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Abstract

Disturbances of lipoprotein metabolism are recognized as indicators of cardiometabolic disease risk. Lipoprotein size and
composition, measured in a lipoprotein profile, are considered to be disease risk markers. However, the measured profile is a
collective result of complex metabolic interactions, which complicates the identification of changes in metabolism. In this
study we aim to develop a method which quantitatively relates murine lipoprotein size, composition and concentration to
the molecular mechanisms underlying lipoprotein metabolism. We introduce a computational framework which
incorporates a novel kinetic model of murine lipoprotein metabolism. The model is applied to compute a distribution of
plasma lipoproteins, which is then related to experimental lipoprotein profiles through the generation of an in silico
lipoprotein profile. The model was first applied to profiles obtained from wild-type C57Bl/6J mice. The results provided
insight into the interplay of lipoprotein production, remodelling and catabolism. Moreover, the concentration and
metabolism of unmeasured lipoprotein components could be determined. The model was validated through the prediction
of lipoprotein profiles of several transgenic mouse models commonly used in cardiovascular research. Finally, the
framework was employed for longitudinal analysis of the profiles of C57Bl/6J mice following a pharmaceutical intervention
with a liver X receptor (LXR) agonist. The multifaceted regulatory response to the administration of the compound is
incompletely understood. The results explain the characteristic changes of the observed lipoprotein profile in terms of the
underlying metabolic perturbation and resultant modifications of lipid fluxes in the body. The Murine Lipoprotein Profiler
(MuLiP) presented here is thus a valuable tool to assess the metabolic origin of altered murine lipoprotein profiles and can
be applied in preclinical research performed in mice for analysis of lipid fluxes and lipoprotein composition.
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Introduction

The transport of lipids between mammalian tissues is

largely facilitated by lipoproteins. Lipoproteins are spherically

organized protein-lipid compounds that, unlike the individual

lipids, are soluble in blood. To achieve this vital property the outer

shell of the lipoprotein is a surface layer consisting mainly of

phospholipids (PL), free cholesterol (FC) and proteins. The

most hydrophobic lipids are stored in the core of the particle

which consists largely of triglycerides (TG) and cholesteryl ester

(CE).

The body produces three classes of lipoproteins [1], [2].

These classes differ with regard to size, lipid composition

and protein content and have distinct origins [3], [4]. Chylomi-

crons, produced in the intestine from dietary lipids, contain

mainly TG and represent the largest, least dense particles [5], [6].

The liver excretes TG-rich lipoproteins of a smaller size,

which are known as very low density lipoproteins (VLDL)

[4], [7]. High density lipoproteins (HDL), the smallest class,

exhibit a relatively high protein and cholesterol content and

originate in the intestine and liver [3], [8], [9]. Further processing

of circulating chylomicrons, VLDL and HDL, in turn, generates

additional classes of lipoproteins which vary in size and

composition and exhibit great metabolic diversity [7], [10], [11],

[12], [13].

Abnormalities of lipoprotein concentration, size and composi-

tion are known risk factors for cardiovascular diseases. More

specifically, a low concentration of HDL cholesterol and/or a high

concentration of low density lipoprotein (LDL) particles, as often

observed in the Metabolic Syndrome and Type II Diabetes, is

associated with an increased risk of atherosclerosis [2], [14], [15].

Preclinical research in mice is an important component in the

search for treatment and prevention of these diseases [16], [17].

Despite the extensive use of mouse models the complex reactions

determining plasma lipoprotein composition are not well under-

stood. In this study we aim to develop a method which

quantitatively relates murine lipoprotein size, composition and

concentration to lipoprotein metabolism.
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Lipoprotein size, composition and concentration can be

quantified in a lipoprotein profile. In preclinical research, profiles

are generated to analyse the impact of genetic, dietary and

pharmacological interventions on the lipoprotein phenotype.

These profiles are generally generated by means of fast protein

liquid chromatography (FPLC), a method for size-based lipopro-

tein separation from serum or plasma [18], [19], [20]. The

retrieved size fractions are subsequently analysed using biochem-

ical assays to quantify lipid and protein contents. As lipoprotein

size and composition are determined by multiple metabolic

pathways, it is difficult to directly relate changes in lipoprotein

profiles to the mechanisms that provoke these quantitative and

qualitative differences.

The application of computational methods provides a powerful

tool to retrieve insight into the complex relationship between

lipoprotein metabolism and lipoprotein profiles. In recent years,

two detailed computational models of human lipoprotein metab-

olism have been developed that relate lipoprotein distributions to

underlying metabolism [21], [22]. Despite the importance of

mouse models in preclinical research, there is no computational

framework available to describe the emergence of lipoprotein

distributions from biological principles in mice. Here we develop

the Murine Lipoprotein Profiler (MuLiP), a computational

strategy that quantitatively relates changes in lipoprotein charac-

teristics to altered lipoprotein metabolism in mice. In the

mathematical model, the distribution of the lipoprotein core

composition is determined by kinetic models of VLDL, LDL and

HDL metabolism. The model integrates these kinetic models with

several sets of compositional information from literature [23], [24],

[25], [26] and VLDL-TG production rates to provide a

quantitative overview of the lipid fluxes between lipoproteins

and their relationship to lipoprotein content. The model outcome

is compared to experimental FPLC data by calculating an in silico

FPLC profile from the model.

Due to the common generation of FPLC profiles in preclinical

research of cardiometabolic diseases, MuLiP is widely applicable.

The availability of lipoprotein production and composition data

(e.g. in [24]) and FPLC profiles obtained from knock-out or

transgenic mice is necessary for model application and validation,

and therefore provides a further basis for the development and

validation of the model. The MuLiPs comprehensive description

of endogenous lipoprotein metabolism and compositional

versatility allow a detailed description of the lipid content and

associated metabolic state of plasma lipoproteins.

In this study, the model was first developed for wild-type

C57Bl/6J mouse data. Following the successful description of the

wild-type profile, model performance was evaluated by prediction

of the profiles of several transgenic mouse models commonly used

in preclinical cardiovascular research. Finally, the model was

applied to analyse phenotype changes in profiles obtained from

C57Bl/6J mice that were treated with the anti-atherosclerotic

Liver X receptor (LXR) agonist T0901317 [27]. LXR has been

identified as a central regulator of lipid metabolism [28], and its

activation leads to complex and time-dependent regulatory actions

which are incompletely understood.

Methods

Experimental data: FPLC profiles and VLDL-TG
production

Two types of data were incorporated to develop the compu-

tational model: the experimentally determined VLDL-TG pro-

duction, and the FPLC profile of plasma lipoproteins.

The FPLC profile was obtained from moderately fasted C57Bl/

6J mice on a chow diet. The FPLC profile was collected as part of

an extensive dataset, which was previously published in [27] and

[29]. For the ethics statement and detailed experimental proce-

dures, we refer to [29]. In short, the lipoprotein profile was

determined by first separating lipoproteins through FPLC,

followed by quantification of the TG and total cholesterol (TC)

in each fraction.

VLDL-TG production was determined following administra-

tion of Triton WR-1339 (0.5 g/kg body weight).

FPLC profiles of three transgenic mouse models were retrieved

from literature for model analysis and validation. The scavenger

receptor class B type 1 (SR-B1) knock-out mouse [30] is a

commonly used mouse model in cardiovascular research which

has a plasma cholesterol concentration of between 50 and 200%

higher than wild-type counterparts [30],[31],[32],[33],[34],[35],

[36]. The HDL peak in the FPLC profile of SR-B1 knock-out mice

is shifted to the left, indicative of larger sized particles [30].

