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a b s t r a c t

We study the emergence of conventions in dynamic networks experimentally. Conventions are modeled
in terms of coordination games in which actors can choose both their behavior and their interaction part-
ners. We study how macro-level outcomes of the process in terms of Pareto-efficiency and heterogeneity
depend on initial conditions. Moreover, we examine the underlying processes at the microlevel. Predic-
tions are derived from a game-theoretic model which is applied to our experimental conditions by means
of computer simulation. The results provide mixed support for the macro-level hypotheses, and indicate
possible directions to improve the model at the micro level.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In many social and economic interactions, people have an inter-
est in aligning their behaviors with one another. We speak the same
language to communicate, we agree to the same traffic rules in order
to drive safely, and when writing an article together, it helps if com-
puter programs are compatible. In economic interactions, if trade
takes place in the marketplace, traders must at least manage to
meet at the same time and place. In a more abstract sense, coor-
dination problems are central to the problem of social order and
the emergence of institutions (see Hume [1739–40], 1978; Hardin,
2007). For instance, Hobbes’ Leviathan presupposes that citizens
coordinate on a leader to solve the problem of social order.

This paper is concerned with the situations in which coordina-
tion is problematic. It studies the role of social networks in how
actors handle coordination problems if the social network can be
changed by the actors and co-evolves with the actors’ behavior in
coordination problems. Moreover, we study the effects of infor-
mation availability in these networks on coordination. We use a
laboratory experiment in which subjects play coordination games
while choosing interaction partners. In this experiment, we test
hypotheses derived from a game-theoretic model reflecting the
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experiment. We apply analytical methods and computer simulation
to derive our hypotheses.

1.1. Coordination, conventions, and networks

Often, coordination problems are resolved by conventions, i.e.,
behavioral patterns that are mutually expected and self-reinforcing
(Lewis, 1969). Everyday conventions include traffic rules (driving
left or right), technological standards (GSM frequencies), spelling
standards, and rules for appropriate behavior, such as dress codes
and table manners (Elias, 1969; Ullmann-Margalit, 1977; Coleman,
1990). These conventions share the feature that, once established,
none of the actors involved has an incentive to deviate from the
convention, provided that others do not deviate.

In some coordination problems, there is no reason to prefer one
convention over another. The driving problem is a prominent exam-
ple, but the situation probably also holds for many etiquette rules
(e.g., does anyone really prefer “black tie” over “blue tie”?). In other
cases, possible conventions are ranked according to their utility for
all actors involved. For instance, we may choose between every-
one being self-sufficient or everyone specializing in one type of
labor, where the latter is more efficient (provided that others do the
same). A further classification might be made according to the con-
sequences of coordination failure. While some actions have higher
or lower payoffs if they are also chosen by others, actions may have
different consequences when they are not chosen by others. When
two people fail to coordinate in trying to lift a heavy object, the one
who does not lift is better off than the one who unsuccessfully lifts.
Still, both would have preferred to lift the object together. Similar
risks apply to many collective action problems (cf. Hardin, 1995).
Situations where it is problematic to reach socially and individu-
ally optimal conventions are central to this paper. The coordination
game in Fig. 1 represents such a situation for two actors.

0378-8733/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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Fig. 1. A coordination game and a numerical example.

This game has two pure Nash equilibria: (left, left) and (right,
right). The payoffs are higher for both players if both play left;
therefore (left, left) is the payoff-dominant or efficient equilib-
rium. Choosing left is also risky: if the other player plays left or
rightwith equal probability, the expected payoff of playing left is
lower than the expected payoff of playing right. Therefore, (right,
right) is the risk-dominant equilibrium (Harsanyi and Selten, 1988).
We refer to the actions associated with these two equilibria as
payoff-dominant and risk-dominant actions. The equilibria in the
coordination game can be interpreted as conventions. Throughout
this paper, we mostly use the term “convention” to refer to these
equilibria.

