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Abstract

In this paper, we consider a single-item, one-machine production-inventory system with compound
Poisson demand. The production facility may be in production or idle. While in production, the pro-
duction rate is constant and positive, and is zero while idle. System costs consist of switching costs and
quasi-convex inventory and backlogging costs. We provide conditions when(s, S)-policies are optimal
under the long-run average expected cost criterion. These conditions are met in particular when the in-
ventory costs are convex. The developed method in the proof is easy to apply to more general cases.
Moreover, the method allows us to compute optimal policies very efficiently.

1 Introduction.

The Economic Production Quantity (EPQ) model is one of the classical production-inventory models. In
this continuous-time model, demand is assumed to be deterministic and constant, and production alternates
between ‘on’ and ‘off’; if ‘on’, it produces at fixed rate, if ‘off’, it produces nothing. A fixed set-up cost
K is incurred every time production is switched on, and linearholding and backlogging costs are accrued
for each unit of stock per unit time. In many logistic environments, however, the assumption of constant
and deterministic demand is not appropriate. In this paper,we consider a stochastic version of the EPQ
model in which demand is compound Poisson rather than deterministic, and the inventory cost functionh
is quasi-convex rather than linear. The paper has two objectives. The first is theoretical and directed at
structure results, namely, to identify conditions on the cost structure and the demand distribution such that
(s, S)-policies are optimal under the long-run average expected cost criterion. Thus, when the inventory is
below or ats, it is optimal to switch on production, and when the inventory is above or atS, switch off. The
other goal is numerical and constructive, namely, to devisea numerical procedure to efficiently compute an
optimal policy for general one-product production-inventory systems.

A similar, but simpler, production-inventory problem has been considered earlier by Gavish and Graves
[8]. They study the case with unit Poisson demand arrivals, and holding and backlogging costs that are lin-
ear in the number of items on stock or in backlog, and derive a numerical procedure to compute optimal
switching levels. This approach depends critically on two assumptions. The first is that the Poisson de-
mands arrive as single units, so that the inventory process becomestwo-sided skip-free, that is, skip-free to
the rightand skip-free to the left. This assumption allows Gavish and Graves [8] to use the optimality result
of Sobel [22] who proves that a two-critical-number policy (i.e., an(s, S) policy) is optimal for such two-
sided skip-free queueing and inventory processes. The second is that the costs are linear in the inventory
and backorder level, so that it becomes possible to express the cost functions as a constant times the average
inventory (backlog) level. Graves and Keilson [10] extend the model of [8] such that the demand sizes are
exponentially distributed rather than deterministic. An immediate consequence is that the inventory is no
longer skip-free to the left, and the result of Sobel no longer applies. Thus, Graves and Keilson [10] restrict
their search for the optimal policy from the onset to the class of (s, S)-policies, but do not prove that this
optimal policy is stationary optimal.
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To the best of our knowledge, there are as yet no structure results known for the more general production-
inventory systems with compound Poisson demand with generally distributed single demand sizes and
quasi-convex inventory costs. Dropping the skip-freenessproperty rules out the use of Sobel’s result.
Moreover, the current numerical methods, which require (a substantial amount of) ingenious and analytic
work, appear to be incapable to efficiently analyze cost functions other than linear. Thus, the analysis of
the more general inventory system requires a new approach to, on the one hand,prove structure results for
the optimal policy in the class of stationary policies, and,on the other hand,compute the optimal policy by
simple means.

The principal result of this paper is a framework that addresses simultaneously these three challenges,
i.e., structure proofs, computational efficiency, and conceptual simplicity. It achieves this by combining
three critical elements in a new way. First, as in Graves and Keilson [10] or, more generally, for Markov-
modulated stochastic processes, the production-inventory process is defined on two lines to incorporate
the state of production as being on or off. These two lines aresuch that when the state of the production-
inventory process(Pt, It) is (1, x), production is on and the inventory level isx, and when the state is
(0, x) production is off and the inventory level isx. It is quite straightforward to prove that it is optimal at
the on-line to remain on until some critical levelS is reached. The second element deals with the hard part:
to prove that at the off-line it is optimal to only switch on ator below some levels. To establish this, we
formulate the switching decision at the off-line as an optimal stopping problem to minimize theg-revised
holding cost rather than just the holding costs, and prove that there exists ag-revised optimal policy for
generalg > 0. The third element is to use a bisection ong to construct a sequence of optimal policies that
converge to a limiting policy. Since there exists a policy for anyg > 0, the limiting policy exists and is
optimal.

The combination in this paper between optimal stopping theory with the bisection method is a new and
important extension to the work of Wijngaard and Stidham Jr.[28, 29] and an essential ingredient in the
optimality proof of(s, S)-policies. Contrary to our work, Wijngaard and Stidham Jr. use the bisection
method principally as anumerical means to efficiently compute the long run average cost of skip-free
Markov decision processes on a finite or countable state space. We extend it such that it can be used to
prove structure results for optimal policies. In passing, we extend their method such that it also applies to
Markov processes on continuous, rather than countable, state spaces, and we slacken the condition that the
transition probabilitiespi,i+1 > 0 for all statesi.

The marriage between the numerical and theoretical part of the bisection method allows us to achieve
numerous results at the same time. The theoretical part makes the method more generally applicable to
deriving structure results in other settings. For instance, our results can also be used to prove the optimality
of, so-called,D-policies, c.f. Section 2, in the space of stationary policies for the workload process of the
M/G/1 queue as studied by Feinberg and Kella [4]. We can adapt it to handle inventory systems with
lost sales under various non-trivial rejection policies, such as complete rejection (reject the demand when
it cannot be covered from on-hand inventory), complete acceptance (reject only demand that arrives when
the inventory level is negative), or partial acceptance (accept that part of the demand that can be covered
by on-hand inventory, and reject the remaining part of the demand). The method can also be applied to
periodic-review systems. For instance, in Section 5 we showhow to apply it to a periodic-review inventory
system described by Graves [11], c.f., Section 2.3, and prove that an(s, S)-policy is optimal.

With regard to the numerical part of the method, it enables usto construct optimal policies for a wide
range of problems even when the structure is not simple, e.g., not monotone, and certainly not(s, S), as
is the case in one of the examples of Section 7. This is an important contribution by itself, in that none
of the other methods discussed up to now or below in Section 2,offer this possibility. Next, the method
is entirely straightforward, and certainly does not require any of the ingenious insights that have been
developed to obtain numerical results. Thus, it is not necessary to find expressions for the average costs
and times of regenerative cycle times under someposited policy structure. This is also a major distinctive
and simplifying feature or our approach. Finally, the numerical aspect of the bisection method brings the
off-spin that the optimal policy can be computed very efficiently, typically exponentially fast.

The structure of the paper is as follows. In Section 2 we discuss related work. Section 3 introduces
the model. Then, in Section 4, we prove the existence of an optimal stationary policy under quite general
conditions, and provide insight into when this(s, S) policies can be optimal. In Section 5 we show how
to apply our method to a capacitated periodic-review inventory model of Graves [11]. Section 6 discusses
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some numerical issues. These are used to in the examples of Section 7 to illustrate, on the one hand, the
procedure by means of a concrete example, and, on the other hand, to provide counter examples against the
conjecture that(s, S)-policies are optimal for all combinations of demand distribution and quasi-convex
inventory costs. Section 8 concludes and provides an outlook on potential further applications of our
method.

2 Discussion and Related Literature

In this section, we discuss related literature and motivatewhy the methods developed earlier are not suitable
to obtain the results of this paper. We group in Sections 2.1–2.4 the literature in accordance to similarity
in modeling approach, and then, in Sections 2.5– 2.7, in accordance to method of proof.

2.1 Relation to Controlled Queueing Systems

As mentioned above, Sobel [22] proves that two-critical-number policies are long-run average optimal
for two-sided skip-free stochastic processes defined on thespace of integers. Examples are birth-death
processes, theG/G/1 queue length process, and inventory processes that change by single units. Gavish
and Graves [8] map the inventory levelI(t) (in items) at timet to the queue-lengthQ(t) = S − I(t) of
theM/D/1 queue, whereS is the inventory level at which production switches off. Then, using the result
of Sobel [22], it suffices for the identification of the optimal policy to find an algorithm that computes the
optimal critical numbers. Others, see below, use similar approaches.