Phospholipid transfer protein (PLTP) knock-out mice display

decreased plasma cholesterol levels [37], [38] and smaller HDL

particles containing less cholesterol. The HDL peak in the FPLC

profile is shifted to the right in comparison to wild-type mice

profiles [37].

While the deficiency of both previous mouse models is found in

HDL metabolism, the low density lipoprotein receptor (LDLr)

knock-out mouse ([39], [40], [41], [42], [43]) has a deficiency

which mainly affects apolipoprotein (Apo) B containing lipoprotein

metabolism. In chow-fed, wild-type mice, this deficiency leads to

moderately increased plasma cholesterol concentrations, which are

mostly due to increased cholesterol levels in the LDL size range.

More moderate increases of VLDL and HDL cholesterol, as well

as an increase of plasma triglycerides are also perceived. These

profiles were reproduced in silico to qualitatively evaluate the

results of simulation of a transgenic mouse model.

For computational analysis of the changes in murine lipoprotein

metabolism in response to a pharmaceutical intervention, profiles

of C57Bl/6J mice treated with LXR agonist T0901317 were

analysed. FPLC profiles of treated mice, as well as the VLDL-TG

production, were taken from the dataset described in [27] and

[29]. The data set of treated mice consists of TC and TG FPLC

profiles of C57Bl/6J mice following 1, 2, 4, 7, 14 and 21 days

of treatment with T0901317. In addition to these profiles,

Author Summary

Lipids such as triglycerides and cholesterol are important
building blocks and energy suppliers for the body.
However, because lipids are hydrophobic they require a
matrix to circulate in the bloodstream. This function is
fulfilled by lipoproteins. Altered lipoprotein metabolism is
known to be associated with disease, for instance there is a
well-known association between abnormal lipoprotein-
mediated cholesterol transport and atherosclerosis. This
change in lipoprotein metabolism is reflected in altered
lipoprotein size and lipid composition as illustrated by a
lipoprotein profile. We developed a mathematical ap-
proach, the Murine Lipoprotein Profiler, that links changes
in lipoprotein profiles to alterations in lipoprotein metab-
olism. The model is developed to provide insight into the
mechanisms underlying altered lipoprotein profiles in
preclinical research in mice. The model can be used to
gain further understanding of how a change in the
lipoprotein phenotype can result from changes in lipo-
protein metabolism.
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measurements of the VLDL-TG production were performed in

mice treated for 1, 7 or 14 days.

Computational model
In order to analyse the lipoprotein profiles, we developed a

computational framework which will be described in the following

three sections and is visualized in Figures 1 and 2 consecutively.

The lipoprotein composition model (Figure 1 B and C), the models

of lipoprotein metabolism (Figure 2 A and B) and the calculation

of the in silico profile (Figure 1A) will be discussed.

Lipoprotein compositional model. In the computational

model, we define a lipoprotein by three characteristics: type, CE

content and TG content. Two types of lipoproteins are

distinguished in the model: HDL and Apo B containing

lipoproteins. The Apo B type, which will be further referred to

as VLDL, comprises not only VLDL but also its derivative LDL.

The content of the remaining major lipid constituents FC and PL

as well as the size of the particle is then calculated from the

lipoprotein core contents as described in this section. The type of

lipoprotein and associated major Apo component are the basis for

the metabolism model.

The lipoprotein diameter is calculated based on the volume of

the two main core components TG and CE (as in [21], [44], [45],

[46]), according to equation (1). This calculation of the lipoprotein

sphere’s diameter based on core volume uses two assumptions: (1)

lipoprotein sphericity, and (2) a fixed surface layer thickness.

D~2| rcorezrpl

� �

~2|
#TG:volTGz#CE:volCE

NA
: 4

3
:p

 !1
3

zrpl

0
@

1
A ð1Þ

The calculation of lipoprotein diameter (D, in nm) is based on

the number of molecules of core components (denoted by # TG

and # CE respectively), the volumes of a TG and a CE molecule

(volTG and volCE , from [44], in nm3=molecule), Avogadro’s

number (NA) and the thickness of the surface layer (rpl , 2 nm, [44],

[46], [47], [48], [49]). rcore is the calculated radius of the

lipoprotein core.

For calculation of the TC profile, we must define the FC

content of the lipoprotein in addition to the CE content. The FC

and PL content are calculated based on the experimentally

determined ratio of surface lipids to core lipids for various

lipoprotein sizes, as derived from published data (7 classes in [25],

1 class of nascent VLDL from [24]). The FC content is determined

by linearly interpolating the ratio of # FC/(# CE+# TG) over

the logarithm of the radius of the lipoprotein. Extrapolation, when

necessary, is performed by taking the nearest ratios. An analogous

calculation is performed to determine the amount of PLs, now

using the ratio # PL/(# CE+# TG) (Text S1).

Figure 1. Relationship between modelled lipoprotein core composition and in silico lipoprotein profile. A. Representation of an FPLC
profile. The profile was generated through calculation of the euclidean norm of the TG and TC content (in nmol) in each fraction of the untreated
mouse FPLC profile, and is expressed in arbitrary units. B. Surface plot relating calculated VLDL diameter to CE and TG content. Contours represent
the calculated positions of FPLC fraction boundaries. In addition to the depicted CE and TG contents the FC and PL contents are also determined for
all lipoproteins. Figure 1 in Text S1 depicts the relationship between modelled lipoprotein core composition and surface components FC and PL. C.
Surface plot relating calculated HDL diameter to CE and TG content. Contours represent FPLC fraction boundaries. A detailed description of the
lipoprotein composition model is provided in Text S1. The calculation of the in silico lipoprotein profile is represented by the arrows, which connect
FPLC fractions to the associated surface area in the model as bounded by the fraction boundary contours. All FPLC profiles are composed of discrete
data points and are pictured as a series of dots, connected by a line which serves only to guide the eyes. For clarity, the highest measured fractions of
the FPLC profile have not been pictured. Note that the highest pictured fraction, 37, corresponds to a diameter of 4 nm.
doi:10.1371/journal.pcbi.1003579.g001
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The absolute content of TG and CE molecules in a single

lipoprotein spans a very wide range [21], [46], [50]. By defining

the compositional model not in terms of absolute lipid content but

in terms of derived indices i and j as will be described, the model is

chosen to describe the metabolism and data more evenly. For the

VLDL and HDL models, the same relation between the indices

and lipid content is applied, but the model constants in this

relation have values unique to the lipoprotein type. The values of

the constants can be found in Text S2 and the diameters of the

modelled HDL and VLDL are visualized in Figure 1C and

Figure 1B respectively. In these figures, the diameter of the

lipoproteins is plotted against the TG and CE content of the

particle. In Text S1, the non-linear relationship between indices i

and j and the TG and CE content is further demonstrated.

The TG content of a particle can be assumed to decline in an

approximately exponential fashion when undergoing lipolysis [22],

and therefore the expected distribution of lipoproteins over the

triglyceride axis is not linear, but exponential. Using this

assumption we define TG index i which relates to the triglyceride

content via

TG(i)~#TGmin
:(gTG)i{1 ð2Þ

Here gTG is the growth factor, which is fixed based on the

maximal (#TGmax) and minimal (#TGmin) TG content via

gTG~
#TGmax

#TGmin

� � 1
imax{1

#TGmax is the TG content at i~imax. As stated previously,

equation (2) is applicable to both the HDL and VLDL grids, but

#TGmax, #TGmin and imax (and therefore also the values of gTG

and TG(i)) are defined separately for VLDL and HDL.

