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Summary

1. Large herbivores play a key role in creating spatial heterogeneity through the formation of graz-
ing lawns. Recent research suggests that the currently accepted nutrient-based theory on the forma-
tion of these grazing lawns cannot universally explain their formation in all ecosystems where they
are found.

2. We developed and investigated an alternative hypothesis on grazing lawn formation and mainte-
nance based on herbivore effects on the plant—soil water balance. We propose that large herbivores
change the soil water balance in grazing lawns through defoliation and soil compaction, causing a
shift in vegetation composition towards a drought-tolerant plant community.

3. Investigating this idea in a tropical savanna, we indeed found profound differences in grazing
lawn soil properties and water balance. In particular, defoliation increased soil temperatures and
potential evaporation rates while soil compaction increased bulk density and decreased water infiltra-
tion rates, especially on fine-textured soils. Soil moisture was therefore generally much lower in
grazing lawns than in adjacent bunch grass areas.

4. Furthermore, we found that grazing lawn species show drought-tolerant traits, with higher leaf
sodium levels, suggesting evolutionary adaptation to these herbivore-induced dry conditions. How-
ever, leaf water potentials did not differ between grazing lawn and bunch grass species.

5. Synthesis. This study shows that large herbivores might form grazing lawns through previously
underestimated effects on water balance. Thus, future studies on large herbivore effects on vegeta-
tion should increasingly focus on additional pathways of soil compaction and defoliation. While
nutrient-based processes driving grazing lawn formation may operate during the wet season in
savannas, we suggest that water balance-based processes are additionally important during the dry
season.

Key-words: defoliation, herbivore-induced stress, landscape heterogeneity, plant-herbivore interac-
tions, savannas, soil compaction, soil texture

Introduction

In grasslands, large herbivores play a key role in creating spa-
tial heterogeneity through the formation of grazing lawns
(McNaughton 1984). Grazing lawns persist in many different
ecosystems and their importance for plant-herbivore interac-
tions and as biodiversity hotspots has been widely shown
(Bell 1971; Coppock et al. 1983; McNaughton 1984; Person

*Correspondence author: E-mail: m.p.veldhuis@rug.nl

et al. 2003). They are characterized by high productivity and
different plant species composition; with higher abundances
of nutrient- and mineral-rich species that form keystone
resources for grazing herbivores (McNaughton 1979, 1984;
Augustine, McNaughton & Frank 2003). Grazing lawns have
been shown to arise as a result of a positive feedback
between grazing lawn grasses
(McNaughton 1984). A strong history of research in the
mechanisms of this feedback has firmly established the pre-

vailing idea that grazing lawn grasses are more grazing toler-

and grazing herbivores

ant and require more nutrients than bunch grasses and
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therefore persist under heavily grazed circumstances. The
high-nutrient content of grazing lawn above-ground tissues is
thought to result from three main processes (Fig. 1):

1 compensatory growth of plants keeps shoots in a physio-
logically young active stage (McNaughton 1976; Hik & Jeft-
eries 1990; McNaughton, Banyikwa & McNaughton 1997;
Ruess et al. 1997) and increases nutrient uptake per unit of
root mass as a result of increased photosynthetic input (Ruess,
McNaughton & Coughenour 1983; Coughenour ez al. 1990;
Coughenour 1991),

2 increased plant nutrient availability through local deposi-
tion of urine and dung (McNaughton 1979; Detling & Painter
1983; Ruess & McNaughton 1984; Holland & Detling 1990;
Frank & McNaughton 1993; McNaughton ef al. 1997; Frank
& Groffman 1998; Augustine, McNaughton & Frank 2003),

3 promotion of litter quality through dominance of high-
quality species, and this litter is decomposed faster, increasing
soil nutrient turnover (Wedin & Tilman 1990, 1996; Grime
et al. 1996; Olofsson & Oksanen 2002; Sjogersten, van der
Wal & Woodin 2012).

The enhanced tissue nutrient concentrations of grazing lawn
plants promotes repeated return of grazing herbivores, poten-
tially resulting in a positive feedback between large grazing
herbivores and nutrient-rich lawn grasses: both groups pro-
mote each other. On the other hand, low-quality bunch

Classical nutrient-based pathways
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grasses dominate on less nutrient-rich spots, which stay nutri-
ent poor as the herbivores are deterred by the low tissue nutri-
ent concentrations of the dominant plants. This nutrient-based
mechanism has been proposed to explain why mosaics of
bunch and lawn grasses are found in many grazing ecosys-
tems, with locally higher grazer densities in lawn grass areas
than bunch grass areas (McNaughton 1984; Augustine,
McNaughton & Frank 2003).

Although this theory is generally accepted and supported
by previous work, a number of studies suggest that these
three processes (compensatory growth, increased nutrient
addition and enhanced litter quality) alone cannot explain
grazing lawn formation in all grazing ecosystems where these
typical vegetation structures are found:

1 When grown without defoliation under similar conditions,
grazing lawn species from both the Serengeti (Tanzania) and
Hluhluwe-iMfolozi (South Africa) also contain higher foliar
nutrient concentration than bunch grass species, and both
groups show increased nutrient levels after defoliation
(Anderson et al. 2013). Therefore, compensatory growth is
not the only process explaining increased nutrient levels in
grazing lawn species, although it could be seen as an addi-
tional effect to increase plant nutritional quality.