Given this versatile equivalence between controlled queue-length processes and inventory level pro-
cesses, it is of interest to try to extend it to more general cases. In particular, the sample paths of the(s, S)-
controlled inventory level for our production-inventory system can be made to correspond in a one-to-one
way to the sample paths of the (virtual) workload process of an M/G/1 queue with a removable server
that is controlled by a, so called,D-policy. SuchD-policies switch on the server when theworkload, rather
than thequeue length, exceeds a levelD, and switch off the server until the workload becomes zero. To
establish the mapping, note that the capacity-constrainedproduction rate of the production-inventory sys-
tem is analogous to the finite service rate of the server, and the (virtual) workload processV (t) = S− I(t)
at timet when the continuous inventory level isI(t) at timet. Thus,S—the level at which production is
switched off in the inventory system—is mapped to0 in the queueing system, ands—the level at which
production is switched on—toD = S − s.

In the queueing context, Federgruen and So [1] prove for theMX/G/1 queue the optimality ofN -
policies, policies that switch on a removable server when the queue-length exceeds some integerN , and
switch off when the system becomes empty. Federgruen and So [1] conjecture thatD-policies are optimal
to control the workload when service becomes known upon arrival. Feinberg and Kella [4] prove in full
generality the long-run average optimality ofD-policies in the space of all policies, not just the stationary
policies, for theM/G/1 queue with a controllable server, fixed switching costs of the server, and non-
decreasing holding costs.

Given these optimality results for these queueing systems,it would be nice to try to carry over these
results to the production-inventory system under consideration. This, for instance, would prove that(s, S)-
policies would be optimal for the case of Graves and Keilson [10]. However, this is not possible in general.
Even though the sample paths of workload and inventory levelprocesses are in one-to-one correspondence,
the cost structures are certainly not the same. For theM/G/1 queue, the holding costs is non-decreasing
in the workload (or the queue-length), while the inventory cost functionh(·) for the inventory system is
generally not monotone, but (quasi)-convex on(−∞, S], and such thath(S) > h(0) = 0 < h(z) for some
sufficiently largez.

Precisely this difference in the cost functions motivates Federgruen and Zheng [2] to generalize the
queueing model of Federgruen and So [1] to production-inventory systems with unit production and vaca-
tions, and point out that the queueing system is a special case of the inventory system under an(s, 0)-policy,
i.e., an inventory system that is purely make-to-order, andno orders are produced to inventory. Similarly,
our model generalizes that of Feinberg and Kella [4] to more general cost structures. Our result is not a
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full generalization, though, as we consider optimality in the class of stationary policies, while Feinberg and
Kella [4] prove that aD-policy is optimal in the class of all policies.

As a matter of fact, the difference in the cost functions has severe consequences for the structure of
the optimal policies for the production-inventory system.In Section 7 we provide a counter example
that shows that(s, S)-policies are not optimal for certain combinations of quasi-convex inventory costs
and exponentially distributed demand. Thus, the optimality of theD-policy for theD-controlledM/G/1
queueing system does not imply the optimality of(s, S)-policies for the production-inventory system, and
as an immediate consequence,D-policies are not optimal under holding costs that are quasi-convex, rather
than non-decreasing, in the workload. Moreover, in full generality,(s, S)-policies are not optimal for the
production-inventory system under consideration here; hence, one of the objectives of this paper is to find
criteria on the demand distribution and inventory cost function such that(s, S)-policies are optimal.

This brings us to the question why the result of Sobel [22] apparently do not generalize to, for instance,
the D-controlled workload process of theM/G/1-queue. The reason is that Sobel is concerned with
two-sided skip-free processes, i.e., simple random walks on the integers that only make transitions to
neighboring states, When the server is off, the service-queue length process(S(t), Q(t)) ‘lives’ on the
off-line 1×{. . . ,−1, 0, 1, . . .}. Suppose thatQ(t) < M , whereM is the larger of the two-number critical
policy, then, eventually, the queueing process will hitM , the server will switch on, and the server/queue
length process jumps to the on-line1× {−1, 0, 1, . . .}. As a consequence, the process cannot enter the set
0× {M + 1,M + 2, . . .}. Reasoning similarly,(S(t), Q(t)) will never enter the set such that the server is
off andQ(t) < m, wherem is the smaller of the two critical numbers. Thus, no matter how pathological
the structure of any policy is at the sets0× {M + 1,M + 2, . . .} and1× {. . . ,m− 2,m− 1} (wherem
andM are allowed to be policy-dependent), the characteristics of the policy on these sets cannot affect the
behavior of the process.

In contrast, the inventory level under compound Poisson demand with generally distributed demand
sizes (or the workload process of theM/G/1-queue) is no longer two-sided skip-free. In our case, while
indeed the production-inventory will never exceedS (save an initial transient phase that depends on the
starting condition of the inventory level process), the inventory level can make transitions of arbitrary size to
the left. Now, suppose that it is optimal on the off-line to switch on in some finite interval(s−a, s] for some
finite a > 0, remain off in(s− b, s− a], b > a, and on again in(−∞, s− b]. When the inventory process
would have been skip-free to the left, it is impossible to hitthe ‘wrong’ sets(s− b, s− a]. However, when
the demand distribution has with infinite support, for instance, this is not the case. In fact, the example in
Section 7 mentioned before, shows that such alternating policies are optimal for some production-inventory
systems, hence,(s, S)-policies are not optimal in general.

2.2 Single-Item Systems with General Processing Times

Gavish and Graves [9] and Lee and Srinivasan [16] derive algorithms to compute the optimal policy in
the class of(s, S) policies for the production-inventory system with stochastic production times rather than
constant production times. Thus, they are concerned with the production-inventoryanalogy of theM/G/1-
queue, rather than theM/D/1-queue as Gavish and Graves [8]. Srinivasan and Lee [23] consider the more
difficult case of a batch Poisson arrival process in which thedemands have general processing times and
linear holding costs. Their review model is different in that the inter-arrival time between successive
review epochs during off-periods is a random variable. Srinivasan and Lee [23] confine the analysis to
(s, S)-policies and derive an algorithm to find the optimals andS.

Production-inventory systems with generally distributedproduction times are similar to our system in
that in both cases it takes a durationD to replenish the inventory when a demand of sizeD arrives, but the
difference is that in our case (and that of Feinberg and Kella[4]) the inventory level is physically reduced
by an amount ofD while in the other cases it is reduced by just a single item.

2.3 Capacitated Periodic-Review Systems

Attempts have also been made to incorporate bounds on the order quantity for periodic-review stochastic
inventory systems. This resembles the finite production capacity of the continuous-review production-
inventory process. Federgruen and Zipkin [3] prove that theoptimal policy is an order-up-to policy, i.e., an
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(s, S) policy with s = S when the order quantity is bounded by some numberA and there are no ordering
cost. In contrast, when the ordering costK is positive, one would expect the optimal policy to have the
following structure: do not order if the inventoryI(t) > s, and ordermin{A,S − I(t)} if I(t) < s.
However, this is not true, see Wijngaard [26] for a straightforward counterexample. In fact, the general
optimal policy does not have a simple structure as shown by Shaoxiang and Lambrecht [20], Gallego and
Scheller-Wolf [6], and Shaoxiang [19], but is characterized by critical levelsX andY , X ≤ Y , on the
inventory: whenI(t) < X orderA, whenI(t) > Y do not order, but whenX < I(t) < Y the decision
structure is more difficult. A related approach is to consider only full-capacity orders, see Wijngaard [27].
More recently Gallego and Toktay [7] also consider this problem and show that the optimal policyunder
discounting is a threshold policy. Under the long-run average expected cost optimality criterion, however,
this inventory problem appears to be somewhat less interesting. Since the ordering cost per time unit simply
becomesKλE[D]/A, the behavior of the optimal policy does not change ifK increases. This aspect of this
model is also somewhat undesirable in comparison to the ‘normal’ periodic-review model with unlimited
order size. There, ifK increases, the differenceS−s typically also increases, thereby making the trade-off
between ordering cost and inventory cost explicit. If, however, the ordering quantity is fixed toA, as in
Gallego and Toktay [7], this trade-off is no longer of relevance.

An interesting related model is studied by Graves [11]. We discuss this in considerable detail in Sec-
tion 5.