In HDL, the main murine cholesterol carrier, cholesterol

metabolism is a dynamic process in which cholesterol is taken up

by the particle and esterified, but also removed from the particle

by a protein mediated selective lipid uptake process [3]. As

accumulation of CE in the lipoprotein cannot be assumed to be

proportional to its current CE content, an assumption that a

change in a lipoproteins CE content is proportional to its current

CE content is not appropriate. The equation that relates the CE

index j to the CE content must differ from the relation introduced

for TG. The CE index j is defined not on the basis of metabolism,

but such that the distribution of lipoprotein diameter over j

resembles the distribution of lipoprotein diameter over FPLC

fractions. This strategy is employed to more evenly distribute the

simulated lipoproteins over the data points in the FPLC profile.

We define the CE index j in equation (3), ensuring that for small

HDL (i.e., HDL with minimal CE content), the j index is linearly

related to the FPLC fraction number. In this equation, jmax

represents the maximal value of j (Text S2) and Dmin and Dmax are

the minimal and maximal lipoprotein diameters, which can be

calculated from the minimal and maximal CE and TG contents.

For a full derivation of this equation, we refer to Text S1.

CE(j)~
NA

: 4
3

p

8:volCE

10I0 :10I1
:j{2:rpl

� �3
{

#TGmin
:volTG

volCE

ð3Þ

with

I1~
log10(Dmax){log10(Dmin)

jmax{1
ð4Þ

and

I0~log10(Dmin){I1 ð5Þ

The parameters of the grid are defined for the physiological

ranges of the lipoproteins. In VLDL composition the maximal TG

content exceeds the maximal CE content and in HDL the

maximal CE content exceeds the maximal TG content. TG index

i therefore runs from 1 to 40 in VLDL and 1 to 8 in HDL whereas

the CE index j runs from 1 to 8 in VLDL and from 1 to 40 in

HDL.

Lipoprotein metabolism model. Lipoprotein metabolism

as included in the model is biologically based [3], [4], [22], [24],

[26], [27], [29], [45],[46], [50], [51], [52], [53], [54], [55], [56],

[57], [58], [59], [60], [61] and is expressed as a series of ordinary

differential equations describing lipoprotein production, remodel-

ling and uptake. The lipoprotein metabolism models are visualized

in Figure 2. For the full equations, description and rationale we

refer to Text S2; the following section provides an overview of the

kinetic models.

The series of differential equations in the HDL sub-model can

be written as

d(ai,j)(t,h)

dt
~fa(ai,j(t,h),h,ui,j(t,h)) ð6Þ

Where ai,j are HDL particles containing TG(i) and CE(j), t is

time in hours, h is a vector of 16 kinetic and physiological

parameters, and ui,j(t,h) is the input of HDL with indices (i,j).

The concentration of particles is determined by production,

remodelling, and catabolism. The positive term of the differential

equation, the increase of lipoproteins with indices (i, j), consists of

both an increase due to lipoprotein production and an increase

due to remodelling of existing lipoproteins. Lipoprotein uptake

and lipoprotein remodelling are a function of lipoprotein

concentration and can be a function of lipoprotein composition

and/or lipoprotein size.

Lipoprotein remodelling is always expressed as a change in one

of the two main core components (Figure 2), and therefore a

Figure 2. Lipoprotein metabolism model. A. Visualization of the HDL metabolism model. The central lipoprotein represents the lipoprotein with
grid coordinates (i,j). The arrows represent the 6 processes that together determine the HDL distribution. HDL production and catabolism involve
lipoprotein introduction to and removal from the grid and are pictured perpendicular to the plane of the grid. Within the lipoprotein grid, HDL may
undergo lipolysis (resulting in a flux from (i, j) to (i21, j)), obtain either CE or TG (resulting in a flux to (i, j+1) or (i+1, j) respectively) or undergo
selective uptake of CE (resulting in a flux from (i, j) to (i, j21)). A process in which the CE or TG content of the lipoprotein increases thus causes an
increase of lipoprotein size and surface components, while a decrease of core lipid content is associated with a decrease in size and surface
components (Figure 1 and Text S1). Each of the six fluxes is a function of lipoprotein composition and/or size. B. Visualization of the VLDL metabolism
model. The VLDL sub-model structure is similar to the HDL sub-model structure, but the VLDL metabolism model differs from the HDL metabolism
model. In the VLDL metabolism model lipoproteins may only decrease in size, and lipolysis and catabolism of VLDL are both the result of two
equations. A full description of the lipoprotein metabolism model is given in Text S2.
doi:10.1371/journal.pcbi.1003579.g002
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change in index i or index j. In order to prevent the lipoproteins

exiting the model through remodelling instead of catabolism all

model boundaries are closed. This is enforced by defining all fluxes

over model boundaries as 0. As the boundaries have been defined

much higher than the expected particle lipid content (Text S2),

this does not influence the simulation.

The production of HDL in the framework is determined based

on experimental data. The TC content of produced HDL is

defined by in vitro data of nascent HDL [26]. The TG content of

nascent HDL is chosen as the minimal TG content in the HDL

model. Due to the exponential relation between i and # TG the

model does not include particles without TG. The resulting

production is written as:

uprod Di,j~scaleA
:
Xkmax

k~1

ratioA,k
:prodA,k i,jð Þ ð7Þ

Where kmax represents the number of different types of particles

that may enter the system (here, k = 2). prodA,k represents the

distribution of the k-th type of HDL particle, and scaleA is a model

parameter representing the amount of HDL particles produced (in
mmol
h:kg

). Finally, ratioA,k is a parameter that represents the relative

contribution of the k-th type of particle to the HDL production. In

order to preserve the definition of scaleA as the amount of particles

entering the system, it must also hold that:

Xkmax

k~1

ratioA,k~1 ð8Þ

In HDL remodelling four processes are defined (1) lipolysis of TG,

(2) removal of CE from the particle (selective uptake), (3) uptake of

peripheral FC by the lipoprotein and esterification of FC to CE

(TC accumulation) and (4) uptake of TGs by the lipoprotein (TG

accumulation). In general, the rate equations are phenomenolog-

ical equations that describe the remodelling process based on

lipoprotein size, composition and concentration. Remodelling

steps in which lipids are removed from the lipoprotein are a

function of the absolute amount of the targeted lipid in the

complex. A correction factor is included in the rate equations to

scale the fluxes to the rate of lipid content change (Text S2). This is

necessary to correct for the non-linearity of the relation between

indices i and j and lipid content and the variability of the grid

dimensions in the model.

The general differential equation of the HDL sub-model

(equation (6)) was extended to equation (9).

d(ai,j)

dt
~ uprod Di,jzulipDi,jzuselDi,jzucholDi,jzutrigDi,j

{(rlipDi,jzrselDi,jzrcholDi,jzrtrigDi,jzruptDi,j)ai,j

ð9Þ

Where lipoprotein production is denoted by the subscript prod,

catabolism is represented by upt and the remodelling steps are

indicated by lip (lipolysis), sel (selective uptake), chol (accumulation

of TC) and trig (accumulation of TG).

HDL selective uptake is dependent on particle size and relative

CE content. HDL lipolysis is a function of relative TG content.

HDL TG and TC accumulation are a function of the rate of

surface remnant entry into the system. HDL catabolism is

inversely proportional to HDL size. Thus, HDL production is a

function of 2 parameters (scaleA and ratioA,1, as ratioA,2 is fixed

by equation (8)). HDL remodelling contains four equations, which

are defined by a total of 5 parameters, and HDL catabolism is a

single equation with a single parameter.

