting payoffs. After the interaction
phase, agents can update their strategy by comparing their
own accumulated payoff with the payoff of one of their
neighbors [9–11].

Network models have revealed that network structure plays
an important role for the evolutionary dynamics of behavior in
a social interaction [11–14]. Take, for example, the Prisoner’s
Dilemma game (PDG) [15,16], where mutual cooperation is
favored to mutual defection by both players. Yet, cooperation
is outcompeted by defection in a well-mixed population, since
defection is a dominant strategy. When interactions take place
on a network, however, cooperation can get established, but
this strongly depends on the network structure; cooperation
gets easily off the ground in heterogeneous networks (e.g.,
scale-free networks), while it will not easily evolve in homo-
geneous networks (e.g. random-regular networks) [17,18]. In
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a Snowdrift game (SDG), another prototypical example for
the evolution of cooperation, the coexistence of cooperation
and defection is expected in a well-mixed population, while
network models predict the fixation of either cooperation or
defection under a wide range of conditions [19–21].

In addition to network structures, strategy updating can
have important implications for evolution in an interaction
network [14,22–25]. Here we will demonstrate that the
coexistence of strategies in a network strongly depends on
strategy updating.

II. TWO ILLUSTRATIVE EXAMPLES

For simplicity, we consider games with two pure strategies,
like the PDG or the SDG. At each point in time, an agent
employs one of the two strategies. The payoff obtained by an
agent using strategy i in an interaction with an agent using
strategy j is given by mij , where M = (mij ) is the 2 × 2
payoff matrix characterizing the game. For example, the payoff
matrices of a PDG and an SDG are given by

MPDG =
(

b − c −c

b 0

)
, MSDG =

(
b − c

2 b − c

b 0

)
,

(1)

where b and c (b > c) indicate the benefits and costs
of cooperation, respectively. Typically, strategy updating is
modeled as follows [9–11]: an agent having used strategy
A and accumulated payoff πA in the previous interactions
randomly selects another agent from her neighborhood; if that
agent happens to have used the alternative strategy B and
accumulated payoff πB , then the focal agent will switch from A

to B with a probability uA→B that reflects the payoff difference
πB − πA. This probability may, for example, be given by the
Fermi function

uA→B = (1 + e−β(πB−πA))−1. (2)
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FIG. 1. (Color online) Equilibrium fraction of cooperators in the Prisoner’s Dilemma game (PDG) and the Snowdrift game (SDG) as a
function of the costs c of cooperation for four values of m, the number of agents consulted for strategy updating. Left panels: PDG; right
panels: SDG; upper panels: random-regular network with degree 10; lower panel: Barabási-Albert scale-free network with average degree 10.
The benefit of cooperation was kept constant at b = 1. In our simulations on scale-free networks, if a player’s degree was smaller than m, she
chose all of her neighbors for consultation.

The red curves in Fig. 1 show the evolution of cooperation
in the PDG and the SDG for b = 1 and a spectrum of c values
for this updating rule. The results confirm that cooperation in
a PDG can evolve in a scale-free network (for c < 0.1) but not
in a random-regular network, and that cooperation in the SDG
will spread to fixation more easily in a scale-free network (for
c < 0.2) than in a random-regular network (for c < 0.6). The
other curves in Fig. 1 illustrate what happens if the strategy
updating is not based on the consultation of one other agent, but
on the consultation of two or more other agents. In these cases,
a focal agent compares her payoff with that of m other agents
and switches from A to B whenever any of these comparisons
would result in such a switch in the standard updating scenario
(m = 1) considered above.

Figure 1 clearly shows that such a change in strategy
updating has a major effect on the evolutionary outcome.
Now cooperation in the PDG can also get off the ground in
a random-regular network (m = 2: c < 0.2; m = 4: c < 0.9;
m = 10: all c). Most strikingly, for larger values of m, fixation
for either cooperation or defection gives rise to the stable
coexistence of these strategies. Moreover, for large values of
m, the evolutionary outcome is relatively independent of the

type of interaction (i.e., PDG versus SDG) and the structure
of the network (i.e., random-regular versus scale-free).