2.4 Continuous-review Systems with Stochastic Demand

In the context of continuous-review inventory models with unlimited production capacity (or order-size
independent delivery times), Hordijk and Van der Duyn Schouten [14] show that(s, S)-policies are op-
timal, under the discounted and average cost criterion, foran Economic Order Quantity (EOQ) model
with a demand process that is the sum of a deterministic (state-dependent) demand rate and a compound
Poisson process. Presman and Sethi [18] obtain the same results for the slightly less general system with
constant, rather than state-dependent, deterministic demand. The main difference with our model is that
these authors consider unlimited production capacity while we assume finite capacity, and they consider a
more general stochastic demand process as it contains, besides the compound Poisson demand, a constant
demand term. Presman and Sethi [18] show that, in the averagecost case, the average cost per cycle of the
best(s, S)-policy cannot be improved by any other policy. However, as their approach is not constructive,
it might be difficult to apply to more general inventory models in which it may be inferred that the optimal
policy is more complex than(s, S).

Moreover, the method does not require ingenious expressions for the average cost and cycle times of
regenerative cycles associated with a specific(s, S)-policy.

2.5 Monotone Policies

In numerous settings, monotonicity properties of candidate optimal policies have been used to prove struc-
ture results. Such arguments, however, cannot be applied toour case. The numerical examples in Section 6
show that, simply put, optimal policies are not monotone in general. In one of the examples, the off-line
indeed splits intomultiple disjoint intervals under the optimal policy. On some of these intervals it is op-
timal to stay off, while on the complement of these intervalsit is optimal to switch on. To still establish
the optimality of(s, S)-policies in some of these cases, we can prove that it is optimal belows to switch
on, and to stay off anywhere in an interval(s, S], and that it is optimal to keep the inventory below or at
S. Since the ‘wrong’ intervals of the off-line lie aboveS, these will never be hit again once the inventory
enters the set(−∞, S].

2.6 Sample Path Arguments

Perhaps, more generally, sample-path arguments may be exploited to obtain our results, but it is not so clear
how. In periodic-review systems, Huh and Janakiraman [15] successfully apply sample-path arguments to
prove the optimality of(s, S)-policies for the classical period-review inventory system with stochastic
demand and fixed setup costs, but under the discounted cost criterion, not under the average-cost criterion.
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Fu [5] uses sample-path derivatives to find optimals andS in the class of(s, S)-policies, but does not prove
the optimality of(s, S)-policies in the space of stationary policies. For theM/G/1 queue, Feinberg and
Kella [4] use sample-path arguments (and coupling) to establish that, by judiciously switching the server
on and off, (parts of) the sample paths can be shifted downward. Since they assume non-decreasing holding
costs, a downward shift in the workload also decreased the costs. As a consequence, ‘serve-to-exhaustion’,
i.e., serve until the workload is zero, is long-run average optimal. However, this type of argument does not
simply carry over to inventory problems with the more general cost functions, as discussed above. In such
cases, then, shifting (part of) a sample path downward need not result in overall lower costs.

2.7 Markov Decision Processes

Finally, we remark that the continuous-review production-inventory system can also not be easily formu-
lated as a discrete-time Markov decision problem (MDP). (Asdiscrete-time MDP require less technical
detail, it is of interest to try to obtain our results via thisapproach.) The point is that under any(s, S)-
policy the decision epoch to switch off is not a jump epoch of the demand process. (Sample paths are by
assumption right-continuous. AsS has to be hit from the left, and jumps are also to the left,S can never be
hit at jump epochs.) Thus, the controlled production-inventory process cannot be formulated as an MDP
with a chain embedded at jump epochs. It seems possible to ‘repair’ this problem by including fast but
small jumps to the right into the Markov chain, and study the sequence of MDPs that results when taking
the jump rate larger and the jump sizes smaller. We infer thatsuch a sequence of Markov decision problems
converges to the production-inventory system, but provingthis may not be easy, neither that the structure
of the optimal policies is maintained in the limit, see [21] for details on such limiting procedures. Hence,
to prove our results as a limit of discrete-time MDPs appearsnot to be straightforward.

3 Model, Notation and Preliminaries.

There is one stock keeping unit. Orders arrive according to aPoisson process with parameterλ. The order
sizeD is distributed according toF (·) with meanE[D] > 0 such thatλE[D] < 1. It is assumed that
D is light-tailed, i.e., there exists anα > 0 such that

∫∞

0 eαxG(x)dx < ∞, whereG(x) = 1 − F (x) is
the survival function, and thatP(D = 0) = 0. Demand is filled from stock, or backlogged if no stock
is available. Inventory and stock-out costs are represented by the functionh(·), which is assumed to be
quasi-convex, non-negative withh(0) = 0, andh(x) = O(|xn|) for somen > 0 as|x| → ∞. The supply
comes from production. When production is on, the supply is produced continuously at a fixed rate, which
is set to1 without loss of generality. When production is off, the production rate is0. Thus, the only way
to control production is by switching it on and off. Each timethe production is switched on, a fixed costK
is incurred. (In case there is a switch-off cost, this cost can be trivially absorbed inK.) Switching occurs
instantaneously, so that if production is switched on, the inventory immediately starts to increase. Because
of backlogging, it is possible to relax the assumption to have a fixed throughput time, i.e., the time lag
between the start of production and the inventory starting to grow, but we do not so here.

The state space of the controlled production-inventory process{P (t), I(t)} can be visualized as two
lines, the on-line with(P (t), I(t)) = (1, x) and the off-line with(P (t), I(t)) = (0, x). Any stationary
policyπ can be fully characterized by a subsetOπ

1 of the on-line and a subsetOπ
0 of the off-line. IfP (t) = 1

andI(t) hits Oπ
1 production is switched off, while ifP (t) = 0 andI(t) hits Oπ

0 production is switched
on. In the sequel we use this correspondence between policy and these subsets interchangeably. Observe
that as production is continuous, any subset of the on-line is entered from the left. Therefore it is necessary
thatOπ

1 for any stationary policyπ is left closed, in other words,lim inf xi ∈ Oπ
1 for any sequence{xi}

in Oπ
1 . Next, to be able to properly define expected hitting times werequire the setsOπ

0 andOπ
1 to be

Borel sets. We impose some further conditions onOπ
0 andOπ

1 to ensure that only recurrent cycles with
finite expected costs can result. First, the skip-freeness-to-the-right of the inventory process on the on-line
and the stability conditionλE[D] < 1 imply that the setOπ

1 has finite expected hitting time if it can be
reached from any initial conditionI(0) = x. Second, on the off-line the inventory process{I(t)} behaves
according to a compound Poisson process. We require thatOπ

0 is such that it is hit with finite expected time
for anyI(0) = x. (Providing tight necessary conditions for this to be true is actually quite technical and
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dependent on the specific properties ofF (·). A simple, but certainly more than necessary, condition is that
there exists somezπ for each policyπ such that(−∞, zπ] ⊂ Oπ

0 .) Third,Oπ
0 andOπ

1 should be disjoint,
for otherwise it may happen thatI(t) ∈ Oπ

0 ∩Oπ
1 and production switches on and off incessantly, resulting

in an infinite cost.
In the proof we consider first a space of ‘tamed’ stationary policies consisting of policies such that

Oπ
1 = [R,∞) for a given, fixed,R, while Oπ

0 can still be arbitrary. Typical recurrent production cycles
induced by such policies may be assumed to start at(P (0), I(0)) = (0, R), see Figure 1. The inventory
decreases in jumps at each arriving order untilOπ

0 is hit. Then production is switched on. The inventory
increases now continuously, except when an order arrives, until it hits R. Then production is switched off
again, and the process returns to the point(0, R). We writeHR to denote the class of policiesπ such that
Oπ

1 = [R,∞), andH =
⋃

R HR. Thus, the policies inH are such that they control pure jump processes at
the off-line and jump processes with drift at the on-line.

R
On

Off

Figure 1: The state space of the inventory process. The thickbar on the on-line represents the subset at
which the policyπR decides to switch production off. The off-line is dashed to indicate that the inventory
does not decrease continuously, but in jumps.

4 Analysis.

In Section 4.1 we present an outline of the proof to clarify how all steps of the proof relate and provide a list
of steps that require further proof. These technical pointsare addressed in the subsequent Sections 4.2–4.5.

