
 

 

 University of Groningen

Evaluating automatically parallelized versions of the support vector machine
Codreanu, Valeriu; Droge, Bob; Williams, David; Yasar, Burhan; Yang, Fo; Liu, Baoquan;
Dong, Feng; Surinta, Olarik; Schomaker, Lambertus; Roerdink, Johannes
Published in:
Concurrency and Computation

DOI:
10.1002/cpe

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Codreanu, V., Droge, B., Williams, D., Yasar, B., Yang, F., Liu, B., ... Wiering, M. (2014). Evaluating
automatically parallelized versions of the support vector machine. Concurrency and Computation. DOI:
10.1002/cpe

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

http://dx.doi.org/10.1002/cpe
https://www.rug.nl/research/portal/en/publications/evaluating-automatically-parallelized-versions-of-the-support-vector-machine(2446c099-018b-4594-ad76-01a6a6dc51a9).html


CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2014; 00:1–21
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Evaluating automatically parallelized versions of the Support
Vector Machine

Valeriu Codreanu1,6∗, Bob Dröge2, David Williams1, Burhan Yasar5, Po Yang4,
Baoquan Liu4, Feng Dong4, Olarik Surinta3, Lambert R.B. Schomaker3, Jos B.T.M.

Roerdink1, and Marco A. Wiering3

1University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science, The Netherlands
2University of Groningen, Donald Smits Centrum voor Informatie Technologie, The Netherlands

3University of Groningen, Institute of Artificial Intelligence and Cognitive Engineering, The Netherlands
4University of Bedfordshire, Department of Computer Science and Technology, United Kingdom
6Eindhoven University of Technology, Electronic Systems Group, Eindhoven, The Netherlands

5Rotasoft Inc., Ankara, Turkey

SUMMARY

The Support Vector Machine (SVM) is a supervised learning algorithm used for recognizing patterns in
data. It is a very popular technique in Machine Learning and has been successfully used in applications such
as image classification, protein classification, and handwriting recognition. However, the computational
complexity of the kernelized version of the algorithm grows quadratically with the number of training
examples. To tackle this high computational complexity we have developed a directive-based approach
that converts a gradient-ascent based training algorithm for the CPU to an efficient GPU implementation.
We compare our GPU-based SVM training algorithm to the standard LibSVM CPU implementation, a
highly-optimized GPU-LIBSVM implementation, as well as to a directive-based OpenACC implementation.
The results on different handwritten digit classification datasets demonstrate an important speed-up for the
current approach when compared to the CPU and OpenACC versions. Furthermore, our solution is almost as
fast and sometimes even faster than the highly optimized CUBLAS-based GPU-LIBSVM implementation,
without sacrificing the algorithm’s accuracy. Copyright c© 2014 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: GPU, Automatic Parallelization; Handwritten Digit Recognition; Machine Learning,
Support Vector Machine

1. INTRODUCTION

The massive Internet growth coupled with the rise of mobile devices capable of generating huge
amounts of information has led in recent years to the phenomenon of Big Data. Every day, 2.5
quintillion bytes (exabytes) of data are created. This translates to more than 90% of today’s data
being created in the last two years alone [4]. However, extracting meaningful knowledge from this
ever-increasing sea of information is a very challenging task. In this context, Machine Learning
(ML) promises to offer the necessary tools for dealing with these data in the most intelligent way.

There are several open-source machine learning toolkits that provide support for developing
ML applications [13, 35, 37], but in cases where datasets exceed the size and complexity of
trivial problems, these algorithms tend to be very computationally expensive. Machine learning
algorithms are heavily based on linear algebra operations such as matrix-matrix multiplications or

∗Correspondence to: Den Dolech 2, Eindhoven, The Netherlands, E-mail: v.codreanu@tue.nl

Copyright c© 2014 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]



2 VALERIU CODREANU ET AL.

dot products between vectors. The data on which these operations are applied are often independent,
making batch ML algorithms amenable to execution on parallel hardware systems, such as Graphics
Processing Units (GPUs).

Moore’s law is still governing the semiconductor industry and it applies to all types of
integrated circuits, and hence also to GPUs. Each new hardware generation increases the GPU-
CPU performance gap, especially with regards to single-precision floating point operations [29].
This can also be observed in Figure 1. When considering the GFLOPs/$ metric, the ratio between
high-end GPUs and CPUs becomes even greater [12]. Moreover, with the integration of CPUs and
GPUs on the same die, communication costs between the two devices are reduced and the potential
for acceleration is much higher.

Besides the fact that GPUs offer higher computational throughput than CPUs, programming them
has also become much easier. Advances in specialized libraries and compiler tools such as the one
presented in this paper bring GPU computing closer to the typical scientist who does not necessarily
have a High Performance Computing (HPC) background.

In this paper we strive to provide a fair comparison between several parallel implementations
of the Support Vector Machine [54]. Existing libraries and semi-automatic parallelization tools
are used, and both accuracy and execution times are presented. We have developed a gradient
ascent SVM training algorithm, which is very suitable for automatic parallelization. In contrast to
other SVM optimization techniques, the gradient ascent algorithm can work on all data in parallel,
allowing for a large computational performance gain when executed on GPU devices.

Our experiments use handwritten digit datasets. The goal is to infer the correct label of the
images. This is done by training the SVM using a training dataset and then evaluating the obtained
classifier on a test dataset, as is usual in machine learning. We have used the classic dataset for the
digit classification problem, the MNIST dataset [30], and additionally a dataset containing Bengali
handwritten digits. Furthermore, we examine the utility of two novel feature extraction methods,
which convert the pixel intensity images to high-dimensional feature vectors.

Novel contributions. This paper describes a novel approach for parallelizing a training algorithm
for the support vector machine. Because we constructed a gradient ascent technique to optimize
the variables in the support vector machine, examples are treated independently of each other.
Therefore, the parallelization of our algorithm is more straightforward and efficient than is the
case with previous techniques. Furthermore, we perform a number of different experiments on
two challenging handwritten digit datasets. To obtain more accurate results we have invented two
novel feature extraction techniques which convert the pixel values in a handwritten image to a high-
dimensional input vector. Finally, we have performed extensive comparisons between our GPU-
SVM algorithm and existing state-of-the-art methods. The results of these comparisons show that
our method is the fastest of all evaluated methods if the examples consist of high-dimensional feature
vectors. By exploiting the speed of our method, we were also able to better tune the meta-parameters
of the SVM, leading to the highest accuracy so far on the Bangla dataset.

Outline of the paper. Section 2 presents the context of this work and the relevant background.
Section 3 gives a formal description of the SVM and the learning techniques used. Section 4
presents the automatic parallelization tools used for the evaluation, as well as some details on the
implementations. Section 5 reviews the datasets used for the experiments and the feature extraction
methods that will be compared. Section 6 presents the results. Finally, in Section 7 we draw the
conclusions and outline future directions.

2. BACKGROUND

2.1. Machine learning on GPUs

GPU technology has evolved steadily over the last 10 years. Initially, GPUs were only used for
rendering graphics, but in recent years a shift to the general-purpose use of GPUs (GPGPU) is
clearly observed. This stems from the highly-parallel structure of the GPU, which offers great
potential for acceleration of several classes of algorithms. GPU computing was first adopted by

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 3

Figure 1. Peak performance for recent hardware [23].

the scientific community, but currently more and more consumer applications are being adapted
to the GPU [36]. This trend became obvious after the launch of higher-productivity programming
languages, such as CUDA and OpenCL.

The ML field is an early adopter of GPU computing technology. The first algorithms were
implemented using the programmable vertex and pixel shaders [36]. This methodology was clearly
only for expert programmers, as any program had to be written as if it was a rendering application.
Thus, input data was loaded as texture and vertex values in GPU memory and manipulated to
perform the required computation during a number of rendering passes. A good overview of some
of these approaches was presented by Lopes and Ribeiro in the form of a timeline [31].