Early studies on multi-person coordination focus on global inter-
action (i.e., every actor interacts with every other actor). Such
theoretical models suggest that risk-dominant conventions are
more likely to occur even if they are inefficient (Kandori et al.,
1993; Young, 1993). This assertion is mirrored in experimental
studies that show how subjects’ behaviors often converge to risk-
dominant conventions (Cooper, 1990; Van Huyck et al., 1990). More
recent models recognize that in larger populations, actors adjust
their behavior not to everyone but rather to their local environ-
ment. One reason for this is that actors can only observe behavior
within a limited portion of the population. A more important rea-
son is that the very nature of the interaction does often not imply
global interaction. For example, one speaks the language spoken
by those one talks to, which is typically not the entire population.
Still, Young (1998) predicts that eventually everyone will play the
risk-dominant behavior even in coordination games played in a net-
work structure. These results are derived from a stochastic model in
which actors make random ‘mistakes.’ More deterministic models
find that the network matters for the likelihood of reaching payoff-
dominant behavior (Berninghaus and Schwalbe, 1996; Berninghaus
and Ehrhardt, 1998; Buskens and Snijders, 2008).

Although explicit theoretical models of coordination in net-
works are scarce, the topic is not: a large strand of sociological
literature studies processes of social influence in networks (see
Marsden and Friedkin, 1993, for an overview). A closely related body
of literature exists on threshold models of diffusion (Granovetter,
1978), including a number of studies looking at network effects on
diffusion (Abrahamson and Rosenkopf, 1997; Watts, 1999; Ehrhardt
et al., 2006; Centola and Macy, 2007). The network coordination
game applied in this paper may be interpreted as a game-theoretic
representation of social influence or diffusion.

All of these studies consider networks to be exogenous. It is
increasingly recognized, however, that the commonly observed
relation between networks and behavioral similarity can be
attributed not only to influence, but also to selection. Actors prefer
to interact with others who have similar characteristics or behave
similarly (McPherson et al., 2001). This implies that social net-
works also change in the feedback process between influence and
selection (Snijders, 2001; Knecht, 2008). Behavioral dynamics can
be expected to differ when networks are dynamic. For instance,
differences in behavior are more likely to persist if groups that
use different conventions self-segregate. This paper contributes to
a better understanding of such co-evolution processes. Thus, the

main question is: how do conventions in coordination problems and
networks co-evolve?

A number of studies address theoretical perspectives on this
question. Jackson and Watts (2002) propose a game-theoretic
model in which actors play coordination games in an endogenous
network and derive conditions under which constellations of net-
works and behavior are stochastically stable depending on the cost
of maintaining ties. Their main finding is that, whereas various net-
work structures are possible, behavioral choices in the coordination
game become homogeneous. Berninghaus and Vogt (2006) analyze
a similar (though deterministic) model, and find that networks can
emerge consisting of multiple unconnected groups, while differ-
ent conventions are maintained within various groups. (See also
Skyrms and Pemantle, 2000; Goyal and Vega-Redondo, 2005, for
related models.) These studies provide general characterizations
of networks that might emerge, but many different constellations
are still usually at least theoretically possible. To examine which
stable structures are more likely depending on various starting con-
ditions, Buskens et al. (2008) apply computer simulations. They
find that the density of the initial network has a strong influence
on the way behavior develops: the higher the density, the stronger
the influence of the initial behavioral distribution on the behavior’s
emergent distribution. Moreover, they find that if the initial net-
work is more segmented, then there is higher likelihood that two
groups with different behavior will emerge. More generally, it is
found that in a majority of the cases, a single convention is reached.

Our first aim is to empirically study which outcomes of the co-
evolution process are more or less likely given initial conditions,
such as initial network structures. For this purpose, our experimen-
tal setup includes three different initial eight-person networks: the
full network, the circle network, and the “two-squares” network
(see Fig. 2). By choosing these three network structures, we vary
both network density and segmentation.

All models discussed above assume that actors are fully
informed of all other actors’ past behavior. This assumption seems
highly unrealistic for many real-life contexts. In large populations, it
is typically impossible to keep track of all others’ behavioral choices.
But even in smaller populations this might be difficult if behavior
can only be discovered through interacting with or obtaining per-
sonal information about another actor. This could be the case for
both opinions and other types of behavior (e.g., choice of technol-
ogy, language). Our second aim is to examine what effect limited
information has on the co-evolution of networks and conventions.
We compare the situation in which actors observe past behavior of
all other actors in the network to the situation in which they only
observe their neighbors.