4.1 Notation and Proof Outline.

We start with introducing some concepts related to the notion of g-revised cost. Take some arbitraryR and
consider some arbitrary policyπ ∈ HR. Let

τπ(x) = inf{t > 0; (P (t), I(t)) = (1, x)},

whereEx is the expectation of functionals of theπ-controlled process{P (t), I(t)} given that(P (0), I(0) =
(0, x), x ≤ R. By the assumptions of Section 3, the setsOπ

1 andOπ
0 are such thatExτ

π(x) < ∞. Let
Cπ(x) denote the expected cost (inventory, stock-out and set-up cost) for the process to move from state
(0, x) to (1, x), i.e.,

Cπ(x) = Ex

[

∫ τπ(x)

0

h(I(t)) dt

]

+K. (1)

We define the (expected)g-revised cost to move from(0, x) to (1, x) as

Cπ
g (x) = Cπ(x) − gExτ

π(x), (2)

whereg > 0 is some arbitraryrevision rate. Clearly,Cπ
g (x) = Ex

[

∫ τπ(x)

0
(h(Iπ(t))− g) dt

]

+ K, and

we may interpret theg-revised cost as the expected cost resulting from an inventory costh(x) − g rather
thanh(x).
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We next introduce theg-minimizing policy inH. Suppose that

Cg(x) = inf
π∈∪R≥xHR

{

Cπ
g (x)

}

(3)

exists. ThenCg(x) is theleast g-revised cost to move from(0, x) to (1, x). Assume further that for any
giveng, Cg(·) attains it (finite) minimum, and letSg be the left-most minimizer. ThenCg(Sg) is theleast
overall g-revised cost to move from some level on the off-line to the same level on the on-line. Suppose
finally that there exists a policyπg that establishes the infimum in (3) atSg, so that it follows that

Cπg

g (Sg) = Cg(Sg) = min
x

Cg(x) = min
x

min
π∈∪R≥xHR

Cπ
g (x). (4)

We callπg theg-minimizing policy.
It is interesting to note thatCπ

g (S) is not just the expected cost of to move from(0, S) and to stop at
(1, S) under policyπ. As the cost to switch off is absorbed inK, Cπ

g (S) can also be seen as the long-run
expected cost of arecurrent cycle that starts and stops in(0, S). This insight allows us to relate the revision
costg to the expected recurrence cost of a cycle under the policyπ. It is well known, see for instance Tijms
[24], that the average recurrence costgπ equalsCπ(R)/ERτ

π(R), where the cost functionC is defined
in (1), for a cycle induced by policyπ ∈ HR. Rewriting this in the form of (2), it means thatgπ andπ are
related such that

Cπ
gπ (R) = Cπ(R)− gπERτ

π(R) = 0. (5)

To find the recurrence cost by this approach, firstchoose some policyπ, and thencompute the cost rate
gπ such that (5) is satisfied. Now observe that in the reasoning leading to (4) we actually reverse this
procedure. There we firstchoose some initialg, and thenconstruct the policyπg ∈ H that achieves the
minimal costCπg

g (Sg). If we can find ag∗ > 0 and a policyπg∗ such that

C
πg∗

g∗ (Sg∗) = 0, (6)

then, by (4),Cπ
g∗(x) ≥ 0 for any otherπ ∈ H and any otherx. Next, by takinggπ = g∗, π = πg∗ and

R = Sg∗ in (5), it follows from (6) thatg∗ is the long-run cost rate associated withπg∗ . All in all these
observations imply, in words, thatπg∗ is the optimal policy inH with minimal long-run average expected
cost rateg∗, andSg∗ is the optimal switching level (from on to off).

To actually findCg in (3) and theg-minimizing policy inH we derive a dynamic programming equation
(DPE) thatCg has to satisfy. It turns out that this DPE has a nice form and iseasy to solve numerically
for anyg. To identify the ‘right’g, i.e., the revision cost that solves (6), we use bisection. Choose some
arbitraryg. It may then happen that this choice forg is not equal to the recurrence costḡ of the cycle
induced byπg. If g > ḡ, which intuitively would mean that the cost compensation rateg is larger than the
actual average running costḡ, then

Cπg

g (Sg) = Cπg

g (Sg)− gESg
τπg (Sg)

< Cπg

g (Sg)− ḡESg
τπg (Sg) = 0.

As a second trial we choose a smaller value,g′ say, as a revision rate, and construct the associated policy
πg′ ∈ H. WhenC

πg′

g′ (Sg′) > 0, the next choice,g′′ say, must be larger thang′, while if C
πg′

g′ (Sg′) < 0, g′

is still too large, and so on.
Now that we have described the overall procedure of the proofwe enumerate the steps that need to be

filled in to obtain the structure results. In Section 4.2 we first derive a useful expression for the derivative
γ(·) of the expected cost to move on the on-line from some levelr to a levelx > r for quite general
inventory cost functionsc(·). We next show, in Section 4.3, that theg-minimal costCg(x) of (3) is the
unique solution of a DPE related to an optimal stopping problem with cost-to-go functionγ(·), and that
a policy exists that achieves the minimum. This optimal policy prescribes to switch on production if the
inventory is less thansg, which is the left-most root ofγ. We then show thatCg(x) attains its minimum for
all g > 0, and that the left-most minimizerSg of Cg lies in the interval(sg, tg], wheretg is the right-most
root of γ. In Section 4.4 we show thatCg(Sg) can be made arbitrarily small, hence there exists ag such
thatCg(Sg) < 0. SinceCg(Sg) is continuous ing andC0(S0) > 0 we conclude that there must exist ag∗
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such thatCg∗(Sg∗) = 0. As there exists ag-minimizing policy for eachg, this implies there must exist a
g∗-minimizing policyπg∗ ∈ H. Thus, the bi-section ong indeed yields most of the results. The last step
of the procedure, c.f. Section 4.5, is to prove that no stationary policy can improveπg∗ , henceπg∗ is an
optimal stationary policy. A simple corollary of the above is that whenh(·) is convex,γ is convex, hence
has two roots. It is then immediate that the optimal policy has an(s, S) structure.

In the rest of this section, we deal with the technical details to prove the structure results. In Section 6
and Appendix A we discuss some numerical points of concern, and in Section 7 we illustrate the bisection
procedure for a concrete example, and provide some counter-examples.

4.2 Costs on the On-line.

Consider a policyπR ∈ HR. If the process starts in some state(P (0), I(0)) = (1, r) with r < R, πR

prescribes to continue producing until state(1, R) is reached, and then to switch off. In this section we
are concerned with the cost functionV (r, x) underπR of ‘moving’ on the on-line from(1, r) to (1, x) for
r < x ≤ R.

Consider a given cost rate functionc(·) ∈ Bα,R, whereBα,R, α > 0, is the Banach space of real-
valued continuous functionsf such that the weighted supremum norm‖f‖ = sup{|f(x)eαx| ;x ≤ R} is
finite. LetV n(r, x) be the cost incurred to start in(1, r) and continue producing until either point(1, x) is
reached or then-th order arrives, whichever is first; letV 0(r, x) =

∫ x

r
c(y)dy. Whenn > 0, we have for

sufficiently small∆,

V n(r, x +∆) = V n(r, x) + c(x)∆ + λ∆E[V n−1(x−D, x)] + o(∆).

By induction it follows thatV n(r, ·) is differentiable, and its derivativeγn(·) satisfies

γn(x) = c(x) + λE

[
∫ x

x−D

γn−1(z) dz

]

. (7)

Observe thatγn(x) is independent ofr.

Lemma 4.1. As the demand is light-tailed, there exists α > 0 such that β := λ
∫∞

0
eαxG(x)dx < 1. If

c(·) ∈ Bα,R and c(x) → ∞ as |x| → ∞, the sequence {γn} converges to a limit function γ ∈ Bα,R, which
is the unique solution of the integral equation

γ(x) = c(x) + λE[V (x −D, x)]

= c(x) + λE

[
∫ x

x−D

γ(z) dz

]

= c(x) + λ

∫ ∞

0

γ(x− z)G(z) dz,

(8)

where V (r, x) =
∫ x

r
γ(z)dz. The function γ is decreasing (increasing) in a neighborhood of −∞ (+∞).