The first ML algorithm mapped to the GPU was the multi-layer perceptron (MLP) [46, 55],
both due to its simplicity in implementation and because it does not have such high memory
requirements as other algorithms [40, 50]. Both implementations made use of OpenGL and shaders
to implement their functionality and obtained speed-ups ranging between 3 and 20 times compared
to equivalent CPU implementations. These early results formed the motivation behind exploiting
the GPU for other types of problems. Thus, the MLP was quickly followed by implementations of
Self-Organizing Maps [9, 65], Genetic Algorithms [61, 64], Convolutional Neural Networks [14],
and Belief Propagation [8, 63]. Speed-ups of more than 3-4 times compared to equivalent CPU
implementations were reported in each study. After the launch of CUDA in 2007 an increasing
number of scientists started making use of GPU hardware to speed up their computation.

The first GPU implementation of the SVM was actually developed using CUDA [11]. The authors
reported speed-ups of 5 to 32 times for SVM training, and over 120 times for classification when
compared to a LibSVM implementation running on a dual-core CPU. This was followed by several
open-source SVM implementations, such as cuSVM [10], and later by GPUMLib [31] and GPU-
LibSVM [3]. GPU-LibSVM [3] is a 1-to-1 mapping of the classic LibSVM, having the same
interface and producing identical results. It is using the highly-optimized cuBLAS [38] library
internally, thus offering significantly reduced processing time.

This trend of mapping computationally demanding algorithms to the GPU continued with parallel
implementations of other complex algorithms. Classifiers such as deep neural networks [16] and
complex feature extractors such as SIFT/ASIFT [18, 62] have been mapped to GPUs, with reported
speed-ups of up to 70 times when compared to their CPU counterparts. These developments create

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 VALERIU CODREANU ET AL.

the possibility of having a complete feature extraction and feature classification pipeline executed
entirely on the GPU.

2.2. Automatic Parallelization

Automatic or semi-automatic parallelization of sequential computer programs is the preferred
method for making use of parallel hardware, mostly because the programmers are already
accustomed to their own programs and prefer extending them to creating new ones. In both industrial
and academic environments, most of the expertise lies in the specific scientific field of the people
involved. Fields as diverse as physics, chemistry, astronomy or finance need to make use of parallel
computing in order to perform high-accuracy simulations at reasonable speed. However, parallel
programming is different to traditional, sequential programming. In order to fully benefit from
these parallel architectures, most of the specialized hardware components need to be used, creating
a programming gap between these HPC skills and the traditional programming skills. This gap is
referred to as the ninja performance gap and is identified in [28].

Several possible solutions have been proposed for bridging this gap and hence for making parallel
programming easier. The most popular are:

• Custom parallel library design.
• Automatic or semi-automatic parallelization tools.

Library implementations usually offer the best execution performance, simply because they are
manually tuned for the parallel hardware they target. However, as hardware evolves, these libraries
have to be adapted to reflect the evolution in hardware features. With each new hardware generation
the maintenance costs are growing in order for the library user to achieve high performance levels
while at the same time adhering to backward compatibility. There are currently many accelerated
libraries designed for multi-core CPUs, GPUs, the many-core Intel Xeon Phi, and other accelerators.
Examples of successful implementations for GPU-optimized libraries are the NVIDIA designed
cuBLAS [38], cuFFT, as well as the NPP library for image processing [39]. Besides these libraries,
almost every application domain features one or more toolkits that accelerate originally sequential
algorithms by making use of GPU hardware. Libraries are particularly useful in cases where
developers already made use of specific CPU library calls, e.g. BLAS. In this case, if library
designers implement a 1-to-1 mapping of the original library to the GPU, the programmer can
use it seamlessly, as is the case for cuBLAS.

Automatic parallelization tools promise to fill the programming gap described above by
performing the translation steps between sequential and parallel implementations in an automatic or
semi-automatic way. Issues such as loop dependencies and pointer aliasing [5] need to be handled,
and hence automatic tools are often semi-automatic, requiring extra help from the programmer.
Probably the most successful semi-automatic parallelization paradigm is OpenMP [20]. It is widely
used in both research and commercial environments for harnessing the performance of multi-core
processors. Parallelizing for multi-core is however simpler to achieve, as all cores share the same
address space and the memory hierarchy is implicit. Parallelizing for accelerators has to overcome
these barriers. Thus, semi-automatic tools for GPU parallelization usually require extra directives
that describe GPU-specific aspects such as marking the arrays that should be copied, the regions that
should be treated as GPU kernels and so forth. These compiler directives are given by programmers
through augmenting their code through #pragma directives, as is also the case with OpenMP.

Many semi-automatic parallelization systems that target accelerators have been proposed. The
most well known are based on compilers adhering to the PGI accelerator model [60] and later to
the OpenACC standard [45]. Also, there are numerous initiatives for creating such tools, mostly
stemming from academia. Some of the earliest ones are PIPS [26], that has evolved into Par4All
[2], and the SUIF compiler [59], that were developed long before GPUs were used for general-
purpose computing. Also, recent tools such as Kernelgen [34], Polly [24], hiCUDA [25], and the
GPSME toolkit [57] are gaining in popularity and successful use-cases. Successful examples of
semi-automatically parallelized programs range from medicine [56] to physics simulations [33].

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 5

Figure 2. Peak bandwidth for recent hardware [47].

Some of the tools only make use of the raw computational power of accelerators, while other tools
offer implicit or explicit support for optimizing the usage of the GPU’s complex memory hierarchy
and hence minimizing communication [6]. As is presented in Figure 2, the peak bandwidth of
GPU devices goes beyond 200GB/s, much higher than the peak bandwidth for CPUs. However,
applications requiring a high memory transfer-to-compute ratio are usually limited by memory
bandwidth. Tools such as Mint [53] are alleviating this problem by using registers as much as
possible, and also by automatically using shared-memory for some domain-specific patterns.

3. THE SUPPORT VECTOR MACHINE

3.1. Machine Learning

Machine learning algorithms are very useful for many applications in the field of intelligent systems
such as for solving classification, regression, and adaptive control problems. These algorithms use
datasets or experiences to fit a model that is able to generalize to novel, unseen examples. Therefore,
after a machine learning algorithm is executed to infer a model from a dataset, it can be immediately
used in the real world. Some example applications are: object recognition, face recognition, zip-code
recognition, fMRI-scan classification, medical diagnosis, and document classification.

In supervised learning, the aim is to use an algorithm that creates a classification model
from labelled data. The training data consist of ` input vectors and target labels: D =
{(x1, y1), . . . , (x`, y`)}, where xi is an input pattern consisting of d variables, and yi is the label
belonging to that input pattern. By learning multiple models, all machine learning algorithms can
deal with an arbitrary number of class labels. For example, in our experiments we will use the
algorithms for handwritten digit classification in which there are 10 different class labels.

There are many different machine learning algorithms that can be used for inferring a
classification model using the training data. The most often used machine learning algorithms are
multi-layer perceptrons [46, 55], decision trees [44], Bayesian networks [41], k-nearest neighbors
[22], and support vector machines [19, 48, 52, 54]. Because SVMs often outperform other machine
learning algorithms, the SVM is currently the method of choice for dealing with many different
classification problems.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 VALERIU CODREANU ET AL.

3.2. Support Vector Machines

The support vector machine is based on structural risk minimization theory [54]. The aim is to train
a model that performs well on the training data, but that also generalizes well. Let’s denote the
output of an SVM model when it is given an input pattern x with g(x). We would like to find the
function g(·) that is most suitable to the data.

The target labels yi for binary classification are either 1 or -1. To explain the workings of the
SVM, it is easiest to start with the linear SVM. In the linear case the SVM model is given by:

g(x) = wT · x+ b

Here w is the weight vector of the linear SVM, and b is the bias value. The theory of the SVM
requires the output of the SVM to be always equal or larger than the target label if the label is 1,
and the SVM output should be equal or lower than -1 if the label is -1. To deal with non-linearly
separable data, the following soft constraint is most often used :

yi(w
T · xi + b) ≥ 1− ξi

Here ξi ≥ 0 is called the slack variable for pattern xi and the use of these slack variables allows for
some errors on training examples, although it is still the goal of the learning algorithm to minimize
these errors. Next to this constraint for all training examples, the idea of the SVM is to minimize
the norm of w. Therefore, the following primal objective should be minimized:

Lp(w, ξ, b) =
1

2
‖w‖2 + C

∑̀
i=1

ξi

subject to constraints:
yi(w

T · xi + b) ≥ 1− ξi
Here C is a meta-parameter that determines how much error the model tolerates. Therefore, it can

be seen as a regularization parameter that trades off the complexity of the model and the error on the
training data. The minimization of the primal objective is a convex quadratic optimization problem.
Because of the convexity property there is only one minimum, which is the global optimum.
However, in order to use the full power of the SVM, the optimization usually takes place using
the dual objective. The dual-objective function is†:

Ld(α) =
∑̀
i=1

αi −
1

2

∑
i,j

αiαjyiyj(xi · xj)

subject to the constraints: 0 ≤ αi ≤ C and
∑`

i=1 αiyi = 0. This dual-objective function should be
maximized with respect to the αi values.

