
 

 

 University of Groningen

Convex approximations for totally unimodular integer recourse models
Romeijnders, Ward; van der Vlerk, M.H.; Klein Haneveld, W.K.

Published in:
SIAM Journal on Optimization

DOI:
10.1137/130945703

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Romeijnders, W., van der Vlerk, M. H., & Klein Haneveld, W. K. (2015). Convex approximations for totally
unimodular integer recourse models: A uniform error bound. SIAM Journal on Optimization, 25(1), 130-158.
DOI: 10.1137/130945703

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

http://dx.doi.org/10.1137/130945703
https://www.rug.nl/research/portal/en/publications/convex-approximations-for-totally-unimodular-integer-recourse-models(6b4fa7e7-9c01-463c-b478-5339ff09a2fa).html


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. c© 2015 Society for Industrial and Applied Mathematics
Vol. 25, No. 1, pp. 130–158

CONVEX APPROXIMATIONS FOR TOTALLY UNIMODULAR
INTEGER RECOURSE MODELS: A UNIFORM ERROR BOUND∗

W. ROMEIJNDERS† , M. H. VAN DER VLERK† , AND W. K. KLEIN HANEVELD†

Abstract. We consider a class of convex approximations for totally unimodular (TU) integer
recourse models and derive a uniform error bound by exploiting properties of the total variation of
the probability density functions involved. For simple integer recourse models this error bound is
tight and improves the existing one by a factor 2, whereas for TU integer recourse models this is the
first nontrivial error bound available. The bound ensures that the performance of the approximations
is good as long as the total variations of the densities of all random variables in the model are small
enough.
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1. Introduction. We consider the two-stage integer recourse problem

(1.1) η∗ := min
x

{c�x+Q(z) : Ax ≥ b, z = Tx, x ∈ R
n1
+ },

where z are tender variables, Q is the recourse (expected value) function

Q(z) := Eω

[
v(ω − z)

]
, z ∈ R

m,

and v is the second-stage value function

v(s) := min
y

{q�y :Wy ≥ s, y ∈ Z
n2
+ }, s ∈ R

m.

The second-stage decision variables y represent the so-called recourse actions that
compensate for infeasibilities with respect to the random goal constraints Tx ≥ ω.
Here, there is only randomness in the right-hand side ω, which is a random vector
with known distribution. The functions Q and v represent the (expected) recourse
cost associated with the recourse actions y.

Modeling indivisibilities or on/off decisions typically requires integer (or binary)
decision variables. For this reason, introducing such integer variables to the model
is highly relevant for practice but at the same time makes the model considerably
more difficult to solve. Most exact solution methods combine ideas behind algorithms
designed for either stochastic continuous or deterministic integer programs (see, e.g.,
[1, 2, 4, 5, 11, 12, 13, 16, 22, 24, 25] and the survey papers by Klein Haneveld and
Van der Vlerk [10], Louveaux and Schultz [14], Romeijnders, Stougie, and Van der
Vlerk [18], Schultz [21], and Sen [23]). Although substantial progress has been made,
in general these algorithms have difficulties solving large real-life problem instances.
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CONVEX APPROXIMATIONS FOR INTEGER RECOURSE 131

The main reason that integer recourse models are considerably more difficult
to solve than continuous recourse models is that the integer recourse function Q
is generally nonconvex [17]. A possible approach to dealing with this difficulty is to
construct convex approximations of the recourse function Q by modifying the recourse
data (MRD) [26], which comprises the parameters and structure of the model, and
the distributions of the random variables involved. The rationale for doing this is
that convex optimization problems are computationally much more tractable than
nonconvex problems, and as long as we only make small changes in the recourse data
we expect to obtain close approximations.

Using MRD a class of convex approximations of Q has been developed, first for
the special case of simple integer recourse (SIR) models (when W = Im) [9] and
later for general complete integer recourse models [27] and mixed-integer recourse
models with a single recourse constraint [28]. The recurring idea in these so-called
α-approximations is to simultaneously relax the integrality constraints and perturb
the distribution of the right-hand side random vector ω. In this way, a difficult-to-
solve integer recourse problem is approximated by a continuous recourse problem for
which efficient algorithms exist such as (variants of) the L-shaped algorithm [30],
regularized decomposition [20], and stochastic decomposition [6]; see, e.g., [31] for a
recent computational study comparing various algorithms.

Although a uniform error bound for these approximations is available for models
with a simple recourse structure [9], such an error bound is lacking for integer recourse
models in general. We derive a uniform error bound for integer recourse models with
a totally unimodular (TU) recourse matrix W by exploiting properties of the total
variation of probability density functions. This error bound is tight for SIR models
and improves the existing error bound by a factor 2. Moreover, the error bound
ensures that the convex approximations are good as long as the total variations of the
densities of all random variables in the model are small enough. Furthermore, due
to this error bound the convex approximations can be used as an approximate lower
bound for complete integer recourse models.

The remainder of this paper is organized as follows. We introduce α-approxima-
tions of integer recourse models in section 2. To set the stage for our analysis, we dis-
cuss properties of the total variation of probability density functions in section 3, and
we solve a simplified one-dimensional bounding problem in section 4. In sections 5
and 6 we derive a uniform error bound for α-approximations of TU integer recourse
models with independent and dependent random variables, respectively. The approx-
imate lower bound for complete integer recourse models is discussed in section 7, and
we end with a summary and conclusions in section 8.

2. Convex approximations and literature review. Throughout this paper
we use the following assumptions.

(i) W is a complete recourse matrix; that is, for every s ∈ R
m there exists y ∈ Z

n2
+

such that Wy ≥ s, and thus v(s) < +∞.
(ii) The recourse structure is sufficiently expensive; that is, v(s) > −∞ for all s ∈

R
m.

(iii) Eω[|ω|] is finite.
As a result the recourse function Q is finite everywhere.

We consider so-called α-approximations of Q, which is a class of convex approxi-
mations of Q studied in Van der Vlerk [27] and related work. These α-approximations
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132 ROMEIJNDERS, VAN DER VLERK, AND KLEIN HANEVELD

are an example of MRD, as discussed earlier.
Definition 2.1. For every α ∈ R

m, the α-approximation of Q is given by

Qα(z) := Eω

[
min
y

{q�y :Wy ≥ �ω�α − z, y ∈ R
n2
+ }

]
, z ∈ R

m,

where �ω�α := �ω − α�+ α is the round-up of ω with respect to α+ Z
m.

Remark 2.1. Note that the definition of α-approximations is given for α ∈ R
m,

but since Qα ≡ Qα′ , if α − α′ ∈ Z
m, we could have restricted the definition to

α ∈ [0, 1)m.
For every α ∈ R

m, the random vector �ω�α is discretely distributed with support
in α + Z

m. Hence, the α-approximation Qα is the recourse function of a continuous
recourse model with discrete random right-hand side vector �ω�α, and thus Qα is a
convex polyhedral function. Although Dyer and Stougie [3] show that from a the-
oretical complexity point of view these problems are hard to solve in general, there
exist algorithms that can solve such recourse problems involving discrete distributions
within reasonable time limits. This implies that if the difference between Q(z) and its
approximation Qα(z) is small enough for all z ∈ R

m, then the approximating model

(2.1) η̂α := min
x

{c�x+Qα(z) : Ax ≥ b, z = Tx, x ∈ R
n1
+ }

not only is computationally tractable but also leads to (near-)optimal solutions; see
Lemma 2.2. For this reason, we use the supremum norm to measure the error of the
approximations:

‖Q−Qα‖∞ := sup
z∈Rm

|Q(z)−Qα(z)|, α ∈ R
m.

Lemma 2.2. Let α ∈ R
m be given, and consider the optimization problem in

(1.1) and its approximation in (2.1) with optimal solutions (x∗, z∗) and (x̂α, ẑα), re-
spectively. Then,

(i) |η∗ − η̂α| ≤ ‖Q−Qα‖∞
and

(ii) |η∗ − c�x̂α −Q(ẑα)| ≤ 2‖Q−Qα‖∞.

Proof. Using that (x∗, z∗) is optimal in (1.1) and (x̂α, ẑα) is optimal in (2.1), we
have

(2.2) η∗ ≤ c�x̂α +Q(ẑα) ≤ c�x̂α +Qα(ẑα) + ‖Q−Qα‖∞ = η̂α + ‖Q−Qα‖∞
and

(2.3) η̂α ≤ c�x∗ +Qα(z
∗) ≤ c�x∗ +Q(z∗) + ‖Q−Qα‖∞ = η∗ + ‖Q−Qα‖∞.

Combining (2.2) and (2.3) yields (i). The inequality in (ii) follows from (2.2) and
(2.3) as well since

η∗ ≤ c�x̂α +Q(ẑα) ≤ η̂α + ‖Q−Qα‖∞ ≤ η∗ + 2‖Q−Qα‖∞.
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CONVEX APPROXIMATIONS FOR INTEGER RECOURSE 133

That is to say, ‖Q − Qα‖∞ is an upper bound for the difference η∗ − η̂α in
objective values of the original and approximating models, and the objective value of
the approximate solution (x̂α, ẑα) in the original model differs at most 2‖Q−Qα‖∞
from the optimal objective value η∗.

The main contribution of this paper is the derivation of nontrivial upper bounds of
‖Q−Qα‖∞ for integer recourse models with TU recourse matrixW . In the remaining
part of this section we review the existing literature on such upper bounds.