Proof. Define the linear operator

(Pf)(x) = λ

∫ ∞

0

∫ x

x−y

f(z) dz dF (y),

and rewrite (7) asγn(x) = c(x) + (Pγ(n−1))(x), with γ0 = c. The operatorP is a contraction on the
Banach spaceBα,R, that is,‖P‖ = sup {‖Pf‖ : ‖f‖ = 1} ≤ β. To see this, note that

(Pf)(x) = λ

∫ ∞

0

∫ x

x−y

f(z) dz dF (y) = λ

∫ ∞

0

f(x− z)G(z) dz,

which implies

(Pf)(x)eαx = λ

∫ ∞

0

f(x− z)eα(x−z)eαzG(z) dz ≤ λ ‖f‖

∫ ∞

0

eαzG(z) dz = β ‖f‖ ,
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hence||Pf || ≤ β ‖f‖. From this it follows thatγn → γ ∈ Bα,R. This limit functionγ is the fixed point of
the operatorc + P , that is,γ is the unique solution of the integral equation (8). As a further consequence,
V n(r, x) converges toV (r, x) =

∫ x

r
γ(z)dz.

Sincec(x) → ∞ if x → ±∞ by assumption,γ must also be decreasing (increasing) in a neighborhood
of −∞ (+∞).

4.3 Minimal Expected Costs from (0, x) to (1, x).

We next characterize the minimal costC(x) to move from state(0, x) to (1, x).
Suppose that(P (0), I(0)) = (0, x), i.e., the process starts at inventory levelx and production is off.

ChooseR > x. Let us compare the expected costs of two alternative routesto move from(0, x) to (1, x).
The first alternative is to switch on immediately, which costs clearlyK. The second alternative is to wait
for the next arrival, switch on, and then replenish the inventory to levelx again. The cost for this second
route is

c(x)λ−1 +K + EV (x−D, x) = γ(x)/λ+K,

where the equality follows from (8) and the definition ofV (r, x). Now observe that ifx is such that
γ(x) < 0, it must be better to await a new arrival than to switch on immediately. We therefore write

C1(x) = min {K, γ(x)/λ+K} , (9)

for the cost to move from(0, x) to (1, x) associated with the policy that either switches on immediately,
or awaits at most one arrival before switching on, whicheveris best. This reasoning applies of course
recursively. Rather than awaiting just one arrival, it may be interesting, cost-wise, to await two arrivals.
This would result in a costγ(x)/λ+ E[C1(x −D)] for the second term in the minimization in (9) rather
thanγ(x)/λ+K. Continuing like this, we arrive at a sequence of cost functions{Ci(·)} which satisfy the
recursions

Ci(x) = min
{

K, γ(x)/λ+ E[Ci−1(x −D)]
}

, i ≥ 1, (10)

where we defineC0(x) = K for all x.
In the sequel of this section, assume that the cost ratec(·) is such thatγ(x) < 0 for at least onex, for

otherwise production will be switched on everywhere on(−∞, R], which is relatively uninteresting. Since
γ is continuous and increases to∞ as|x| → ∞, it then has at least two roots. Lets andt be its left- and
right-most roots, respectively.

Lemma 4.2. The sequence {Ci(·)} has the following properties:

1. Ci(x) = K for all x ≤ s.

2. {Ci(·)} is point-wise decreasing as i → ∞, i.e., Ci(x) ≤ Ci−1(x).

3. {Ci(·)} is bounded from below, i.e., there exists M > −∞ such that Ci(x) > M .

4. Ci(·) is continuous for all i on (−∞, R].

Proof. (i) This follows immediately from combiningγ(x) > 0 for all x < s with the recursion (10), and
(9) which gives thatC1(x) = K wheneverx ≤ s .

(ii) If x ≤ s, Ci(x) = K, for all i. Forx > s we use induction. SupposeCj(x) ≤ Cj−1(x) for all
j < i. Use (10) to see thatCi(x)− Ci−1(x) ≤ ECi−1(x −D)− ECi−2(x−D). Then, by induction

Ci(x) − Ci−1(x) ≤ ECi−1(x−D)− ECi−2(x−D)

≤ EC1(x −Di−1)−K

≤ 0,

(11)

by (9), where we writeDi−1 to denote the cumulative demand ofi− 1 orders.
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(iii) Define ||v|| = sup{|v(x)|;x ∈ [s,R]}. We prove that||Ci − Ci−1|| → 0 geometrically fast.
Using (11), ||Ci − Ci−1|| ≤ supx∈[s,R] |EC

1(x − Di−1) − K|. By (9), EC1(x − Di−1) − K =
∫

min{0, γ(x − y)}dF i−1(y), whereF i(·) is thei-fold convolution ofF (·). Sinceγ(x) > 0 for x < s,

this integral becomes
∫ x−s

0 min{0, γ(x− y)}dF i−1(y). Therefore,

||Ci − Ci−1|| ≤ sup
x∈[s,R]

∫ x−s

0

|γ(x− y)|dF i−1(y) ≤ ||γ||

∫ R−s

0

dF i−1(y).

Now take some arbitraryβ > 0, and writeF̃ (β) for the Laplace transform ofF (·). Then,

||Ci − Ci−1|| ≤ ||γ||eβ(R−s)

∫ R−s

0

e−βydF i−1(y)

≤ ||γ||eβ(R−s)

∫ ∞

0

e−βydF i−1(y) ≤ ||γ||eβ(R−s)(F̃ (β))i−1.

SinceF̃ (β) < 1, ||Ci − Ci−1|| → 0 geometrically fast. ThereforeC(x) > −∞.
(iv) Ci is continuous as follows from the recursion (10) and the factthat γ is continuous asγ ∈

Bα,R.

Now Lemma 4.2.ii,iii imply thatC(·) = limiC
i(·) exists. If we can show that in (10) the limit ini

and the expectation can be reversed, the limit functionC(·) is a solution of anoptimal stopping problem
with γ(·)/λ as thecost-to-go, K as thestopping cost, and(−∞, s] as stopping set. Moreover, ifC(·) is
the unique solution it must represent the minimal cost to move from (0, x) to (1, x). The next theorem
provides an answer in the affirmative.

Theorem 4.3. The limiting function C(x) = limi→∞ Ci(x) is the unique solution of the dynamic pro-
gramming equation

C(x) =

{

K, if x ≤ s,

min{K, γ(x)/λ+ EC(x−D)}, if x > s.
(12)

Proof. First fix someR > min{x, s}. Lemma 4.2.(ii, iii) imply the existence and uniqueness of alimiting
functionC(·). Lemma 4.2.i shows thatC(x) = K for x ≤ s. To see thatC(·) satisfies (12) we use
monotone convergence to justify the interchange of limit and expectation. The only formal condition to
verify here is thatCi(x) < ∞ for all i, which is satisfied as from (10) it follows thatCi(x) ≤ K for all i
and allx ≤ R. Thus, the existence of a solution of (12) is established.

To prove thatC(·) is the unique solution we use that the operatorT , defined as

(Tv)(x) = min{K, γ(x)/λ+ Ev(x−D)},

is a contraction on the Banach space of bounded functionsv on [s,R] with norm ||v|| = sup{|v(x)|;x ∈
[s,R]}. By the above we already have that(TC)(x) = C(x) for x ∈ [s,R]. To see thatT is a contraction,
observe that since|min{K, a} −min{K, b}| ≤ |a− b| for anya, b,

|(Tv)(x) − (Tw)(x)| ≤ |E[v(x−D)− w(x −D)]| ≤ ||v − w||eβ(R−s)F̃ (β),

by similar arguments as used in the proof of Lemma 4.2.iii. The contraction follows sincẽF (β) < 1.
The form of (12) shows thatC(x) is in fact independent ofR for all x ≤ R. Hence, we can takeR as

large as necessary, and in particular larger than the globalminimizer ofC(·). (Recall that in (4) we need to
find the global minimum ofC(·).)

In the sequel we need two further properties ofC(·).

Lemma 4.4. C(·) is continuous and attains its minimum. Its left-most minimizer S ∈ (s, t].
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Proof. With regard to the continuity, use the triangle inequality:|C(x) − C(y)| ≤ |C(x) − Ci(x)| +
|Ci(x)−Ci(y)|+ |Ci(y)−C(y)|. SinceCi → C (by Lemma 4.2) it suffices to takei sufficiently large to
make the left and right term arbitrarily small. Use the continuity of Ci(·) to make the middle term small.
Next,C is bounded from below as follows from Lemma 4.2.iii. The continuity and boundedness imply
thatC attains its minimum.