Instead of a linear model, we can use a particular kernel function to replace the dot product
between the patterns xi and xj . The kernel function allows to obtain a much more powerful, non-
linear classifier in a simple way. The most widely used kernel function is the radial basis function
(RBF), given by:

K(xi,xj) = exp(−
d∑
a=1

(xai − xaj )
2

σ
)

Where xai denotes the ath input value of input pattern xi and σ is a parameter that determines the
kernel width. The kernel or Gram matrix is an `× ` matrix containing all similarities between all
training patterns. Usually the kernel matrix is computed once at the start of the SVM algorithm and
the complexity of this computation is O(`2d). Because of the quadratic dependence on the number
of training examples, SVMs can become very slow when there is a large amount of training data.

†We refer to [19] for the full derivation.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 7

Many SVM optimization methods exist, among which the most popular method is SMO [42].
The often used SVM library LibSVM (to which we also compare our method in this paper) also
uses SMO as optimization technique. SMO uses some heuristics to change two support vector
coefficients at the same time that maximize the dual objective. We developed a gradient ascent
algorithm that optimizes the values of the variables αi at the same time, which makes it easier to
parallelize our method as shown later in this paper

When the gradient of the dual-objective function with respect to αi is used, we obtain the
following learning rule:

αi ← αi + λ(1−
∑̀
j=1

αjyjyiK(xi,xj))

where λ is the learning-rate meta-parameter. The αi values are all updated for a specific number of
epochs. After this the bias value is computed by:

b =

∑`
i=1(yi − g(xi)) · 1(αi > 0) · 1(αi < C)∑

1(αi > 0) · 1(αi < C)

Here 1(c) is the characteristic function that return 1 if c is true and 0 otherwise. So, in the above
equation examples are only used for computing the bias if their support vector coefficients are not
bounded (so larger than 0 and smaller than C).

Finally, once the SVM model is computed (which means that the support vector coefficients αi
and the bias value are optimized), it can classify new input patterns using:

g(x) = sign(
∑̀
i=1

αiyiK(xi,x) + b)

So, for training the SVM model, we perform an initialization step, some iterations in which the
support vector coefficients are optimized, and one step in which the bias value is computed. After
that the model is usually tested on a dataset with unseen examples, the so-called test data. The
complete training algorithm is given in Algorithm 1.

Algorithm 1 The gradient ascent SVM algorithm

Initialize α-values to a constant:
for i = 1 to ` do
αi = C · c1

end for
Compute the kernel matrix for the SVM:
for i = 1 to ` do

for j = 1 to ` do
K(xi,xj) = exp(−

∑d
a=1

(xa
i−x

a
j )

2

σ )
end for

end for
repeat

Use the gradient ascent learning rule to update all α-values:
for i = 1 to ` do
αi = αi + λ(1−

∑`
j=1 αjyjyiK(xi,xj))

αi = bound(αi)
end for

until maximum number of epochs is reached
Compute the bias value:
b =

∑`
i=1(yi−g(xi))·1(αi>0)·1(αi<C)∑

1(αi>0)·1(αi<C)

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



8 VALERIU CODREANU ET AL.

In this algorithm c1 ∈ [0, 1] is a meta-parameter for initializing the support vector coefficients
between 0 and C, and bound(αi) makes sure the support vector coefficients stay between 0 and C.

3.3. Tuning SVMs - Parameter search using PSO

The SVM contains a significant number of meta-parameters that need to be tuned, namely: the
learning rate λ, the initialization constant c1, the number of epochs the support vector coefficients
are trained, the largest value for the support vector coefficients C, and the value for the RBF kernel
width σ. For optimizing the meta-parameters we use particle swarm optimization (PSO) [27, 49].
In PSO a population of possible solutions, particles, is iteratively moved into a new direction. In
our case the solutions are the sets of meta-parameter values. The velocity vector of the movement is
calculated by using the particle’s own best known position, the position of the swarm’s best particle
ever, and the previous velocity vector.

PSO consists of a population of size S movable particles mi with i ∈ (1, S). Each particle has
a velocity vector vi and a memory of the best position (in terms of achieved accuracy) pi it has
visited so far. Furthermore, every particle knows the best position pglobal the swarm has seen so far.
In every iteration step the particles and their velocities are updated so that each particle moves in the
direction of its own best known position and the swarm’s best known position. A detailed description
of the algorithm including the update formulas can be found in Algorithm 2. The strategy parameters
ω, ψindividual and ψglobal determine the influence of velocity, individual best known position, and
global best known position on the particle’s new position.

Algorithm 2 PSO

Initialize mi and vi at random
pi = mi, pglobal = argmaxmi

(f(mi))
while stopping criterion not reached do

for all velocities vi do
{update velocities}
{rand() draws random uniform values between 0 and 1}
vi = ω vi + rand() ψindividual (pi −mi) + rand() ψglobal (pglobal −mi)

end for
for all particles pi do
{update positions}
mi = mi + vi

end for
if f(mi) < f(pi) then
{update pi}
pi = mi

end if
if f(mi) < f(pglobal) then
pglobal = mi

end if
end while

In this algorithm the function f(·) calls the SVM training algorithm many times and returns the
average testing accuracy of different cross-validation runs.

4. DIRECTIVE-BASED IMPLEMENTATION OF THE SVM

The mapping of any algorithm to an accelerator device starts from identifying the bottlenecks in the
execution using profiling tools. We have started with a single-core implementation of the gradient
ascent SVM described in Section 3.2. During the profiling stage, we have identified three functions
with significant weight in the computation time:

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 9

Algorithm 3 GPSME implementation for computing the training kernel matrix
#pragma GPSME copy (learn_data, toDevice, TOTAL*NR_FEATURES)
#pragma GPSME copy (kernel_train, toDevice, TOTAL*TOTAL)
#pragma GPSME for nest(2) tile(tx,ty)
for (episode = 0; episode < TOTAL; ++episode)

for (int ad = episode; ad < TOTAL; ++ad) {
float diff;
float sqdiff = 0.0f;
float output;
for (feat = 0; feat < NR_FEATURES; ++feat) {
diff = learn_data[episode].input[feat] -

learn_data[ad].input[feat]
sqdiff += diff*diff;

}
output = expf(-sqdiff / sigma);
kernel_train[episode*TOTAL+ad] = output;

}
#pragma GPSME copy (kernel_train, fromDevice, TOTAL*TOTAL)

• The kernel matrix computation (KMC)
• The gradient-ascent learning (GAL) iterations
• The bias computation

These functions are formally described in Section 3.2. The weight of each function in the total
runtime is variable, and depends on the dataset’s properties such as the number of training examples
and the dimensionality of the examples. The computational weight of calculating the kernel matrix
ranges from 20% on the Bangla dataset with 784 features per example to over 80% in the case of the
MNIST dataset using the extended 16, 464 feature space. More details on the features and datasets
used are given in Section 5. Nonetheless, the cumulative weight of these three functions is over 99%
for all datasets, leaving plenty of room for speed-up. If only a single function would be parallelized,
even if its weight would be 80%, the maximum theoretical speed-up factor would be 5, independent
of the number of processing elements used, based on Amdhal’s law [1].

We consider that for offering a fair comparison between CPU and GPU implementations all
cores of the CPU should be used. Thus, we insert OpenMP #pragma for directives in the loop
structures of the three relevant functions. As illustrated in Algorithm 3, the two outermost levels
of the for-loop are independent and can be safely parallelized with OpenMP. The same principle
applies to the gradient ascent learning and bias computation functions, making almost the whole
computationally-expensive part fairly easy to accelerate on multi-core processors. After applying
the OpenMP directives to the single-core implementation, we have achieved an overall speed-up of
approximately 3 times when executing on the 4-core processor described in Section 6.