We also considered still another updating rule: agents in-
teract sequentially with their neighbors (in random sequence)
and update their strategy as above, but now updating takes
place after each individual interaction. In other words, the
switching probability is given by (2), but now the payoffs of
the A and the B players are not accumulated over several
interactions, but given by the payoffs of a single interaction:
πA = mAB and πB = mBA. Many simulations for a large
variety of payoff matrices M have revealed that, irrespective of
the structure of the network, the evolutionary outcome is only
dependent on the sign of m12 − m21: if m12 > m21, strategy 1
will spread to fixation; if m12 < m21, strategy 2 will spread to
fixation; and both strategies will coexist at equal frequencies
if m12 = m21. Hence, coexistence is very unlikely. But, again,
we arrive at the conclusion that the evolutionary outcome is
more strongly affected by the updating rule than by the nature
of the interaction (which is dependent not only on the payoff
parameters m12 and m21 but also on m11 and m22) or the
structure of the network.
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III. GENERAL ANALYSIS

To explain the simulation results mentioned above, we now
take a more mathematical approach that is applicable beyond
the context of evolutionary games. This approach is based on
the two transition probabilities uA→B and uB→A, which are
viewed as given model parameters that do not necessarily
reflect a fitness comparison. As above, uA→B denotes the
probability that an agent using strategy A will switch to the
alternative strategy B when this agent happens to consult a B

player. Figure 2(a) shows the setup for the case m = 1 where a
single updating takes place between two players with different
strategies. Figure 2(b) represents a network scenario in which
the focal player chooses m neighbors for updating. In this
specific case, m = 4 and three of the four chosen neighbors
maintain different strategies. If p� denotes the probability that
a neighbor of agent i uses strategy A, we can now calculate the
probabilities Ui

A→B and Ui
B→A with which, after consulting m

neighbors, agent i would switch from A to B or from B to A,
respectively:

1 − Ui
A→B = [

1 − uA→B

(
1 − p�i

)]m

(3)
1 − Ui

B→A = (
1 − uB→Ap�i

)m
.

For example, uB→Ap�i
is the probability that agent i, when

having played B, is consulting an A-playing neighbor that
induces agent i to switch to A; 1 − uB→Ap�i

is the probability
that any given neighbor does not induce agent i to switch
when having played B, and (1 − uB→Ap�i

)m is the probability
that none of m consulted neighbors will induce player i to
switch to A. By definition, the latter probability corresponds
to 1 − Ui

B→A.

FIG. 2. (Color online) (a) A single updating when two different
individuals encounter each other. Strategy A (blue) has a probability
uA→B to switch to B (red), while B switches to A with probability
uB→A. (b) Diagrams illustrating an updating event in a network
scenario where each player chooses m of her neighbors randomly
for updating. Each arrow specifies a probabilistic switching because
it is formed by different strategies. Dotted lines indicate neighbors
which are not selected at the current time step.

We can now derive a recurrence equation for the probability
pi(t) that a given agent i will employ strategy A at time t :

pi(t + 1) = pi(t)
[
1 − Ui

A→B(t)
] + [1 − pi(t)]U

i
B→A(t). (4)

The first term on the right-hand side corresponds to the joint
probability of having played A in the previous time step and
not having switched to B, while the second term corresponds
to the probability of having played B at time t but having
switched to A. An equilibrium pi(t + 1) = pi(t) = p̂i of (4)
is characterized by

p̂i · Û i
A→B = (1 − p̂i) · Û i

B→A. (5)

For a homogeneous network, such as a random-regular
network, it is plausible to assume that the probability to use
strategy A will converge to the same value p̂i = p̂�i

= p̂i for
all i. Inserting (3) in (5) yields an implicit equation for p̂:

p̂i · {1 − [1 − uA→B(1 − p̂)]m}
= (1 − p̂) · [1 − (1 − uB→Ap̂)m]. (6)

For m = 1, this immediately implies that equilibrium coex-
istence of both strategies (i.e., 0 < p̂ < 1) is possible if, and
only if, uA→B = uB→A. This explains our earlier results that
strategy updating after each individual interaction will only
lead to the coexistence of the two strategies if m12 = m21.
It also implies that in a homogeneous network strategy
coexistence requires that, at equilibrium, both strategies have
the same payoffs: πA(p̂) = πB(p̂).

Figure 3 illustrates that for m > 1 the coexistence of
A and B is easy to achieve. For two values of uA→B , this
figure shows the equilibrium frequency p̂ of strategy A for
a spectrum of values uB→A and the outcome of simulations
that are in excellent agreement with the equilibrium value
predicted by (6). For a given value of uA→B , strategy A will
persist in the population whenever uB→A is larger than a
certain threshold value u∗

B→A. This minimum value for p̂ > 0
can be calculated by taking the limit p̂ → 0 in (6).