2 Positive, non-significant and negative feedback effects of

large herbivores on nitrogen cycling have also been reported

Alternative water-based pathways
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Fig. 1. Overview of the influence of large herbivores on grass nutritional quality (adapted with permission from Schrama et al. 2013). The dia-
gram shows five main pathways by which herbivores affect grass nutritional quality. Pathways 1, 2 and 3 encompass the current accepted nutri-
ent-based theory: (1) increased N-mineralization through defecation, (2) compensatory growth after defoliation and (3) increased litter quality
through changes in plant community composition towards grazing-tolerant highly nutritious grass species. Pathways 4 and 5 are investigated in
this study and operate in semi-arid systems through changes in water balance: (4) decreased vegetation cover through defoliation increases soil
temperature and bare soil evaporation and (5) soil compaction decreases water infiltration. Together, pathways 4 and 5 decrease soil moisture
which in turn increases grass nutritional quality, since plant adaptations to reduce evaporative water loss also reduces photosynthetic carbon fixa-
tion. This results in changes in plant carbon to nutrient ratios (Breman & Dewit 1983; OIff, Ritchie & Prins 2002).
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(e.g. van Wijnen, van der Wal & Bakker 1999; Bakker et al.
2004; Stock, Bond & van de Vijver 2010; Schrama et al.
2012), indicating that other processes may play a role in the
formation and maintenance of grazing lawns than just
enhanced nutrient cycling (Schrama et al. 2013). However,
while several studies report the deceleration of nitrogen
cycling in grazing lawns under herbivory (Schrama et al
2013), lower plant nutrient concentrations are not reported
despite reductions in N mineralization. Hence, an alternative
explanation is required for increased plant nitrogen concentra-
tions in grazing lawns than promotion of N mineralization.

3 The nutrient-based theory on grazing lawn formation pre-
dicts a shift in community composition based on the assump-
tion that lawn grasses are more tolerant to defoliation.
Recently, a test of this underlying assumption under con-
trolled laboratory conditions showed no difference between
grazing lawn and bunch grass species in tolerance to defolia-
tion (Anderson et al. 2013).

Coughenour (1985) indicates that grazing lawn species
have traits associated with drought tolerance, like basal meris-
tems, small stature, below-ground nutrient reserves and rapid
growth. Interestingly, these very same traits enable plants to
withstand grazing (Milchunas, Sala & Lauenroth 1988;
Augustine & McNaughton 1998). Both water limiting condi-
tions and high grazing pressure provides selection pressure
for plants to evolve tolerance of loss of plant organs (Milch-
unas, Sala & Lauenroth 1988), and therefore, it has been
hypothesized that tolerance to grazing and survival in semi-
arid conditions have evolved together (Coughenour 1985).
can be physiologically
achieved by osmotic adjustment, for example through accu-
mulation of sodium in the plant vacuoles (Jennings 1968; Gir-
ma & Krieg 1992; Gaxiola et al. 2001; Bartlett, Scoffoni &
Sack 2012), as this increases plant turgor and plant water

Furthermore, drought tolerance

potential through higher osmotic potential differences between
the plant and its direct surroundings (leaf boundary layer, rhi-
zosphere). Lawn grasses have been shown to contain high
levels of sodium which in turn is very attractive to large her-
bivores that are often sodium deficient in grazing ecosystems
(Belovsky 1981; McNaughton 1988; Tracy & McNaughton
1995; McDowell 1997). In addition, plant adaptations to
reduce evaporative water loss also reduces photosynthetic car-
bon fixation. This results in changes in plant carbon to nutri-
ent ratios (Breman & Dewit 1983; OIff, Ritchie & Prins
2002), that could explain the high-nutrient concentrations
found in grazed areas.

In this study, we therefore propose and investigate an alter-
native hypothesis on grazing lawn formation by large herbi-
vores that is based on changes in plant water availability
instead of nutrient cycling, resulting in an alternative feedback
loop with a central emphasis on water balance. We suggest
that herbivores not only modify nutrient dynamics but also
the local water balance via different mechanisms, which can
be grouped into two additional categories of herbivore-
induced vegetation changes: (4) vegetation impacts and (5)
trampling effects (Fig. 1):

4 Defoliation by herbivores opens up the vegetation and
therefore decreases vegetation cover and increase the expo-
sure of bare soil. Vegetation cover tends to reduce evapora-
tion rates by shading the soil and reducing wind velocity
(Thurow 1991). Therefore, removal of above-ground biomass
may strongly increase soil evaporation and temperature, espe-
cially in tropical ecosystems with high solar radiation, poten-
tially reducing soil water availability for plants. Furthermore,
decreased above-ground biomass reduces soil organic matter
content, which is an important factor in aggregate formation
and stability (Thurow 1991). Reduced soil aggregation
strongly affects macroporosity, with reduced infiltration rates
and soil water content in poorly aggregated soils (Allison
1973). This may explain why vegetation cover in semi-arid
ecosystems is a good predictor of infiltration capacity (Riet-
kerk & van de Koppel 1997).