Analogous to equation 6, VLDL metabolism can be written as:

d(bi,j)(t,h)

dt
~fb(bi,j(t,h),h,ui,j(t,h)) ð10Þ

In the VLDL sub-model, the lipoprotein core content does not

increase and equation 10 is extended to equation 11

d(bi,j)

dt
~ uprod Di,jzulipDi,jzuselDi,j{(rlipDi,jzrselDi,jzruptDi,j)bi,j ð11Þ

The production of VLDL in the framework is based on

experimental data from [24], in which the ratio of TG and CE

content in nascent VLDL is published (Text S2). In short, VLDL

production is defined as a two-dimensional log-normal distribution

over the TG and CE contents (in # of molecules). The nascent

VLDL diameter is a model parameter which is used to calculate

the value of the mean and variance of lipid content. The

parameters of the log-normal distribution are then calculated

based on this absolute mean and variance [24]. The rate at which

lipoproteins are produced is finally scaled so that the simulated

VLDL-TG production is equal to the measured value of the

VLDL-TG. VLDL production is expressed by equation (12).

prod(TG,CE; m,S)~
1

2p:TG:CE:sTGsCE

e

{1
2

(ln(TG){mTG )2

s T
2

G

z
(ln(CE){mCE )2

s C
2

E

" # ð12Þ

with S~
sTG

sCE

� �
and m~

mTG

mCE

� �
.

VLDL metabolism contains only two remodelling processes:

lipolysis and selective uptake. VLDL lipolysis and VLDL

catabolism, however, are each described by two equations, and

therefore the total VLDL metabolism model is composed of 6

equations. VLDL lipolysis comprises (1) the HDL lipolysis

equation, which is presumed to be active on VLDL as well as

HDL, and (2) a VLDL specific lipolysis equation, which is a

function of VLDL size. The function of CE uptake from VLDL is

chosen equivalent to HDL, but as the proteins involved are

presumed different the parameter of the function is estimated

separately for HDL and VLDL. VLDL catabolism is defined by (1)

a constant catabolism term and (2) a surface area dependent

catabolism function. VLDL production is defined by the single

diameter parameter. VLDL lipolysis is described by four

parameters. These are divided into the two parameters of the

universal lipolysis function which have the same values as in the

HDL sub-model and two parameters of the VLDL-specific

lipolysis function. VLDL selective uptake is described by one

parameter. The catabolism equations contain a total of four

parameters. This brings the total model to 266 equations defined

by 16 parameters, describing the concentration of 26320

lipoprotein state variables.

Calculation of the in silico profile. FPLC fractions have

been separated based on their diameter, according to equation (13)

[62]. In order to transform the computed concentrations to a

profile, we must therefore compare in silico size with FPLC fraction

size range. FPLC fractionated size range is determined by

ð12Þ
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calibrating the location of the VLDL, LDL and HDL peaks with

their experimentally determined sizes in [23] via least squares.

10log D~azb:kav
0 ð13Þ

In this equation, D is the hydrodynamic diameter of the

lipoprotein, kav
0 is the normalized value of the elution parameter

kav ([62]), and parameters a and b must be determined.

The calibration function is described by equation (13) with

values of a~1:97 and b~{1:95. This yields the following sizes

for (the median of) the three main lipoprotein classes: 41.5 nm

(VLDL), 22.6 nm (LDL) and 11.3 nm (HDL) (Text S3).

To calculate the in silico lipoprotein profile, the diameter of the

particles in the computational model is first calculated, according

to equation (1). For each FPLC fraction, the size boundaries are

calculated with the aid of equation (13). By combining both

equations, a relationship between the (boundary) diameter Db and

indices i and j is determined. Finally, numerical integration

between the fraction boundaries as expressed in i and j is

performed to determine the number of simulated lipoproteins in

each fraction. Multiplication by the TG or TC content of the

lipoproteins results in in silico TG and TC profiles. The in silico

profiles of PL, FC, CE, HDL and Apo B containing lipoproteins

are generated through the same procedure. The calculation of the

in silico profile is further visualized in Figure 1A and further

explained in Text S3 ([63]).

Model simulation and analysis. Parameter estimation is

performed using the FPLC profiles for control and LXR agonist

treated mice [27] by simulating the computational framework as

implemented in Matlab (7.10, The MathWorks, Natick, Massa-

chusetts) and minimizing the cost function (Sd ) based on a sum of

squared residuals. This is implemented using the non-linear least

squares function lsqnonlin. The cost function is composed of a sum

of squared residuals weighed with factors based on experimental

data from literature ([23]), a penalty for a failure to reach steady

state and a penalty for particles found in the unphysiological upper

model boundaries (Text S4).

The VLDL and HDL sub-models were simulated consecutively.

The rate of PL release from VLDL due to remodelling, which is an

input in the HDL sub-model, was fixed to the steady state value

calculated in the VLDL simulation. To estimate the 16 wild-type

C57Bl/6J mouse parameters, the optimisation was initialized 1000

times with random h (Text S4). For the optimisation, the

parameters are transformed to ensure a similar order of magnitude

of all parameters. Geometrical parameters are transformed linearly,

while kinetic parameters are transformed logarithmically. Details on

parameter bounds and transformation are found in Text S4.

Model performance was assessed for each optimized parameter

set by sampling the parameter space around the optimal

parameter set and re-optimising. The calculation of a profile

likelihood [64] and the generation of error plots of parameters of

interest were used to further assess model performance and quality

of the optimal parameter set.

Results

Computational analysis of lipoprotein metabolism in
C57Bl/6J mice: From FPLC profiles to lipoprotein
metabolism

For model development, parameters were initially estimated

based on control C57Bl/6J mouse lipoprotein profiles. Figure 3 A

and B show the in silico TG and TC FPLC profiles with the

experimental data for an optimized parameter set. The model

describes the experimental data well in both the TG and the TC

profile. We initiated 1000 optimization runs with randomly chosen

initial parameter values. Two of the resulting optimized parameter

sets described the data well in terms of number, location and

height of the peaks. Moreover, these two optimized parameter sets

displayed very reasonable values for the nascent VLDL diameter

(Text S5). Figures 3 C–D demonstrate the added value of the model

by providing estimates of particle number (Figure 3C, HDL) and

unmeasured lipoprotein component (Figure 3D, PL) profiles.

We performed an analysis of the parameter space via re-

sampling, profile likelihood analysis and calculation of the local

error landscapes. The analysis revealed that the two parameter sets

found represent the two local optima of the VLDL sub-model.

While both optima result in a good fit of the FPLC profile and

both are included in further analysis, the optimal parameter sets

represent qualitatively different solutions. One of the solutions (to

which X2 belongs) is the global optimum, while the other (to

which X1 belongs) is a local optimum. The optima differ mainly in

the size of nascent VLDL and the selective uptake parameter, as is

illustrated in Text S5.

From analysis of the HDL sub-model parameter values, we

concluded that the optimized ratio between five kinetic HDL

parameters (scaleA, cchol , cselA, ctrig and cuptakeA) is consistent, but

they are not identifiable individually. Thus one optimal set of

correlated parameters and fluxes exists. This set can be

straightforwardly scaled to desired, physiological values in the

case that a single flux is known (Text S5). The sixth kinetic

parameter, clip, is found to not correlate with the remaining

parameters. As this parameter is also present in VLDL sub-model,

the value of clip is instead constrained by the VLDL sub-model.

The value of HDL production parameter ratioA,1 is found to be

almost one (Text S5). This indicates that of the two distinct sizes of

nascent HDL which were present in the experimental data on

which the HDL production is modelled (Text S2), only the smaller

particle is produced in the simulation. The wild-type model

therefore simulates one type of newly produced HDL, which

contains a mean of 24 cholesterol molecules. A comparison of

parameter values with literature is found in Text S5 ([38], [46],

[65], [66], [67]).