The semi-automatic GPU parallelization tools operate in the same way as OpenMP. They
implement a set of #pragma directives, most of them similar in nature to the OpenMP ones.
Considering the host-device execution model of GPUs, the CPU orchestrates the execution and
controls data transfers and kernel launches. These concepts are reflected in both OpenACC and
GPSME directive sets, and are used to guide the translation. The automatic code transformations
include inserting CUDA/OpenCL memory allocation/transfer commands, transforming code
regions into CUDA/OpenCL kernels, and launching these kernels. These extra directives are still
fairly easy to understand and use by the typical OpenMP programmer, making GPU programming
as simple as OpenMP programming, at least for programs with independent for-loops, as is the case
of the gradient ascent SVM training algorithm.

We have thus created three directive-based implementations for the SVM:

• an OpenMP one that serves as a baseline for the evaluation

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



10 VALERIU CODREANU ET AL.

• a GPSME one that is used in conjunction with the GPSME translator described in Section 4.1.
• an OpenACC one that is used in conjunction with the PGI compiler

The following subsections present several optimizations to the data storage and data access
patterns, optimizations that were necessary for obtaining successful parallel implementations.
However, we consider these changes much easier to perform by the typical scientist, compared
to re-developing the whole code structure into a different programming language and with a
different execution model in mind. Moreover, these implementations are competitive in terms of
execution speed with the library-based implementations, while providing much finer control, so that
experimenting with different learning algorithms or with custom kernels is possible.

4.1. The GPSME Toolkit

The GPSME toolkit is a source-to-source compiler between C/C++ and CUDA/OpenCL. It was
developed in the scope of an EU FP7 project, www.gp-sme.eu, with the goal of helping SMEs
(Small and Medium Enterprises) achieve higher value by lessening their computational problems.
The GPSME toolkit builds on the previously domain-specific Mint toolkit, following its design
principles. It is based on the ROSE compiler framework [43], analyzing and optimizing the AST
(Abstract Syntax Tree) of the input program based on a set of #pragma directives. Some of the
advantages of using the GPSME toolkit compared to other parallelization tools are the support for
outputting OpenCL code (hence being able to target a wider range of hardware) as well as the
high-performance and cleaner output code it generates. The output code has the same structure
and naming as the input C/C++ code, making it easy to follow and modify for performance fine-
tuning. The GPSME toolkit was previously evaluated on the Polybench standard benchmark set [57].
However, real-world problems are usually different compared to synthetic benchmarks, this being
one of the motivations behind this study.

We continue with presenting some of the important optimization steps that made it possible to
attain results comparable to library implementations. The optimizations are presented using the
GPSME implementation for reference, but the OpenACC implementation (that we also evaluate in
the experimental section) benefited from the same optimizations.

Algorithm 3 lists the original GPSME toolkit implementation for the kernel matrix computation.
The learn data is an array containing the TOTAL number of examples. Each example is described
by NR FEATURES features. Several experiments with varying number of data elements and with a
varying number of features are provided in Section 6.

Algorithm 4 AoS vs. SoA data structure
struct DATA{ struct DATA{

int class; int class[TOTAL];
float input[NR_FEATURES]; float input[TOTAL*NR_FEATURES];

} }

DATA *learn_data= new DATA[TOTAL]; DATA *learn_data= new DATA;

However, after parallelizing the code from Algorithm 3, the resulting GPU implementation
performed very poorly, being slower than the CPU version. This happens because the input
data is stored as Arrays of Structures (AoS), rather than Structures of Arrays (SoA). This is a
basic optimization technique when using GPU hardware, and is explained by the code snippet in
Algorithm 4. By applying this transformation to the data structure, the code calculating the kernel
training matrix has to be slightly transformed.

This minor change in the access pattern has significant benefits on GPU architectures, the
foremost being that it leads to higher memory bandwidth. By analyzing the code from Algorithm
3, we observe that the arithmetic intensity of the kernel matrix computation stage is below 1
operation/byte transferred, making the kernel matrix computation stage memory-bound on GPU
architectures [58]. Hence, the translated version achieved an approximately 10-fold performance

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe

www.gp-sme.eu


EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 11

Algorithm 5 Optimized GPSME implementation for computing the training kernel matrix
#pragma GPSME copy (learn_data, toDevice, TOTAL*NR_FEATURES)
#pragma GPSME copy (kernel_train, toDevice, TOTAL*TOTAL)
#pragma GPSME for nest(2) tile(tx,ty)
for (episode = 0; episode < TOTAL; ++episode)

for (int ad = episode; ad < TOTAL; ++ad) {
float diff;
float sqdiff = 0.0f;
float output;
for (feat = 0; feat < NR_FEATURES; ++feat) {
diff = learn_data.input[episode*NR_FEATURES+feat] -

learn_data.input[ad*NR_FEATURES+feat]
sqdiff += diff*diff;
}

output = expf(-sqdiff / sigma);
kernel_train[episode*TOTAL+ad] = output;

}
#pragma GPSME copy (kernel_train, fromDevice, TOTAL*TOTAL)

Figure 3. Transformation from uncoalesced to coalesced memory accesses.

increase when using SoA instead of AoS for representing the input data. The benefits are seen in
both parallelizing tools’ cases. The code resulting from this change is presented in Algorithm 5.

With both GPSME and OpenACC, the two independent outer loops can be safely parallelized onto
a 2D thread block. Therefore, each device thread should run the innermost for-loop sequentially.
This leads to the memory access pattern on the left side of Figure 3. In this case, the first thread reads
the first chunk of NR FEATURES elements from the learn data array, the second thread needs the
second chunk of NR FEATURES elements, and so on. The recommended way is to have consecutive
threads read consecutive memory locations, referred to as coalesced memory accesses. This can be
achieved through reordering of the learn data array. By transposing the matrix represented by the
learn data array (i.e. by storing the matrix in column-major order instead of row-major order) at its
initialization, the code from Algorithm 5 can easily be modified to access the array in a coalesced
way, adhering to the right side of Figure 3. This change made the resulting code up to 3 times faster
than the previous version.

We have described the type of modifications that were necessary in order to obtain high-quality
GPU code from both the GPSME toolkit and PGI’s OpenACC compiler. Although the techniques
presented here are exemplified using the GPSME model, the same techniques have been applied
for the OpenACC model. We consider these changes very easy-to-make by the typical OpenMP
programmer, if he/she is provided with some recommendations for efficient GPU computing and
with a series of examples.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



12 VALERIU CODREANU ET AL.

4.2. OpenACC

The OpenACC standard is currently best supported by the PGI compiler, recently acquired by
NVIDIA. Similarly to the GPSME toolkit, it works internally as a source-to-source compiler from
C/C++ to CUDA. Even though the output code is usually hidden from the programmer, it can be
extracted through compiler flags. However, the output code is unreadable when compared to the
GPSME output code that maintains the same structure, and a GPU programmer is even able to
further fine-tune it. The CUDA code is then compiled by NVIDIA’s NVCC compiler that comes
bundled with the PGI compiler. However, the translation and compilation is usually performed in a
single-step fashion, abstracting the source-to-source details from the user.

OpenACC is superior in terms of flexibility offering an extensive set of directives. Hence, for more
complicated loop structures OpenACC has more options for expressing parallelism and for handling
dependencies. The directives used for the OpenACC implementation of the SVM are omitted here,
as they are very similar to the GPSME ones.

One of the key differences between the two semi-automatically generated implementations is that
the PGI Compiler automatically detects that a reduction optimization for the innermost for-loop
in Algorithms 3-5 can be performed, and instantiates a sum-reduction kernel. The GPSME simply
executes the innermost for-loop on each device thread independently. Another important difference
is that the code generated by the GPSME toolkit makes better use of registers, trying to minimize
accesses to the global memory. In contrast, OpenACC performs global memory accesses when
reading/writing most of the variables. Hence, as demonstrated in Section 6, the code outputted by
the GPSME toolkit is consistently faster than the one generated by the PGI compiler.