1.2. An experimental approach

Despite the growing theoretical interest in the co-evolution of
networks and behavior, empirical evidence testing these theories
is scarce. This is understandable given that the demands to data
suitable for testing these theories are very high. More specifically,
one needs detailed longitudinal information on social relations and
individual behavior. To test predictions at the network or macro
level, one needs sufficient variance and many observations at the
macro level. While collecting field data that meet these require-
ments is not impossible (e.g, Knecht, 2008), practical difficulties
mean that one usually must compromise on the number of obser-
vations at the network level, the number of observed time points,
or the “depth” of observation at the individual level.

As an alternative, we suggest laboratory experiments. Experi-
ments have a number of well-known advantages that make them
the preferred research method for behavioral approaches: the
experimenter is in considerable control of incentive structures,
information availability, and other ingredients of game-theoretic
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Fig. 2. Initial networks used in the experiment.

models that are hard to measure in real-life situations (Crawford,
1997; Camerer, 2003). Moreover, behavior can be unambiguously
observed in the laboratory. Accurate information on relations and
behaviors can be recorded at every time-point, and one can rel-
atively easily observe multiple networks and then examine the
effects of various conditions at the network level.

Experiments therefore allow for an explicit micro–macro per-
spective. We vary conditions at the macro level (such as initial
network structure and information availability), and study the
effects of these conditions on macro-level properties (i.e., emer-
gent conventions and the network structure). Because we also
observe all individual behavior, we can place the process “under
the microscope” and study how exactly macro-level conditions lead
– via individual behavior – to macro-level outcomes (cf. Coleman,
1990). When the theoretical model fails to correctly predict out-
comes at the macro level, it is possible to examine which aspects
of the micro-foundations are responsible for deviations. Moreover,
understanding the individual level processes that drive macro-level
processes’ dynamics might also help to predict which of many sta-
ble states are more or less likely to occur. Studying these micro-level
processes is our third aim.

A detailed examination at both the micro and macro levels is use-
ful, given current network evolution models. These models make
specific assumptions about, for instance, individual behavior and
information use. In real-life settings, such model assumptions are
hard to measure, which makes it difficult to assess which aspects
of a model are most empirically problematic. Experiments are use-
ful for developing and fine-tuning theoretical models before they
are tested more broadly using real-life data. We do not advocate
experiments, however, as the only way to study network evolu-
tion. Studying network evolution through experimental methods
also has disadvantages. As always with laboratory experiments,
the external validity of findings obtained under abstract laboratory
conditions is lower than for real-life data. Another problem is that
practical considerations usually prohibit using groups that approx-
imate group sizes considered typical in real-life human interaction.
Therefore, we consider experiments as a merely useful intermediate
step between developing network evolution models and “messy”
field research on real-world phenomena.

We aim to take maximal advantage of experimental methods’
benefits by explicitly making the experimental design and theoret-
ical model as similar as possible. We use computer simulations to
generate predictions tailor-made to our experimental conditions.
In this way, we hope to minimize the misfit between the model
and experimental conditions, and thereby obtain strong tests of our
hypotheses. Corbae and Duffy (2008) conducted one other experi-
ment on coordination games in dynamic 4-person networks. They
find that, in the presence of shocks, only networks consisting of
pairs are stable. By comparison, we use 8-person networks and
focus on the efficiency of emerging behavior, the influence of initial
network structures, and information availability.

Our study reflects the micro–macro approach sketched above.
First, we specify a formal model of the co-evolution of coordina-
tion and networks taking into account the arguments for limited
information availability. We analytically characterize this model’s
stable (macro-)states. Second, we conduct computer simulations to
generate more precise macro-level predictions of the experimental
conditions. We formulate hypotheses at both the micro and macro
levels. Third, we report the results of an experiment that tests our
hypotheses.

2. Model and simulation

2.1. The model

First, we define the underlying game: a coordination game
played in a network. Actors interact if there exists a tie between
them. The actors with whom an actor interacts are called neighbors.
Actors play a repeated multi-person coordination game as shown
in Fig. 1 with their neighbors, choosing only one of two actions
against all neighbors. In each period, they receive payoffs from all
interactions with their neighbors.