Prediction of FPLC profiles of transgenic mouse models:
From lipoprotein metabolism to FPLC profiles

For model validation we performed a series of simulations to

generate lipoprotein profiles for three transgenic mouse models

commonly used in cardiovascular research. The first two in silico

transgenic mouse models have a deficiency in HDL metabolism,

whereas the final modelled deficiency is in Apo B containing

lipoprotein uptake.

SR-B1 deficient mice exhibit impaired cholesterol exchange

between HDL and tissues. To simulate SR-B1 deficiency the HDL

selective uptake parameter cselA was decreased. To examine the

results of the parameter perturbation for both a complete absence

of the selective uptake mechanism as well as for a small amount of

residual selective uptake, the simulation was performed for several

values of the parameter cselA. The results of the parameter

perturbations are presented in Figure 4A. The predicted in silico

SR-B1 knock-out lipoprotein profiles agree well qualitatively with

published FPLC profiles of SR-B1 knock-out mice [30]. Consistent

with phenotypes found in literature, the HDL particles of

simulated SR-B1 knock-out mice are larger compared to wild-

type mice. In the FPLC profile, this is visible as a shift to the left of

the HDL peak. In silico, this is accompanied by a rise in HDL TC

concentration of approximately 70% (Figure 4B).

Computational Analysis of Murine Lipoproteins
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In PLTP knock-out mice, PL transfer activity is markedly

diminished as compared to wild-type mice [37], [38], [68], and

HDL particles may be catabolised more rapidly than in wild-type

mice [38], [68]. To simulate the PLTP knock-out mouse the HDL

growth cchol parameter was perturbed, representing a lower influx

of surface remnants.

Figure 3. In silico fast protein liquid chromatography profiles of untreated C57Bl/6J mice. A. Cholesterol FPLC profile of untreated mice,
experimental data and simulated profile. FPLC profile (black) of pooled plasma of moderately fasted, untreated C57Bl/6J mice and simulated FPLC
profile (blue) total cholesterol content. The in silico profile was calculated with an optimized parameter set following model parametrisation (Text S4,
parameter set X1). B. TG FPLC profile of untreated mice, experimental data and simulated profile. Experimental (black) and simulated (blue) TG
profiles as in A. C. Computed profile of HDL. In addition to calculation of the measured profiles (A and B), calculation of profiles of all included model
components is facilitated by the model. The parameters used to generate this profile are provided in Text S4. D. Computed PL profile, computed with
the parameters provided in Text S4. For clarity, the highest measured fractions of the FPLC profile have not been pictured.
doi:10.1371/journal.pcbi.1003579.g003
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cchol is a parameter that represents a process in which not only

PLTP, but also proteins such as Lecithin-cholesterol acyltransfer-

ase (LCAT) and ATP-binding cassette A1 (ABCA1) are involved.

Furthermore, free cholesterol transfer activity may not be

completely ablated in absence of PLTP [68]. Therefore, the

knock-out phenotype is presumed to result from a perturbation in

which cchol is in the range of 30 to 50% of the wild-type value.

Choosing a value in this range for the simulation results in a

reduction of plasma cholesterol corresponding to the 55%

reduction of plasma cholesterol observed in the PLTP knock-out

mouse [37]. The FPLC profile of the PLTP deficient mouse

displays a slight shift to the right and the aforementioned reduction

in plasma cholesterol [37]. The simulation results (Figure 4B) are

in qualitative agreement with the results published in [37].

The third in silico transgenic mouse model simulated is the

LDLr knock-out mouse ([39], [42], [43]). Experimental profiles of

LDLr deficient mice show a marked increase in the LDL TC

profile, a moderate increase in the VLDL and HDL size ranges

and in most cases, an increase of plasma TG ([42], [39], [43]). The

LDLr mediates both Apo E and Apo B dependent lipoprotein

uptake. The in silico profile (Figure 4E) is produced by moderating

both whole-particle uptake rate parameters cuptakeB and Aupt by

the same factor. As mice produce around 70% of VLDL with the

truncated Apo B48, around 30% is dependent on LDLr for uptake

following conversion to LDL and the rates would be expected to

decline by at least 30%. The resulting profiles (shown for different

attenuation factors in Figure 4E) show qualitatively the same

behaviour when compared to the wild-type profiles as seen in the

Figure 4. In silico cholesterol FPLC profiles of transgenic mice. A. Simulated cholesterol profile of the SR-B1 knock-out transgenic mouse. To
simulate the SR-B1 knock-out mouse, the selective uptake parameter was set to between 1021% (black) and 5% (blue) of the original value. For
comparison, the untreated C57Bl/6J mouse cholesterol profile is drawn in red. For comparison, we refer to the FPLC profile of SR-B1 deficient mice in
[30]. B. Change in plasma cholesterol concentration for the in silico transgenic mice as depicted in A, C and E. C. Simulated cholesterol profile of the
PLTP knock-out transgenic mouse. To simulate the PLTP knock-out mouse, the parameter cchol was diminished to values between 30% (black) and
50% (light blue) of its original value, increasing in steps of 5. The untreated C57Bl/6J mouse profile is again shown in red. Note that because the
perturbed parameter in this case cannot be presumed to be solely dependent on PLTP activity, the parameter value was not reduced below 30%. For
comparison, we refer to the FPLC profile of PLTP deficient mice in [37]. D. Change in plasma triglyceride concentration for the in silico transgenic
mice as depicted in A, C and E. E. Simulated cholesterol profile of the LDLr knock-out mouse. To simulate the LDLr knock-out mouse, both VLDL sub-
model whole-uptake parameters cuptakeB and Aupt were diminished to a factor between 40% and 92.5% of their wild-type value. For comparison, we
refer to the FPLC profile of LDLr deficient mice in [43]. The visualized in silico profiles have all been generated with parameter set X1. For clarity, the
highest measured fractions of the FPLC profile have not been pictured. Further quantitative analysis of the results as well as the corresponding in
silico profiles generated with X2 are presented in Text S5.
doi:10.1371/journal.pcbi.1003579.g004
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experimental profiles [42]. The LDL cholesterol is moderately

raised, and a lower increase is seen within VLDL and HDL size

ranges. Plasma triglycerides show an increase that is lower (in an

absolute sense) than the increase observed rise of plasma

cholesterol (Figure 4D).

Further information on the simulation of knock-out phenotypes

can be be found in Text S5.

Computational analysis of lipoprotein metabolism in
C57Bl/6J mice treated with an LXR agonist

Treatment with an LXR agonist affects many aspects of lipid

and lipoprotein metabolism simultaneously [28], [69], [70]. The

many targets of LXR include PLTP, SR-B1, Lipoprotein lipase,

ApoE, ABCA1, ATP binding cassette G1 and other members of

the ABC transporter family [27], [28], [71]. The modulation of

lipoprotein metabolism is accompanied by changes in lipoprotein

size and lipid content, including the presence of both enlarged

VLDL [24], [58] and enlarged HDL [72], [71]. The enlargement

of VLDL has been found to be associated with increased PLTP

activity that results in the secretion of larger nascent VLDL, and

the increase in plasma TGs is normally ablated by particle uptake

[58]. The precise mechanism of HDL enlargement has not been

fully elucidated, but has been associated with ApoE [71].

To simulate the lipoprotein profile of mice that have been

treated with an LXR agonist several model constants were

modified to comply with the experimental value (Text S6, [2], [3],

[24], [51], [58], [59], [71], [73], [74]). The main modification

encompasses the VLDL production, which was modified such that

nascent VLDL in LXR agonist treated mice is of a larger size and

higher TG content than nascent VLDL of wild-type C57Bl/6J

mice. In Grefhorst et al. [24] the increase in VLDL-TG secretion

was found to result mainly from an increase in TG content. In the

simulation of T0901317 treated mice the nascent VLDL particles

were therefore enlarged in diameter by retaining untreated

particle secretion rate and nascent VLDL CE content while

increasing the TG content. To achieve this, the TG content of

nascent VLDL in treated mice was calculated by multiplying the

untreated TG content with the relative increase in VLDL-TG

production. The diameter of nascent VLDL was hereby fixed in

relation to the diameter of VLDL of untreated mice, and the

number of parameters in the model was reduced from 16 to 15.

