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Movements of Individual Digits in Bimanual Prehension
Are Coupled into a Grasping Component
Frank T. J. M. Zaal*, Raoul M. Bongers

Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Abstract

The classic understanding of prehension is that of coordinated reaching and grasping. An alternative view is that the
grasping in prehension emerges from independently controlled individual digit movements (the double-pointing model).
The current study tested this latter model in bimanual prehension: participants had to grasp an object between their two
index fingers. Right after the start of the movement, the future end position of one of the digits was perturbed. The
perturbations resulted in expected changes in the kinematics of the perturbed digit but also in adjusted kinematics in the
unperturbed digit. The latter effects showed up when the end position of the right index finger was perturbed, but not
when the end position of the left index finger was perturbed. Because the absence of a coupling between the digits is the
core assumption of the double-pointing model, finding any perturbation effects challenges this account of prehension; the
double-pointing model predicts that the unperturbed digit would be unaffected by the perturbation. The authors conclude
that the movement of the digits in prehension is coupled into a grasping component.
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Introduction

To pick up an object, we bring our hand to the object while at

the same time opening the hand a little wider than the size of the

object; opening is followed by the final closure of the hand,

resulting in enclosing of the object. The classic understanding of

prehension is exactly this: prehension is the act of coordinated

reaching and grasping, and has been considered as such in the vast

majority of prehension studies (for reviews, for instance, see [1,2]).

An alternative view on prehension is that it should be seen as the

combination of the individual movements of the contributing

digits. In this view, when an object is picked up between thumb

and index finger (i.e., with a pincer grip), prehension should be

understood from the individual movements of the thumb and

index finger. The latter view on grasping was offered by Smeets

and Brenner ([3]; see also [4]). The current study builds on a

previous one [5], challenging Smeets and Brenner’s double-pointing

model empirically.

The majority of studies of prehension endorse the classic view

that prehension should be seen as the coordinated transport of the

hand (i.e. the reaching component) and opening and closing of the

hand (i.e. the grasping component). This characterization of

prehension dates back to Jeannerod’s seminal studies on reaching

and grasping, in which he presented the first prehension

kinematics data ([6,7]; see also [2]). Jeannerod proposed the

visuomotor-channels hypothesis (see also [8]), in which reaching

and grasping were considered to be independent components of

prehension, each acting on different object properties: intrinsic

object properties (such as object size) would determine the

grasping, whereas extrinsic object properties (such as location

relative to the actor) would determine the reaching. One of the

arguments for hypothesizing independent reaching and grasping

components were the different anatomical structures subserving

both components of prehension. A second argument was that the

reaching component adapts faster to perturbations of object

position than does the grasping component to perturbations of

object size ([9–12]; but see [13]), suggesting a hierarchy of control

(cf. [8,10]). In the vast majority of the prehension literature,

grasping has been studied by considering the kinematics of hand

apertures (in a precision grip, the distance between thumb and

index finger) and reaching has been studied by examining the

kinematics of the wrist. Although the anatomical basis for the

independence of reaching and grasping as well as the distinction

between intrinsic and extrinsic object properties have been

questioned (e.g., see [3]), the important point in the context of

the present contribution is that an understanding of prehension as

the coordination of a grasping and a reaching component has been

widely accepted.

Smeets and Brenner ([3]; see also [4,14]) proposed an

alternative view on prehension. In their view, prehension should

be considered as the combined but independent movements of

contributing digits. When using a pincer grip, the thumb and

index finger would move independently to their respective points

of contact with the object. The distance between thumb and index

finger can be computed by scientists, but the control of grasping is

not concerned with this distance per se, Smeets and Brenner

proposed. That is to say, prehension should be seen as the parallel

unfolding of two pointing-like movements. One way to test this

proposal has been to compare the movements that the digits make

during prehension with curved pointing movements to the same

end locations [15–17]. When making contact with an object in

grasping, digits arrive on a path close to perpendicular to the
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object surface. As a matter of fact, the approach parameter in

Smeets and Brenner’s double-pointing model quantifies this

perpendicularity. Therefore, the comparisons between grasping

and pointing digit trajectories has included tasks in which

participants had to push or lightly tap a target object at the same

position and with the same digit as when they grasped it [17] and

the task of grasping an object bimanually with the hands clasped

together [16]. When looking at the maximum lateral distances of

the digits (the distance from the digit to the line connecting a

starting position and the target) and the times that the maximum

was reached, Smeets and colleagues concluded that the digit

trajectories were similar across tasks, suggesting that prehension

movements, in fact, were pointing movements.