Defoliation could also affect soil water condition indirectly
through an alteration of vegetation transpiration demands.
Transpiration may be reduced, if defoliation reduces leaf area.
However, grazing-induced enhanced transpiration is also pos-
sible as a result of increased photosynthetic rates, due to
increased leaf N, increased light, younger leaf age and
reduced feedback inhibition (McNaughton 1979; Coughenour,
McNaughton & Wallace 1984).

5 Trampling by large herbivores is known to have profound

effects on soil physical conditions via soil compaction (Piet-
ola, Horn & Yli-Halla 2005; Bilotta, Brazier & Haygarth
2007; Batey 2009). Compaction-induced changes in (semi-)
arid ecosystems include a decrease in pore size (Kim ez al.
2010), a reduced water holding capacity (Lipiec & Hatano
2003; Pietola, Horn & Yli-Halla 2005; Batey 2009), reduced
infiltration rates (Hamza & Anderson 2005), an increased sur-
face run-off (Batey 2009) and a reduced aggregate stability
(Knoll & Hopkins 1959).

These mechanisms can create locally dry soil conditions in
grazed areas as a result of reduced soil water availability
through above-ground removal of vegetation and soil compac-
tion by large herbivores. In turn, this can promote dominance
of plant species with adaptations to drought, such as plant
sodium accumulation and increased water use efficiency,
which make these species very attractive to large herbivores.
Altogether, this results in an alternative feedback loop with a
central emphasis on water balance (Fig. 1, right side).

Two important factors affecting soil moisture and water
balance in addition to herbivory are rainfall and soil texture.
Rainfall sets the boundary condition how much water is avail-
able for infiltration in the first place. Furthermore, the effect
of soil compaction is dependent on soil texture, with fine-tex-
tured soils being more sensitive to compaction than coarse-
textured soils (Van Haveren 1983), and high-clay soils having
naturally less water infiltration capacity under semi-arid con-
ditions than sandy soils (Rietkerk er al. 2000, 2002). There-
fore, it is expected that effects of grazers on the plant—soil
water balance change across gradient of soil texture and rain-
fall.

© 2014 The Authors. Journal of Ecology © 2014 British Ecological Society, Journal of Ecology, 102, 1506-1517



Unfortunately, there are currently substantial differences in
terminology in the literature on grazing lawn formation (e.g.
lawn grasses vs. short grasses; grazing lawns vs. hotspots)
and it is therefore crucial to clarify and position our terminol-
ogy to put our study into context. We do so by describing the
three successive processes involved in grazing lawn forma-
tion:

1 The first step is a concentration of high herbivore densities
in specific areas, possibly mediated by edaphic factors as high
soil fertility and low rainfall (Archibald 2008; Cromsigt &
OIff 2008; Anderson et al. 2010), landscape features attrac-
tive to herbivores like water holes, wallows and rubbing posts
(Cromsigt & OIff 2008), local fire events (Archibald et al.
2005; Archibald 2008) or risk-driven factors (Anderson et al.
2010; Hopcraft, Olff & Sinclair 2010).

2 Once herbivores are aggregated local feedbacks can arise
between soil and vegetation characteristics, and herbivore
abundance (Fig. 1) that change nutrient and water availability,
and in turn affect plant physiology. This results in short-
grazed grasses with higher plant quality and high herbivore
concentrations, often referred to as grazing hotspots. Never-
theless, this could merely be a result of phenotypic plasticity
and does not necessarily involve a change in plant species
composition (Arnold, Anderson & Holdo 2014).

3 When these feedbacks are strong and persistent enough
over time this might catalyze a turnover in plant species com-
position towards herbivore-induced stress adapted vegetation,
possibly mediated by specific local environmental conditions
(rainfall, geological grain size). These lawn-forming species
have specific traits associated with herbivore-induced stress,
as basal meristems, small stature, below-ground nutrient
reserves, stolons/rhizomes and rapid growth (Coughenour
1985).

Here, we chose to study the effect of water balance in this
last situation (different plant communities), since we expect
that if the hypothesized pathways are present, we are most
likely to find evidence here. Therefore, as a first attempt to
investigate our water-balance hypothesis we compared water
balance-related features on grazing lawns and adjacent bunch
grass areas. Consequently, when referring to grazing lawns
we mean a different plant community with specific traits as
outlined above.

The objectives of this study were to investigate (i) how
grazing lawns differ in soil physical conditions (compaction,
water infiltration) compared to adjacent bunch grass areas, (ii)
how these differences in soil physical factors play out over
gradients of soil texture and rainfall and (iii) how these
changes in water balance correlate to plant physiological
responses.

Materials and methods

STUDY SITE AND SAMPLING DESIGN

We performed this study in Hluhluwe iMfolozi Park, South Africa,
an ecosystem with steep gradients in rainfall and soil texture within a

Grazing lawns and water balance 1509

relatively small area in combination with high grazer densities. For
detailed description about the park and the methods described below,
we refer to the online Supplementary Methods section of this paper
(see Appendix S1 in Supporting Information).