Parameter optimization was performed by adding 50 random

variations to the parameter sets obtained for untreated mice and

re-optimizing as described for the untreated wild-type mouse (see

Methods, Text S6). While many optimized parameter sets were

successful in describing the general size of HDL, VLDL and LDL,

the model was not able to reproduce the characteristic enlarged

HDL, i.e. the second peak of the HDL which elutes in the LDL

size range. From these simulations, we concluded that the model is

unable to describe the mechanism responsible for the appearance

of these particles and an extension of the model was necessary. We

formulated three qualitatively different extensions to the model for

untreated mice based on biological mechanisms that could be

responsible for the appearance of large HDL particles.

The first model extension (E1) involves an extension in HDL

remodelling, in particular the HDL TC accumulation equation.

The cholesterol uptake equation is elaborated to include additional

uptake for large lipoproteins. The equations represent a mecha-

nism whereby Apo E may stimulate the uptake and esterification

of cholesterol, e.g. by activation of LCAT activity [73].

The second extension (E2) that was tested modifies HDL

catabolism by incorporating uptake of large, Apo E-containing

HDL by Apo E-binding receptors, such as the the LDL receptor

[73]. As such, it is represented by an equation (Text S6) similar to

the equation (Text S2) designed to simulate Apo E-dependent

uptake of VLDL.

The third extension (E3) expands HDL catabolism to include

the additional appearance of larger than normal HDL particles

[74]. This is simulated by including an input of very large,

relatively TG-poor and CE-rich particles.

The extended models comprise an addition of two or three to

the 15 parameters in the original model. The extensions to the

HDL model are visualized in Figure 5, and further details and

equations are provided in Text S6.

Parameter estimation of the extended models was performed by

optimizing the cost function as described in Text S4 for the profile

obtained following 14 days of treatment. The parameters were

initialized by initiating the 2, 3 or 3 parameters of the extended

equation randomly within their bounds while initiating the 15 core

model parameters at their wild-type value. The ability of a

parameter set to simulate a profile was judged on both quantitative

(i.e. TG and TC profile) and qualitative (i.e. appearance of the

‘‘enlarged HDL’’) considerations. For a description of the VLDL

in the profile on days one and two of treatment, it was necessary to

estimate separately the previously described fixed VLDL size and

TG content.

In Figure 6, the experimental and simulated profiles of the

T0901317-treated mice are plotted for each time point following

the initialization of treatment. Each of the three extended models

is able to describe the enlarged HDL peak observed in the

experimental data.

To identify differences between the three tested models, HDL

lipid fluxes are plotted for all accepted parameters sets in Figure 7.

As for the wild-type mouse, only the ratio between fluxes can be

identified and therefore in Figure 7 the ratio of fluxes to the HDL

TC production flux is depicted. Figure 7A shows the course of the

peripheral cholesterol efflux to existing particles relative to

cholesterol production. In Figure 7B, catabolism of HDL in terms

of TC content is plotted. The fluxes calculated from the three

extended models are distinguishable in their magnitude as well as

their development over time (Figure 7A and B). Although the three

different models yield equivalent lipoprotein profiles, there are

clear differences in the predictions of lipid fluxes and lipoprotein

metabolism. These differences can provide a basis for experimen-

tal differentiation between the mechanisms.

Discussion

The well-established association between plasma lipoprotein

concentrations and disease risk underscores the need to quantita-

tively analyse the factors determining lipoprotein distribution. In

preclinical research, mouse models are often used to study the effect

of a treatment on lipoprotein metabolism and disease risk. However

for mice the computational tools available for human lipoprotein

distributions ([21], [22]) are absent. In this study we have developed

and applied MuLiP, which is a computational framework to analyse

lipoprotein metabolism in mice. MuLiP can be used to expand

understanding of lipoprotein metabolism based on commonly

measured FPLC profiles. With this strategy, insight into lipoprotein

concentration and composition, lipid and lipoprotein fluxes and

lipoprotein remodelling processes can be gained. We showed that

the model is able to analyse wild-type murine lipoprotein

metabolism by deriving underlying metabolic processes from the

lipoprotein profile. Furthermore, the model was shown to predict

the profiles of transgenic mouse strains following a simulated

perturbation of the underlying metabolism. Finally, the model was

applied to provide novel insights into the metabolic adaptations

underlying the response to a pharmacological intervention.
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For many years, the interpretation of tracer experiments in

humans has been aided by compartmental models [2], which have

yielded valuable insights into lipoprotein life cycles. The applica-

tion of these models to describe long-term effects on lipoprotein

size and composition has limitations because the composition and

size of lipoprotein classes are generally predefined in such methods

[21], [22], [75]. Moreover, these models often focus on a single

lipoprotein class (e.g. HDL: [76], [77], [78], [79]; or VLDL: [80],

[81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92]).

In addition to these tracer dynamics models several mathematical

models have been published which describe the dynamics of

isolated lipids, proteins or lipoproteins ([93], [94], [95], [96], [97]),

but cannot provide an integrated view of the relationship between

lipid fluxes and lipoprotein distributions.

Two models of human lipoprotein metabolism have been

proposed that assume a semi-continuous distribution of lipoprotein

components [21], [22]. These two models have been shown to

retrieve valuable insight into lipoprotein metabolism [21] and

disease risk [22], [98], [99] that can be extracted by quantitatively

evaluating human lipoprotein distributions. The Particle Profiler

developed by van Schalkwijk et al. [22], [98], [99] describes Apo B

containing lipoprotein metabolism and assumes that Apo B

containing lipoprotein metabolism and composition rely solely

on lipoprotein diameter. The computational model developed by

Hübner et al. [21] describes the detailed metabolism of HDL and

Apo B containing lipoprotein particles. Lipoprotein particles are

represented by a large number of possible configurations of TG,

TC and protein content.

Previous models are inapplicable to murine lipoprotein profiles

for several reasons. First of all, to create a complete FPLC profile

VLDL, LDL and HDL should all be described by the model.

However, the majority of existing models focus on a single major

lipoprotein class. Additionally, the models include assumptions of

lipoprotein composition which are not suitable to describe the

composition of murine lipoproteins. Finally, several differences

between human and mouse (fasting) lipoprotein metabolism

preclude human lipoprotein metabolism models from application

to murine physiology. For instance, in mice HDL contains the

majority of cholesterol present in plasma. In humans LDL is the

primary cholesterol carrier [100]. Also, several differences in

Figure 5. Overview of extended HDL metabolism. HDL metabolism, as depicted in Figure 2B, with extensions. For clarity, the original model of
HDL metabolism is shown in grey-scale, while the three extensions are shown in red, blue and green respectively. The additional cholesterol
accumulation of E1 is depicted in red. The additional lipoprotein uptake modelled in E2 is shown in blue. Finally the extension to include additional
large nascent HDL as described by E3 is included via the green arrow. Note that while all extensions are shown here in the same figure, the three
extensions are included in the model separately. More details on the model extensions are provided in Text S6.
doi:10.1371/journal.pcbi.1003579.g005
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protein presence and localization must be considered in the

development of the metabolic model. An important lipid

exchanger in HDL and LDL metabolism in humans, Cholestery-

lester transfer protein (CETP), is absent in wild-type mice [100].