While Smeets and Brenner’s [3] critique on the visuomotor-

channel account was shared by many (e.g., see [18–20]), their

alternative view was also met with reservations in a number of

responses to their original paper. The double-pointing model was

deliberately kept simple, but some responses considered it as

oversimplifying the act of prehension. For instance, Marteniuk and

Bertram [18] argued that the model focused on average

trajectories, failing to account for the variability in expression of

prehensile patterns (for examples on the different hand aperture

profiles within the same task demands, see [21]); Newell and

Cesari [19] pointed at the importance of considering the task of

prehension within context (for examples on how different follow-

up actions systematically affect the kinematics of prehension, see

[22–24]); also, some [19,25–28] took issue with adopting minimal

jerk optimization [29] to model the digit trajectories in the double-

pointing account. For instance, the minimal jerk model cannot

account for the asymmetrical reaching-speed profiles seen in

prehension (e.g., see [30]). In sum, the double-pointing model was

met with theoretical concerns. Although we share these concerns,

while also agreeing with many of the points of critique on the

visuomotor-channels hypothesis as expressed by Smeets and

Brenner [3], we felt that the double-pointing model needed an

empirical test of its core assumption: the assumption that the digits

move independently to their respective target positions. This

implies that a perturbation of one of the digit’s movement would

not have any effect on the other digit’s movement (cf. [17,31]). In

the case of using a precision grip, using thumb and index finger,

when one of the digits would be forced to change its end position

due to a perturbation of the object, the other digit should not be

affected. Van de Kamp and Zaal [5] tested this prediction in a

setup in which participants were asked to pick up an oblong object,

the sides of which could be made to slide in or slide out of a

common case. This setup allowed changing the required end

position for one of the digits, during the movement, while leaving

the conditions for the other digit unchanged. The experiment

demonstrated that perturbing one digit, in half of their conditions,

resulted in significant adaptations of the other digit, thus violating

the assumption of independent movement. This result implies that

the double-pointing account of prehension does not hold, van de

Kamp and Zaal concluded. Van de Kamp and Zaal’s findings are

in line with other reports of correlations between thumb and

index-finger kinematics in unimanual grasping tasks [16,32].

Although the correlations between the kinematics of the thumb

and index finger, and of the perturbation effects on the

unperturbed digit might be taken to indicate that the thumb and

index finger do not move independently to their respective end

positions (cf. [5,32]), an alternative explanation is that these digits

are controlled independently but that biomechanical or neuro-

muscular coupling makes that their kinematics are weakly

correlated (cf. [14,16,17]). If the latter were to be the case, the

correlations or perturbation effects should not show up in a task of

bimanual prehension (cf. [17]). This account would explain why

the correlations were only demonstrated in one of Smeets and

Brenner’s [16] unimanual tasks and not in their bimanual task.

The present study had participants perform bimanual prehension,

now allowing each hand to move through space freely without any

constraint from the other hand. We applied the same type of

perturbations as used by Van de Kamp and Zaal [5]. Finding

perturbation effects on the unperturbed digit in our bimanual

prehension task would demonstrate a coupling of the digits into a

grasping component of prehension, we would argue. This

inference would generalize to unimanual grasping under the

assumption that bimanual and unimanual prehension share a

control regime (cf. [16,33]).

Materials and Methods

Participants
Three men and 17 women (mean age of 29.7 years) volunteered

to participate in the study. They were right-handed and had

normal or corrected-to-normal vision. The study was approved by

the Human Movement Sciences Ethical Board of the University

Medical Center Groningen, University of Groningen, and the

participants signed for informed consent before entering the study.