First, consider the case W = Im. Then, problem (1.1) reduces to a one-sided
SIR problem [15]. This problem is called simple because the recourse function Q(z)
is separable in the components of z, so that

(2.4) Q(z) = Eω

[
min
y

{q�y : y ≥ ω − z, y ∈ Z
m
+}

]
=

m∑
i=1

qiQi(zi), z ∈ R
m,

where Qi(zi) := Eωi [�ωi − zi�+], and similarly

Qα(z) =

m∑
i=1

qiEωi

[
(�ωi�αi

− zi)
+
]
, z ∈ R

m.

Here, (x)+ := max{0, x} denotes the positive part of x ∈ R (also, componentwise for
x ∈ R

m), and we conveniently write �x�+ to denote max{0, �x�}.
The properties of the m-dimensional SIR function Q follow directly from those of

the generic one-dimensional SIR function

(2.5) Q(z) := Eω [�ω − z�+], z ∈ R.

If the one-dimensional random variable ω is discretely distributed, then efficient al-
gorithms are available to construct the convex hull of Q [7, 8]. If ω is continuously
distributed with probability density function (pdf) f of bounded variation, then Klein
Haneveld, Stougie, and Van der Vlerk [9] show that for every α ∈ R,

(2.6) ‖Q −Qα‖∞ ≤ min

{ |Δ|f
4

, 1

}
,

where Qα denotes the α-approximation of Q and |Δ|f := |Δ|f(R) the total variation
of f on R; see Definition 3.1. This result leads to the following uniform upper bound
on the error in the case of SIR:

(2.7) sup
z∈Rm

|Q(z)−Qα(z)| ≤
m∑
i=1

qi min

{ |Δ|fi
4

, 1

}
, α ∈ R

m,

where fi is the marginal pdf of ωi.
Let us now consider the more general case, where the recourse matrix W is TU.

The second-stage value function v can be rewritten in a more convenient form. Since
the recourse is complete and sufficiently expensive, we have for all s ∈ R

m

v(s) = min
y

{q�y :Wy ≥ s, y ∈ Z
n2
+ }

= min
y

{q�y :Wy ≥ �s� , y ∈ R
n2
+ }(2.8)

= max
λ

{λ��s� : λ�W ≤ q�, λ ∈ R
m
+},(2.9)
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134 ROMEIJNDERS, VAN DER VLERK, AND KLEIN HANEVELD

where the equality in (2.8) follows from the fact that W is TU, and the equality in
(2.9) holds by strong linear programming (LP) duality. Assumptions (i) and (ii) also
imply that the dual feasible region {λ�W ≤ q�, λ ≥ 0} is nonempty and bounded.
Thus, it is spanned by finitely many extreme points λk, k = 1, . . . ,K. Hence,

v(s) = max
k=1,...,K

(λk)��s� , s ∈ R
m,

and thus,

(2.10) Q(z) = Eω

[
max

k=1,...,K
(λk)��ω − z�

]
, z ∈ R

m.

Correspondingly, for every α ∈ R
m the α-approximation Qα can be written as

(2.11) Qα(z) = Eω

[
max

k=1,...,K
(λk)�(�ω�α − z)

]
, z ∈ R

m.

Now it is easy to observe that Q is the expectation of the pointwise maximum of
finitely many round-up functions, so that Q is generally nonconvex, whereas Qα is a
convex polyhedral function.

Van der Vlerk [27] claims that there exists α∗ ∈ R
m such that Qα∗ is the convex

hull of Q, so that the approximation model in (2.1) yields exact results if the matrix T
is of full row rank and the optimal solution x∗ is an interior point of the deterministic
constraint set {x ∈ R

n1
+ : Ax ≥ b}. These two conditions, especially the latter, may

be very restrictive from a practical point of view. Moreover, if one of these conditions
does not hold, then there is no performance guarantee at all for the approximate
solution x̂α∗ that is obtained.

An upper bound of ‖Q − Qα‖∞ is not subject to these drawbacks and provides
a performance guarantee irrespective of whether the above-mentioned conditions are
satisfied or not. For this reason, deriving such an error bound is important. In
addition to that, it turns out that the claim of Van der Vlerk [27] does not hold in
general [29]. In fact, the claim holds only if all random variables in the model are
independently and uniformly distributed [19], underlining the relevance for practical
purposes of the error bound we derive in this paper.

3. Piecewise flattening of density functions without increasing total
variation. The error bound for SIR models in (2.7) shows that the total variations
of the densities of the random variables in the model are the main determinants of the
magnitude of the error ‖Q−Qα‖∞. Since these total variations will play an important
role in the derivation of an error bound for TU integer recourse models as well, we
first give a formal definition of total variation.

Definition 3.1 (total variation). Let f : R 
→ R be a real-valued function,
and let I ⊂ R be an interval. Let Π(I) denote the set of all finite ordered sets
P = {x1, . . . , xN+1} with x1 < · · · < xN+1 in I. Then, the total variation of f on I,
denoted |Δ|f(I), is defined as

|Δ|f(I) = sup
P∈Π(I)

Vf (P ),

where

Vf (P ) =

N∑
i=1

|f(xi+1)− f(xi)|.
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CONVEX APPROXIMATIONS FOR INTEGER RECOURSE 135

We will write |Δ|f := |Δ|f(R). Moreover, f is of bounded variation if and only if
|Δ|f < +∞.

In this section we introduce several lemmas based on properties of the total vari-
ation of one-dimensional density functions. We use these lemmas extensively to solve
a simplified one-dimensional bounding problem in section 4 and to derive a bound for
‖Q − Qα‖∞ for TU integer recourse models in sections 5 and 6. In order to avoid
technicalities, we only consider density functions f that are well behaved in the fol-
lowing sense. (The obvious generalization to (in)dependent pdfs on R

m is given in
sections 5 and 6.)

Definition 3.2. Let F denote the set of one-dimensional probability density
functions (pdfs) f of bounded variation that have finitely many discontinuity points
on any bounded interval.

Remark 3.1. Note that for every f ∈ F there exists a left-continuous version
f̂ ∈ F that is practically equivalent to f with |Δ|f̂ ≤ |Δ|f .

The first lemma says that the total variation does not increase when we flatten a
density function on some bounded interval I in such a way that the probability of the
event {ω ∈ I} does not change. The intuition behind this lemma is that a constant
function has lower total variation than a varying one.

Lemma 3.3. Let f ∈ F be given, and let I ⊂ R denote a bounded interval with
positive length |I|. Define g ∈ F as

(3.1) g(x) =

{
f(x), x /∈ I,
KI , x ∈ I,

with KI := |I|−1
∫
I f(u)du. Then |Δ|g ≤ |Δ|f .

Proof. Let f ∈ F be given, and assume for the moment that I is open, so that
I = (a, b) for some a < b. Since g(x) = f(x) for x /∈ (a, b), it follows that |Δ|g ≤ |Δ|f
if and only if |Δ|g([a, b]) ≤ |Δ|f([a, b]). Since g has the constant value KI on the
interval (a, b), it follows that

|Δ|g([a, b]) = |KI − f(a)|+ |f(b)−KI |.
In particular, if min{f(a), f(b)} ≤ KI ≤ max{f(a), f(b)}, we have

|Δ|g([a, b]) = |f(b)− f(a)| ≤ |Δ|f([a, b]).
For larger or smaller values of KI we use that

|Δ|f([a, b]) ≥ |f(d)− f(a)|+ |f(b)− f(d)| for all d ∈ (a, b).

Note that there exists d1 ∈ (a, b) with f(d1) ≤ KI . Otherwise,
∫
I f(u)du >

∫
I KIdu =

|I|KI =
∫
I
f(u)du yields a contradiction. Similarly, there exists d2 ∈ (a, b) with

f(d2) ≥ KI .
Now suppose KI < min{f(a), f(b)}. Then

|Δ|f([a, b]) ≥ |f(d1)− f(a)|+ |f(b)− f(d1)|
≥ |KI − f(a)|+ |f(b)−KI | = |Δ|g([a, b]),

the latter inequality being true since f(d1) ≤ KI < min{f(a), f(b)}.
Analogously, if KI > max{f(a), f(b)},

|Δ|f([a, b]) ≥ |f(d2)− f(a)|+ |f(b)− f(d2)|
≥ |KI − f(a)|+ |f(b)−KI | = |Δ|g([a, b]).
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136 ROMEIJNDERS, VAN DER VLERK, AND KLEIN HANEVELD

We conclude that |Δ|g([a, b]) ≤ |Δ|f([a, b]) and thus |Δ|g ≤ |Δ|f .
When I is not open, the proof is more technical but follows the same line of

argument as above; therefore, we omit this part of the proof.

The next two lemmas use the result from Lemma 3.3 and are designed with
deriving an upper bound for ‖Q−Qα‖∞ in mind. Assuming the same properties as
those of the functions involved in deriving this upper bound, we show in Lemma 3.4
that flattening a density function leads to an expected value of zero for “average-zero”
functions, and in Lemma 3.5 we show that this operation can be carried out in such
a way that the expected value of piecewise constant functions does not change.

Lemma 3.4. Let ϕ be a bounded function with the property that
∫
I
ϕ(x)dx = 0

for some bounded interval I. Then for every f ∈ F , there exists g ∈ F such that

(i) |Δ|g ≤ |Δ|f ,
(ii) g(x) = f(x) for x /∈ I,

(iii)
∫
I ϕ(x)g(x)dx = 0, and

(iv)
∫
ϕ(x)f(x)dx − ∫

ϕ(x)g(x)dx =
∫
I ϕ(x)f(x)dx.