We assume that actors update their actions according to myopic
best-reply behavior (cf. Kandori et al., 1993); that is, they optimize
their payoff in the current period, assuming that the other actors
act as they did in the previous period. When actors are indifferent
between two actions, they do not change their behavior. It is easy to
verify that actors play the payoff-dominant action (left) if and only
if the proportion of neighbors playing left is at least (a − b)/(a −
b − c + d). We refer to this quantity as the risk threshold.

Maintaining ties is costly. In each period, actors pay for each
tie. In real life, people face constraints on time and effort in the
maintenance of social relationships. In related models, this is often
translated into the assumption that there is a fixed upper limit to
the number of ties one can maintain. We generalize this assump-
tion using a convex cost function, such that the marginal tie cost
increases with the number of ties. Specifically, the cost of t ties in
period p to actor i is given by k(t)ip = ˛kip + ˇk2

ip
, with ˛ = 6 and ˇ =

1. An alternative interpretation is that interactions have decreas-
ing marginal returns: the net benefits of interactions decrease with
every additional relation.

We introduce network dynamics through the following assump-
tions. In every period, all actors can propose one new tie to another
actor, or they can remove one existing tie. Ties are created by mutual
consent: a new relation is formed only if both parties agree to it.
Existing ties can be dissolved unilaterally. This assumption is a con-
sequence of ties representing interactions, which by nature require
the consent of both parties involved. Actors are assumed to choose a
change in ties (if any) that yields the highest expected payoff, given
the actions of other actors in the previous period. If several changes
yield the same payoff, a random choice is made between them.
Both in the simulation and the experiment, the dynamic process
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described above runs in three phases per period:

(1) Each actor initiates at most one change in ties. Either a new tie
is proposed, an existing tie is severed, or nothing is changed.
Bilateral proposals immediately result in ties, and removals are
immediately implemented.

(2) Actors choose to accept or reject incoming (unilateral) propos-
als from phase 1.

(3) Actors choose an action in the multi-person coordination game
in the network that results from phases 1 and 2. They receive
their payoffs for this period.

While earlier models assumed that actors observed the behav-
ior of all actors in the network, we introduce limited information.
We assume that the extent to which actors observe others’ behav-
ior in the previous period depends on the network. We study two
information regimes:1

(1) Local information: actors only observe the behavior of their
neighbors;

(2) Global information: actors observe the behavior of all actors.

The information on behavior by actors other than neighbors is
relevant only when actors make decisions about creating new ties.
When actors update their behavior, they react only to their neigh-
bors, so information about other actors does not play a role. Severing
ties obviously only occurs between neighbors, so the distinction
between the two information regimes is also irrelevant for this sit-
uation. Because network structure beyond direct adjacency does
not enter into actors’ considerations, other informational assump-
tions, e.g., what actors know about the network structure, does not
affect our predictions.

We need one additional assumption to model how actors decide
when choosing new neighbors if they only have information on
their neighbors’ behavior. We assume that actors use their neigh-
bors’ behavior to predict the behavior of others who they do not
observe. If a proportion p of those that they observe (neighbors plus
themselves) play action Y, they will assume that anyone else plays
Y with probability p. Given this probability p, an actor proposes a
tie to someone they cannot observe only if the expected benefits
are larger than the tie costs.

2.2. Analytic results

We define a constellation of network ties and behavior as stable
if two conditions are satisfied. First, no actor has an incentive to
change his or her behavior, given the behavior of neighbors. Second,
the network is pairwise stable, as defined by Jackson and Wolinsky
(1996): no actor has an incentive to sever a tie, and no tie can be
added without the consent of both parties.

Stable states can be formally characterized using the following
definitions and theorems:

Definition 1. A (sub)network is t-full if and only if none of the
actors have more than t ties and either (a) the addition of a tie
causes at least one actor to have more than t ties, or (b) no ties can
be added to the (sub)network.

Definition 2. t̄z is the maximum number of ties an actor wants to
have if she chooses action Z, where Z ∈ {l(eft), r(ight)}.

1 These two extreme scenarios are special cases of a more general model in which
an actor can observe neighbors only at a specific distance. Additional simulation
results on intermediate cases did not imply new substantive hypotheses that were
interesting for further experimental testing.