We selected 24 study sites throughout the park that were separated
at least 225 m, with a largest distance between sites of 31.1 km. Site
selection was based on the amount of annual rainfall and on parent
material (shale, dolerite or sandstone) based on geology maps of the
park. These parent materials differ in soil texture with increasing geo-
logical grain size from shale to dolerite to sandstone, so as to obtain
independent gradients of both rainfall and parent material texture. At
every site, we chose three replicate plots of 10 x 10 m, representa-
tive for the area. At each replicate, we selected a lawn grass part and
a bunch grass part, when present. Measurements were taken in the
dry season (June-July) and in the wet season (November—January) of
2010.

RAINFALL

Rain gauge data from 17 weather stations was used to create a rainfall
map for HiP (mostly on different locations than the study plots), con-
taining rainfall data from 2001 to 2007. Subsequently, spatial coordi-
nates of each site were used to extract interpolated estimates of
rainfall from the map.

TEXTURE

Soil samples (approximately 150 g) were collected (see ‘Pore volume’
for collection details) at every replicate plot in the field in June 2010
and taken back to the Netherlands for a soil texture analysis at the
Netherlands Institute for Sea Research, Texel. In order to determine
the geological grain size distribution of the soil samples, organic mat-
ter and carbonate were removed from the samples. Median geological
grain size of soils was determined using a Coulter LS 13 320 particle
size analyzer and Autosampler, which measures particle sizes in the
range of 0.04-2000 Fm in 126 size classes, using laser diffraction
(750 nm) and PIDS (450, 600 and 900 nm) technology (McCave &
Syvitski 1991).

VEGETATION HEIGHT

During the (wet) growing season, average height of both vegetation
types (lawn and bunch) was measured for each replicate at each site.

SOIL TEMPERATURE

Soil temperature was measured for each site at one of the replicates
in both vegetation types using Termochron® iButton® DS1921G tem-
perature loggers (Maxim Integrated Products Inc., San Jose, CA,
USA). The iButtons® were placed in the soil at a depth of 10 cm.
Temperatures were logged every day at 13.00 pm throughout the wet
season study period.

POTENTIAL SOIL EVAPORATION

Potential soil evaporation was estimated during the dry season, with
potential soil evaporation defined as the decrease in soil moisture over
time after experimental water addition. At 15 sites, three replicates of
soil moisture gypsum blocks (Eijkelkamp Agrisearch Equipment,
Giesbeek, the Netherlands) were buried 10 cm below the soil surface

© 2014 The Authors. Journal of Ecology © 2014 British Ecological Society, Journal of Ecology, 102, 1506-1517
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in both lawn and bunch grass areas, thereby minimally disturbing the
soil during the burial process. Gypsum blocks were left in the field
for 3 days to allow the blocks to synchronize with soil moisture.
Then 2 L of water were added to ensure complete saturation of the
gypsum block and surrounding soil. Subsequently for 5 days in a
row, decrease in soil moisture was measured, and this decrease was
used as a relative estimate for potential evaporation rate. No rainfall
was recorded for those days.

PORE VOLUME

During both the wet and the dry season, we measured bulk density as a
proxy for pore volume, as pore volume decreases with bulk density. At
every site, three soil samples were taken both in lawn and bunch grass
areas. A pick (dry season) or spade (wet season) was used to break
open the soil after which intact blocks of soil with undisturbed physical
structure (approximately 5 x 5 x 5 cm) were taken back to the
research station. Plant parts were clipped from the sample when pres-
ent, and pre-dried weight of the soil block was measured. The volume
of the soil block was then determined by putting the samples in a glass
cylinder filled with water, correcting for the amount of water taken up
by the soil sample. Then the samples were oven dried for 48 h at
105 °C and weighed again. Bulk density (g cm™>) was calculated as
soil sample dry weight divided by original intact volume. Subsequently,
samples were transported to the Netherlands for texture analysis.

WATER INFILTRATION

During both the dry and wet season, maximum infiltration rates were
measured at each site with a single replicate for lawn and bunch grass
areas. A double-ring infiltrometer (Bower 1986) was used with inner
and outer rings of 15 and 30 c¢m in diameter, respectively. Infiltration
rate was calculated as the drop in water level in centimetres per unit
time, with a 1 cm h™' drop corresponding to an infiltration rate of
10 mm water m* h™".

SOIL WATER AVAILABILITY

During the dry season, soil water content was determined in combina-
tion with the bulk density measurements. Soil water content was cal-
culated using soil pre-dried (FW) and dry weight (DW) as:
(FWon—DWy0i)/ DW;1. However, in the wet season, this method was
not applicable due to high fluctuations in soil moisture following rain-
fall events. Therefore, soil moisture was repetitively measured for
each site at one of the replicates for the lawn and the bunch grass
area, using gypsum blocks. Sites were measured every week on the
same day across sites during the wet season of the study period.

PLANT LEAF WATER POTENTIALS

Plant leaf water potentials were measured for six common species at
seven sites across the rainfall gradient between November 15 and Jan-
uary 13 (wet season); Panicum maximum, Eragrostis curvula, Era-
grostis superba, Themeda triandra, Urochloa mosambicensis and
Sporobolus nitens. Measurements were taken between 11.00 and
13.00, standardizing for midday measurements. Water potential was
measured through use of a pressure chamber instrument (PMS Instru-
ment Company), model 1000. Leaves were pressurized to a pressure
of 40 bar, or until glistening was seen on the cut edge. Three mea-
surements were taken for each species at every site.