For example, the pdf g defined in (3.1) satisfies these four properties.

Proof. Let f ∈ F be given. Since ϕ is bounded, it follows that | ∫ ϕ(x)f(x)dx| <
+∞. Define g ∈ F as in (3.1); hence, by Lemma 3.3, properties (i) and (ii)
follow. Because of (ii),

∫
R\I ϕ(x)g(x)dx =

∫
R\I ϕ(x)f(x)dx. Moreover, since g has

constant value KI on I, (iii)
∫
I ϕ(x)g(x)dx = KI

∫
I ϕ(x)dx = 0, and (iv) follows

immediately.

Lemma 3.5. Let ϕ : R 
→ R be a bounded piecewise constant function such that

ϕ(x) :=
∑
j∈J

ϕj�Ij (x),

where �I is the indicator function of interval I, {Ij}j∈J is a countable collection of
disjoint bounded intervals of positive length such that ∪j∈JIj = R, and ϕj ∈ R, j ∈ J .
Let Vϕ denote the set of discontinuity points of ϕ, and assume that Vϕ coincides with
the endpoints of Ij, j ∈ J , and that |Vϕ∩I| is finite for any bounded interval I. Then,
for every f ∈ F there exists a g ∈ F that is piecewise constant with

(i) Vg ⊆ Vϕ,

(ii) |Δ|g ≤ |Δ|f , and
(iii)

∫
ϕ(x)g(x)dx =

∫
ϕ(x)f(x)dx.

For example,

(3.2) g(x) := |Ij |−1

∫
Ij

f(u)du for x ∈ Ij , j ∈ J

satisfies these properties.

Proof. Let g be defined as in (3.2) so that g is a piecewise constant density
function in F with (i) Vg ⊆ Vϕ. Moreover, since

∫
Ij
g(x)dx =

∫
Ij
f(x)dx for all j ∈ J ,
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we have that

(iii)

∫
ϕ(x)f(x)dx =

∑
j∈J

∫
Ij

ϕ(x)f(x)dx

=
∑
j∈J

ϕj

∫
Ij

f(x)dx

=
∑
j∈J

ϕj

∫
Ij

g(x)dx

=

∫
ϕ(x)g(x)dx.

By applying Lemma 3.3 repeatedly, we also have that (ii) |Δ|g ≤ |Δ|f .
Remark 3.2. Equivalently to

∫
ϕ(x)g(x)dx =

∫
ϕ(x)f(x)dx, we can write Eg[ϕ(ω)]

= Ef [ϕ(ω)], where Eg and Ef indicate that the expectation is with respect to g and
f , respectively.

4. Uniform error bound for one-dimensional round-up functions. In the
next sections we derive an error bound for the α-approximation Qα of the TU integer
recourse function Q. One of the main difficulties in calculating this error bound is
that the maximizing dual vertices λ in (2.10) and (2.11) depend on ω and are possibly

different. If it were true that a deterministic λ̂ exists such that

Q(z) = Eω

[
max

k=1,...,K
(λk)��ω − z�

]
≤ Eω

[
λ̂��ω − z�

]
and

Qα(z) = Eω

[
max

k=1,...,K
(λk)�(�ω�α − z)

]
≥ Eω

[
λ̂�(�ω�α − z)

]
,

then

Q(z)−Qα(z) ≤ Eω

[
λ̂�(�ω�z − �ω�α)

]
=

m∑
i=1

λ̂iEωi

[
�ωi�zi − �ωi�αi

]
,

so that we obtain an error bound if we derive a bound on each component of Eω[�ω�z−
�ω�α]. In this section we analyze this simplified one-dimensional bounding problem.
It can be solved by clever application of flattening of densities, using the special
properties of the underlying difference function. Surprisingly, it turns out that the
uniform upper bound of this hypothesized α-approximation is very useful for the
TU model, to be discussed in the next section. As we will show then, a suitable
relaxation of the set of dual vertices λ to a set with deterministic pointwise supremum
λ∗ is possible, and together with suitable flattening of the densities involved an error
bound will be derived.

Definition 4.1 (difference function). For every α ∈ R, z ∈ R, define the
difference function ϕα,z as

ϕα,z(x) := �x�z − �x�α = �x− z�+ z − �x− α� − α, x ∈ R.

Moreover, for every α ∈ R, z ∈ R, define the expected difference function Dα,z : F 
→
R as

Dα,z(f) := Ef [ϕα,z(ω)], f ∈ F .
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138 ROMEIJNDERS, VAN DER VLERK, AND KLEIN HANEVELD

Remark 4.1. For fixed α ∈ R and f ∈ F , the expected difference function
Dα,z(f) can be interpreted as the difference between the round-up function R(z) :=
Eω[�ω − z�], z ∈ R, and its α-approximation Eω[(�ω�α − z)], where the expectations
are with respect to the pdf f .

γα,z

0

γα,z − 1

�z�α z �z�α z + 1 z + 2

γα,z

Fig. 1. The difference function ϕα,z from Definition 4.1.

The following properties of the difference function ϕα,z are illustrated in Figure 1.
Lemma 4.2 (properties of the difference function). Consider the difference func-

tion ϕα,z(x) := �x�z − �x�α, x ∈ R.

(i) ϕα,z is periodic in x, α, and z with period 1, and moreover ϕα,z(x) = −ϕz,α(x).

(ii) If α− z ∈ Z, then ϕα,z ≡ 0.

(iii) If α− z /∈ Z, then ϕα,z is a two-valued function

(4.1) ϕα,z(x) =

{
γα,z, x ∈ ∪l∈Z(z + l, �z�α + l],

γα,z − 1, x ∈ ∪l∈Z(�z�α + l, z + l],

with

γα,z := z − �z�α = z + 1− �z�α ∈ (0, 1).

Thus, ϕα,z has jumps of size +1 on z + Z and jumps of size −1 on α+ Z, and
it is left-continuous.

(iv)
∫
I ϕα,z(x)dx = 0 for any interval I of length |I| = 1.

Proof. Properties (i) and (ii) are obvious. (iii) Since �x− y� + y is a piecewise
constant (left-continuous) function with jumps of size +1 on y + Z, it follows that
ϕα,z is piecewise constant (left-continuous) with jumps of size +1 on z+Z and jumps
of size −1 on α+ Z.

Note that for x ∈ (z, �z�α],
ϕα,z(x) = z + 1− �z − α� − α = z + 1− �z�α = z − �z�α = γα,z ∈ (0, 1).
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Since ϕα,z has jumps of size −1 on α+ Z, it follows that

ϕα,z(x) = γα,z − 1 for x ∈ (�z�α , z + 1].

Since ϕα,z is periodic with period 1, (4.1) holds. Moreover, we have

∫ �z	α


z�α
ϕα,z(x)dx =

∫ z


z�α
ϕα,z(x)dx +

∫ �z	α

z

ϕα,z(x)dx = 0,

since

(4.2)

∫ z


z�α
ϕα,z(x)dx = (z − �z�α)(γα,z − 1) = −γα,z(1− γα,z)

and

(4.3)

∫ �z	α

z

ϕα,z(x)dx = (�z�α − z)γα,z = (1 − γα,z)γα,z.

From the periodicity of ϕα,z it now follows that (iv)
∫
I ϕα,z(x)dx = 0 for any interval

I of length |I| = 1.
Lemma 4.2 directly implies the following properties of the expected difference

function Dα,z.
Corollary 4.3. For every f ∈ F ,

(i) Dα,z(f) is periodic in both α and z with period 1,

(ii) Dα,z(f) = −Dz,α(f),

(iii) Dα,z(f) = 0 if α− z ∈ Z, and

(iv) |Dα,z(f)| ≤ 1.
After these technical preparations we are ready to derive a nontrivial upper bound

for |Dα,z(f)|. Obviously, for any given f0 ∈ F and any α ∈ R the sharpest upper
bound is

(4.4) M(α, f0) := sup
z∈R

|Dα,z(f0)|.

However, it is practically impossible to calculate this bound. Surprisingly, a kind of
worst-case analysis appears to be very helpful. Instead of considering f0 which has
|Δ|f0 = B0, we will solve, for all B > 0, the optimization problem

M(B) := sup
α∈R

sup
f∈F

{
M(α, f) : |Δ|f ≤ B

}
,

so that M(B0) is an upper bound for M(α, f0). This key result is contained in
Theorem 4.5, concluding this section. Observe that M(B) exists since |Dα,z(f)| ≤ 1
for all f ∈ F by Corollary 4.3 (iv).