Furthermore hepatic lipase is found mainly in the liver in humans,

but is present free in plasma in mice [100]. The non-specificity of

Apo B 48 to chylomicrons in mice can be considered a final

complicating factor.

In contrast to the aforementioned models, our novel compu-

tational model was designed specifically for the analysis of profiles

obtained from mice. This required a novel model of murine

lipoprotein metabolism. Future applications of MuLiP will require

Figure 6. In silico fast protein liquid chromatography profiles for the C57Bl/6J mouse, treated with LXR agonist T0901317.
Cholesterol (A) and triglyceride (B) profiles of the treated mouse at all time points. The 3-dimensional plot shows the in silico and experimental
profiles as measured and simulated at six time points following initiation of treatment. For clarity, the time axis is scaled logarithmically. At each time
point, the experimental profile is shown in black and in silico profiles generated with all accepted parameters sets of E1 (red), E2 (blue) and E3(green)
are shown in colour. The vertical axis represents the fraction lipid content in nmol. The number of acceptable fits differs per time point and/or model
extension, as optimized fits were evaluated for acceptability. Profiles from acceptable parameter sets are in many cases quite similar, and may not in
all cases be distinguishable from each other. For clarity, the FPLC profiles have been pictured as lines; we note that both experimental and in silico
profiles are in fact composed of discrete fraction measurements.
doi:10.1371/journal.pcbi.1003579.g006
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the integration of new data, extension of the model and therefore

re-optimization of model parameters. Therefore, computational

complexity and speed were important design criteria.

A coarse-grained non-linear description of the lipoprotein

composition space was applied to reduce computation time and

distribute the data evenly over the model. Both the relation

between fraction number and lipoprotein size and the relation

between lipoprotein diameter and lipid content are non linear. In

the case of a linear grid, these relations will result in an imbalance

in the large amount of states corresponding to a single fraction for

fractions on the left-hand side of the profile, which correspond to a

relatively large diameter range. The flexibility of the lipoprotein

composition is ensured through the inclusion of both CE and TG

as variables and inclusion of multiple remodelling processes. The

metabolic model has been designed to focus on lipoproteins of

which the FPLC profile contains most detail, e.g. spherical HDL

as opposed to discoı̈dal HDL. By including VLDL, LDL and

HDL, different aspects of lipoprotein metabolism can be examined

simultaneously. The model is capable of providing detailed

information on the metabolism of a certain (sub)class of

lipoproteins. MuLiP is also capable of describing the large

compositional variation observed in murine lipoproteins during

genotypical or pharmaceutical interventions, such as the ones

described in this study.

The framework was developed for analysis of lipoprotein

metabolism based on two distinct data types: FPLC profiles (TC

and TG) and VLDL-TG production flux. This combination of

data provides the types of information necessary for the

application of a detailed computational model of lipoprotein

metabolism. The FPLC profile contains information on lipopro-

tein concentration, size and lipid content. The VLDL-TG

production provides a VLDL sub-model flux which allows

absolute determination of lipoprotein kinetics [98]. In this study,

VLDL-TG production is estimated following the injection of

Triton WR-1339 into both wild-type mice and mice treated with

T0901317. In the model, this measure of VLDL-TG production is

directly used to determine VLDL production. A possible

alternative implementation of the measured rise in VLDL-TG

production following Triton WR-1339 injection is the calibration

of the model to the rise in plasma TG during 4 hours while in silico

peripheral lipolysis is ‘‘turned off.’’ In Text S5, this alternative

implementation is demonstrated. The predicted difference be-

tween total VLDL-TG production and the Triton WR-1339

estimate of VLDL-TG production in silico is found to be relatively

small. This is in accordance with literature data that quantifies the

reduction of the VLDL fractional catabolic rate following injection

of a lipolysis inhibitor at 90% [67]. In the current study, a

measurement of HDL sub-model fluxes following the pharma-

ceutical intervention is absent. While it is not within the scope of

the current study, several strategies to determine these fluxes are

available. Two computational models are available that could

provide lumped HDL lipid fluxes in the mouse (Tiemann et al.:

[70] and [29] and van de Pas et al.: [101]). We note that in [29],

the computational model is applied to the same pharmaceutical

intervention analysed in this study. A similar approach to scale the

HDL sub-model with an absolute flux is described for the wild-

type mouse in Text S5.

FPLC is a technique used to separate lipoproteins based on size

[62]. However, the relationship between particle size and fraction

number is non-trivial. In many cases the particle sizes in FPLC

profiles found in literature are unquantified. In our computational

framework, a calibration based on a quantified, untreated mouse

profile [23] is applied to determine lipoprotein size.

A second challenge of FPLC profiles reported in the scientific

literature is that most studies only report a single measurement of

an FPLC profile. FPLC profiles are highly reproducible [25],

however the absence of information on data uncertainty precludes

the application of many statistical methods. Weighting functions

and model acceptance have therefore been developed based on (1)

observed variations in lipid content in literature data [23] and (2)

Figure 7. Quantitative distinction between hypotheses: fluxes. Following the acquisition of sets of acceptable parameters for all treatment
durations, the fluxes of the (extended) HDL sub-model are plotted, as a function of time in days, as a ratio to the HDL TC production flux. Red = E1;
Blue = E2, Green = E3. Fluxes are shown as lipid fluxes, of either cholesterol or triglycerides in various processes. A Cholesterol flux due to cholesterol
uptake by the HDL particle, B Cholesterol flux due to HDL catabolism.
doi:10.1371/journal.pcbi.1003579.g007
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analysis of the variability in the dataset applied in the current study

(Text S4).

Murine lipoprotein metabolism in MuLiP is described by the

interconnected VLDL and HDL sub-models. The VLDL sub-

model describes VLDL and LDL content, composition and

metabolism. We note that the lipoproteins in the VLDL sub-

model can be computationally separated into VLDL and LDL

metabolism. The low concentrations of LDL in mice complicate

the analysis of LDL metabolism via an FPLC profile. However, by

coupling VLDL and LDL metabolism we increase the information

available on LDL metabolism and the associated risk of

cardiovascular disease. The HDL sub-model describes the

metabolism of spherical HDL. Both metabolic sub-models take

into account lipoprotein heterogeneity as they are functions of

lipoprotein composition and size. The composition of lipoproteins

in the model is based on the TG and CE content of the particles.

The remaining lipid constituents of the lipoproteins are calculated

from the TG and CE content of the lipoprotein. The interpolation

functions for this calculation are obtained from experimental data

[25]. Computational model analysis revealed the existence of two

qualitatively and kinetically distinct local optima of the metabolic

model, which describe the data well (Text S5). The model was

further analysed by the simulation of several transgenic pheno-

types.

The SR-B1 and PLTP knock-out phenotypes have been

successfully reproduced by perturbing a single parameter in the

HDL sub-model. These transgenic models have been studied

extensively in cardiovascular research (SR-B1: [30], [31], [32],

[33], [35], [36], [34], PLTP: [37], [72]) and the predictions serve

as a validation of model performance. SR-B1 is the main protein

responsible for HDL cholesterol selective uptake and both

heterozygous and homozygous SR-B1 knock-out mice display

increased levels of plasma and HDL cholesterol [30]. In

homozygous SR-B1 knock-out mice, a shift of the HDL peak to

the left in the FPLC profile is observed [30], indicative of increased

HDL size. The in silico SR-B1 knock-out profiles (Figure 4) predict

the same behaviour as seen in the experimental models; the

plasma cholesterol concentration is increased by approximately

70% (Text S5). This increase is slightly lower than the typical value

of 100% ([35], [36]) and falls within the range of HDL cholesterol

increases observed in SR-B1 knock-out mice experimentally ([30],

[31], [32], [33], [34]). The shift to the left, indicating the presence

of larger HDL, can clearly be observed in the in silico profile

(Figure 4A).