LEAF SODIUM CONTENT

The three most abundant species of both grass types (lawn and
bunch) were identified at each replicate and leaves were collected,
dried and transported for sodium analysis in the laboratory, as an
indicator for plant osmotic adjustment. There, vegetation samples
were dried again at a temperature of 70 °C and ground with a Foss
Cyclotec grinder with a sieve of 2 mm. Maximum 0.5 g sample was
destructed with 8 mL 65% HNO; in a tube with Teflon inliner by
pressurized microwave digestion using a CEM discover SPD (CEM
Corporation, Matthews, NC, USA). After diluting the sample to
100 mL, leaf sodium content was measured by Atomic Absorption
Spectrophotometry, using a Varian Spectra 220 FS. Measurements
were optimized with 1% CsCl (Temminghoff & Houba 2004).

DATA ANALYSES

First, we analyzed differences between lawn and bunch grass areas
irrespective of differences in rainfall and soil texture. We used gener-
alized linear mixed models (GLMM) to deal with the nested design
(spatial pseudoreplication), measurements over time (temporal pseu-
doreplication) and nonlinear behaviour of response variables. Water
infiltration rates for both dry and wet season and dry season potential
evaporation rates were determined fitting linear models for each mea-
surement with time as the predictor. These infiltration and potential
evaporation rates were used for further analyses. We compared dry
and wet season water infiltration rates, dry season potential evapora-
tion rates, dry season soil moisture content and bulk density and wet
season penetration depth, vegetation height, plant sodium content and
leaf water potential between vegetation types using a GLMM, with
full models containing vegetation type as a fixed factor and site as
random effect. Wet season soil temperature and soil moisture content
were compared between growth forms using GLMMs with full mod-
els containing vegetation type as a fixed factor and site and time as
random effects to deal with temporal pseudoreplication.

Secondly, we analyzed the effect of soil texture and rainfall on soil
physical conditions related to soil compaction between vegetation
types, that is bulk density and infiltration rate. To avoid spatial pseu-
doreplication, we averaged measurements of the replicates for all
parameters, resulting in an average value for each vegetation type per
site. To analyze soil texture, we constructed linear models with the
full models containing vegetation type, geological grain size and their
interaction effects. To analyze rainfall, we used the same models as
for soil texture, using rainfall instead of geological grain size as a pre-
dictor. Model selection was done using backwards stepwise removal
of non-significant fixed effects.

Results

SOIL PHYSICAL CONDITIONS

First, we investigated differences between lawn and bunch
grass areas irrespective of differences in rainfall and soil tex-
ture. During the dry season, water evaporated significantly
faster in grazing lawns than in bunch grasslands: approxi-
mately 90% of the water added to dry soil was evaporated in
lawn grasslands after 2 days, while it took circa 3.5 days
before the same amount evaporated in bunch grasslands
(Table 1). Bulk densities were significantly higher for soils
from grazing lawns than from bunch grasslands in both dry
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Table 1. Generalized linear mixed-effect model results from various soil and vegetation parameters from African lawn and bunch grass areas

(vegetation type) measured at 24 sites in Hluhluwe-iMfolozi Park (site was used as random factor)

Season Parameter Lawn Bunch Vegetation type
Dry Potential soil evaporation index (%) 1.468 + 0.068 1.095 + 0.087 Fi29 = 30.563, P < 0.0001
Dry Bulk density (g mL™Y) 1.462 £+ 0.019 1.315 + 0.026 F\s4 = 58242, P < 0.0001
Dry Log infiltration (mm min~ ) —1.108 + 0.231 0.736 + 0.300 Fy18 = 63.531, P < 0.0001
Dry Soil moisture (g g~ soil) 0.064 + 0.002 0.072 £ 0.008 Fy 54 = 8.374, P = 0.0055
Wet Vegetation height (cm) 6.000 £ 1.363 28.68 £ 1.484 Fi71 =276.7, P < 0.0001
Wet Soil temperature (°C) 32.15 £ 0.766 27.07 £+ 0.626 F5; =44.118, P < 0.0001
Wet Penetration depth (cm) 1.976 + 0.148 3.499 + 0.284 Fy 63 = 105.7, P < 0.0001
Wet Log infiltration (mm min~") —1.113 + 0.389 0.111 £+ 0.278 F|26 =9.900, P = 0.0041
Wet Bulk density (g mL™") 1.107 £ 0.022 1.026 £+ 0.024 Fi 6 = 13.74, P < 0.0001
Wet Soil moisture (k€2) 48.21 + 2.833 54.38 + 2.934 F = 4746, P = 0.0297
N Dry season Dry season
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and wet season, with the largest difference found in the dry
season (Table 1). Water infiltration rates were on average
twice as high in bunch grasslands than in lawn grass areas
during the wet season, but this difference increased to more
than 10 times for dry season infiltration rates (Table 1). Fur-
thermore, infiltration rate significantly decreased with bulk
density for the dry season (LMM: F; ;6 =11.5, P <0.01)
and for the wet season (LMM: F|,s = 5.66, P < 0.05). All
observations were used for these analyses, without separation
between lawn and bunch areas, and thus showing a general
pattern between infiltration rate and bulk density. Dry season
soil moisture content was significantly higher in bunch grass-
lands than in lawn grasslands (Table 1). Also, wet season soil
moisture was significantly higher in bunch grasslands than in
lawn grasslands (Table 1). During the wet season, vegetation
height was found to be significantly lower on grazing lawns
than on bunch grass areas (Table 1). Furthermore, wet season
daytime soil temperatures were on average 2.8 °C higher in