We first explain why the worst-case approach works. By interchanging suprem-
izations and using Dα,z(f) = −Dz,α(f), it follows that

M(B) = sup
α∈R

sup
z∈R

sup
f∈F

{
|Dα,z(f)| : |Δ|f ≤ B

}
= sup

α∈R

sup
z∈R

sup
f∈F

{
Dα,z(f) : |Δ|f ≤ B

}
.(4.5)
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We will show that the inner supremization,

(P) sup
f∈F

{
Dα,z(f) : |Δ|f ≤ B

}
,

with fixed α and z, can be solved explicitly, using the tools of section 3.
Proposition 4.4. Let α, z ∈ R be given. Then, for every B > 0,

(4.6) sup
f∈F

{
Dα,z(f) : |Δ|f ≤ B

}
= min

{
γα,z, γα,z(1− γα,z)

B

2

}
,

with γα,z := z − �z�α.
Proof. If α−z ∈ Z so that γα,z = 0, then Corollary 4.3(iii) shows that Dα,z(f) = 0

for all f ∈ F so that supf∈F{Dα,z(f) : |Δ|f ≤ B} = 0 and thus (4.6) holds.
If α− z /∈ Z, then the difference function ϕα,z is piecewise constant with Vϕα,z =

(α + Z) ∪ (z + Z) so that it satisfies the conditions of Lemma 3.5. Application
of this lemma shows that for every feasible g of maximization problem (P) there
exists a piecewise constant feasible solution f with the same objective value, and with
Vf ⊂ Vϕα,z . Hence, we can (and will) restrict the feasible region of (P) to piecewise
constant density functions f with Vf ⊂ (α+Z)∪ (z+Z). We will denote its function
values to the left of z + l by f−

l and those to the right of z + l by f+
l ; that is,

f(x) =

{
f−
l for x ∈ (�z�α + l, z + l], l ∈ Z,

f+
l for x ∈ (z + l, �z�α + l], l ∈ Z.

Consider such feasible f ∈ F . We will derive necessary optimality conditions on its
function values by applying Lemma 3.4 with ϕ = ϕα,z and I an arbitrary interval with
|I| = 1. Lemma 4.2(iv) shows that the conditions of Lemma 3.4 are satisfied. Lemma
3.4(i, iv) shows that a feasible g exists such thatDα,z(f)−Dα,z(g) =

∫
I ϕα,z(x)f(x)dx.

If the right-hand side happens to be negative, f cannot be optimal for (P) since g has
a better objective value. Hence, for each interval I with |I| = 1 we have the following
necessary optimality condition for f in (P):∫

I

ϕα,z(x)f(x)dx ≥ 0.

In particular, for I = (z + l − 1, z + l] and I = (�z�α + l, �z�α + l], l ∈ Z, it can be
derived from (4.2) and (4.3) that∫ z+l

z+l−1

ϕα,z(x)f(x)dx = γα,z(1− γα,z){f+
l−1 − f−

l }

and ∫ �z	α+l


z�α+l

ϕα,z(x)f(x)dx = γα,z(1− γα,z){f+
l − f−

l },

yielding the optimality conditions

f+
l−1 ≥ f−

l , l ∈ Z,

and

f+
l ≥ f−

l , l ∈ Z.
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Under these restrictions f is a piecewise constant density function whose value
alternately increases and decreases. For such density functions the total variation can
be expressed as |Δ|f = 2

∑
l∈Z

{f+
l − f−

l }, i.e., as the sum of its total increase and
total decrease. Moreover, using (4.2), (4.3), and the periodicity of ϕα,z , we have that

Dα,z(f) =

∫
ϕα,z(x)f(x)dx

=
∑
l∈Z

{
f−
l

∫ z+l


z�α+l

ϕα,z(x)dx + f+
l

∫ �z	α+l

z+l

ϕα,z(x)dx

}

= γα,z(1− γα,z)
∑
l∈Z

{
f+
l − f−

l

}
.

Hence, problem (P) reduces to the optimization problem

sup
f+
l ,f−

l

Dα,z(f) = γα,z(1 − γα,z)
∑
l∈Z

{
f+
l − f−

l

}

s.t.
∑
l∈Z

{
(1 − γα,z)f

+
l + γα,zf

−
l

}
= 1,(4.7)

∑
l∈Z

{
f+
l − f−

l

}
≤ B

2
,(4.8)

f+
l ≥ f−

l , f+
l−1 ≥ f−

l , l ∈ Z,(4.9)

f+
l ≥ 0, f−

l ≥ 0, l ∈ Z.(4.10)

Here, (4.10) ensures that f is nonnegative, (4.7) that f integrates to 1, and (4.8)
that |Δ|f ≤ B, whereas the inequalities in (4.9) represent the necessary optimality
conditions derived above. Notice that the variables f+

l have a positive coefficient in
the objective and f−

l a negative one.
We solve this reduced version of (P) by providing an upper bound which we

subsequently prove to be tight. On one hand, (4.8) implies that

(4.11) Dα,z(f) ≤ γα,z(1− γα,z)
B

2
,

and on the other hand, since (4.7) is equivalent to

(1− γα,z)
∑
l∈Z

{f+
l − f−

l } = 1−
∑
l∈Z

f−
l ,

we have

Dα,z(f) = γα,z(1− γα,z)
∑
l∈Z

{
f+
l − f−

l

}

= γα,z

(
1−

∑
l∈Z

f−
l

)

≤ γα,z,(4.12)

since
∑

l∈Z
f−
l ≥ 0. Combining the upper bounds in (4.11) and (4.12) yields, for every
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f ∈ F with |Δ|f ≤ B,

Dα,z(f) ≤ min{γα,z, γα,z(1− γα,z)B/2}

=

{
γα,z if γα,z ≤ 1− 2/B,

γα,z(1− γα,z)B/2 if γα,z ≥ 1− 2/B.

Consider first the case 0 < γα,z ≤ 1 − 2/B (i.e., (1 − γα,z)
−1 ≤ B/2). Then the

density f̂ with

f̂−
0 = 0, f̂+

0 = c, f̂−
l = f̂+

l = 0 for all l ∈ Z\{0}
satisfies all constraints (4.7)–(4.10) if c := (1−γα,z)−1, and the objective valueDα,z(f̂)
equals γα,z, indeed.

Consider next the case 1− 2/B < γα,z < 1 (so that (1− γα,z)B/2 < 1). Then the
density f̄ with

f̄−
0 = 0, f̄+

0 = B/2, f̄−
l = f̄+

l = c, l = 1, . . . , k,

f̄−
l = f̄+

l = 0, l < 0, l > k,

satisfies all constraints (4.7)–(4.10) if

(1− γα,z)B/2 + kc = 1 (from (4.7)),

0 ≤ c ≤ B/2 (from 0 ≤ f̄−
1 ≤ f̄+

0 ),

and these are satisfied by k = k∗, c = c∗ given by

k∗ := min
k∈Z

{k : (1− γα,z)B/2 + kB/2 ≥ 1} = �γα,z − (1− 2/B)� ,(4.13)

c∗ := (1− (1− γα,z)B/2)/k
∗.(4.14)

The objective value Dα,z(f̄) equals γα,z(1− γα,z)B/2, indeed.

It is interesting to picture the optimal densities f̂ and f̄ from the proof of Propo-
sition 4.4 because for these densities the error of the α-approximation is largest.
Obviously, the shape of such an optimal density will depend on the value of B.

For large values of B, the constraint on the total variation of f is not very re-
strictive. Therefore, it is not hard to imagine that (since ϕα,z is two-valued with
maximum value γα,z) it might be possible to attain the upper bound γα,z by setting
f(x) > 0 if and only if ϕα,z(x) = γα,z > 0. It turns out that this is indeed possible if

γα,z ≤ 1− 2/B. For example, the pdf f̂ defined as

(4.15) f̂(x) =

{
(1− γα,z)

−1, z < x ≤ �z�α ,
0 otherwise

has objective value Dα,z(f̂) = γα,z.

For smaller values of B for which 1 − 2/B < γα,z < 1, the pdf f̂ is infeasible
because it violates the total variation constraint. In fact, any pdf f with Dα,z(f) =
γα,z now violates this constraint, so that intuitively any optimal pdf f must satisfy
|Δ|f = B. An example of such an optimal density is given by the pdf f̄ in Figure 2,
defined as

(4.16) f̄(x) =

⎧⎪⎨
⎪⎩

B/2, x ∈ (z, �z�α],
c∗, x ∈ (�z�α , �z�α + k∗],

0 otherwise,
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B/2

0

c∗

z �z�α �z�α + k∗

Fig. 2. The pdf f̄ defined in (4.16) with k∗ = 3.

with k∗ and c∗ as defined in (4.13) and (4.14), respectively. Indeed, it can be shown
that any pdf f that is piecewise constant with Vf ⊂ (α+Z)∪ (z+Z) satisfying (4.7),
(4.9), (4.10), and |Δ|f = B is optimal with objective value Dα,z(f) = Dα,z(f̄) =
γα,z(1− γα,z)B/2.

Now that we have solved the inner optimization problem (P) explicitly, it is easy
to find an upper bound for M(α, f).

Theorem 4.5 (error bound for the expected difference function). For every
α ∈ R and every random variable ω with pdf f ∈ F ,

M(α, f) := sup
z∈R

|Dα,z(f)| ≤ h(|Δ|f),

where h : (0,∞) 
→ R is given by

(4.17) h(x) =

{
x/8, 0 < x ≤ 4,

1− 2/x, x ≥ 4.

Proof. Let f0 ∈ F with |Δ|f0 = B0 be given. Then, M(B0) with M as in (4.5) is
an upper bound of M(α, f0). Using Proposition 4.4, we have that

M(B0) = sup
α∈R

sup
z∈R

min

{
γα,z, γα,z(1 − γα,z)

B0

2

}
,

with γα,z := z − �z�α ∈ [0, 1). Hence, it follows that

M(B0) = sup
γ∈[0,1)

min

{
γ, γ(1− γ)

B0

2

}
.

