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Lepton flavor violation and seesaw symmetries

D. Aristizabal Sierra

Abstract When the standard model is extended with right-handed neutrinos
the symmetries of the resulting Lagrangian are enlarged with a new global
U(1)R Abelian factor. In the context of minimal seesaw models we analyze
the implications of a slightly broken U(1)R symmetry on charged lepton flavor
violating decays. We find, depending on the R-charge assignments, models
where charged lepton flavor violating rates can be within measurable ranges. In
particular, we show that in the resulting models due to the structure of the light
neutrino mass matrix muon flavor violating decays are entirely determined by
neutrino data (up to a normalization factor) and can be sizable in a wide
right-handed neutrino mass range.

Keywords Neutrino mass and mixings · Right handed neutrinos · Decays of
leptons

PACS 14.60.Pq · 14.60.St · 13.35.Bv · 13.35.Dx

1 Introduction

Apart from demonstrating that neutrinos are massive and have non-vanishing
mixing angles among the different generations [1,2], neutrino oscillation ex-
periments have also proved that lepton flavor is not conserved in the neutral
lepton sector. Once the standard model is extended to account for neutrino
masses—unavoidably—lepton flavor violation (LFV) also takes place in the
charged lepton sector. This, however, not necessarily implies that these effects
are sizable, so whether these processes can or not have measurable rates de-
pends to a large extent on the details of the corresponding model. Despite this
fact, from a general point of view, charged lepton flavor violating processes are
expected to have large decay branching fractions as long as the LFV mediators
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have O(TeV) masses and their couplings to the standard model leptons are
about & 10−2.

Majorana neutrino masses can be generated in a model independent way
by adding the dimension-five effective operator O5 ∼ LLHH to the standard
model Lagrangian [3]. And in turn the different concrete realizations of this
operator constitute a model for neutrino masses 1. Among the tree-level re-
alizations the type-I seesaw is certainly the most popular one [14,15,16,17,
18,19]. In this model, light neutrino masses are generated via the exchange
of electroweak fermionic singlets (right-handed (RH) neutrinos for brevity).
Consistency with neutrino data then requires either heavy RH neutrino masses
(O(MN ) ∼ ΛGUT) or tiny Yukawa couplings (O ∼ 10−6), thus implying neg-
ligibly small charged lepton flavor violating effects.

In addition to the standard model gauge symmetry the seesaw Lagrangian
features a global Abelian U(1)R symmetry, typically related with phase ro-
tations of the standard model lepton SU(2) singlets, and thus broken by the
charged lepton Yukawa couplings. However, relating this symmetry with phase
rotations of the RH leptons fields is not the only possibility, and another ap-
proach in which rotations of the left-handed lepton fields and RH neutrinos are
allowed is feasible as well. In that case one is left with (at least) two choices:
(i) slightly broken U(1)R; (ii) Zn ⊂ U(1)R invariance of the Lagrangian.

In what follows we will consider possibility (i). In the context of mini-
mal seesaw models (models featuring only 2 RH neutrinos) we will classify
the viable scenarios arising from different R-charge assignments, that as we
already discussed are not anymore limited to the RH leptons, and identify
those models for which charged lepton flavor violating processes have sizable
decay branching ratios. For these models we will analyze the µ flavor violating
phenomenology. The results presented here are entirely based on ref. [21].

2 The models

Depending on the R-charge assignments of the different standard model and
RH neutrino fields different models can be constructed. In order to restrict the
discussion only to the lepton sector we start by setting R(H) = 0. Requiring
the charged lepton Yukawa couplings to be U(1)R invariant allows to fixR(e) =
R(`) (e, ` being the lepton electroweak singlets and doublets). We are thus
left with the lepton doublets and RH neutrinos R-charge assignments. Large
lepton flavor violating rates require (at least) the RH neutrino mass terms
to be U(1)R breaking suppressed (the suppression factor denoted by ε � 1),
implying R(N1,2) 6= 0 and one of the following three possibilities: (A) R(N1) =
R(N2); (B) R(N1) = −R(N2) or (C) R(N1) 6= R(N2). In practice possibilities
(A) and (C) turn out to be equivalent as they both lead to models with N1−N2

suppressed mixing and therefore to suppressed LFV effects. In contrast in case
(B) the N1−N2 mixing is maximal and a set of Yukawa couplings can be large

1 Examples range from tree-level up to three-loop induced neutrino mass models [4,5,6,
7,8,9,10,11,12,13]
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provided the R(`) charges are chosen appropriately. In that sense models of
type (B) are much more interesting as they might yield large LFV effects.