Apparatus
Participants were seated behind a table, on which the target

object was placed 35 cm away, along the mid-sagittal plane, from

an indicated starting location. The target object was an oblong,

black box (4 cm wide, 4 cm deep, and 2 cm high), the sides of

which could be made to slide out, independently and very fast (see

Figure S1 and Movie S1). Sliding out one side added 1.5 cm to the

width of the object. This object was the same as the one used in

[5]. The base of the object fitted snugly into a 2-mm deep hole of a

5 mm thick plastic strip of PVC that was affixed to the tabletop

(see Figure S1). This prevented the object from moving when one

of its sides was made to slide out. Next to the object, on both sides,

placed in small holes in the strip of PVC, two pairs of photo cells

were positioned under each slider, such that the first photo cell

would be covered right after the side started sliding out and the

other photo cell would be covered just before sliding out ended (see

Figure S1). An Optotrak position sensor was positioned about two

meters above the table surface, pointing downward. The Optotrak

sampled two IREDs (one on the lower medial corner of the nail of

each index finger) at a frequency of 200 Hz. The signals from the

photo cells were sampled at 400 Hz by the Optotrak Data

Acquisition Unit (ODAU). In a perturbation trial, IRED

movement was used to trigger the sliding out of one of the sides

of the target object. When the average velocity of the index fingers

in the principal reaching direction reached a threshold of 25 mm/

s, a trigger was sent to the controller of the target object. It took,

on average, 99.7 ms (SD = 2.8 ms) for the left-side slider and

131.8 ms (SD = 3.2 ms) for the right-side slider to start their

movement. Sliding out took on average 15.2 ms (SD = 1.0 ms) on

the left side and 14.0 ms (SD = 2.0 ms) on the right side of the

object.

Design and procedure
Participants were asked to perform a prehension movement

with the two index fingers (see Figure 1 and Movie S1). They

started at the indicated starting location with the pads of the two

index fingers touching. After a signal from the experimenter, they

were to grasp the target object as fast and as accurately as possible,

and hold the object between their index fingers for a second,

without lifting it. The design included static trials, perturbation-left

Grasping Component in Bimanual Prehension
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trials, and perturbation-right trials (see Figure 1). During perturbation-

left and perturbation-right trials, the left side and the right side of

the target object, respectively, slid out just after movement

initiation. During static trials neither of the sides of the target

object did slide out during the trial.

Each participant started with a block of 30 static trials. This

block was followed directly by a block of 120 trials, 24 of which

were perturbation trials (12 perturbation-left and 12 perturbation-

right). The perturbation trials were presented randomly within the

block of 120 trials, but were always preceded by at least one static

trial.

Data analysis
Position data was considered in a Cartesian coordinate frame

with the origin at the starting location, the y-axis pointing

horizontally from the starting location to the middle of the target-

object, and the x-axis pointing from the origin to the right hand

side. We considered only movement along the horizontal plane.

Optotrak position data was filtered with a dual-pass second-order

Butterworth filter with a cutoff frequency of 20 Hz. Temporal

derivatives of position data were computed with a three-point

finite difference algorithm, yielding velocities and accelerations.

To define the start and end of each digit’s movement, we used a

velocity threshold of 25 mm/s. Movement time was the time from

the start to the end of the movement.

Our analyses took sets of perturbed and unperturbed trials and

compared the digit x-positions at several moments during the

movement. The set of unperturbed trials was the set of static trials

immediately preceding the perturbation trials under consideration.

That is to say, each perturbation-left trial was preceded by a static

trial, and the analysis compared the set of perturbation-left trials

with the set of these preceding trials. An analogous set of trials

preceding the perturbation trials was used in the analyses of the

perturbation-right trials. This way, the comparisons were of equal

numbers of trials. Statistical analyses were performed on the

within-participant averages. We considered digit x-positions at

fixed intervals of distance along the y-axis as well as at fixed

moments during the movement. More specifically, at each 2 cm

along the line of the principal reaching direction we compared the

average x-positions of the digits of perturbed and unperturbed

trials. Similarly, we compared average x-positions of perturbed

and unperturbed trials at each 10% of movement time into the

movement. For these comparisons we used paired t-tests, and we

report significant differences when p-values were below .01.