In this optimization problem we have to maximize the minimum of a linear and a
quadratic function over the domain [0, 1). Elementary analysis shows that the optimal
solution is given by γB0 := max{1/2, 1− 2/B0}, whereas the optimal value is equal
to h(B0), where h is as defined in (4.17).

As argued before, for every α ∈ R, z ∈ R, and f ∈ F , the expected difference
function Dα,z(f) satisfies |Dα,z(f)| ≤ 1. Theorem 4.5 shows that only for density
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functions f ∈ F with a large total variation |Δ|f the expected difference function
|Dα,z(f)| may be close to this trivial upper bound. It turns out that these are exactly
the type of density functions for which ‖Q−Qα‖∞ and its upper bound, to be derived
in the next sections, are large, suggesting that (depending on the problem and desired
accuracy) the error bound of the approximation may be too large for the practical
problem at hand.

However, the next example shows that for many density functions f ∈ F that
are expected to arise in practice, the value of h(|Δ|f) and thus also of |Dα,z(f)| is
actually much smaller than 1, suggesting that in these cases ‖Q−Qα‖∞ and its upper
bound may be small enough for practical purposes.

Example 4.1. Let f ∈ F be the density function corresponding to a normal distri-
bution with mean μ and variance σ2; that is, f(x) = 1√

2πσ2
exp{− 1

2σ2 (x−μ)2}, x ∈ R.

This density function is unimodal with maximum value 1√
2πσ2

at x = μ, so that

|Δ|f = 2 1√
2πσ2

= σ−1
√
2/π. For example, if σ = 1, then |Δ|f ≈ 0.789 and

h(|Δ|f) ≈ 0.0997.

In general, there is no one-to-one correspondence between the standard deviation
σ and the total variation |Δ|f as in the case of the normal distribution. In fact, |Δ|f
is not even a measure of dispersion of the distribution of ω. For example, for unimodal
density functions it is uniquely determined by the mode of f and does not depend on
the shape of f . Thus, |Δ|f is small if f resembles a uniform distribution with a large
support, and |Δ|f is large if f has one or more high peaks (with |Δ|f → +∞ as f
approximates a discrete distribution).

Table 1 specifies values of |Δ|f and h(|Δ|f) for various instances of well-known
density functions. It is good to keep in mind that h(|Δ|f) represents a worst-case
bound for |Dα,z(f)| so that in practice the actual value of |Dα,z(f)| may be much
lower than h(|Δ|f). For example, for the two uniform density functions with integer
length support in Table 1, Dα,z(f) = 0 for all z ∈ R if α = 0.

Table 1

Values of |Δ|f and h(|Δ|f) for several well-known density functions.

Distribution f(x) Parameter value(s) |Δ|f h(|Δ|f)

Normal 1√
2πσ2

exp{− 1
2σ2 (x− μ)2} σ = 0.1 7.98 0.749

– – σ = 1 0.798 0.0997
– – σ = 10 0.0798 0.00997

Exponential λ exp{−λx}�(0,∞)(x) λ = 1 2 0.25
– – λ = 0.1 0.2 0.025

Uniform 1
b−a

�[a,b](x) a = 0, b = 1 2 0.25

– – a = 0, b = 10 0.2 0.025

5. TU integer recourse models with independent random variables.
Now we have set the stage for the analysis of TU integer recourse models. To avoid
obscuring technicalities we first assume that the components of the m-dimensional
random right-hand side vector ω are independently distributed and that the joint
density function f of ω is contained in Fm defined below. We will deal with dependent
distributions in the next section.
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Definition 5.1. Let Fm denote the set of m-dimensional joint density functions
f whose marginal densities fi, i = 1, . . . ,m, are contained in F , and for which

f(x) =

m∏
i=1

fi(xi), x ∈ R
m.

We will derive an error bound for the α-approximation Qα of the TU integer
recourse function Q given by (2.11) and (2.10), respectively. Similar to the expected
difference function in section 4, for almost any given f ∈ Fm with |Δ|fi = Bi and
α ∈ R

m, direct calculation of the sharpest upper bound

N (α, f) := sup
z∈Rm

|Q(z)−Qα(z)|

is too demanding. As already mentioned, the main difficulty in calculating this bound
is that the maximizing dual vertices λ in (2.10) and (2.11) depend on ω and are
possibly different for a given ω. In order to overcome this difficulty, we relax the set
of possible dual vertices and use a worst-case analysis over this relaxed set. As we
will see, this approach, combined with the analysis of the one-dimensional expected
difference function, yields the desired upper bound.

Consider, therefore, the TU integer expected value function Q, and pick for every
z ∈ R

m a function λzQ : Rm 
→ R
m such that

(5.1) λzQ(x) ∈ argmax
k=1,...,K

(λk)��x− z� , x ∈ R
m,

and λzQ is constant on

Cl
z :=

m∏
i=1

Cli
zi :=

m∏
i=1

(zi + li − 1, zi + li]

for every l ∈ Z
m. This is indeed possible since �x− z� is constant on Cl

z . Analogously,
associated with Qα, pick for every α ∈ R

m and z ∈ R
m a function

λzQα
(x) ∈ argmax

k=1,...,K
(λk)�(�x�α − z), x ∈ R

m,

such that λzQα
is constant on Cl

α for every l ∈ Z
m. Now we can rewrite Q and Qα as

Q(z) = Eω [λ
z
Q(ω)

��ω − z�] and Qα(z) = Eω [λ
z
Qα

(ω)�(�ω�α − z)], respectively.
Note that λzQ and λzQα

have three important properties in common. First, both
functions are nonnegative. Second, both functions are bounded by λ∗ ∈ R

m defined
as

(5.2) λ∗i := max
k=1,...,K

λki , i = 1, . . . ,m,

and third, for both functions there exists β ∈ R
m such that the function is constant

on Cl
β for every l ∈ Z

m. These three properties are paramount to obtaining an upper
bound for N (α, f), as we show now.

Definition 5.2. Let Λm denote the set of functions λ : Rm 
→ R
m for which

(i) 0 ≤ λ(x) ≤ λ∗ for every x ∈ R
m, and

(ii) there exists β ∈ R
m such that λ is constant on Cl

β for every l ∈ Z
m.
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Definition 5.3. For every α ∈ R
m, z ∈ R

m, define Gα,z : Λm ×Fm 
→ R as

Gα,z(λ, f) := Ef

[
λ(ω)�

(
�ω�z − �ω�α

)]
,

where λ ∈ Λm and f ∈ Fm.

Lemma 5.4. For every α̂ ∈ R
m and every f ∈ Fm,

N (α̂, f) ≤ N ∗(f) := sup
α∈Rm

sup
z∈Rm

sup
λ∈Λm

Gα,z(λ, f).

Proof. Let α̂ ∈ R
m and f ∈ Fm be given. We will show that for every z ∈ R

m,

Q(z)−Qα̂(z) ≤ sup
λ∈Λm

Gα̂,z(λ, f)

and

Qα̂(z)−Q(z) ≤ sup
λ∈Λm

Gz,α̂(λ, f),

implying that

sup
z∈Rm

|Q(z)−Qα̂(z)| ≤ sup
α∈Rm

sup
z∈Rm

sup
λ∈Λm

Gα,z(λ, f)

as postulated.

To prove the first inequality, let z ∈ R
m be given, and consider the function λzQ

as defined in (5.1). Note that λzQ(x) is a maximizer of maxk=1,...,K(λk)��x− z� for

every x ∈ R
m, but not necessarily of maxk=1,...,K(λk)�(�x�α̂ − z). Thus,

Q(z)−Qα̂(z) ≤ Eω

[
λzQ(ω)

�
{
�ω�z − �ω�α̂

}]
= Gα̂,z(λ

z
Q, f).

Since λzQ ∈ Λm, the first inequality follows. Analogously, the second inequality follows
from

Qα̂(z)−Q(z) ≤ Eω

[
λzQα̂

(ω)�
{
�ω�α̂ − �ω�z

}]
= Gz,α̂(λ

z
Qα̂
, f).

The final step in our analysis comprises a similar worst-case analysis as carried
out for the one-dimensional case in the previous section. For all B ∈ R

m with B > 0
we consider the optimization problem

N(B) := sup
f∈Fm

{
N ∗(f) : |Δ|fi ≤ Bi, i = 1, . . . ,m

}
(5.3)

= sup
α∈Rm

sup
z∈Rm

sup
f∈Fm

sup
λ∈Λm

{
Gα,z(λ, f) : |Δ|fi ≤ Bi, i = 1, . . . ,m

}
.

The following proposition allows us to reduce the problem to one involving the con-
stant function λ ≡ λ∗, with λ∗ as defined in (5.2).

Proposition 5.5. For every α ∈ R
m, z ∈ R

m, λ ∈ Λm, and f ∈ Fm, there
exists g ∈ Fm with |Δ|gi ≤ |Δ|fi, i = 1, . . . ,m, such that Gα,z(λ, f) ≤ Gα,z(λ, g) ≤
Gα,z(λ

∗, g).
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Proof. Let α ∈ R
m, z ∈ R

m, λ ∈ Λm, and f ∈ Fm be given with λ constant on
every Cl

β for some β ∈ R
m. Observe that

Gα,z(λ, f) :=Eω

[
λ(ω)�

(
�ω�z − �ω�α

)]

=Eω

[
m∑
i=1

λi(ω)ϕαi,zi(ωi)

]

=
m∑
i=1

∫
Rm

λi(x)ϕαi,zi(xi)f(x)dx,

where ϕαi,zi is the one-dimensional difference function introduced in Definition 4.1.
Here, the last equality is obtained by writing the expectation Eω as an integral and
by interchanging summation and integration. Since λ is constant on Cl

β for every l,

we can calculate the expected value on each Cl
β separately:

Gα,z(λ, f) =

m∑
i=1

∑
l∈Zm

∫
Cl

β

λi(x)ϕαi,zi(xi)f(x)dx

=

m∑
i=1

∑
l∈Zm

λi(l + β)

∫
Cl

β

ϕαi,zi(xi)f(x)dx.