5. HANDWRITTEN DIGIT CLASSIFICATION

Handwritten digit classification aims to infer the ground-truth labels of the provided handwritten
images. Recognizing handwritten digits is very important for automatic zip-code recognition
and it also has applications in analyzing handwritten documents. Compared to optical character
recognition, in which it is the aim to infer the character from an image displaying a typed letter,
handwritten digit classification is much harder. The reasons are that there are many different human
writers using their own writing style and therefore the variations in the images are much larger.

A large number of studies investigated the problem of handwriting recognition based on the
MNIST dataset [30]. The MNIST dataset was modified from the original NIST database [30], and
is nowadays used as a standard benchmark for testing machine learning techniques and pattern
recognition methods [15, 32]. In the MNIST dataset, there are 60, 000 handwritten digit images
for training and 10, 000 test images. This setup of one single fixed test dataset allows for fair
comparisons between algorithms, but in this paper we will create multiple splits using a smaller
training dataset. The size of these handwritten digit images is normalized and the digits are centered
in a fixed-size image to fit into a 28× 28 pixel space [30, 32]. Furthermore, the handwritten images
are completely separated from the background. Although this is a large dataset, most digits are
clearly written and the dataset is researched extensively. In Figure 4 we display a number of images
for the digits 0-9 from the MNIST dataset. The highest accuracy on this dataset was obtained in [17],
where an accuracy of 99.73% was obtained.

Figure 4. Some examples taken from the MNIST dataset.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 13

Next to using the MNIST dataset in our experiments, we will also focus on the recognition of
handwritten Bangla (or Bengali) digits, which is the second most popular language in India and
Bangladesh [21]. The Bangla dataset is composed of 10, 920 digit examples. Out of these examples,
we randomly select 90% of them as being training examples, and 10% as test examples. Hence, each
evaluated SVM is trained on 9828 examples and tested on 1092 examples. The dataset contains
different kinds of background and a variety of pixel space resolutions. Various example digits of
handwritten Bangla are shown in Fig. 5. It is clear that, when compared to the MNIST dataset,
Bangla digits are more complicated and there is more style diversity [7]. For instance, the curly
tails in Bangla characters makes the definition of a stable bounding box problematic. The best
previous results on this dataset were obtained with an ensemble machine learning technique, where
an accuracy of 96.8% was obtained [51].

(a) (b)

Figure 5. A variety of handwritten Bangla digit samples. (a) Set of numbers from 0 to 4 and (b) from 5 to 9.
Note the large differences between the examples on the first and last rows.

5.1. Feature extraction methods

In handwritten digit recognition it is possible to immediately use the pixel intensities from the gray
images as input features for the machine learning algorithm. However, in some cases better results
can be obtained if there is a feature extraction algorithm that first converts the gray image to a set of
features, after which these extracted features become the input for the learning algorithm.

In this paper we will compare using the pixel intensity information to using two different feature
extraction methods that convert the images to a high-dimensional input vector.

Using pixel intensities. The direct use of pixel intensity information is a straightforward method
to convert a 2D image to an input vector. Because the dataset with images is stored using pixel values
between 0 and 255, all we need to do is to normalize the inputs so they will fall in the range between
-1 and 1. The MNIST and Bangla datasets both use character images of size 28× 28, therefore the
use of pixel intensities results in 784 input features.

Oriented line segment products. In machine learning there has been a lot of evidence that
increasing the dimensionality of the input vectors can improve recognition performance. Therefore,
instead of only using the 784 pixel intensities, this method adds horizontal, vertical, and diagonal
line information using line segments of different sizes. In Figure 6 this idea is illustrated. The figure
shows two pixels in which line segments of length 2 and length 3 are used to extract multiple inputs.
In the product algorithm the pixel intensities are first converted to lie between 0 and 1, where a value
of 1 stands for completely black. After this, the oriented line segment product feature extraction
algorithm computes the product of all pixel intensities lying on a line segment of a particular length.
In the end, this method uses the pixel intensity itself and adds as additional inputs for each pixel
the line segment product in 4 directions of lengths 1 until 5. Therefore this method results in 784 +
4× 5× 784 = 16, 464 features in total. Because line segments can pass the border of an image, we
pad the contours of the image with pixel intensities of 1 to ensure the product returns a well-defined
value. After computing the product features, all inputs were normalized to fall in the range between
-1 and 1.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14 VALERIU CODREANU ET AL.

Figure 6. Illustration of line-segment features. In this image, from each pixel multiple inputs are generated
by using vertical, horizontal, and diagonal line features constructed from different lengths of line segments.

In the image the use of line segments of lengths 2 and 3 are shown.

Oriented line segment sums. This feature extraction method is very similar to the oriented
line segment product feature extraction method explained above. The main difference is that pixel
intensities on line segments are summed up to compute a value for a particular orientation and
length of a line feature. Furthermore, padding is now done using zero-values. After summing the
pixel intensities on line segments all sums are renormalized to fall in the range between -1 and 1. We
use the same setup as with the line product so we use four orientations and 5 different line segment
lengths, and therefore this feature extraction method also results in 784 + 4× 5× 784 = 16, 464
input features.

6. EXPERIMENTAL RESULTS

In order to have a fair comparison of current SVM classification systems for handwriting
recognition, we present results in terms of both execution performance and classification accuracy.
The task chosen is handwritten digit classification using the Bangla and MNIST datasets described
in Section 5.

In machine learning it is a common approach to use cross validation in which the whole dataset
is randomly partitioned a number of times in training data and test data. Then the training algorithm
is repeatedly invoked on the training data and tested on the test data to obtain the testing accuracy.
By using multiple cross-validation runs the average accuracy and the standard deviation can be
computed as the final result. In our experiments, we used 50 cross-validation runs.

The baseline implementation is the gradient-ascent based SVM augmented with OpenMP
directives for using 4 CPUs in parallel. Along with it, we evaluate a CPU LibSVM implementation
[13] and its OpenMP version, a high-performance GPU LibSVM implementation [3] based on the
highly-optimized cuBLAS library, and two semi-automatic parallelization tools operating on the
baseline implementation as described in Section 4, that is the industry-standard PGI OpenACC
compiler and the GPSME toolkit. Moreover, considering the LibSVM implementation, we have
added OpenMP #pragmas and recompiled it following the guidelines on the authors’ website. This
gives a deeper insight into how the performance of the library approach scales with the number of
CPU cores.

The test machine is comprised of a quad-core Intel Core i7-3770K 3.5 GHz CPU and an NVidia
GTX690 GPU. Despite the fact that the GTX690 board is a dual-GPU board, we are using a single
GPU for all experiments presented. The tests were performed under Ubuntu 12.04 LTS using GCC
4.6 as the C/OpenMP compiler, NVCC (from the CUDA 5.0 SDK) as the CUDA compiler, and PGI
13.1 as the OpenACC compiler. All tests were compiled using maximum optimization settings.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 15

For the two semi-automatically parallelized versions we have exhaustively chosen the best
thread block/grid size combinations in order to have the fastest performing output code. The
PSO parameter search described in Algorithm 2 was used in order to find the best parameters
for these two semi-automatically generated implementations, as well as for the baseline OpenMP
implementation. The parameters that need to be tuned are explained in Section 3.2. The GPSME-
generated implementation was used for parameter search, as it was the fastest option.

LibSVM also includes a utility to automate parameter searches, but that method does not perform
as well as the PSO. Since it uses the Sequential Minimal Optimization (SMO) training strategy,
some other parameters need to be tuned. In order to make the comparison as fair as possible we use
the included utility to find the optimal parameters. The parameters found for LibSVM are also used
to evaluate GPU-LibSVM, since it is a 1-to-1 mapping of LibSVM.

6.1. Pixel-feature comparison

In this subsection we present the execution times and accuracy results for all SVM implementations
evaluated using the traditional pixel-based feature, as described in Section 5.

Table I presents the timing and accuracy results for classifying the Bangla dataset with the best
parameters found. The speed-up offered by the semi-automatic parallelization tools, especially the
GPSME one, is impressive, offering an overall speed-up of 6.7 times compared to the baseline
OpenMP version. It is also 2.5 times faster than the original LibSVM implementation and achieves
43% of the highly optimized GPU-LibSVM performance. The OpenACC implementation is about 2
times slower than the one obtained using the GPSME toolkit. The GPU-LibSVM version is 1.8 times
faster than its CPU counterpart, the OpenMP LibSVM. This makes the speed-up for our GPU-SVM
implementation compared to the baseline CPU one much higher than the one of GPU-LibSVM
compared to its CPU counterpart.