We did not analyze the data of two participants because one of

the IREDs was consistently invisible in the data of one participant

and the movements of the other participant were considered too

slow (average movement time larger than 1 s); the average

movement times (standard deviations) of the remaining partici-

pants ranged from 311 (35) to 732 (69) ms and 314 (35) to 721 (57)

ms, for the left and right index finger, respectively. As mentioned,

we presented 24 perturbation trials to the participants, 12

perturbation-left trails and 12 perturbation-right trials. In the

analyses, we did not include the first two perturbation trials of each

type. Furthermore, we removed 15 pairs of trials (perturbation

trial and preceding trial) because of missing frames during the

movement segment, perturbations happening before movement

onset, participants not being ready for the trial or starting too

early, or responses to the perturbation that resulted in a complete

abortion of both digits’ movements. In total, we analyzed 345 pairs

of trials, 170 of which included perturbation-left trials and 175 of

which included perturbation-right trials.

Results

Figure 2 shows the average x-positions of the perturbed trials

(open circles) as compared to the average x-positions of the

unperturbed trials (solid circles) at different moments during the

movement. The top panels present the x-positions as function of

position along the principal axis of reaching (y-direction). Note

that the top panels of Figure 2 do not show average x-positions

beyond 32 cm into the reaching, although the object center was at

35 cm. The reason for this was the variability in contact positions

along the x-dimension, with a fair amount of trials exhibiting

contact at x-position-values lower than 34 cm. This meant that

these could not be used to compute average y-positions at 34 cm.

To avoid any bias because of this variability in contact points, we

did not compute average y-positions at 34 cm. The lower panels of

Figure 2 show average y-positions as a function of relative time

(percent movement time). To establish that potential perturbation

effects were not artifacts, we also considered the averages 10%

before movement onset and after the movement ended (deter-

mined on the basis of a speed threshold). We used paired t-tests to

evaluate any differences of these x-positions. For the perturbation-

left condition, these tests demonstrated significant differences only

for the left index finger. The first differences appeared at a

reaching distance of 180 mm and at 30% into the movement. In

contrast, significant differences were present at both digits for the

perturbation-right condition. The differences, however, started

later in the movement, and slightly earlier for the left index finger

than for the right index finger (at a reaching distance of 250 mm

and 270 mm, respectively; at 60% and 70% into the movement,

respectively).

Discussion

The objective of the present study was to test Smeets and

Brenner’s [3] double-pointing model of prehension, now in a task

of bimanual grasping. Smeets and Brenner’s account is an

Figure 1. Schematic view of experimental setup and the task.
Participants were to grasp the object between the two index fingers.
Right after the hand started moving either the left side or the right side
of the target object slid out of a common case (see also Movie S1). See
text for details.
doi:10.1371/journal.pone.0097790.g001

Grasping Component in Bimanual Prehension
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alternative to the widely-accepted view that prehension is defined

as coordinated reaching and grasping. Smeets and Brenner’s

double-pointing model takes a radically different starting assump-

tion: it assumes that the movements of each of the digits taking

part in a prehensile act are controlled independently of the other

digits’ movements. We tested their hypothesis of independent digit

movement by perturbing the future end position of one of the

digits in a task in which participants grasped a target object with a

pincer grip using the index fingers of their two hands. Van de

Kamp and Zaal [5] had used the same target object and the same

type of perturbation in unimanual grasping, and had shown effects

of perturbing the future end position of one digit on the kinematics

of the other digit. That is to say, they found effects of perturbing

the end position of the thumb on the kinematics of the index

finger, and vice versa. These effects challenged the double-

pointing model, Van de Kamp and Zaal claimed. Smeets and

Brenner’s reply was twofold: first, the analyses presented by Van

de Kamp and Zaal did not clearly show what it was in the

kinematics that was affected by the perturbation of the opposing

digit [14]; second, the effects were small, and could be caused by

the biomechanical or neuromuscular coupling between the digits

(thumb and index finger of the same hand) while these digits were

still controlled independently [14,17]. Replicating the effects

reported by Van de Kamp and Zaal [5] in a bimanual task, in

which the object would be grasped with the two index fingers

rather than with the thumb and index finger of the same hand,

would take away this second concern (cf. [17]). In addition, to

counter the first argument, we made an effort to show the effects

directly in the paths of the digits (index fingers).