Moreover, since Cl
β =

∏m
j=1 C

lj
βj

and f(x) =
∏m

j=1 fj(xj), we obtain

∫
Cl

β

ϕαi,zi(xi)f(x)dx =

(∫
C

li
βi

ϕαi,zi(xi)fi(xi)dxi

)∏
j 
=i

∫
C

lj
βj

fj(xj)dxj .

Writing l(i) := (l1, . . . , li−1, li+1, . . . , lm), we replace
∑

l∈Zm by
∑

li∈Z

∑
l(i)∈Zm−1 and

get

(5.4) Gα,z(λ, f) =

m∑
i=1

∑
li∈Z

ψα,z,λ,f (i, li)

∫
C

li
βi

ϕαi,zi(xi)fi(xi)dxi

with

(5.5) ψα,z,λ,f (i, li) :=
∑

l(i)∈Zm−1

λi(l + β)
∏
j 
=i

∫
C

lj
βj

fj(xj)dxj .

Observe that ψα,z,λ,f (i, li) ≥ 0 for every i = 1, . . . ,m, li ∈ Z. Thus, if we adapt f
such that the integrals in (5.4) and (5.5) do not decrease, then an upper bound for
Gα,z(λ, f) is obtained. To this end, we construct the joint density function g ∈ Fm

as follows. Let

g(x) :=

m∏
i=1

gi(xi), x ∈ R
m,

where for every i = 1, . . . ,m the marginal density function gi is a particular flattened
version of fi: the function fi is only flattened over those intervals Cli

βi
for which∫

C
li
βi

ϕαi,zi(u)fi(u)du < 0. That is, for every li ∈ Z, and xi ∈ Cli
βi
,

gi(xi) :=

⎧⎨
⎩
fi(xi) if

∫
C

li
βi

ϕαi,zi(u)fi(u)du ≥ 0,∫
C

li
βi

fi(u)du otherwise.
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Obviously, because of Lemma 3.3, |Δ|gi ≤ |Δ|fi, i = 1, . . . ,m. In order to show
that Gα,z(λ, f) ≤ Gα,z(λ, g) ≤ Gα,z(λ

∗, g), notice that for every li ∈ Z and every
i = 1, . . . ,m,

(i)
∫
C

li
βi

gi(u)du =
∫
C

li
βi

fi(u)du,

(ii)
∫
C

li
βi

ϕαi,zi(u)gi(u)du ≥ ∫
C

li
βi

ϕαi,zi(u)fi(u)du,

(iii)
∫
C

li
βi

ϕαi,zi(u)gi(u)du ≥ 0.

These properties follow directly from the construction. Indeed, if gi(xi) = fi(xi) on
Cli

βi
, nothing has to be shown. Otherwise, (i) is obvious, and

0 =

∫
C

li
βi

ϕαi,zi(u)gi(u)du >

∫
C

li
βi

ϕαi,zi(u)fi(u)du,

where the equality follows from Lemma 3.4(iii) using |Cli
βi
| = 1 and Lemma 4.2(iv).

From (i) it follows immediately that

ψα,z,λ,g(i, li) = ψα,z,λ,f (i, li), li ∈ Z, i = 1, . . . ,m,

which together with (ii) implies

Gα,z(λ, f) ≤ Gα,z(λ, g).

In addition,

Gα,z(λ, g) =
m∑
i=1

∑
l∈Zm

λi(l + β)

∫
C

li
βi

ϕαi,zi(xi)gi(xi)dxi
∏
j 
=i

∫
C

lj
βj

gj(xj)dxj

≤
m∑
i=1

∑
l∈Zm

λ∗i

∫
C

li
βi

ϕαi,zi(xi)gi(xi)dxi
∏
j 
=i

∫
C

lj
βj

gj(xj)dxj

= Gα,z(λ
∗, g),

where the inequality is true, since the coefficient of each λi(l + β) is nonnegative
because of (iii).

Next we state an upper bound for the relaxed optimization problem N(B) defined
in (5.3).

Proposition 5.6. For every B ∈ R
m with B > 0,

N(B) ≤
m∑
i=1

λ∗i h(Bi),

with N defined in (5.3), λ∗i defined in (5.2), and h defined in (4.17).

Proof. Using Proposition 5.5, we have that

N(B) = sup
α∈Rm

sup
z∈Rm

sup
f∈Fm

sup
λ∈Λm

{
Gα,z(λ, f) : |Δ|fi ≤ Bi, i = 1, . . . ,m

}
≤ sup

α∈Rm

sup
z∈Rm

sup
f∈Fm

{
Gα,z(λ

∗, f) : |Δ|fi ≤ Bi, i = 1, . . . ,m
}
.
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Note that for every α ∈ R
m, z ∈ R

m, and f ∈ Fm with |Δ|fi = Bi,

Gα,z(λ
∗, f) = Eω

[
λ∗(ω)�

{
�ω�z − �ω�α

}]

=

m∑
i=1

λ∗iEωi

[{
�ωi�zi − �ωi�αi

}]

=
m∑
i=1

λ∗iDαi,zi(fi)

≤
m∑
i=1

λ∗iM(αi, fi),

where Dαi,zi is as defined in Definition 4.1 and M is as defined in (4.4). The result
now follows from Theorem 4.5.

We are now ready to state our main result on the independent case.
Theorem 5.7 (error bound for TU integer recourse models with independent

random variables). Consider the TU integer recourse function Q defined as

Q(z) = Eω

[
min
y

{
q�y :Wy ≥ ω − z, y ∈ Z

n2
+

}]
, z ∈ R

m,

and for every α ∈ R
m its α-approximation Qα defined as

Qα(z) = Eω

[
min
y

{
q�y :Wy ≥ �ω�α − z, y ∈ R

n2
+

}]
, z ∈ R

m.

Under assumptions (i)–(iii) introduced in section 2, we have for every α ∈ R
m and

every random right-hand side vector ω with independently distributed components
and with joint density function f ∈ Fm that

sup
z∈Rm

|Q(z)−Qα(z)| ≤
m∑
i=1

λ∗i h(|Δ|fi),

where λ∗i is as defined in (5.2) and h is as defined in (4.17).
Proof. Let α ∈ R

m and f ∈ Fm with |Δ|fi = Bi, i = 1, . . . ,m be given. Then,

sup
z∈Rm

|Q(z)−Qα(z)| =: N (α, f) ≤ N ∗(f) ≤ N(B),

where the first inequality follows from Lemma 5.4 and the second from the definition
of N in (5.3). Now the result follows directly from Proposition 5.6.

Remark 5.1. In order to obtain λ∗, it suffices to solve m LP problems since
λ∗i = maxλ{λi : λ�W ≤ q�, λ ∈ R

m
+}.

The error bound in Theorem 5.7 is a function of both λ∗i and h(|Δ|fi) for i =
1, . . . ,m. The values of λ∗i depend only on the parameters q and W of the second-
stage value function v; in general, the higher the cost q, the higher the values of λ∗i
and thus the error bound. This need not be problematic in practice, since a larger
error may be acceptable if the recourse costs are higher.

The values of h(|Δ|fi), however, depend only on the total variations |Δ|fi of
the densities of the random variables in the model. In some sense the effects on the
error bound of the randomness in the model and the parameters of the second-stage
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value function are thus separated. Recalling that the values of h(|Δ|fi) are small
for many practically relevant density functions fi (see Table 1), we conclude that
α-approximations perform well as soon as the total variations of the densities of all
random variables in the model are small enough.

In section 5.2 we compare ‖Q − Qα‖∞ and its upper bound
∑m

i=1 λ
∗
i h(|Δ|fi) in

a numerical study. Using several examples, we indicate how tight the upper bound
actually is.

5.1. Tight bounds for SIR models. Interestingly, the generic one-dimensional
SIR function Q defined in (2.5) is a special case of the TU integer recourse function Q
of Theorem 5.7 with m = 1, q = 1, and W = I1. Thus, Theorem 5.7 yields an upper
bound for ‖Q −Qα‖∞.

Corollary 5.8. Consider the generic one-dimensional SIR function Q(z) :=
Eω[�ω − z�+], z ∈ R, and its α-approximation Qα(z) := Eω[(�ω�α − z)+], z ∈ R.
Then, for every α ∈ R and random variable ω with density function f ∈ F we have

‖Q −Qα‖∞ ≤ h(|Δ|f) =
{

|Δ|f/8, |Δ|f ≤ 4,

1− 2/|Δ|f, |Δ|f ≥ 4.

Proof. Apply Theorem 5.7, and observe that λ∗ = 1.
Comparing this error bound with that of Klein Haneveld, Stougie, and Van der

Vlerk [9] given in (2.6), we observe that for |Δ|f ≤ 4 we improve this error bound
by a factor 2. Moreover, for |Δ|f ≥ 4 the error bound in Corollary 5.8 increases
hyperbolically to the trivial bound 1 as |Δ|f increases, whereas the old bound is
equal to 1 for all |Δ|f ≥ 4.