Table I. Evaluation of the classification results for the Bangla dataset using the pixel-based features

SVM implementation Accuracy [%] Standard error [%] Execution time [s]
Baseline OpenMP 97.34 0.45 161.2
LibSVM 96.70 n/a 60.5
LibSVM OpenMP 96.70 n/a 19.2
GPU-LibSVM 96.70 n/a 10.5
PGI OpenACC 97.34 0.45 45.8
GPSME 97.34 0.45 24.1

After evaluating the Bangla dataset we use the same implementations described above for
classifying the handwritten digits from the MNIST dataset. The MNIST dataset is composed of
60, 000 training examples and 10, 000 test examples. Out of these examples we randomly extract
10, 000 training and 5, 000 test examples, simply because the GPU device does not have enough
memory to store the kernel matrix. The kernel matrix grows quadratically with the number of
examples, so for running the current GPU SVM classifier on the full MNIST dataset it needs
60, 000× 60, 0000× 4bytes = 13.41GB of storage space on the GPU. This is a limitation of all
evaluated GPU implementations. One simple solution for overcoming this problem is forcing the
GPSME toolkit to use the cudaMallocHost function to allocate pinned memory when going past the
memory capacity of the GPU. The data that are not on the GPU are cached from the global DRAM
when needed, limiting the achievable speed-ups. However, these experiments with larger datasets
are beyond the scope of this paper.

Table II presents the results for the MNIST dataset as described above. The results of the semi-
automatic parallelization on MNIST are similar in terms of relative performance to the ones attained
on Bangla. The GPSME-accelerated version is 6.4 times faster than the baseline and 2 times faster
than the PGI version. It is also reaching about 40% of the performance of the library approach.

The OpenMP version of LibSVM scales well in terms of number of cores, being about 3 times
faster than the single core LibSVM on both datasets when using 784 features per example. This

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



16 VALERIU CODREANU ET AL.

speed-up is expected, the baseline OpenMP implementation seeing a similar one as stated in section
4. This comes from the fact that examples are rather small, 3, 136 bytes each, and so up to 10
examples can be cached in the L1 data cache of the CPU at any time. The LibSVM implementation
using OpenMP is much faster than the baseline OpenMP one mostly because of the different
learning strategy it uses. However, as outlined in the next section, the execution performance of
the SMO-based method is heavily impacted by the dimensionality of the feature space, much more
than the gradient ascent-based one is.

Table II. Evaluation of the classification results for the MNIST dataset using the pixel-based features

SVM implementation Accuracy [%] Standard error [%] Execution time [s]
Baseline OpenMP 97.65 0.18 130.3
LibSVM 97.17 n/a 45.0
LibSVM OpenMP 97.17 n/a 13.4
GPU-LibSVM 97.17 n/a 7.8
PGI OpenACC 97.65 0.18 41.4
GPSME 97.65 0.18 20.4

6.2. Extended feature comparison

The memory limitation described above is only related to the dataset size in terms of the number
of examples. In terms of input feature dimensionality, the memory requirements grow linearly.
The kernel matrix grows quadratically with the number of examples, as explained before, but is
independent of the input dimensionality. The input data grows linearly in terms of number of
examples and also in terms of the data dimensionality. For example, by extending the dimensionality
of the example from 784 to 16, 464 as described in Section 5, the memory requirements of
the input data buffer is still manageable. The memory requirement for the extended feature is
10, 000× 16, 464× 4bytes = 628MB of data, compared to about 30MB for the pixel feature. This
technique can be applied on datasets with very large input dimensionality, because the acceleration
potential is even higher in this case.

The results on both the Bangla and MNIST datasets using the extended feature are presented
in Tables III and IV. With these features, the GPSME version became the fastest of all
implementations. The speed-up of the GPSME version is between 8 and 10 times compared to the
baseline OpenMP version, slightly higher than the results for the reduced feature space. However,
the difference in performance between the LibSVM CPU implementation and the gradient ascent
SVM CPU implementation is smaller when the feature space is extended. The baseline OpenMP
implementation is even faster than the LibSVM OpenMP implementation when classifying the
Bangla examples. This leads to the conclusion that SMO-based methods tend to get much slower
than gradient ascent ones do when increasing the feature space. These differences arise from the
different learning strategies employed by the two approaches. It also explains why our method
is even faster than the GPU library-based one on the Bangla dataset, GPU-LibSVM relying also
on SMO. In the case of the gradient-ascent SVM, the timing results on these extended feature

Table III. Evaluation of the classification results for the Bangla dataset using the extended features

SVM implementation Feature Accuracy [%] Standard error Execution time [s]
Baseline OpenMP Sum 97.53 0.41 535.4
LibSVM Sum 97.12 n/a 1334.8
LibSVM OpenMP Sum 97.12 n/a 789.3
GPU-LibSVM Sum 97.12 n/a 126.7
PGI OpenACC Sum 97.53 0.41 105.1
GPSME Sum 97.53 0.41 51.3
GPSME Product 97.51 0.52 45.5

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 17

Table IV. Evaluation of the classification results for the MNIST dataset using the extended features

SVM implementation Feature Accuracy [%] Standard error [%] Execution time [s]
Baseline OpenMP Sum 97.52 0.20 709.5
LibSVM Sum 97.16 n/a 906.1
LibSVM OpenMP Sum 97.16 n/a 536.1
GPU-LibSVM Sum 97.16 n/a 84.5
PGI OpenACC Sum 97.52 0.20 159.2
GPSME Sum 97.52 0.20 89.3
GPSME Product 98.18 0.17 84.1

spaces are dominated by the KMC kernel. For MNIST, the KMC kernel computes two matrices of
size 10, 000× 10, 000 and 5, 000× 5, 000, while for Bangla it computes smaller matrices of size
9, 828× 9, 828 and 1, 092× 1, 092. This explains why the classification on MNIST is consistently
slower than on Bangla on all approaches that use gradient-ascent as learning strategy. As with the
reduced feature, the OpenACC version is about half as fast as the GPSME one, but still much faster
than the CPU implementations.

The GPU library version, GPU-LibSVM is clearly surpassed by the automatically parallelized
versions on the Bangla dataset, while having comparable results to the GPSME version on MNIST.
As also observed for the CPU implementation comparison, the reason behind this is that the SMO-
based methods tend to get much slower than gradient ascent ones do when increasing the feature
space.

Another interesting observation is that the performance of the LibSVM OpenMP version does
not scale particularly well at this large feature space. The example size in this case is about 64KB,
each core being forced to swap the data cache for each example. This effectively lowers the memory
bandwidth of the application, limiting the speed-up achieved by OpenMP to below 1.7 times. Hence,
using GPUs for large feature spaces is clearly the method of choice, the speed difference between
CPU and GPU implementations being highly significant for these cases.

To clearly show how the GPSME version scales in terms of both number of examples and feature
dimensionality, we have performed a final experiment in which we have varied both parameters for
the classification of MNIST. Hence, we have experimented with the traditional 784-dimensional
features, the extended 16, 464-dimensional features, as well as medium-sized features, 10, 192-
dimensional, extracted using a maximum line segment length of 3, as described in Section 5.
Moreover, when choosing the extended feature, we also vary the number of train/test examples. To
better reason on the results, we present per-function execution timings in Table V. The functions
profiled are the initialization, KMC, and the GAL functions, as presented in Algorithm 1. The
time remaining up to the total execution time is spent in the compute bias kernel. The conclusion
for this experiment is that the KMC kernel scales almost linearly with the size of the feature
space, and almost quadratically with the number of examples. This is expected, reflecting the
algorithmic complexity of Algorithm 5. As feature dimensionality increases, the weight of KMC
in the total execution time is also increased. The GAL kernel is not that predictable, it’s execution
time being based on the parameters found in the parameter tuning stage, such as the number of
learning iterations. One interesting observation is that in the case of MNIST, the full set of train
and test examples is loaded at runtime and a specific part is randomly selected for the experiment.
Thus, lowering the number of train and test examples to 2, 500 and 1, 250 respectively, keeps the
execution time of the initialization part mostly unchanged. As a result, our experiments conclude
that increasing the feature size by 21 times increases the total execution time only 4-fold for the case
of MNIST.