We next show thatS ∈ (s, t]. By the aboveC(x) = K for x ≤ s. ThereforeS > s. Furthermore,
S ≤ t, for suppose the contrary:S > t. SinceS is a minimizer it must be thatC(S) < K. Therefore (12)
implies thatC(S) = γ(S)/λ + EC(S − D). Sinceγ(S) > 0, asS > t, it then follows thatC(S) >
EC(S −D). But EC(S −D) ≥ infy≤S{C(y)}. This would imply thatC(S) > infy≤S{C(y)}, but this
is impossible sinceC(·) attains its minimum atS. Contradiction.

4.4 Structure of Optimal Policy in H.

In this section we use the properties of the solution of the dynamic programming equation (12) to obtain
insight into structural properties of the optimal policy inH.

We now take as cost functionc(x) = h(x) − g whereh ∈ Bα,R (α as in Lemma 4.1). By Lemma 4.1
there exists a unique solutionγg(·) of (8) with this cost function. WriteCg(·) for the solution of (12) with
cost-to-go functionγg(·). We next prove that there is a revision rateg∗ and a policyπg∗ such thatg∗ is
equal to the average cost rate of a recurrent cycle induced byπg∗ ; recall the reasoning in Section 4.1.

Theorem 4.5. There exist g∗ > 0 such that Sg∗ ∈ (sg∗ , tg∗ ], the minimal revised cost function Cg∗(x) ≥ 0
for all x, and Cg∗(Sg∗) = 0. Moreover, there exists an optimal (g∗-minimizing) policy πg∗ ∈ H, and this
policy is such that O

πg∗

0 ⊃ (−∞, sg∗ ] and O
πg∗

1 = [Sg∗ ,∞).

Proof. We first show that, for fixedx, γg(x) can be made arbitrarily negative as a function ofg. Inserting
the relationγg(x) = γ0(x) + α into both sides of (8), whereγ0 is the solution of (8) withg = 0, and
solving forα results inα = −g/(1− λE[D]), sinceλ

∫∞

0 αG(y)dy = λE[D]α. Therefore,

γg(x) = γ0(x) −
g

1− λE[D]
. (13)

Thus, we can assure there exists ag such thatγg(x) < 0 for at least onex. The continuity ofγg(·) ensures
then thatγg has at least two roots, withsg andtg as its left-most and right-most roots.

We next prove that there exists ag∗ such thatCg∗(x) ≥ 0 for all x, andCg∗(Sg∗) = 0. By Lemma 4.4
Cg(·) attains its left-most minimum at someSg. The continuity ofγg(x) in g implies the continuity of
Cg(x) in g. If Cg(Sg) < 0 for sufficiently largeg the continuity ing implies the existence of ag∗ such that
Cg∗(Sg∗) = 0. (Recall that ifg = 0, C0(x) ≥ 0 for all x.) A sufficiently largeg can be found by noting
thatγg(x) can be as small as we like by (13). Next, by subtractingK from both sides of (12), we see that
Cg(Sg) − K = γg(Sg) + E[Cg(Sg −D) −K]. Now (12) implies also thatE[Cg(Sg −D) −K] ≤ 0.
Therefore,Cg(Sg)−K ≤ γg(Sg). Hence,Cg(Sg) is negative if we choseg such thatγg(Sg) ≤ −K.

By applying Theorem 4.3 the existence of the optimal policyπg∗ is guaranteed. From Lemma 4.4
we conclude thatSg∗ ∈ (sg∗ , tg∗ ]. SinceCg∗(Sg∗) = 0 it is best to switch off atSg∗ , so thatO

πg∗

1 =
[Sg∗ ,+∞), andO

πg∗

0 ⊃ (−∞, sg∗ ] asCg∗(x) = K for x < sg∗ .

From the above we can conclude that the optimal policyπg∗ in H prescribes to switch off when the
inventory level is larger than or equal toSg∗ and to switch on when the inventory level is less thensg∗ .

Corollary 4.6. If Cg∗(x) < K on x ∈ (sg∗ , Sg∗ ] the optimal policy πg∗ ∈ H has an (s, S)-structure with
s = sg∗ and S = Sg∗ .

Proof. An immediate consequence of theorem 4.5.

Corollary 4.7. If γg∗(x) < 0 on x ∈ (sg∗ , Sg∗ ] the optimal policy πg∗ ∈ H is an (s, S)-policy.

Proof. Use (12) to see thatγg∗(x) < 0 onx ∈ (sg∗ , Sg∗) impliesCg∗(x) < 0 onx ∈ (sg∗ , Sg∗). Next use
Corollary 4.6.
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Theorem 4.8. The optimal policy πg∗ ∈ H has an (s, S) structure if h(·) is convex.

Proof. If h(·) is convex, the functionc(·) = h(·)− g is convex. From (7) and induction we see thatγn
g (·)

is also convex for alln. This in turn implies thatlimn γ
n
g (·) = γg(·) is convex for allg. The convexity

implies thatγg has has precisely two rootssg andtg for sufficiently largeg. Sinceγg(Sg) < 0 it follows
thatγg(x) < 0 for all x ∈ (s, Sg]. Now invoke Corollary 4.7.

4.5 Structure of the Optimal Stationary Policy.

The first goal of this section is to show that no policy in the class of all stationary policies can improve
πg∗ ∈ H; thus there exists at least one optimal stationary policy, which isπg∗ . It then follows trivially from
Theorem 4.8 thatπg∗ has an(s, S)-structure when the inventory functionh(·) is convex.

Theorem 4.9. The optimal policy πg∗ ∈ H is also optimal in the class of stationary policies. If h(·) is
convex, this policy has an (s, S)-structure.

Proof. DefineSπ(x) = min {Oπ
1 ∩ [x,∞)}. Thus,x ≤ Sπ(x) for all x, and if (P (t), I(t)) = (1, x) for

somet, production will eventually switch off atSπ(x), and the inventory can never exceedSπ(x) again.
Note thatSπ(x) < ∞ for all x, for otherwise the inventory would drift to infinity if the inventory were to
start at or abovex; since it is also not optimal for the inventory to drift to−∞, Sπ = limx→−∞ Sπ(x) =
min{x;x ∈ Oπ

1 } > −∞ for any sensible stationary policy.
If F has infinite support the set(−∞, Sπ) will be hit eventually, and from then on, levelSπ will not be

crossed any more, so thatπ cannot improve the minimizing policy inHSπ .
If F has finite support, however, the process may get stuck in someinterval(Sπ(x), Sπ(y)] if I(t) =

y > x for somet. LetSπ = argminx{Cg(S
π(x)}, i.e.,Sπ is the inventory level at whichCg(·) achieves

it global minimum. The stationary policyπ can again not improve the best policy inHSπ .
Theorem 4.8 implies thatπg∗ has an(s, S)-structure ifh is convex.

5 An Application to Capacitated Periodic-review Inventory models

As the production-inventory model introduced by Graves [11] can be seen as the periodic-review analogon
of the model presented in Section 3, we discuss in this section how to prove structure results for this model.

The model is as follows. At the beginning of each period the state of production is chosen to be on or
off. If production is off at the end of a period, it can be switched on at the beginning of the next period at
the expense of a setup costK. However, when production is on in a period, keeping it on is free. Hence,
setup costs are only incurred at the first period of a run of consecutive periods during which production is
on. Production capacity is, without loss of generality, in single units. The demand size is distributed as
a generic random variableD defined on the integers. Demand is met by end-of-period inventory, and, if
necessary, backlogged. Thus, if the inventory level isI at the beginning of a period, production is on, and
the demand isd, the inventory isI + 1 − d at the end of the period. Inventory costs are accrued at the end
of a period according to the functionh(·). We assume thath(·) andD are such thatEh(x −D) < ∞ for
all x.

Graves [11] conjectures that(s, S)-policies are optimal for this model. Here we show how to prove this
conjecture under the assumption that inventory costs are convex and the expected inventory costEh(x −
D) < ∞ for all x.

Similar to Section 4.2, letV (x, y) be the cost to move from inventory levelx to level y along the
on-line. Then

V (x, y + 1) = V (x, y) + Eh(y + 1−D) + EV (y + 1−D, y + 1).