Theorem 1. Consider the co-evolution process as specified above.
Assume that tie costs are equal to k(t) = ˛t + ˇt2, where ˛ > b and
ˇ > 0. Under global information, networks are stable if and only if they
satisfy one of the following conditions:

(1) All actors choose the same action Z, where Z ∈ {L, R}, and the net-
work is t̄Z-full.

(2) The network consists of two subnetworks of actors playing left and
right, and these subnetworks are t̄L-full and t̄R-full, respectively,
and there are no ties between the two subnetworks.

Theorem 2. Consider the co-evolution process as specified above.
Assume that tie costs are equal to k(t) = ˛t + ˇt2, where ˛ > b and
ˇ > 0. Under local information, networks are stable if and only if they
satisfy one of the following conditions:

(1) All actors choose the same action Z, where Z ∈ {L, R}, and the net-
work is t̄Z-full.

(2) The network consists of two subnetworks of actors playing left and
right, and these subnetworks are t̄L-full and t̄R-full, respectively.
There are no ties between the two subnetworks, and for at most
one action Z ∈ L, R, there exists an actor who chooses Z and has
less than tZ ties.

Theorem 1 states that, in any stable state, the network consists
of one or more such subnetworks, within which all actors play the
same action. The number of ties within each component is the max-
imum that the actors can afford given the payoffs to their actions
and the tie costs. Within these boundaries, however, many different
constellations are possible, such as only one component in which a
single convention is played, several components playing the same
convention, or several components playing different conventions
(cf. Jackson and Watts, 2002. For the proof of Theorem 1, we refer
to Buskens et al. (2008).

Under local information, our decision rule implies that actors in
a homogeneous component guess that actors in other components
also behave the same as themselves. The reason for this is that actors
only observe their own behavior in the component. Therefore, we
need the extra condition in Theorem 2. The argumentation for this
extra condition is rather obvious given that, when this condition is
not fulfilled, at least two actors want to establish a new tie. After
the actors discover that they play different actions, two things might
happen. Either the tie is severed again, or one of the actors changes
behavior and becomes part of the other subnetwork. In the former
situation, the two actors continue to create and sever the tie.

For our experimental conditions, we characterize the general
results on stable states more precisely. The experiment is conducted
with groups of eight players, who play one of the two games shown
in Fig. 3. The tie costs are defined as k(ti) = 6ti + t2

i
, such that, for

both games, tL = 7 and tR = 5. That is, given this cost function and
the payoffs in the games, actors playing left can profitably maintain,
at most, seven ties (with other actors also playing left), while actors
playing right can profitably maintain, at most, five ties (with other
actors also playing right).

Fig. 3. The coordination games as used in the experiment.
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According to Theorem 1, this means that in our eight-actor setup
the following types of constellations are stable under global infor-
mation:

• All players playing left, with all ties present;
• All players playing right, with all players with a degree less then

five connected to one another. This may be a single component
with all players having five ties, a single component with two
players having two ties each, and six players with five ties, or two
components: one full component of six players and a dyad.

• Heterogeneous constellations in which some players play right
and others play left. In these cases, the network will consist of
two components with all ties present within the components.

Under local information, both homogeneous constellations are
still stable, but most of the heterogeneous constellations do not
fulfill Theorem 2. Consider the case where there are two fully con-
nected components: one component of three players playing left,
and one of five players playing right. Because behavior within the
subnetworks is homogeneous, these actors conclude that the actors
in the other subnetwork also play the same action, in which case
it would be profitable to form ties. Thus, ties are formed. Subse-
quently, depending on the specific payoffs in the game, left-players
might switch to right. Alternatively, the tie is severed again in the
next period. As a result, the only heterogeneous stable constella-
tions under local information consist of six right-players in a full
component and a dyad of left-players.

2.3. Simulation

Given the characterization of possible stable states in our exper-
imental conditions, an open question is which of these stable states
are more or less likely to arise given specific initial conditions. To
derive such predictions, we perform computer simulations of our
model with experimental conditions as parameters. The aim of the
simulations is to derive sharp predictions for this parameter space,
rather than explore the behavior of the model under many condi-
tions (see Buskens et al., 2008, for a broader investigation).