lawn grasslands than in bunch grasslands (Table 1). Wet sea-
son daytime soil temperature decreased significantly with an
increase in vegetation height (GLMM: F,33 = 647, P <
0.05). Again, all data points were used for these analyses,
without separation between lawn and bunch areas, thus show-
ing general relationships between soil temperature and vegeta-
tion height.

SOIL TEXTURE

Median geological soil grain size values ranged from 11 to
244 pm across the sites (see Table S1). Furthermore, we
found no correlation between rainfall and geological grain
size (LMM: F, 5, = 0.86, P = 0.36). To investigate the effect
of soil texture on grazing lawn formation through soil com-
paction, we first evaluated the effect of geological grain size
on differences in bulk density and infiltration rate between
lawn and bunch grass soils (pathway 5 in Fig. 1). Bulk
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density increased with geological grain size for bunch grass
areas for both dry (LM: F,,, = 8.01, P = 0.01; Fig. 2) and
wet season (LM: Fj,; =4.60, P <0.05) in contrast with
lawn grass areas where bulk density remained constant (dry:
LM: Fi16=14, P=025 wett LM: F;6=2093,
P =0.11).

Furthermore, Fig. 3 shows how dry season infiltration rate
decreased with geological grain size for bunch grass areas
(LM: Fy,, =5.08, P <0.05), while for lawn grass areas we
found no significant effect of geological grain size (LM:
Fi16=0.53, P=0.47). Results for wet season infiltration
rates were different in comparison with dry season with a sig-
nificant increase of infiltration rate for lawn grasses (LM:
Fi 15 =557, P <0.05), but not for bunch grasses (LM:
Fi15 = 1.14, P = 0.30). However, for both seasons, the larg-
est difference in infiltration rate was found for fine-textured
soils.

RAINFALL

Annual rainfall ranged from 524 to 715 mm between the
driest and wettest sites in this study. Figure 2 shows that
annual rainfall did not affect bulk density in either season
for neither lawn grass areas (dry: LM: Fj 6= 152,
P =023; wet: LM: F;6=0.06, P=0.81) and bunch
grasses areas (dry: LM: F,,; = 0.06, P = 0.81; wet: LM:
Fi,; =0.03, P = 0.86). However, infiltration rates were cor-
related with rainfall. Dry season infiltration rates (Fig. 3)
decreased with rainfall for lawn grass areas (LM:
Fi16 = 4.80, P <0.05), but not for bunch grass areas (LM:
Fi1,1=0.02, P =0.90). For the wet season, we found the
same pattern with decreasing infiltration rates for lawn grass

areas (LM: F; s = 5.96, P < 0.05), but not for bunch grass
areas (LM: F, ;5 = 0.18, P = 0.67).

PLANT PHYSIOLOGICAL ADAPTATIONS

Vegetation types differed significantly in their ecophysiologi-
cal characteristics. Leaf sodium content was significantly
higher on average for lawn grasses than bunch grasses
(LMM: F; g6 = 127.6, P < 0.0001). In particular, the grazing
lawn species U. mosambicensis and S. nitens that are more
prevalent towards low rainfall areas have high leaf sodium
concentrations (Fig. 4). Digitaria longiflora, a grazing lawn
species typically found at higher rainfall areas relative to
U. mosambicensis and S. nitens showed intermediate leaf
sodium concentrations, but still higher than for most bunch
grasses.

Leaf water potential was not significantly different between
lawn grass and bunch grass species (LMM: F|,9 = 2.326,
P =10.13). On average, lawn grass water potential was
0.30 MPa lower than for bunch grasses. However, large inter-
specific differences were found (Table 2). Themeda triandra
and S. nitens were found to have the lowest leaf water poten-
tials followed by E. curvula, U. mosambicensis and E. super-
ba. Panicum maximum had the highest water potentials
measured.

Discussion

The objective of this study was to investigate the hypothesis
that grazer effects on plant—soil water balance can explain
grazing lawn formation, not only grazer effects on nutrient
cycling. We suggested that grazers induce drought causing a
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Table 2. Leaf water potentials (mean £+ SD) for six most dominant
grass species (lawn and bunch) at seven selected sites that covered
the rainfall gradient

Vegetation Water potential (MPa) (mean
type Species + SD)