Letting
γ(y + 1) = V (x, y + 1)− V (x, y),

the above can be rewritten as

γ(y) = Eh(y −D) + EV (y −D, y).
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Next, letC(x) be the minimal cost to move fromx at the off-line to levelx at the on-line. ThenC must
satisfy the dynamic programming equations

C(x) = min{K, Eh(x−D) + EV (x−D, x) + EC(x−D)},

since either production is switched on at costK, or production remains off for at least one more period.
The latter decision costsEh(x − D) due to the inventory, plusEV (x − D, x) to return to levelx after
the demand occurred, plus the minimal costEC(x − D) that will be incurred after the demand while
production is off. Using the above definition ofγ, we can rewrite this such that

C(x) = min{K, γ(x) + EC(x −D)}. (14)

Observe the similarity to Eq.(12).
The last step is to replaceh(·) in the above by theg-revised costh(·) − g. With these notions well-

established, the rest of the procedure as explained in the previous sections can be applied straightaway.
Issues related to the existence and uniqueness of (optimal)value functions are simpler now since the

process here is a discrete-time, discrete state process. Asa first step, sinceh(·) is convex,γ is also convex.
Take anyx smaller than the left roots of γ. Sinceγ(x) > 0 for all x < s and the inventory process can
only drift to the left, it is evident from (14) that it is optimal to switch on immediately. Thus,C(x) ≡ K
for all x < s. Then, on the setx ∈ {s, s + 1, . . . , t}, wheret is the right root ofγ, the optimal control
problem can be seen as the problem to minimize the expected cost until the target set{x < s} hit. Since
the cost-to-goγ on the set{s, . . . , t} is not positive, providedg is chosen suitably, stopping before the
set{x < s} is not optimal. Finally, since the hitting time to the set{x < s} has finite expectation for
any policy andγ is finite betweens andt, the cost to the set{x < s} has finite expection for any policy.
The rest of the details are easy to provide. Finally, extending the above to rational-valued demand is also
straightforward.

6 Numerical Considerations.

From the procedure explained in Section 4 and the results of Theorems 4.5, 4.9, and 4.8 it is apparent that
the optimal cost and the optimal policy can be determined by bi-section. Suppose we have numbersgl and
gu such thatgl < g∗ < gu. Let g = (gl + gu)/2. Equations (8) and (12) can then be used to calculate
γg(·) with c(·) = h(·) − g andCg(·). If the minimumCg(Sg) ≤ 0 (Cg(Sg) ≥ 0) the revised cost of
the corresponding policy is smaller (larger) than or equal to g, andg should become the new upper-bound
(lower-bound).

Obtaining initial values forgl andgu is easy. Pertaining to the former, sinceh(x) ≥ 0 for all x, gl = 0
is a proper choice. With respect to the latter, the average cost under any feasible stationary policy is an
upper-bound on the optimalg⋆. Hence, we can take the policy inH0 that switches the production on after
the first order arrival and switches off as soon as point(1, 0) is reached again. The expected cost from(1, 0)
until (1, 0) is in this case equal toK+γ(0)/λ. The expected recurrence time is equal to1/{(1−λE[D])λ}.
Hence, the average cost under this policy is equal to(Kλ + γ(0))(1 − λE[D]). Settinggu to this value
would do for our purpose.

With respect to the computation ofγg(x) at some pointx, observe that (8) requires to knowγg(y)
for all y < x, which complicates the computational procedure. Whenh(·) is a (convex) polynomial, this
problem is still relatively easy to resolve. By assumptionh attains its minimum atx = 0. Then substitute
in (8) a polynomial of suitable degree forγg(y) for y ≤ 0 and solve for the coefficients on the half-line
(−∞, 0]. For instance, ifh(x) = bx, b < 0, onx ≤ 0, this results in

γg(x) = −
bx+ g

1− λE[D]
+

λ

2

bE[D2]

(1− λE[D])2
, onx ≤ 0. (15)

Now we can use this part ofγg to obtainγg, possibly numerically, on(0,∞). However, whenh(·) is not
a polynomial, solving (8) is more complicated. To handle such situations we refer to the appendix for an
approximation method based on a discretization of the model. There we also prove that this approximation
converges exponentially fast (as a function of a suitable parameter) to the correct solution of (8).
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7 Examples

In this section we first illustrate the procedure to find an optimal policy as described in Section 4 We then
discuss two examples from the literature. As a fourth example we show that the optimal policy to switch on
is not monotone in general. The final example is a counter-example against the claim that(s, S)-policies
are optimal for general quasi-convex inventory cost functions1.

7.1 Bisecting the Revision Cost

As a first example, consider inventory cost

h(x) = bmin{−x, 0}+ hmax{x, 0}, (16)

with b = 3, h = 1, arrival rateλ = 3/2, setup costK = 5, and uniformly distributed demand on[0, 1] so
that E[D] = 1/2 and E[D2] = 1/3. In this case, (15) becomesγg(x) = 12(1− x) − 4g onx ≤ 0. The
(numerical) evaluation of (8) and (12) is now easy for giveng. (We use∆ = 0.005 for the integrations.)
Figure 2 shows the graphs ofγg(·) andCg(·) for g = 2.1, g = 2.3 andg = 2.5. The left panel shows that
g = 2.1 is sufficiently small forγg(·) to have two roots, and indeed,Cg(x) < K for somex. Apparently,
g = 2.1 is not large enough to ensure that there existsSg such thatCg(Sg) = 0. As a next guess, we try
g = 2.5. The right panel shows now thatCg has two roots, implying thatg = 2.5 must be too large. By
bi-sectiong = 2.3 should be the next guess. Indeed, the middle panel shows thatC2.3(S2.3) is nearly0.
Continuing the iteration leads ultimately tog∗ ≈ 2.31, s = sg∗ = 0.480 andS = Sg∗ = 2.610.

-5

0

5

0 2 4 6 8

g = 2.1

Cg

γg
h− g

-5

0

5

0 2 4 6 8

g = 2.3

Cg

γg
h− g

-5

0

5

0 2 4 6 8

g = 2.5

Cg

γg
h− g

Figure 2: Graphs ofγg(·) andCg(·) for g ∈ {2.1, 2.3, 2.5}.

7.2 Computing the optimal D for an M/G/1 Queue

As a second example, we show how to compute the optimal threshold for theD-policy considered by
Feinberg and Kella [4]. We take as inventory cost functionh(x) = ∞ for x > 0, and non-increasing for
x ≤ 0 such thath(0) = 0. In this way,S = 0, and−I(t) equals the workload of theM/G/1 queue, and
the levels below which production switches on is equal to (minus) the workload levelD above which the
server switches on. Now, it is easy to see that, sinceh is non-increasing,γ has just one left-most root for
all g > 0. This optimal roots∗ for the inventory system is equal to the optimal level−D for the queueing
system.

7.3 Results of Graves and Keilson [10]

Graves and Keilson [10] consider exponentially distributed demands with cost function (16) for various
values ofb, h = 1, setup costs and arrival rates. Our results correspond to theirs, but slightly improve the

1The source code (in python/numpy) and all examples are available at the first author’s homepage [25]
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minimal average costs since we do not limits andS to the integers as is the case in Graves and Keilson
[10]. There appears to be a small typo in one of their examples: namely the case withλ = 0.9, b = 2
in (16), andK = 25. They claim thats = −1, while we gets ≈ 5.1. For the same case withK = 50,
they finds = 6. The results = −1 whenK = 25 is also at variance with their remark that an increase in
K should result in an increase inS − s, and should hardly affects. Thus, in both cases thes’s should be
roughly the same.

7.4 An Optimal Policy that is not Monotone

The fourth example, see the left panel of Figure 3, proves that it is not true that for allg the optimal decision
structure on the off-line is monotone. Here the demandD is uniform on[1.02, 1.12], λ = 0.2, h(·) is given
by (16) withb = 4 andh = 1, K = 5 andg = 1.7. Clearly,Cg(x) < K for x ∈ (s, S]. Next, note that
Cg(3) = K, butCg < K at the small dent at the right ofx = 3. Thus, atx = 3 it is optimal to switch on,
but at the dent it is optimal not to switch on. Thus, the decision structure is not monotone, but alternates
between on and off several times. SinceCg(x) < K for x ∈ (s, S] the optimal policy does not alternate
between on and off in(s, S], so that the optimal policy still has an(s, S)-structure. Note also thatCg is not
monotone decreasing betweens andS.
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Figure 3: The left panel showsCg when the demand is deterministicD ≡ 1. The appearance of the small
dent at the right ofS implies that the optimal policy is not monotone. The right panel showsCg for quasi-
convex holding costs. The fact that the value function hitsK betweens andS implies that the optimal
policy is not(s, S).

Thus, even when the cost function is convex, the value function is for generalg not monotone.