The present study replicated the effects of the perturbation on

the unperturbed digit in the bimanual task. When we inspected the

lateral positions of the index fingers at fixed intervals along the

principal reaching dimension (the y-axis in Figure 2) and at fixed

percentages of movement time, we found effects of the perturba-

tion on the lateral positions of the index finger on the unperturbed

side (Figure 2). Whereas the argument could be made that the

coupling between the digits could be biomechanical in unimanual

prehension (cf. [14,17]), it seems hard to maintain that this is also

the case in our task of bimanual prehension, in which the

biomechanical coupling between the digits can be safely assumed

to be negligible. This implies that the coupling seems to be defined

at the level of control. The effects of the perturbations

administered in the present study resemble those in a similar

study in which participants were asked to point with both index

fingers to a set of visual targets on a tabletop [34]. Similar to the

present findings, when the position of one of the targets was

changed after a participant had started the pointing movement,

not only changes in the kinematics on the perturbed side were

observed but also on the unperturbed side. However, in contrast to

the present results, in that study, the index finger on the

unperturbed side moved in the same direction as the index finger

on the perturbed side did. For instance, when the target for the

right index finger was moved to the right, both index-fingers’

trajectories deflected to the right. In the present prehension task,

sliding out one side of the target led to outward adaptations of both

index-finger trajectories. That is, adaptations in the digits’

trajectories were in opposite directions. Perhaps, this difference

in the direction of the perturbation effect is related to the fact that

objects to be grasped occupy space that cannot be traversed by the

digits (i.e. objects can be considered to have obstacle qualities; e.g.,

see [35]) and because object surfaces are to be approached roughly

perpendicularly.

The present findings imply a coupling between the two digits

involved in the prehension, such that a perturbation of sliding out

Figure 2. Effects of the perturbation on digit trajectories. Average positions of the two index fingers when unperturbed (solid symbols) and
perturbed (open symbols). Panels A and B present the effects of the perturbations as a function of position along the principal reaching direction.
Note that the center of the target object was at an x-position of 350 mm. Panels C and D) present the perturbation effects as a function of the
moment during reaching. Schematics specify the conditions; Asterisks indicate significant effects of the perturbation (p,.01).
doi:10.1371/journal.pone.0097790.g002
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one side of the target object leads to outward movement of the

digit on the perturbed side as well as on the unperturbed side. A

more recent version of the double-pointing model [4], one that

uses the concepts of springs and attractors/repellers, includes a

spring coupling between the digits. This spring coupling seems to

be included to model a biomechanical coupling between thumb

and index finger in unimanual grasping rather than a coupling at

the level of control. Given the current findings that a coupling

between the digits is also present in bimanual prehension, the

function of this spring coupling might need to be reconsidered. In

fact, the direction of the effects of the perturbation in the current

study seems to be hard to reconcile with a simple spring coupling.

The perturbation in the current study was designed to move the

path of the perturbed digit outwards, orthogonally away from the

principal reaching axis; the perturbation was administered by

sliding out one side of the target object. The effect that we

observed was a movement, also outwards, of the opposing digit. If

anything, a spring coupling would result in inward rather than

outward deflections of the path of the opposing digit. Thus, the

effects of the current study indicate a coupling between the digits

at the level of control, a coupling that most probably is different

from a simple spring coupling.

An interesting aspect of the findings of the current study, as well

as of the findings reported in Van de Kamp and Zaal [5], is the

asymmetry in the effects of the perturbation. In the current study,

the left index finger was the one to respond to perturbations of the

opposing digit. The Van de Kamp and Zaal study showed that the

perturbation of unimanual grasping (with thumb and index finger

of the right hand) also led to asymmetric effects: sliding out the

thumb-side of the target resulted in adjustments in both the thumb

and index finger kinematics, whereas sliding out the index-finger

side of the target only affected the index-finger kinematics. Thus, it

seemed that the index finger in unimanual grasping was more

susceptible to the perturbations than the thumb. Together these

findings suggest an asymmetric role for the digits involved in

prehension, and, more specifically, this asymmetry does not seem

to be same for unimanual and bimanual prehension.