Bunch Themeda triandra —2.37 £ 1.18

Lawn Sporobolus nitens —2.21 £ 1.04

Bunch Eragrostis curvula —1.89 £ 0.42

Lawn Urochloa —1.75 £ 1.16

mosambicensis
Bunch Eragrostis superba —1.62 £+ 0.69
Bunch Panicum maximum —1.14 £ 0.21

shift in vegetation composition towards a drought-tolerant
plant community, which then becomes secondarily attractive
to herbivores through various physiological mechanisms. In a
first attempt to find evidence for this hypothesis, we com-
pared soil physical conditions and plant physiological adapta-
tions related to water balance on and off grazing lawns.
Indeed, we found that the grazing lawns of Hluhluwe-iMfo-
lozi Park, that are known for their high herbivore visitation
rates, showed profound differences in soil properties and soil
water balance. In particular, bulk density, soil moisture, water
infiltration and potential evaporation rates were very different
between grazing lawns and bunch grass areas. Concomitant
with these changes, we found that plant species characteristic
for grazing lawns show drought tolerance-related traits, spe-
cifically higher leaf sodium levels (pointing at osmotic com-
pensation). However, we did not find differences in leaf water
potentials. We interpret this as evidence that our newly pro-
posed pathway of grazer-plant-soil feedback through modifi-
cation of the water balance (pathway 4 and 5 in Fig. 1) might
be more important for grazing lawn formation than previously
acknowledged.

IMPORTANCE OF DEFOLIATION

Investigating the relation between vegetation height and soil
parameters, we found that grazing lawns had lower vegetation
height compared with bunch grass areas. Furthermore, soil
temperature and bare soil potential evaporation were both

found to be significantly higher on grazing lawns. Soil tem-
perature decreased with vegetation height, suggesting direct
effects of defoliation on soil temperature. Unfortunately, we
could not correlate potential soil evaporation rate with soil
temperature because these measurements were taken in a dif-
ferent season. However, Campbell (1971) did show that
potential soil evaporation strongly depends on soil tempera-
ture. In combination with our results, this shows that vegeta-
tion cover reduces soil temperature and potentially affects soil
evaporation rates. This strongly suggests that defoliation
increased water limitation stress by warming up the soil,
which is in agreement with findings by Thurow (1991).

IMPORTANCE OF SOIL COMPACTION

Secondly, we predicted higher bulk densities and lower infil-
tration rates for lawn grass areas as a result of soil compac-
tion caused by herbivore trampling. Indeed, we found that
bulk density was higher for grazing lawns compared with
nearby bunch grass areas. This is in agreement with an earlier
study by Kim ez al. (2010) that used a medical CT scanner to
analyze compacted and non-compacted soil, where compac-
tion by grazers was found to decrease pore volume by 69%.
Also, we found lower infiltration rates for lawn grass areas
compared to bunch grass areas and this was directly related to
differences in soil bulk density. Studies from agricultural
research also show that increased bulk densities due to soil
compaction results in reduced infiltration rates (Hamza &
Anderson 2005). Furthermore, several studies on the effects
of grazing/trampling on bulk densities and infiltration rates
find similar results (Gifford & Hawkins 1978; McGinty, Sme-
ins & Merrill 1979; McCalla, Blackburn & Merrill 1984; Bel-
sky 1986; Thurow, Blackburn & Taylor 1986; Warren et al.
1986a,b; Mwendera & Saleem 1997; Castellano & Valone
2007; Du Toit, Snyman & Malan 2009). Trampling increases
soil bulk density, decreases water infiltration rates and
increases surface water run-off, resulting in drier conditions.

ROLE OF RAINFALL AND SOIL TEXTURE

We expected that the effect of soil compaction would be larg-
est on fine-textured soil, because the fraction of small pores
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becomes much larger in fine-textured soils (Van der Linden
et al. 1989; Rasiah & Kay 1998). We indeed observed that
the differences in bulk density and infiltration rate between
lawn and bunch grass areas decreased with geological grain
size. Therefore, the effect of soil compaction on soil proper-
ties such as bulk density and infiltration rate was highest on
fine-textured soils. This can be explained by the fact that fine-
textured soils tend to have better potential structural organiza-
tion. Soil structure is determined by the degree to which soil
particles are held together in individual clusters, termed
aggregates (Thurow 1991), which are often created by soil
macrofauna such as earthworms. Aggregate stability increases
with percentage clay (Kemper & Koch 1966; Throeh &
Thompson 2005) and therefore, fine-textured soils have a
higher potential soil structure, higher pore volume and lower
bulk densities. However, trampling by grazing animals
mechanically disrupts soil aggregates and reduces aggregate
stability (Knoll & Hopkins 1959; Beckmann & Smith 1974;
Thurow 1991), as visualized in Fig. 5. Warren et al. (1986a,
b) showed in an agricultural dryland setting that repeated
high-intensity trampling decreased aggregate stability and
increased bulk density which in turn reduced infiltration rates
and increased surface run-off. This corresponds with the
results from our study, where the largest effect of soil com-
paction is found at finer textures, because of the greatest
change in soil structure. These results suggest that the relative
importance of soil compaction in grazing lawn formation is
highest with fine textures, while at coarse-textured soils other
pathways (related to nutrient cycling) could be more impor-
tant (pathways 1,2 and 4, Fig. 1).

