

University of Groningen

Stereoselective	synthesis of	glycerol-based	lipids
-----------------	--------------	----------------	--------

Fodran, Peter

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date:

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Fodran, P. (2015). Stereoselective synthesis of glycerol-based lipids [S.I.]: [S.n.]

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

Stereoselective Synthesis of Glycerol-based Lipids

Peter Fodran

The work described in this thesis was carried out at the Stratingh Institute for Chemistry, University of Groningen, The Netherlands. This work was financially supported by the Zernike Institute for Advanced Materials. Printed by: Ipskamp Drukkers, Enschede Cover design: Peter Fodran

Stereoselective Synthesis of Glycerol-based Lipids

PhD thesis

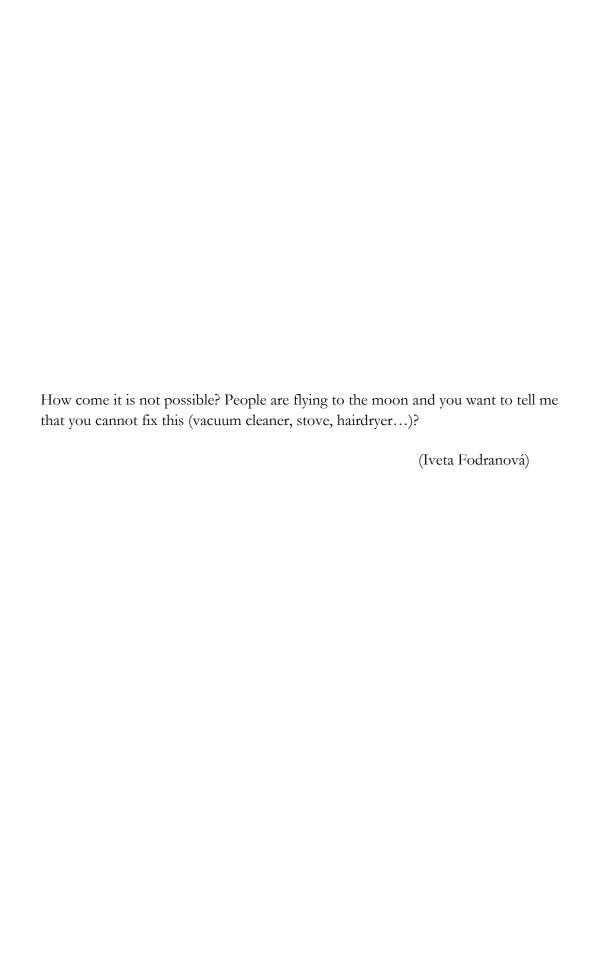
to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans

This thesis will be defended in public on

Friday 13th March 2015 at 12:45

By

Peter Fodran


born on 12th June 1985

in Bratislava, Slovak Republic

Supervisor Prof. A. J. Minnaard

Assessment committee

Prof. M. H. Clausen Prof. F. J. Dekker Prof. J. G. Roelfes

CONTENTS

Chapter 1 An Introduction to Phospholipids	1
Introduction	2
Nomenclature	4
Biosynthesis of fatty acids, sphingolipids, triacylglycerols,	and
glycerophospholipids	6
Biosynthesis of fatty acids	6
Biosynthesis of sphingolipids	8
Biosynthesis of triacylglycerols and glycerophospholipids	10
Biosynthesis of non-archaeal ether based lipids	15
Outline of this thesis	16
References and footnotes	18
Chapter 2 Synthesis of Methyl-branched Fatty Acids	21
Introduction	22
Tuberculostearic acid	25
Results and discussion	27
(R)-Tuberculostearic acid	27
Caspofungin fatty acid	28
Conclusions	32
Experimental part	32
References and footnotes	42
Chapter 3 Catalytic Synthesis of Enantiopure Mixed Diacylglycerols	45
Introduction	46
Results and discussion	49
Synthesis of enantiopure phospholipids	49
Enantiopurity does not decrease during the ring opening	51
Synthesis of the platelet-activating factor (PAF)	52
Conclusions	53
Experimental section	53
References and footnotes	61
Chapter 4 Enantiopure Triacylglycerols in Three Steps	63
Introduction	64
Reported syntheses of triacylglycerols	64
Results and discussion	68
Co[(R,R)-salen] catalyzed ring opening of glycidyl esters	68
Towards the automated synthesis of triacylglycerols	70
Conclusions	75
Experimental part	75
References and footnotes	93

Chapter 5 A Methyl Matters	95
Introduction	96
Results and discussion	101
Chemical synthesis of the phospholipids	101
Formation of the liposomes and proteoliposomes	102
Molecular dynamics study of the bilayers	104
Calcein efflux assay	106
Conclusions and outlook	110
Experimental part	111
References and footnotes	121
Chapter 6 Synthesis of a Cyclooctyne-based Lipidation Probe	123
Introduction	124
Design of a lipophilic lipidation probe	127
Results and discussion	128
Conclusions and outlook	131
Experimental part	132
References	140
Chapter 7 A Missing Link in Archaeal Lipid Biosynthesis; a Con	tribution
from Organic Synthesis	143
Introduction	144
Biosynthesis of archaeal membrane lipids	145
Archaeal lipids as taxanomic markes	149
Results and discussion	149
Synthesis of 2,3-bis-O-(geranylgeranyl)-sn-glycero-1-phosphate	149
Identification of CDP-archaeol synthase	153
Catalytic alcoholysis of benzylglycidol as a key step in the synthesis	of cyclo-
archaeol and eta -glucosyl-cyclo-archaeol	154
Conclusion	157
Experimental part	157
References and footnotes	167
Summary	171
Samenvatting	175
Acknowledgements	180