6.3. Discussion

Apart from the execution performance comparison discussed above, a very interesting aspect is the
accuracy attained by the gradient ascent based implementations. The PSO algorithm consistently

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



18 VALERIU CODREANU ET AL.

Table V. Scaling the GPSME approach for the MNIST dataset

Feature Size Nr. examples Initialization [s] KMC time [s] GAL time [s] Total time [s]
784 10000/5000 4.3 2.7 12.8 20.4
10192 10000/5000 19.9 23.4 22.4 66.7
16464 10000/5000 31.5 37.5 14.3 84.1
16464 5000/2500 30.7 10.4 4.0 46.0
16464 2500/1250 29.9 3.2 1.1 35.3

finds better parameters for the gradient ascent SVM than the parameter searcher for the LibSVM
family of classifiers. Actually, we obtain the best accuracy result of 97.5% for the Bangla dataset,
which is significantly better than the previous best results of 96.8% [51]. The result is stable, being
obtained after 50-fold cross-validation runs.

This has been possible through extensive parameter searches. If we take the MNIST case with
the extended features, running 2000 instances of the baseline gradient ascent SVM for parameter
tuning would take more than 2 weeks. If someone would implement the same PSO algorithm for
the standard LibSVM, it would take more than one month for the 2000 instances. We could manage
to run these 2000 experiments in less than 2 days using the semi-automatically generated GPSME
version. The only effort required from the scientist to achieve this is to (re-)organize the C/C++
code in a more GPU-friendly way, and to add some extra directives to it. The performance of
the OpenACC-accelerated version, although about half of GPSME’s, is still much better than of
the CPU versions when classifying highly-dimensional datasets. The speed difference between the
GPSME and OpenACC version is mostly explained by two facts. Firstly, the GPSME toolkit makes
extensive use of the register file when accessing thread-private variables, as opposed to OpenACC
that is mostly using global memory for this. This phenomenon was also presented for the case of
micro-benchmarks in [57]. Secondly, as explained in Section 4.2, the PGI compiler automatically
detects that a reduction operation is possible in the innermost for-loop and hence infers a sum-
reduction kernel that may not always be profitable.

It is interesting to also analyze the performance of the GPSME-based in comparison with the
GPU-LibSVM library-based classifiers. When increasing the feature space, the relative difference
between these implementations shrinks, and for the Bangla scenario with an extended feature space
the generated implementation is actually faster than the library one. We see two reasons for this.
Firstly, as also noted previously, the two SVM implementations use a different learning strategy,
the gradient ascent learning strategy proving to be faster for highly-dimensional feature spaces.
Secondly, when using the reduced feature space, the memory hierarchy is used more efficiently by
the library version, as entire examples can be cached. When using the extended feature, because
each example is larger than the whole cache/shared memory of a GPU Streaming Multiprocessor,
the gains from using the library are diminished, as accesses are performed anyway from/to global
memory. To achieve performance close to the library version even for small examples, the GPSME
toolkit has to be enhanced with the ability of detecting parts of code that can be automatically
replaced by CUBLAS calls. However, this is beyond the scope of this paper.

If we examine the results of the extended features, then we can observe that the sum feature
leads to significantly better results than the pixel intensities on the Bangla dataset, Furthermore, on
the MNIST dataset the product feature obtains much higher accuracies than using pixel intensities
directly. This difference is also highly significant. Without the GPSME implementation it would
have been very time-consuming to obtain the best parameters and the final results of the extended
features, but using our highly optimized GPU-SVM program, working with high-dimensional
feature spaces becomes an interesting possibility. Hence, one important conclusion is that the SVM
version generated with the GPSME toolkit is very appropriate to use in cases where the feature
dimensionality is very high and the number of examples is moderate. A larger number of examples
that surpass the memory capacity can also be supported, by for example using cudaMallocHost as
explained previously, but this is beyond the scope of this paper.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 19

7. CONCLUSION

Semi-automatic parallelization tools enable faster development of code targeting parallel systems.
This model is accepted, as it has already been applied in OpenMP and has been adopted by both
academia and the industry. By following some key principles such as data organization and accesses,
and adding some OpenMP-like directives, the scientist can achieve major speed-ups.

We have evaluated several implementations of a very important Machine Learning algorithm, the
Support Vector Machine. CPU, GPU library, and semi-automatically-generated implementations
were evaluated on the task of classifying digits from the MNIST and Bangla handwritten
digit datasets. Especially when faced with large feature spaces, the GPSME-augmented version
performed the fastest. Extensive parameter search was possible and this led to obtaining ‘the best’
results for the Bangla dataset.

As future directions we will apply this technique to datasets with even larger feature spaces,
such as the ones present in biology in which micro-array data is used to recognize inborn diseases
or in neuroscience in which fMRI scans lead to around 500,000 voxel values that serve as input
to recognize for example degenerative diseases. Another direction for future work is creating a
pre-processing tool for the GPSME toolkit that gives code modification recommendations to the
application programmer (e.g. what to change to have coalesced memory accesses), in order to enable
even faster development of high-performance code. Finally, considering that the GPSME toolkit can
generate OpenCL output code that can be executed by both the CPU and GPU, future work will also
explore the generation of heterogeneous CPU-GPU programs with the use of the toolkit.

ACKNOWLEDGEMENT

The research leading to these results has received funding from the European Union’s Seventh Framework
Programme managed by REA-Research Executive Agency http://ec.europa.eu/research/rea (FP7/2007-
2013) under grant agreement no. 286545. Project website http://www.gp-sme.eu.

REFERENCES

1. G. M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. In
Proceedings of the April 18-20, 1967, spring joint computer conference, pages 483–485. ACM, 1967.

2. M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S. Guelton, J. O. McMahon, F.-X. Pasquier, G. Péan,
P. Villalon, et al. Par4all: From convex array regions to heterogeneous computing. In IMPACT 2012: Second
International Workshop on Polyhedral Compilation Techniques HiPEAC 2012, 2012.

3. A. Athanasopoulos, A. Dimou, V. Mezaris, and I. Kompatsiaris. GPU acceleration for support vector machines.
In Procs. 12th Inter. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2011), Delft,
Netherlands, 2011.

4. S. Baboo, P. R. Kumar, et al. Next generation data warehouse design with big data for big analytics and better
insights. Global Journal of Computer Science and Technology, 13(7), 2013.

5. U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic program parallelization. Proceedings of the
IEEE, 81(2):211–243, 1993.

6. M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA code generation for affine programs.
In Compiler Construction, pages 244–263. Springer, 2010.

7. T. Bhowmik, P. Ghanty, A. Roy, and S. Parui. SVM-based hierarchical architectures for handwritten Bangla
character recognition. International Journal on Document Analysis and Recognition, 12:97–108, 2009.

8. A. Brunton, C. Shu, and G. Roth. Belief propagation on the GPU for stereo vision. In Computer and Robot Vision,
2006. The 3rd Canadian Conference on, pages 76–76. IEEE, 2006.

9. A. Campbell, E. Berglund, and A. Streit. Graphics hardware implementation of the parameter-less self-organising
map. In Intelligent Data Engineering and Automated Learning-IDEAL 2005, pages 343–350. Springer, 2005.

10. A. Carpenter. cuSVM: A CUDA implementation of support vector classification and regression. patternsonscreen.
net/cuSVMDesc. pdf, 2009.

11. B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine training and classification on graphics
processors. In Proceedings of the 25th international conference on Machine learning, pages 104–111. ACM, 2008.

12. J. M. Cavanagh, T. E. Potok, and X. Cui. Parallel latent semantic analysis using a graphics processing unit. In
Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference:
Late Breaking Papers, pages 2505–2510. ACM, 2009.

13. C.-C. Chang and C.-J. Lin. libSVM: a library for support vector machines. ACM Transactions on Intelligent
Systems and Technology (TIST), 2(3):27, 2011.

14. K. Chellapilla, S. Puri, P. Simard, et al. High performance convolutional neural networks for document processing.
In Tenth International Workshop on Frontiers in Handwriting Recognition, 2006.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe



20 VALERIU CODREANU ET AL.

15. D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep big simple neural nets excel on handwritten
digit recognition. Neural Computation, 22(12):3207–3220, 2010.