We study the following conditions:

• Two payoff sets for the coordination game as shown in Fig. 3
that only vary in the risk involved in playing left. Because the
risk is lower in Game I than in Game II, we label them “low risk”
and “high risk,” respectively; in both games, playing right is risk-
dominant.

• Two information regimes as described above, in which actors can
either observe the actions of all other actors or their neighbors’
actions only.

• Three initial networks with eight actors: the full network, the
circle network, and the two-squares network (see Fig. 2).

• The propensity to play left in the first period, using 2/8, 3/8, 4/8,
5/8, and 6/8.

The combination of these parameters leads to 60 different com-
binations. We simulate the network formation process until we
obtain a stable situation for each of these combinations, and repeat
the process 400 times. Altogether, this results in a simulated dataset
of 24,000 cases.

On average, it took 40.37 tie changes and 2.65 behavioral changes
to reach a stable state. Of all the simulations, 76.5% converged
to a homogeneous constellation in which all actors played the
same action in the coordination game. In the remaining 23.5%,
heterogeneous constellations emerged. We define efficiency as the
proportion of actors in the network playing the payoff-dominant
action left. Average efficiency over all simulation runs was .31.
Overall, most situations converged to a homogeneous inefficient
convention, and both efficient homogeneous outcomes and het-
erogeneous outcomes occurred less frequently.

For a more detailed examination of our results, we examined
average efficiency levels and heterogeneity in stable states per infor-
mation regime and initial network, separately for the two risk
levels. To quantify the extent of heterogeneity, let �L indicate the
proportion of actors playing left. Heterogeneity is defined as h =
4�L(1 − �L). The measure varies between 0 and 1, and equals 1 when
�L is exactly 1/2 (indicating maximal heterogeneity), and equals 0
when �L is either 0 or 1 (indicating homogeneity). The results are
shown in Figs. 4 and 5.

The amount of risk involved in playing lefthas a strong effect on
the resulting efficiency in stable states: efficiency is clearly lower
when risk is higher (on average, the difference is .19). Effects of
the initial network are clearly visible only under the high-risk con-
dition, where efficiency appears to be lowest when starting from
the two-squares network and highest when starting from the full
network. These differences, however, are small. Effects of the infor-
mation regime are virtually absent, except under the initial circle
network with high risk, where efficiency is clearly lower under local
information than under global information.

Heterogeneity is lower if risk is higher (−.21 on average). Thus, if
we combine this finding with the results on efficiency in the previ-
ous paragraph, it appears that the higher efficiency in the low-risk
condition is largely caused by more heterogeneous cases (rather
than homogeneous efficient cases). We can also see an effect of the
initial network. Especially in the low-risk condition, heterogene-
ity appears to be lower when starting with a full network. In the
high-risk condition, this difference is also present, but only under
global information. Unlike efficiency, heterogeneity clearly differs
between the two information regimes. In all cases, except with
the full initial network, heterogeneity is lower under local infor-
mation. This seems somewhat counter-intuitive. The explanation
is that with more information, it is easier to avoid actors who play a

Fig. 4. Average efficiency by risk level, initial network, and information regime (simulation results).
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Fig. 5. Average heterogeneity by risk level, initial network, and information regime (simulation results).

different action. This is also consistent with the analytic result that
most heterogeneous stable states under global information become
unstable under local information.

Buskens et al. (2008), who analyze a similar model, report a
strong effect of the initial behavioral distribution, as well as inter-
action effects of other parameters with this initial distribution. We
examine this issue by running regression analyses with efficiency
in the stable state as the dependent variable, and the initial pro-
portion of actors playing left(pleft) and the density of the initial
network (full) as independent variables. Because we look at only
three different types of initial networks, density is, in practice, a
dummy variable. As we are interested in the effect of initial density
on the effect of the initial behavioral distribution, we also include
an interaction effect between the two.

To estimate the effects of the independent variables on the pro-
portion of actors playing left, we treat each case (i.e., a group of
eight actors) as a number of successes (actors playing left), and
apply logistic regression to predict the likelihood of success at the
actor level. Because this approach inflates the number of observa-
tions, standard errors are adjusted accordingly.2 We conduct the
analysis for the two risk levels and the two information regimes
separately (Table 1).