With the purpose of studying the implications for LFV of type B models
we fix the R-charges as R(N1, `i, ei) = +1 and R(N2) = −1. With this charge
assignment the seesaw Lagrangian becomes 2

L = −¯̀λ1λ1λ1
∗N1H̃−ελ ¯̀λ2λ2λ2

∗N2H̃−
1

2
NT

1 CM N2−
1

2
εNN

T
a CMaaNa+h.c. . (1)

Here H̃ = iσ2H
∗, C is the charge conjugation operator, λaλaλa

† = (λ∗1a, λ
∗
2a, λ

∗
3a)

with a = 1, 2 (matrices are denoted in bold-face) and ελ,N are dimensionless
parameters that slightly break U(1)R. Diagonalization of the RH neutrino
mass matrix yields two quasi-degenerate states with masses

MN1,2
= M ∓ M11 +M22

2
εN . (2)

After diagonalization the Yukawa couplings read

λka → −
(i)a√

2
[λk1 + (−1)aελλk2] , (k = e, µ, τ and a = 1, 2) , (3)

and thus the light neutrino mass matrix is determined to be

meff
νm
eff
νm
eff
ν = −v

2ελ
M
|λ1λ1λ1||ΛΛΛ|

(
λ̂1λ̂1λ̂1
∗ ⊗ Λ̂̂Λ̂Λ∗ + Λ̂̂Λ̂Λ∗ ⊗ λ̂1λ̂1λ̂1

∗
)
, (4)

with

Λ̂̂Λ̂Λ∗ = λ̂2λ̂2λ̂2
∗ − M11 +M22

4M

ελ
εN
λ̂1λ̂1λ̂1
∗ . (5)

Note that the parameter space vectors have been expressed according to λ1λ1λ1 =
|λ1λ1λ1|λ̂1λ̂1λ̂1, ΛΛΛ = |ΛΛΛ|Λ̂̂Λ̂Λ, where λ̂1λ̂1λ̂1, Λ̂̂Λ̂Λ are unitary vectors along the λ1λ1λ1,ΛΛΛ directions.
Due to the structure of the light neutrino matrix the parameter space vectors
are—up to normalization factors—completely determined by neutrino mixing
angles and masses. For the normal hierarchical spectrum they can be written
according to [22]:

λ1λ1λ1 = |λ1λ1λ1| λ̂1λ̂1λ̂1 =
|λ1λ1λ1|√

2

(√
1 + ρU3U3U3

∗ +
√

1− ρU2U2U2
∗
)
, (6)

ΛΛΛ = |ΛΛΛ| Λ̂̂Λ̂Λ =
|ΛΛΛ|√

2

(√
1 + ρU3U3U3

∗ −
√

1− ρU2U2U2
∗
)
, (7)

where the UiUiUi’s correspond to the columns of the leptonic mixing matrix and

ρ =

√
1 + r −

√
r√

1 + r +
√
r
, r =

m2
ν2

m2
ν3 −m2

ν2

. (8)

2 Phenomenologically these models are similar to models where lepton number is slightly
broken (see e.g. references [22,23,24,25,26,27,28])
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Fig. 1 Decay branching ratio BR(µ→ eγ) normalized to |λ1λ1λ1|4 for the normal light neutrino
mass spectrum as a function of the common RH neutrino mass. The upper horizontal dashed
line indicates the current experimental upper limit from the MEG experiment [34], whereas
the lower dotted one marks prospective future experimental sensitivities [30].