16. D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Handwritten digit recognition with a committee
of deep neural nets on GPUs. arXiv preprint arXiv:1103.4487, 2011.

17. D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In 2012
IEEE Conference on Computer Vision and Pattern Recognition, pages 3642–3649, 2012.

18. V. Codreanu, F. Dong, B. Liu, J. B. Roerdink, D. Williams, P. Yang, and B. Yasar. GPU-ASIFT: A fast fully
affine-invariant feature extraction algorithm. In Proceedings of the International Conference High Performance
Computing and Simulation, pages 474–481. IEEE, 2013.

19. N. Cristianini and J. Shawe-Taylor. Support Vector Machines and other kernel-based learning methods. Cambridge
University Press, 2000.

20. L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory programming. Computational
Science & Engineering, IEEE, 5(1):46–55, 1998.

21. N. Das, B. Das, R. Sarkar, S. Basu, M. Kundu, and M. Nasipuri. Handwritten Bangla basic and compound character
recognition using MLP and SVM classifier. Journal of Computing, 2(2), 2010.

22. R. Duda and P. Hart. Pattern classification and scene analysis. New York: John Wiley and Sons, 1973.
23. M. Galloy. CPU vs. GPU performance. http://michaelgalloy.com/2013/06/11/

cpu-vs-gpu-performance.html. Accessed: 2014-05-26.
24. T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Grösslinger, and L.-N. Pouchet. Polly-polyhedral optimization

in LLVM. In Proceedings of the First International Workshop on Polyhedral Compilation Techniques (IMPACT),
volume 2011, 2011.

25. T. D. Han and T. S. Abdelrahman. hiCUDA: a high-level directive-based language for GPU programming. In
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, pages 52–61. ACM,
2009.

26. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An overview of the PIPS project.
In Proceedings of the 5th international conference on Supercomputing, pages 244–251. ACM, 1991.

27. J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, volume 4, pages 1942–1948, 1995.

28. C. Kim, N. Satish, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar, and P. Dubey. Closing
the ninja performance gap through traditional programming and compiler technology. Technical report, Technical
report, Intel Labs, 2011.

29. D. B. Kirk and W. H. Wen-mei. Programming massively parallel processors: a hands-on approach. Morgan
Kaufmann, 2010.

30. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient based learning applied to document recognition. In
Proceedings of the IEEE, volume 86(11), pages 2278–2324, 1998.

31. N. Lopes and B. Ribeiro. GPUMLib: An efficient open-source GPU machine learning library. International
Journal of Computer Information Systems and Industrial Management Applications ISSN, pages 2150–7988, 2010.

32. U. Meier, D. Ciresan, L. Gambardella, and J. Schmidhuber. Better digit recognition with a committee of simple
neural nets. In Document Analysis and Recognition (ICDAR), 2011 International Conference on, pages 1250–254,
2011.

33. M. A. Mikalsen. OpenACC-based snow simulation, 2013.
34. D. Mikushin, N. Likhogrud, E. Z. Zhang, and C. Bergström. KernelGen–the design and implementation of a next

generation compiler platform for accelerating numerical models on GPUs. Technical report, USI Technical Report
Series in Informatics (July 2013), 1–14, 2013.

35. M. Muja and D. G. Lowe. FLANN, fast library for approximate nearest neighbors, 2009.
36. J. Nickolls and W. J. Dally. The GPU computing era. Micro, IEEE, 30(2):56–69, 2010.
37. S. Nissen. Implementation of a fast artificial neural network library (fann). Report, Department of Computer

Science University of Copenhagen (DIKU), 31, 2003.
38. C. Nvidia. CUBLAS library. NVIDIA Corporation, Santa Clara, California, 15, 2008.
39. N. P. P. NVIDIA. February 2011, 11.
40. K.-S. Oh and K. Jung. GPU implementation of neural networks. Pattern Recognition, 37(6):1311–1314, 2004.
41. J. Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29(3):241–288, 1986.
42. J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines, 1998.
43. D. Quinlan. ROSE: Compiler support for object-oriented frameworks. Parallel Processing Letters, 10(02n03):215–

226, 2000.
44. J. Quinlan. C4.5 Programs for machine learning. San Mateo, CA: Morgan Kaufmann., 1993.
45. R. Reyes, I. López, J. Fumero, and F. de Sande. A comparative study of openacc implementations. Jornadas

Sarteco, 2012.
46. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In

Parallel Distributed Processing, volume 1, pages 318–362. MIT Press, 1986.
47. K. Rupp. CPU, GPU and MIC hardware characteristics over time. http://www.karlrupp.net/2013/06/

cpu-gpu-and-mic-hardware-characteristics-over-time/. Accessed: 2014-05-26.
48. B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and

Beyond. MIT Press, 2002.
49. Y. Shi and R. Eberhart. Parameter selection in particle swarm optimization. In Evolutionary Programming VII,

pages 591–600. Springer, 1998.
50. D. Steinkraus, I. Buck, and P. Simard. Using GPUs for machine learning algorithms. In Document Analysis and

Recognition, 2005. Proceedings. Eighth International Conference on, pages 1115–1120. IEEE, 2005.
51. O. Surinta, L. Schomaker, and M. Wiering. A comparison of feature and pixel-based methods for recognizing

handwritten bangla digits. In Proceedings of the Twelfth International Conference on Document Analysis and
Recognition (ICDAR), 2013.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html
http://michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html
http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/


EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 21

52. J. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9:293–
300, 1999.

53. D. Unat, X. Cai, and S. B. Baden. Mint: realizing CUDA performance in 3D stencil methods with annotated C. In
Proceedings of the international conference on Supercomputing, pages 214–224. ACM, 2011.

54. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
55. P. J. Werbos. Advanced forecasting methods for global crisis warning and models of intelligence. In General

Systems, volume XXII, pages 25–38, 1977.
56. S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC - First experiences with real-world applications.

In Euro-Par 2012 Parallel Processing, pages 859–870. Springer, 2012.
57. D. Williams, V. Codreanu, P. Yang, B. Liu, F. Dong, B. Yasar, B. Mahdian, A. Chiarini, X. Zhao, and J. B.

Roerdink. Evaluation of autoparallelization toolkits for commodity graphics hardware. In Proceedings of the
10th International Conference on Parallel Processing and Applied Mathematics, 2013.

58. S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65–76, 2009.

59. R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. Tjiang, S.-W. Liao, C.-W. Tseng,
M. W. Hall, M. S. Lam, et al. SUIF: An infrastructure for research on parallelizing and optimizing compilers. ACM
Sigplan Notices, 29(12):31–37, 1994.

60. M. Wolfe. Implementing the PGI accelerator model. In Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, pages 43–50. ACM, 2010.

61. M.-L. Wong, T.-T. Wong, and K.-L. Fok. Parallel evolutionary algorithms on graphics processing unit. In
Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 3, pages 2286–2293. IEEE, 2005.

62. C. Wu. SiftGPU manual. http://cs.unc.edu/˜ccwu.
63. Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister. Real-time global stereo matching using hierarchical

belief propagation. In BMVC, volume 6, pages 989–998, 2006.
64. Q. Yu, C. Chen, and Z. Pan. Parallel genetic algorithms on programmable graphics hardware. In Advances in

Natural Computation, pages 1051–1059. Springer, 2005.
65. L. Zhongwen, L. Hongzhi, Y. Zhengping, and W. Xincai. Self-organizing maps computing on graphic process unit,

2005.

Copyright c© 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://cs. unc. edu/~ ccwu

	1 Introduction
	2 Background
	2.1 Machine learning on GPUs
	2.2 Automatic Parallelization

	3 The Support Vector Machine
	3.1 Machine Learning
	3.2 Support Vector Machines
	3.3 Tuning SVMs - Parameter search using PSO

	4 Directive-based implementation of the SVM
	4.1 The GPSME Toolkit
	4.2 OpenACC

	5 Handwritten digit classification
	5.1 Feature extraction methods

	6 Experimental results
	6.1 Pixel-feature comparison
	6.2 Extended feature comparison
	6.3 Discussion

	7 Conclusion