7.5 An Optimal Policy that is not (s, S)

The last example shows that the combination of the demand distribution and the cost function determine
the structure of the optimal policy. In this particular case, the optimal policy is not(s, S) but more difficult.
The parameters are the same as the previous example, the demand is exponentially distributed with mean
2 and the inventory costh(·) is given by the quasi-convex function

h(x) = (4{x ≤ 0}+ {x > 0})⌈x⌉,

where{·} is the indicator function and⌈x⌉ is the smallest integer equal to or larger thanx. The results are
shown in the right panel of Figure 3.

We see thats∗ = 0.61, and the minimum ofCg∗ occurs atS∗ = 2., but Cg∗(x) = K for some
x ∈ (s∗, S∗), for instance atx ≈ 1.. This implies that the optimal policy cannot be an(s, S)-policy since
at it is optimal to switch on betweens∗ andS∗.

Interestingly, when the demand is exponentially distributed with mean1, the optimal policy is(s, S)
again. Hence, convexity of the cost function is sufficient, but by no means necessary.
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8 Summary and Suggestions for Further Research.

We summarize the basic elements of the procedure we developed in this paper to prove that(s, S)-policies
are long-run average optimal in the class of stationary policies for the stochastic EPQ model. As this
procedure allows the analysis of more general inventory problems with restricted production capacity,
which we discuss below, we enumerate the involved steps.

1. Subtract a revision rateg from the inventory cost ratec(·) to obtain theg-revised inventory cost.
Formulate the minimal cost problem to move from levelx at the off-line to levelx on the on-line
under some given cost ratec(·) as an optimal stopping problem on the off-line. Prove that for all g a
g-minimizing policy and functionCg(x) for this optimal stopping problem exists.

2. Use properties of the optimal stopping problem to find the minimal overall cost to move from the
off-line to the on-line, i.e., findSg suchCg(Sg) = minx Cg(x). If there is more than one such point,
takeSg as the left-most point. AtSg it is best to stop producing when production is on. This, in
effect, starts a new production cycle.

3. Exploit other structural properties of the optimal stopping problem to find the best pointsg at which
to switch on production. For our problem we takesg as the left root of the cost-to-goγg(·), provided
the conditions of Corollary 4.7 are satisfied.

4. Then use bisection overg to show that a policy can be found that performs arbitrarily closely to
the optimal policy. In the limit an optimal policy results. The structural properties derived in the
previous two points can be finally used to prove the(s, S)-structure of the optimal policy.

Interestingly, this procedure not only enables us to deriveformal results, it also provides an efficient method
to compute the optimal(s, S)-policy to arbitrary precision. In fact, while completing the above steps
typically involves numerous technical arguments to show the existence and uniqueness of solutions of
dynamic programming equations, proper limits, and so on, for numerical purposes there appears no harm
in simply skipping these technical desiderata. Simple graphical arguments involving the interplay between
the revision rateg and the resulting numerical solutionCg(·) of the optimal stopping problem, such as
in Section 7, generally provide considerable insight into the structure of the optimal policy. For instance,
as Corollaries 4.6 and 4.7 make clear, the convexity ofh(·) is quite more than we actually need to prove
that an(s, S) policy is stationary optimal. Any other argument, possiblynumerically, that ensures that
Cg∗(x) < K onx ∈ (sg∗ , Sg∗ ], wheresg∗ is the left-most root of the cost-to-go functionγg∗(·) andSg∗ is
the left-most most minimizer ofCg∗(·), suffices.

The above procedure seems to open roads to explore more complicated situations, such as more general
arrival processes (e.g., Markovian Arrival Processes (MAPs), state dependent production rates or setup
costs, or other control rules such as order acceptance. Introducing an order acceptance mechanism brings
the system studied here closer to the stock rationing systeminvestigated by Ha [12, 13]. Ha uses a queueing
approach, but it seems also possible to use our on-off production approach. The case without set-up cost
is non-trivial already, but maybe our approach makes it possible to combine stock rationing with set-up
cost. Other directions for future research are to include set-up times and vacations. Incorporating multiple
production levels is also an interesting theoretical extension, c.f., Lu and Serfozo [17], but it is unclear
whether in such systems our approach with cycles and stopping problems still works.
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A A Numerical Approximation for γg(·).

To cope with a situation in whichh(·) is not a polynomial forx ≤ 0 we use the following scheme to
compute a numerical approximation forγg(·) First, discretize the inventory process (and the demand) to
take values on a grid with points separated by some small∆ > 0, and writegi = G((i + 1)∆) −G(i∆),
di = γg(i∆), etc., where we temporarily drop the dependence ong for notational convenience. Second, as
in Shaoxiang [19], assume that the demand has an upper-bound, so that there exists a finiten := min{i :
gi = 0}. Third, for giveng > 0, choose somez considerably smaller than the left rootsg1 of h(·) − g.
Finally, let

d̃i = 0, on i ≤ z,

and define recursively

d̃i = hi − g + λ

n
∑

j=0

d̃i−jgj , on i > z. (17)

Observe that it is easy to transform this into a simple recursion:

d̃i =
hi − g

1− λg0
+

λ

1− λg0

n
∑

j=1

d̃i−jgj , i > z.

We next show that the differenceδi = di− d̃i for i fixed converges exponentially fast to0 asz → −∞.
Therefore, by takingz sufficiently small we can make the differenceδi as small as we wish in the region
of interest.

Subtracting (17) from the discretization of (8) leads to

δi := di − d̃i =

{

di, i ≤ z,

λ
∑n

j=0 δi−jgj , i > z.
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We therefore have to prove thatδi → 0 exponentially fast asz → −∞.
This convergence is actually not immediate for the following reason. By the boundary conditions,

δi = di for i ≤ z. The assumptionγg ∈ Bα,R, i.e, sup{|γg(x)eαx|;x ≥ 0} < ∞, gives the bound
di ≤ Me−αi∆ for someM . Thus,dz may increase exponentially fast asz → −∞.

The main idea is to prove thatδi = O(x−i
0 ) for i ≥ z for some constantx0 > 1 to be determined below.

Then it follows from the boundary conditionδz = dz thatδi = O(δzx
z−i
0 ). Sinceγg ∈ Bα,R it also follows

thatdz ≤ Me−αz∆ for someM . Combining these two estimates we see thatδi ≤ M ′
(

x0e
−α∆

)z
x−i
0 for

someM ′. The last step is to show thateα∆ < x0, soe−α∆x0 > 1, and indeedδi → 0 asz → −∞.
To obtainx0, take theZ transform of both sides of the equationδi = λ

∑n

j=0 δi−jgj , and write
∆(w) =

∑∞

i=0 δiw
i. Some algebra leads to the equation∆(w) = N(w)/D(w) where the numerator

N(w) is some polynomial inw, and the denominatorD(w) has the form

D(w) = 1− λ

n
∑

i=0

giw
i.

Let x0 ∈ R solveD(x0) = 0. Provided thatx0 is the root with the smallest modulus, it follows that
δi = O(x−i

0 ), see e.g. Wilf [30, Theorem 2.4.3]. To see that indeed there is now insideC = {z ∈
C; |z| = x0} such thatD(w) = 0, we apply Rouché’s theorem. Recall that this states that ifthere exists
some analyticf such that|f(w) − D(w)| < |f(w)| for all w on some simple closed contour, thenf(·)
andD(·) have the same number of zeros within this contour. In our case, takef ≡ 1, take the contour as
Cǫ = {z ∈ C; |z| = x0 − ǫ} for someǫ > 0, and takew ∈ Cǫ. Then,|1 − D(w)| = |λ

∑n

i=0 giw
i| ≤

λ
∑n

i=0 gi|w
i| < λ

∑n

i=0 gix
i
0 = 1 = |f(w)|. Sincef has no zeros inCǫ, andǫ is arbitrary, we are done.

To see thatx0 > 1, note that sincegj > 0 the restriction ofD(w) to the real line must be decreasing
whenw > 0. Hence, sinceD(1) = 1− λ

∑n

i=0 gi = 1− ρ > 0, its rootx0 > 1.
We finally show thateα∆ < x0. By the model assumptionsα is such thatλ

∑n

i=0(e
α∆)igi = β < 1,

that isD
(

eα∆
)

> 0. SinceD is decreasing on[0,∞) (and eα∆ is real), this implieseα∆ < x0, as
D(x0) = 0, andx0 is the root with smallest modulus.

The proof is complete.
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