When uB→A → u∗
B→A, the probability that a player i

adopts strategy A is p̂i , where 0 < p̂i � 1. Assume that after a
long time evolution, p̂i ≈ p̂ ≈ p̂�i

, then after substituting this
into Eq. (6), and neglecting the high-order terms in p̂i , we get

mp̂u∗
B→A = p̂ − p̂(1 − uA→B)m. (7)

For fixed values of uA→B and m, we have

u∗
B→A = 1 − (1 − uA→B)m

m
. (8)

Similarly, strategy B will persist for a given value of uB→A

whenever uA→B is larger than a threshold value u∗
A→B , which

can be obtained from (6) by taking the limit p̂ → 1. The
result is

A will persist if uB→A >
1 − (1 − uA→B)m

m
(9)

B will persist if uA→B >
1 − (1 − uB→A)m

m
.

Coexistence of A and B will occur if both conditions
are satisfied. Figure 4 illustrates that simulations in
random-regular networks are in excellent agreement with this
prediction and that the coexistence region becomes very large
already for moderate values of m (e.g. m = 4).
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FIG. 3. (Color online) Equilibrium frequency of strategy A in a random-regular network of degree 10 for four values of m, the number of
agents consulted for strategy updating. For (a) uA→B = 0.25 and (b) uA→B = 0.75, the analytical predictions based on Eq. (6) (solid lines) and
the outcome of simulations (symbols) are shown for a spectrum of values of uB→A. Both panels clearly indicate that a larger value of m favors
the equilibrium coexistence of both strategies. In our simulations time is discretized in time steps, and in each step players choose to be an A or
a B player with the probability determined when finishing the previous step. We start from a configuration in which each player adopts strategy
A with a probability chosen uniformly from the range [0, 1]. In each round, player i updates her strategy and is correspondingly associated
with a probability that she is an A player in the next round. Each simulation result corresponds to a result of averaging over 103 generations
after a transient period of 104 rounds in 100 independent realizations with the population size 104.

(a) (b)

(c) (d)

FIG. 4. (Color online) Equilibrium coexistence of strategies A and B as a function of the updating probabilities uA→B and uB→A for four
values of m, the number of agents consulted for strategy updating: (a) m = 1; (b) m = 2; (c) m = 4; (d) m = 10. Red: fixation of strategy
A; blue: fixation of strategy B; yellow lines: boundaries of coexistence region based on Eq. (7); all other colors: frequency of A (0 < p̂ < 1)
resulting from Eq. (6).
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FIG. 5. (Color online) Equilibrium frequency of strategy A in a Barabási-Albert scale-free network with average degree 10 for four values
of m, the number of agents consulted for strategy updating. For (a) uA→B = 0.25 and (b) uA→B = 0.75, the outcome of simulations is shown
for a spectrum of values of uB→A. As in case of a random-regular network (Fig. 3), a larger value of m favors the equilibrium coexistence of
both strategies.

IV. STRATEGY COEXISTENCE IN HETEROGENEOUS
NETWORKS

Our analytical results do not directly apply to heterogeneous
networks, since the equilibrium value p̂i of the probability to
use strategy A will depend on the degree of player i. As a
rule, p̂i will more likely be between 0 and 1 when the degree
of player i is higher. Qualitatively, however, our basic insight
that a larger value of m favors polymorphism for a broad range
of values of uA→B and uB→A also applies to heterogeneous
networks. This is illustrated by Fig. 5, which indicates for a
Barabási-Albert scale-free network that the conditions for the
coexistence of competing strategies are even less stringent than
in a random-regular network. Here the critical values of uB→A

for a given uA→B in scale-free networks are smaller than that
in random-regular networks.

V. CONCLUSIONS

In conclusion, we have shown that evolution on an inter-
action network can be as strongly affected by the strategy
updating procedure as by the network structure and the payoff
matrix. In this paper for two-strategy evolutionary games
in structured populations, we follow a different approach,
bypassing the requirement for explicit knowledge of the exact

payoffs, by encoding the payoffs into the willingness of any
player to switch from her current strategy to the competing one.
Theoretical computations and numerical simulations show
that the evolutionary dynamics are intrinsically regulated by
contact relationships specified by the network topologies of the
populations. We demonstrate that updating rules are of crucial
importance for the steady-state distribution of states. On the
basis of general arguments, we show that the coexistence of
different states strongly depends on the number m of agents
that determine the updating of a given agent: if m = 1, as
typically assumed, coexistence is difficult to achieve, while
coexistence occurs under mild conditions when m > 1. By
means of two cooperation games, we show that this general
insight has important implications for the strategy dynamics
of games on a network. In comparison to earlier models,
cooperation can more easily persist in a Prisoner’s Dilemma
game, while it can go more easily extinct in a Snowdrift game.
This implies that strategy updating deserves more attention in
empirical and theoretical studies.
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