PLANT RESPONSES

We expected that differences in water balance and soil prop-
erties would be related to differences in plant species traits

Fine texture Coarse texture

AT "0000

b 3 ::..:.:

v

Undisturbed a

2549

Compacted

Fig. 5. Soil structure for fine and coarse-textured soils, both for
undisturbed and compacted soils. 1. Fine particles form soil aggre-
gates, providing a good soil structure. Macropore size is large, result-
ing in high infiltration. II. Coarse-textured soils do not form
aggregates. Soil structure is poor. However, because of the large par-
ticles, macropore size is still relatively high. Infiltration rates are inter-
mediate. III. Due to compaction soil structure has broken down.
Small particles are closely bound together and pore size is small.
Infiltration rates are low. IV. Compaction has not much effect on
coarse-textured soils. Soil structure is poor. Infiltration rates are inter-
mediate.

through species sorting at the community level. Indeed, our
results show physiological differences between lawn and
bunch grasses, specifically in leaf sodium concentrations. Leaf
sodium concentrations were much higher for lawn grass spe-
cies than bunch grass species, consistent with other studies
(McNaughton 1988; Verweij et al. 2006; Stock, Bond & van
de Vijver 2010). Increased leaf sodium concentrations have
often been attributed to local inherent soil differences (lawns
forming on naturally sodic soils). Nevertheless, McNaughton
(1988) found increased levels of foliar sodium concentrations
in heavily grazed areas while soil sodium concentrations were
not different between grazing lawns and surrounding bunch
grasses, suggesting that these differences do not merely reflect
soil salinity differences. Furthermore, our plots were paired
and close to each other (2-5 m) with no differences in soil
texture or elevation between the plots, making it unlikely that
predisposed differences in soil sodium contents existed. Also,
the observed differences between lawn and bunch grasses in
tissue sodium concentration were retained under common
greenhouse conditions (H. OIff, unpubl. results). Therefore,
although we cannot directly link these increased leaf sodium
concentrations to decreased water availability due to the cor-
relative nature of our study, it does fit our hypothesis and
strengthens our claim that osmotic adjustment should be con-
sidered.

Furthermore, plant water potentials did not differ between
grazing lawn and bunch grass species. Large intraspecific dif-
ferences were found resulting in high standard deviations,
which is likely affected by the use of mid-day water potential
measurements. Furthermore, this is caused by spatial and tem-
poral variation, since leaf water potentials were measured at
different sites and on different days. Interestingly, the bunch
grass species T. triandra showed the lowest water potentials.
This species often occurs on grazed patches in the Serengeti
(Arnold, Anderson & Holdo 2014) and is known for its rela-
tively high level of phenotypic plasticity and tolerance to
grazing.

In this study, we have highlighted two previously over-
looked effects of grazing by large herbivores on vegetation.
We investigated two additional pathways and showed high
correlations between herbivore grazed areas (grazing lawns)
and local dry conditions through decreased vegetation cover
and soil compaction. These additional pathways may be com-
plementary to the prevailing pathways on nutrient cycling and
we therefore urge to incorporate all pathways into future stud-
ies. Also, different mechanisms may dominate in different
seasons, where herbivore-induced drought is a dry season
mechanism, and herbivore-promoted nutrient cycling is likely
more a wet season phenomenon. As soon as some process
initiates herbivores to aggregate (as discussed in the introduc-
tion), multiple feedback mechanism start to take place. Subse-
quently, plant quality can increase through phenotypic
plasticity of existing species or species turnover. However,
this can be a result of either pathway. For example, Arnold,
Anderson & Holdo (2014) found improved plant quality in
hotspots in Serengeti and Kruger National Park, without pro-
found changes in plant composition, nor differences in soil
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chemistry. This suggests that not increased nutrient input, but
compensatory growth or the pathways related to water bal-
ance might have improved plant quality (through phenotypic
plasticity).

We suggest that the processes described in this study are
more general and could play an important role in grazing
lawn formation in ecosystems world-wide. However, the
importance of the different pathways (Fig. 1) is expected to
vary across gradients of geological grain size, moisture and
between seasons. On the dry end of the rainfall gradient (this
study), defoliation and soil compaction might induce drought
stress and increase plant quality to herbivores through
increased foliar sodium levels. However, in very wet systems
soil compaction might create anoxic conditions, limiting plant
growth through a different mechanism. Schrama ez al. (2013)
suggests that for very dry and wet soils, soil compaction by
grazing herbivores results in negative feedback on N-minerali-
zation, with an increased effect on fine-textured soils. We
argue that especially under conditions where grazing lawn
formation was not accompanied by a change in N cycling our
alternative pathways could play an important role in creating
stressful environments and adapted vegetation which in turn
is attractive for large herbivores.

Lastly, soil compaction can affect N-mineralization (Schra-
ma et al. 2012), which may result in interactive effects
between the pathways. Also, grazing lawn formation through
feedbacks on water availability can secondarily promote nutri-
ent cycling through grazer attraction or vice versa, which
makes it difficult to distinguish the effects of these processes.
Our study should be seen as a first investigation and has
shown that we should consider the proposed alternative path-
ways on grazing lawn formation through changes in water
balance. We therefore call for further work that experimen-
tally investigates the causes and effects and separates the rela-
tive importance of, and interactions between the different
pathways of the grazing lawn hypothesis along main environ-
mental gradients.
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