Mice deficient for PLTP show clear reductions in all major

components of HDL, including reduced HDL C, Apo A1 and PL

levels [37]. This reduction of HDL cholesterol in PLTP deficient

mice has been attributed to reduced transfer of phospholipids from

triglyceride-rich lipoproteins to HDL [37] combined with

increased catabolism of HDL [38]. Such HDL ‘‘hypercatabolism’’

is thought to result from changes in HDL composition in PLTP

knock-out mice [38]. In the model, PLTP deficient mice have been

simulated by decreasing the PL flux to HDL by decreasing the

combined lipid accumulating parameter cchol . In Figure 4B, this

was shown to generate an in silico FPLC profile which predicts a

decrease of HDL cholesterol similar to that seen in literature.

The in silico PLTP and SR-B1 deficient mice demonstrate the

validity of the HDL sub-model cholesterol metabolism. However,

in preclinical research, mouse models deficient in Apo B

containing lipoprotein metabolism are often used due to their

higher, more human-like LDL cholesterol concentration and

propensity to develop atherosclerosis. The LDLr and Apo E

knock-out models, for example, are two of the models most often

used in cardiovascular research [40]. Therefore these models are

of interest for the validation of the model. Simulation of an Apo E

knock-out mouse, however, may require extension of the MuLiP

model. First of all, the clearance of chylomicron remnants requires

Apolipoprotein E [5], [40] and therefore, absence of Apo E results

in accumulation of chylomicron remnants. As the computational

model currently does not incorporate chylomicron metabolism, it

is unsuited to simulate chylomicron remnant accumulation.

Secondly, Apo E is known to have several functions in not only

chylomicron, but also VLDL and HDL metabolism. Apo E may

mediate the uptake of both VLDL and chylomicrons and regulate

LPL activity, and VLDL production is changed in Apo E knock-

out mice [40], [67]. Because the MuLiP model is based on

processes rather than genes or proteins, an in silico Apo E knock-

out mouse is possible only if data is available that will guide the

necessary parameter changes.

The LDL receptor is a related protein, however is not necessary

for chylomicron clearance and LDLr knock-out mice do not show

modulation of VLDL production [67]. The qualitative evaluation

of an in silico LDLr knock-out mouse requires the perturbation of

at least two parameters. By scaling both parameters with the same

factor the LDLr knock-out mouse is simulated in the most simple

way, however this results in qualitative agreement between the

experimental and in silico profiles (Figure 4 E). The in silico LDLr

deficiency reproduces the main characteristics of LDLr knock-out

FPLC profiles: moderately raised LDL cholesterol, mild increases

in cholesterol in the VLDL and HDL size ranges and an increase

in plasma triglyceride which is seen in vivo ([41], [42], [43]).

Application of the original model, developed with wild-type

mouse data to profiles of mice treated with pharmaceutical agent

T0901317 did not retrieve an accurate description of the data.

VLDL production was modified in accordance with experimental

data of VLDL production following treatment with an LXR

agonist [27], [29]. The model was applied to profiles of mice

treated with an LXR agonist for 14 days first without re-

optimizing parameters. The 15 model parameters were then re-

optimized. The model was not able to adequately reproduce the

data in either case (Text S6). In particular, the enlarged HDL

typically observed upon LXR activation ([72]) could not be

described. We concluded that the model was missing (a)

mechanism(s) involved in the generation of the enlarged HDL

and applied general extensions to the production (E3), remodelling

(E1) and catabolism models of HDL (E2).

From the results generated by the three extended models of

LXR-activation we conclude that all three models were equally

capable of simulating the appearance of larger HDL. Biologically,

the interpretation of each of the three extensions is distinct. E1

hypothesizes that an additional influx of cholesterol takes place in

particles of a certain size. We base this hypothesis on the possibility

of a mechanism that increases cholesterol accumulation of large-

Apo E-rich particles. Apo E is known to interact with a variety of

lipid metabolism related proteins [73]. In E2, we hypothesize that

the Apo E present on HDL may interact with lipoprotein receptors

[51], [73]. This results in increased catabolism of Apo E

containing particles. In E3 the appearance of the second peak is

caused by the sudden appearance of large particles. Kurano et al.

[74] found that hepatocytes, when stimulated with an LXR-

agonist in vitro, can produce larger, Apo E-rich HDL. However, as

with the previous two hypotheses, the implemented equation is of

a general nature and allows multiple biological interpretations.

The third extension, e.g., may represent a mechanism that

converts HDL to particles of a larger size. It is also conceivable

that a combination of mechanisms is responsible for the observed

size shift.
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The model results incorporate not only the parameter

perturbations. The results of the LXR agonist treated models

e.g. quantify the differences in the relationship between total HDL

production, remodelling and catabolism for the presented

mechanisms, and can also be used to create flux FPLC profiles,

which depict the simulated distribution of these processes over the

FPLC fractions. The differences between models can be quantified

for each of the lipids or processes included in the framework. The

results also quantify of which HDL particles (i.e. which diameter,

which composition) the catabolism or remodelling has been

changed. Finally, the extended models can be used to predict the

response of an LXR agonist treated mouse when a second

intervention or genetic perturbation is applied. In Text S8, for

instance, simulations of SR-B1 and PLTP knock-out mice treated

with T0901317 were generated. Comparison of the predicted

profiles with experimental results can give further insight into the

biological relevance of the proposed mechanisms.

In the future, MuLiP could be used as an additional analysis tool

for FPLC profiles. While processes are currently incorporated into

the model in a phenomenological manner, isolating the effect of a

gene or protein on lipoprotein metabolism will require the

inclusion of more (flux) data, model expansion and parameter

(re-)optimization. In cases where the VLDL production differs

substantially from the assumptions made in this study, the

implementation of a case-specific VLDL production distribution

may be necessary. We note that with data of nascent VLDL

composition and particle size distribution a novel VLDL

production type can be derived and implemented without further

model adaptation.

Another genetic modification commonly used in mouse models

is the addition of CETP [102]. This neutral lipid exchanger links

HDL and VLDL metabolism in humans, but is normally absent in

mice. To allow application of the framework to mouse models that

express CETP, the lipoprotein profile of which more closely

resembles human lipoprotein profiles, it will be necessary to

incorporate CETP in the model as a further link between HDL

and VLDL metabolism. Depending on the data available and

desired application, various implementations differing in complex-

ity could be included. The most simple implementation of such a

neutral lipid exchanger could entail a pair of coupled additional

remodelling functions, i.e. a VLDL remodelling function that

decreases TG content and increases CE content, quantitatively

coupled to an HDL function that decreases HDL CE content and

in turn increases HDL TG content. A more sophisticated equation

could entail the definition of an explicit CETP protein moiety (as

in [21]), the composition of which would determine the orientation

of both the remodelling functions.

In conclusion, we developed a computational strategy to analyse

FPLC profiles based on mouse lipoprotein metabolism and

composition. The model predicts lipoprotein production, remod-

elling and catabolism fluxes which collectively determine changes

in lipoprotein profiles. Following initial application of the model to

FPLC profiles of the C57Bl/6J mouse, it was used to successfully

predict phenotypes of transgenic mouse models commonly used in

cardiovascular research. Furthermore, the model was applied to

analyse and elucidate the complex phenotypes resulting from a

pharmacological activation of the nuclear receptor LXR. MuLiP

can contribute to insight into changes in lipoprotein metabolism

underlying observed changes of a lipoprotein profile.
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