We will show (for the m-dimensional case) that the error bound in Theorem 5.7
is tight for SIR models, implying that the bound in Corollary 5.8 cannot be improved
further.

Corollary 5.9. Consider the m-dimensional SIR function

Q(z) = Eω

[
min
y

{q�y : y ≥ ω − z, y ∈ Z
n2
+ }

]
, z ∈ R

m,

and let B ∈ R
m with B > 0 be given. Assume that q ≥ 0 so that the recourse

is sufficiently expensive. Then, for every α ∈ R
m there exists f ∈ Fm such that

|Δ|fi = Bi, i = 1, . . . ,m, and

sup
z∈Rm

|Q(z)−Qα(z)| =
m∑
i=1

λ∗i h(|Δ|fi).

Proof. For SIR models, the dual feasible region is given by {λ ∈ R
n2
+ : λ� ≤ q�}

so that λ∗i = qi ≥ 0. Hence, by Theorem 5.7, the bound reads

sup
z∈Rm

|Q(z)−Qα(z)| ≤
m∑
i=1

λ∗i h(|Δ|fi) =
m∑
i=1

qih(|Δ|fi).

On the other hand, since for SIR models Q and Qα are separable (see (2.4)), we have

Q(z)−Qα(z) =

m∑
i=1

qiEfi

[
�ωi − zi�+ − (�ωi�αi

− zi
)+]

, z ∈ R
m.
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It is convenient to restrict our attention to pdf fi and real numbers zi such that fi
vanishes on (−∞, zi]. Then the “+” operations in the last formula are superfluous,
so that

Q(z)−Qα(z) =

m∑
i=1

qiEfi

[
�ωi − zi� − �ωi�αi

+ zi

]

=

m∑
i=1

qiDαi,zi(fi),

as mentioned in Remark 4.1. Consequently, in order to show that the bound of
Theorem 5.7 is tight, it is sufficient to show that for all i ∈ {1, . . . ,m}, αi ∈ R, and
Bi ∈ R with Bi > 0 there exist zi ∈ R and fi ∈ F with fi(xi) = 0 for xi ≤ zi and
|Δ|fi = Bi such that

Dαi,zi(fi) = h(Bi) =

{
Bi/8, 0 < Bi ≤ 4,

1− 2/Bi, Bi ≥ 4,

which can be shown using the pdf f̂ and f̄ introduced in (4.15) and (4.16). Indeed, if
Bi ∈ (0, 4], then choose zi = αi−1/2, so that γαi,zi = 1/2 and thus γαi,zi ≥ 1−2/Bi,
and fi = f̄ with parameters z := zi and α := αi. Then,

Dαi,zi(fi) = γαi,zi(1− γαi,zi)Bi/2 = Bi/8.

If Bi ≥ 4, then choose zi = αi − 2/Bi, so that γαi,zi = 1 − 2/Bi, and fi = f̂ with
parameters z := zi and α := αi. Then,

Dαi,zi(fi) = γαi,zi = 1− 2/Bi.

5.2. Numerical study of ‖Q−Qα‖∞ and its upper bound. In this section
we compare ‖Q − Qα‖∞ and its upper bound in a numerical study. As already
mentioned, and indeed the motivation of deriving the upper bound in Theorem 5.7,
it is not possible to calculate ‖Q− Qα‖∞ for large problem instances, so we restrict
our attention to SIR models and a small TU integer recourse example.

Example 5.1. Consider the generic one-dimensional SIR function Q defined in
(2.5), and let ω be a normally distributed random variable with mean μ and variance
σ2. From Example 4.1 and Corollary 5.8 it follows that for all α ∈ R,

‖Q −Qα‖∞ ≤ h(|Δ|f) =
{

1− σ
√
2π, σ ≤ 1

4

√
2/π,

(8σ)−1
√
2/π, σ ≥ 1

4

√
2/π.

Notice that the upper bound h(|Δ|f) converges to the trivial upper bound 1 as σ → 0.
Moreover, h(|Δ|f) decreases linearly for σ ≤ 1

4

√
2/π and hyperbolically for σ ≥

1
4

√
2/π with limit 0 as σ → +∞. This can also be observed in Figure 3, where both

‖Q − Qα‖∞ and its upper bound h(|Δ|f) are given as a function of σ for various
values of α; the mean μ equals 0 in all cases.

Clearly, the difference between Q and Qα decreases as the standard deviation σ
increases (and thus the total variation |Δ|f decreases). Moreover, we observe that for
larger values of σ, the value of ‖Q−Qα‖∞ is approximately 50% of the upper bound
h(|Δ|f) for all α. For smaller values of σ, i.e., as σ → 0, the value of ‖Q−Qα‖∞ may
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Fig. 3. The supremum norm ‖Q − Qα‖∞ and its upper bound h(|Δ|f) of Example 5.1 as
a function of σ, the standard deviation of the random variable ω ∼ N(0, σ2). The dashed line
corresponds to h(|Δ|f) and the solid lines to ‖Q −Qα‖∞ for α = 0, 0.5, 0.75, 0.99.

converge to any value between 1/2 and 1 depending on the value of α. For example,
for α = 0, it converges to 1/2, and for α = 1 − ε with ε > 0 very small, its limit is
1− ε, which converges to the trivial upper bound 1 as ε→ 0.

It is not surprising that ‖Q − Qα‖∞ is large for small values of σ, since in these
cases the random variable ω is approximately a degenerate random variable with
P{ω = μ} = 1 so that Q(z) ≈ v(μ − z). This latter function is highly nonconvex
and even discontinuous with jumps of size 1 at z ∈ μ− Z+, and thus for any convex
approximation Q̄ (including α-approximationsQα), we have limσ→0 ‖Q−Q̄‖∞ ≥ 1/2.

This result illustrates the counterintuitive nature of the α-approximations: in case
ω resembles a discrete random variable, which corresponds to a large total variation
|Δ|f of the pdf f , then α-approximations perform badly, and if |Δ|f is small, which is,
for example, the case if ω resembles a uniform random variable with a large support,
then α-approximations perform well. This contrasts strongly with most approxima-
tions in the stochastic programming literature for which typically the quality of the
solutions is better if the random vector ω is discretely distributed with only a small
number of scenarios.

Example 5.2. Again, consider the generic one-dimensional SIR function Q, but
now assume that ω is uniformly distributed on [0, b] with b > 0. Observing that
|Δ|f = 2/b, it follows that

‖Q −Qα‖∞ ≤ h(|Δ|f) =
{

1− b, b ≤ 1/2,

(4b)−1, b ≥ 1/2.

Similar to Example 5.1, the upper bound h(|Δ|f) converges to the trivial upper bound
1 as b→ 0, h(|Δ|f) decreases linearly in b for b ≤ 1/2, and h(|Δ|f) decreases hyper-
bolically in b for b ≥ 1/2 with limit 0 as b→ +∞. Interestingly, ‖Q−Qα‖∞ does not
decrease monotonically in b, as can be observed in Figure 4, where both ‖Q−Qα‖∞
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Fig. 4. The supremum norm ‖Q − Qα‖∞ and its upper bound h(|Δ|f) of Example 5.2 as a
function of b, the right endpoint of the support of ω which is uniformly distributed on [0, b]. The
dashed line corresponds to h(|Δ|f) and the solid line to ‖Q −Qα‖∞ with α = 0.

and its upper bound h(|Δ|f) are given as a function of b for α = 0. In fact, for every
b ∈ Z with b ≥ 1, we have ‖Q − Qα‖∞ = 0 since in these cases Q and Qα coincide,
whereas ‖Q − Qα‖∞ = h(|Δ|f) for b ∈ (0, 1/2] and b ∈ 1/2 + Z+. Thus, for some
values of b the recourse function Q is convex and can be approximated exactly by Qα

and for other values of b the worst-case bound h(|Δ|f) is actually sharp.
Based on these examples, we conclude that for SIR models the upper bound

h(|Δ|f) of ‖Q − Qα‖∞ is reasonably tight for several well-known distributions of ω,
especially taking into account that the bound holds for all f ∈ F .

Next, we discuss a more general TU integer recourse example.
Example 5.3. Consider a TU integer recourse model with m = 2, q� = (3, 2, 2),

and

W =

[
1 1 0
1 0 1

]
,

and assume that ω is normally distributed with mean μ = (0, 0) and covariance matrix
V = σ2I2. The dual feasible region Λ := {λ ∈ R

2
+ : λ�W ≤ q�} is given by

Λ = {λ ∈ R
2
+ : λ1 + λ2 ≤ 3, λ1 ≤ 2, λ2 ≤ 2}.

Straightforward computation shows that λ∗1 = λ∗2 = 2, and thus combining Theo-
rem 5.7 and the expression for |Δ|fi in Example 4.1,

‖Q−Qα‖∞ ≤
2∑

i=1

λ∗i h(|Δ|fi) = 4h(σ−1
√
2/π).

Figure 5 shows ‖Q − Qα‖∞ with α = (0, 0) and its upper bound as functions of
σ. The results are very similar to those in Example 5.1. However, in this case the
values of ‖Q − Qα‖∞ are 40% of its upper bound instead of 50%. The increased
gap can be attributed to λ∗, which is obtained as the componentwise maximum of
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Fig. 5. The supremum norm ‖Q − Qα‖∞ with α = (0, 0) (solid line) and its upper bound
(dashed line) of Example 5.3 as a function of σ, with ω normally distributed with mean μ = (0, 0)
and covariance matrix V = σ2I2.

the dual vertices λk ∈ Λ. In fact, in the current TU example it holds that λ∗ /∈ Λ,
contrary to the previous SIR examples. We conclude that the quality of the error
bound in Theorem 5.7 depends on q and W but that generally the bound appears to
be reasonably tight.