It might be hypothesized that the asymmetric effects in both

unimanual [5] and bimanual prehension are related to the

reaching component of prehension. That is to say, prehension

could be understood as coordinated reaching and grasping in

which the movement of one of the two digits is controlled as

reaching end effector (the control of reaching involves bringing

this digit to an appropriate contact point) and the other digit’s

movement is controlled relative to the other one in a grasping

component. Whereas almost all prehension studies have looked at

the wrist representing the reaching component of prehension,

other studies have suggested that the thumb is being controlled in

the reaching to grasp with a pincer grip [36–39]. The latter

proposal would fit half with Smeets and Brenner’s [3,4] double-

pointing models. At least one of the digits is controlled in terms of

reaching and the other digit is controlled relative to the reaching

one as a grasping component. Then, perhaps the thumb represents

the reaching of unimanual prehension and the right index finger

represents the reaching in bimanual prehension, at least for right-

handed persons. This account, however, would not explain the

perturbation effects on both index fingers for both perturbations,

as found in Van de Kamp and Zaal’s [5] task of unimanual

prehension. Under the assumption that object-size perturbations

do not affect the reaching of prehension, finding perturbation

effects on both digits implies that these digits individually do not

represent prehension’s reaching component.

We have discussed the present findings in terms of coupled digit

movements making up the grasping component of prehension.

Earlier studies have demonstrated similar couplings in grasping

and speech. When participants are holding an object between

thumb and index finger, mechanically perturbing one digit results

in immediate compensation at the other digit [40]. Also,

considering speech production, when participants are asked to

produce a specific utterance, mechanically perturbing the lower lip

or the yaw leads to instantaneous compensatory movement of the

upper lip [41] or both lips [42], respectively, such that speech is

preserved. Synergetic couplings such as these might reflect the way

that the multiple degrees of freedom available for almost any goal-

directed movement are being mastered. Unraveling these syner-

getic couplings is important for understanding the control and

coordination of human movement. When referring back to the

task of prehension, the picture becomes the more complicated the

more digits are involved in grasping. Considering the sets of

coupled digits into virtual fingers [43] that have to contact the

object-to-be grasped at opposing sides (the concept of opposition

space; e.g., see [32,44,45]) seems a promising route to understand

the synergetic organization of prehension.

In conclusion, the current study used a perturbation paradigm

to test Smeets and Brenner’s [3] double-pointing model of

prehension. We demonstrated that the digits do not move

independently, not in unimanual prehension (cf. [5]) and also

not in bimanual prehension. This suggests that grasping is being

controlled in prehension rather than individual digit movement.

Some individual digits might be important in the control, but

future work is needed to provide a comprehensive account of the

roles of all digits in two-digit and multi-digit prehension.

Supporting Information

Figure S1 The target object. (A) Overview: The target object

positioned in the PVC strip. The red tubing for pressurized air is

connected with the casing on the backside of the object. The

participant would be facing the front side. The right-side slider

(from the perspective of the participant) has moved out of the

common case. (B) Front view: This is how participants would see

the target object. Note how the object fits in the PVC strip; the two

small holes to the left side of the object contain photo cells used for

detection of the sliding movement. The slider on the right side

covers the photo cells on this side. (C) Top view: Note the positions

of the photo cells in the PVC strip. During an experimental trial,

the target object would be positioned in the 2 mm deep hole in the

PVC strip. (D) Side view: oParticipants would be approaching the

target object from the left. The tubing for the pressurized air is

located at the backside of the target object.

(PDF)

Movie S1 Illustration of the experimental setup. This

movie illustrates how one side of the target object slides out right

after the participant has started to move. The participant’s task is

to grasp the target object between the index fingers of both hands.

(MP4)
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