3 Charged lepton flavor violating decays

Currently the most competitive bounds on charged lepton flavor violating pro-
cesses are placed for µ decays, being µ→ eγ, µ→ 3e and µ− e conversion in
nuclei the ones with the most stringent upper limits [29]. In addition it is for
these processes that the most tight bounds are expected in near-future exper-
imental proposals: MEG [30], Mu3e [31] PRISM/PRIME [32]. So henceforth
we will focus on µ decays, in particular on the reactions µ → eγ and µ → 3e
(for µ− e conversion in nuclei see ref. [21]).

3.1 µ→ eγ process

In the limit MW /M � 1 the decay branching ratio for this decay can be
written as [33]

BR(µ→ eγ) ' α

1024π4

m5
µ

M4

|λ1λ1λ1|4

ΓµTot

∣∣∣λ̂21 λ̂
∗
11

∣∣∣2 . (9)

Thus showing that apart from the parameters M and |λ1||λ1||λ1| this branching frac-
tion is entirely determined by low-energy data (see eqs. (6), (7) and (8)).
Figure 1 shows the results obtained from the full formula involving the com-
plete one-loop function (see ref. [21] for details) and by randomly generating
the low-energy observables in their 2σ allowed range [1,2] (normal hierarchi-
cal mass spectrum), the parameters |λ1λ1λ1| and M in the intervals [10−5, 1] and
[102, 106] GeV and the N1,2 mass splittings in the range [10−8, 10−6] GeV. As
can be realized from eqs. (6), (7), (8) and (9) the width of the band is due to
neutrino data uncertainties.

From fig. 1 it can be seen that BR(µ→ eγ) can reach the current experi-
mental upper bound [34] as long as MN < 0.1 TeV, 1 TeV, 10 TeV provided
|λ1λ1λ1| & 2× 10−2, 10−1, 1, respectively.
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Fig. 2 Decay branching ratio BR(µ− → e−e+e−) normalized to |λ1λ1λ1|4 for normal light neu-
trino mass spectrum as a function of the common RH neutrino mass. The upper horizontal
dashed line indicates the current bound on the µ− → e+e−e− rate placed by the SINDRUM
experiment [35], whereas the lower dotted one illustrates prospective future experimental
sensitivities of the Mu3e experiment [31].

3.2 µ→ 3e process

We now turn to the discussion of the µ → 3e process. This decay involves
dipole contributions, γ and Z penguins as well as box diagrams [33], so a
simple approximate formula as in the previous case does not exist. Following
the same numerical procedure than in the µ → eγ case we calculate the cor-
responding decay branching ratio. Fig. 2 shows the result for the branching
fraction normalized to |λ1λ1λ1|4 for the normal hierarchical mass spectrum.

It can be seen that BR(µ → 3e) can exceed the experimental upper limit
for RH neutrino masses MN < 0.1 TeV, 1 TeV, 10 TeV provided |λ1λ1λ1| &
2 × 10−2, 10−1, 1, respectively, very similar to the µ → eγ case. Mainly
due to the sensitivities of the planned future experiments (10−16 − 10−15)
this decay has the potential to probe considerably larger values of the RH
neutrino masses (compared with µ → eγ), reaching RH neutrino mass scales
in excess of O(105 GeV) for |λ1λ1λ1| ∼ 1. Finally we note that due to the strong
|λ1λ1λ1| dependence, values of |λ1λ1λ1| below 10−3 are not expected to yield observable
rates at near future experimental facilities even for RH neutrino masses of the
order 100 GeV.

4 Conclusions

We studied the implications of the seesaw global Abelian U(1)R symmetry on
lepton flavor violation, in the context of minimal seesaw models. We showed
that depending on the R-charge assignments—generically—two type of models
can be identified. A first class where the mechanism that suppresses the light
neutrino masses propagates to the lepton flavor violating observables, thus
implying negligibly small LFV effects. A second class in which the mechanism
“decouples” yielding in that way sizable rates for lepton flavor violating µ
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decays. We discussed µ → eγ and µ → 3e and showed that these processes
might have decay branching fractions within the reach of current or near-future
experiments.

Acknowledgements I want to thank Audrey Degee and Jernej F. Kamenik for the fruitful
collaboration that led to the paper on which this article is based.
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