6. TU integer recourse models with dependent random right-hand side
parameters. In this section we again assume that ω is continuously distributed, but
now we assume that the joint density function f is contained in a larger setH, allowing
for dependency.

Definition 6.1. Let H denote the set of m-dimensional joint density functions
f whose conditional density functions fi(·|x(i)) defined as

fi(xi|x(i)) = f(x)/f(i)(x(i))

are contained in F for all i = 1, . . . ,m, and x(i) ∈ R
m−1. (As before, we use the

notation x(i) for the vector x without its ith component.)

Of course, this definition only makes sense for those i and x(i) for which f(i)(x(i)) >
0. If f(i)(x(i)) = 0, any definition of fi(xi|x(i)) is good but irrelevant, since in calcu-
lating expectations via conditioning its contribution is multiplied by f(i)(x(i)), that
is, by 0.

Using the results from the previous sections, we are able to derive an error bound
in this case as well.

Theorem 6.2 (error bound for TU integer recourse models). Consider the TU
integer recourse function Q defined as

Q(z) = Eω

[
min
y

{
q�y :Wy ≥ ω − z, y ∈ Z

n2
+

}]
, z ∈ R

m,
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and for every α ∈ R
m its α-approximation Qα defined as

Qα(z) = Eω

[
min
y

{
q�y :Wy ≥ �ω�α − z, y ∈ R

n2
+

}]
, z ∈ R

m.

Under assumptions (i)–(iii) introduced in section 2, we have for every α ∈ R
m and

every random right-hand side vector ω with joint density function f ∈ H that

sup
z∈Rm

|Q(z)−Qα(z)| ≤
m∑
i=1

λ∗iEω(i)

[
h
(|Δ|fi(·|ω(i))

)]
,

where λ∗i is as defined in (5.2) and h is as defined in (4.17).
Proof. We follow the line of proof of the previous section, using the same notation.

Obviously, Lemma 5.4 also holds for f ∈ H so that

sup
z∈Rm

|Q(z)−Qα(z)| ≤ sup
α∈Rm

sup
z∈Rm

sup
λ∈Λm

Gα,z(λ, f),

and similar to the proof of Proposition 5.5, we have

Gα,z(λ, f) = Ef

[
λ(ω)�

(
�ω�z − �ω�α

)]

=

m∑
i=1

∫
Rm

λi(x)ϕαi,zi(xi)f(x)dx.

However, now we apply conditioning using f(x) = fi(xi|x(i))f(i)(x(i)) to obtain

Gα,z(λ, f) =

m∑
i=1

∫
Rm−1

{∫
R

λi(x)ϕαi,zi(xi)fi(xi|x(i))dxi
}
f(i)(x(i))dx(i)

=

m∑
i=1

∫
Rm−1

G1
αi,zi

(
λ̂i(·|x(i)), fi(·|x(i))

)
f(i)(x(i))dx(i),

where G1
αi,zi denotes the case m = 1 in the definition of Gα,z and λ̂i(·|x(i)) : R 
→ R is

defined as λ̂i(xi|x(i)) = λi(x). Since this function λ̂i(·|x(i)) ∈ Λ1 for all x(i) ∈ R
m−1,

we can apply Proposition 5.6 with m = 1, α = αi, z = zi, λ = λ̂i(·|x(i)), and
f = fi(·|x(i)), yielding

Gα,z(λ, f) ≤
m∑
i=1

∫
Rm−1

λ∗i h
(|Δ|fi(·|x(i))

)
f(i)(x(i))dx(i)

=

m∑
i=1

λ∗iEω(i)

[
h
(|Δ|fi(·|ω(i))

) ]
.

Theorem 6.2 generalizes Theorem 5.7 since Fm ⊂ H. If f ∈ Fm, then the
conditional density fi(xi|x(i)) = fi(xi) for all x ∈ R

m, and thus the error bound in
Theorem 6.2 reduces to that in Theorem 5.7.

The following example illustrates the increase in value of the error bound by
introducing dependency.

Example 6.1. Let f ∈ H be the joint density function of a bivariate normal
random vector ω with correlation coefficient ρ. It is well known that ω1|ω2 = x2
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follows a normal distribution with variance (1− ρ2)σ2
1 . Hence, using Example 4.1, for

i = 1, 2 and x(i) ∈ R,

|Δ|fi(·|x(i)) = 1√
1− ρ2

σ−1
i

√
2/π.

This implies that the error bound in Theorem 6.2 for this particular joint density
function equals

2∑
i=1

λ∗iEω(i)

[
h
(|Δ|fi(·|ω(i))

)]
=

2∑
i=1

λ∗i h

(
1√

1− ρ2
σ−1
i

√
2/π

)
.

Compared to the independent case, the total variations increase by a factor 1/
√
1− ρ2

with equivalence if ρ = 0 (see Example 5.3 on the independent case). For example,
if |ρ| ≤ 0.4, then this factor is smaller than 1.1, and thus the total variations in the
dependent case are less than 10% higher than in the independent case. We conclude
that only for high correlation values |ρ| the error bound in the dependent case increases
substantially compared to the independent case. This is also confirmed by numerical
experiments similar to those in Example 5.3.

7. Complete integer recourse models. If the recourse matrix W is not TU
but a general integer-valued matrix, then the error bounds for the α-approximation
Qα in Theorems 5.7 and 6.2 are no longer valid. This is because the equality in (2.8)
now holds with inequality, implying that

(7.1) Q(z) ≥ Eω

[
max

k=1,...,K
(λk)��ω − z�

]
, z ∈ R

m.

Nonetheless, the α-approximation Qα may be useful as an approximate lower bound
for Q, to be used in several special-purpose algorithms; see Van der Vlerk [27]. In fact,
if the random variables in the model are independently and uniformly distributed, then
there exists an α∗ ∈ R

m such that Qα∗ is the convex hull of Eω[maxk(λ
k)��ω − z�]

(see [19]) and thus a lower bound of Q. In all other cases, Qα is not necessarily a
lower bound for Q, but a one-sided error bound is available.

Corollary 7.1. Consider the complete integer recourse function Q defined as

Q(z) = Eω

[
min
y

{
q�y :Wy ≥ ω − z, y ∈ Z

n2
+

}]
, z ∈ R

m,

and for every α ∈ R
m its α-approximation Qα defined as

Qα(z) = Eω

[
min
y

{
q�y :Wy ≥ �ω�α − z, y ∈ R

n2
+

}]
, z ∈ R

m.

Under assumptions (i)–(iii) introduced in section 2, we have for every α ∈ R
m, z ∈

R
m, and every random right-hand side vector ω with joint density function f ∈ H

that

Qα(z)−
m∑
i=1

λ∗iEω(i)

[
h
(|Δ|fi(·|ω(i))

)] ≤ Q(z),

where λ∗i is as defined in (5.2) and h is as defined in (4.17).
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Proof. Combine (7.1) and Theorem 6.2.

Both Qα − ∑m
i=1 λ

∗
iEω(i)

[
h
(|Δ|fi(·|ω(i))

)]
and Qα can be used as exact lower

bound and approximate lower bound, respectively. Using the latter yields approxi-
mate solutions with only a small error if the total variations of the densities of the
random variables in the model are small enough, whereas using the first yields exact
solutions but is computationally more demanding since the lower bound is weaker.

Both approaches are of interest, the latter in particular since for every α ∈ R
m,

we have Qα ≥ QLP , where QLP is the recourse function obtained by using the LP
relaxation of the second-stage integer program defining the value function v [27].
Moreover, if Qα(z) > 0, then Qα(z) > QLP (z); see [29].

As already observed in [27], this implies that Qα is a strictly better (approxi-
mate) lower bound than QLP , and, moreover, Qα is computationally more tractable
than QLP since Qα corresponds to a continuous recourse model with discrete random
variables, whereas QLP corresponds to a continuous recourse model with continuous
random variables.

8. Summary and conclusions. We consider a class of convex approximations
for totally unimodular (TU) integer recourse models. Using piecewise flattening of
density functions, we derive a uniform error bound for these approximations that de-
pends on the total variations of the probability density functions involved. For simple
integer recourse (SIR) models this error bound is tight and improves the existing one
by a factor 2. Moreover, for TU integer recourse models this is the first nontrivial
error bound available. Due to this error bound the convex approximations can also
be used as an approximate lower bound for complete integer recourse models.

As illustrated by several numerical examples, we show that the approximations
are good if all total variations of the probability density functions of the random vari-
ables in the model are small enough. For example, for normally distributed random
variables ω this implies that the convex approximations are good if the standard de-
viations σ are large and the approximations are bad if the σ are small. This result
contrasts strongly with other approximations in the literature, where typically approx-
imations perform better for small values of σ, i.e., if ω can be better approximated
by a discrete random vector.

A future research direction is to apply the idea of modifying the recourse data
(MRD) to pure integer and mixed-integer recourse models. Alternatively, for the
convex approximations in this paper, an error bound may be obtained that depends
on characteristics of the joint pdf f and not only on its one-dimensional conditional
densities.
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