In both information regimes, the initial behavioral distribution
has a very strong effect on efficiency. The main effect of the ini-
tial network’s density (referring to the effect of density when the
initial distribution of behavior is .5) is small and negative. There is
also a rather strong positive interaction effect between density and
the initial behavioral distribution. This means that the effect of the
initial behavioral distribution is especially strong when the initial
network is full, and smaller when the initial network is sparse. So,
if networks are initially dense, having a majority perform a certain
action leads to a stronger “pull” on the rest of the population.

2.4. Overview of micro- and macro-level hypotheses

To conclude the theoretical portion of the analysis, we formu-
late the micro- and macro-level hypotheses that we will test. The
micro-level hypotheses refer to the individual actor’s behavior, as
assumed in the model. The macro-level hypotheses are based on
the simulation results.

The first micro-level hypothesis describes how actors decide
on their actions when playing the coordination game. The model
assumes that actors play according to a best-reply logic: they
adapt their behavior to what their current neighbors played dur-
ing the previous period. As stated in Section 2.1, actors only play

2 To estimate this model, we use the “blogit” procedure in Stata 9 (StataCorp,
2005).

the payoff-dominant action left if the proportion of their neigh-
bors also playing left is at least as large as the risk threshold. These
assumptions translate directly into the following hypothesis:

Hypothesis 1.1. Actors play left if and only if the proportion of
their neighbors who played left in the previous period exceeds the
risk threshold.

The next two micro-level hypotheses relate to how actors decide
to create or delete ties in the network. In the experiment, tie costs
are chosen such that the cost of a tie between two actors playing
different actions is always larger than the payoff. This leads to the
following hypothesis:

Hypothesis 1.2. Actors sever ties with neighbors who played an
action different from their own in the previous period.

Hypothesis 1.2 applies to both global and local information,
because when deleting a tie, actors are already aware of a specific
actor’s previous behavior. When creating new ties, the situation
is different. Actors can only observe the behavior of potential
neighbors under global information, leading to the following
hypothesis:

Hypothesis 1.3. Under global information, actors create new ties
with other actors who played the same action as their own action
in the previous period.

Under local information, actors cannot observe the behavior of
potential neighbors, and are assumed to “guess” this behavior using
the average behavior of their current neighbors. Given that actors
only want to create ties with actors who they expect to play the
same action as themselves (see above), this implies that, under local
information, an actor only wants to create a tie with an unobserved
other actor if enough of her current neighbors also play “her” action.
We could specify an exact proportion of neighbors who must play
the same action for that actor to be willing to establish a new tie
with an unobserved other actor. Instead, we formulate an implica-
tion of this assumption in more general terms, and only predict the
direction of the neighbors’ behaviors’ effect on the likelihood that
new ties will be formed.

Hypothesis 1.4. Under local information, the higher the propor-
tion of an actor’s neighbors who play the same action as this actor,
the higher the likelihood that the actor proposes a new tie.

The macro-level hypotheses are based on the results of the sim-
ulation. The first macro-level hypothesis concerns the effect of risk
on efficiency, and follows from Fig. 4 and Table 1.

Hypothesis 2.1. The higher the risk involved in playing an efficient
action, the lower the efficiency in stable states.



10 R. Corten, V. Buskens / Social Networks 32 (2010) 4–15

Table 1
Logistic regression for grouped data on efficiency, per information regime and risk level (simulation results).

Low risk High risk

Information regime

Local Global Local Global

Coeff. S.e. Coeff. S.e. Coeff. S.e. Coeff. S.e.

pleft 11.30 0.16 10.65 0.14 17.64 0.56 12.74 0.27
full −0.36 0.08 −0.71 0.08 −2.61 0.37 −3.39 0.32
full× pleft 17.34 1.03 18.49 0.95 22.72 2.04 22.64 1.73
Constant −6.79 0.10 −6.04 0.08 −13.46 0.41 −9.44 0.19
Number of groups 6000 6000 6000 6000
Log pseudolikelihood −13,461.51 −14,032.85 −7097.06 −9985.47
McFadden’s pseudo R2 0.58 0.57 0.70 0.61

A second set of hypotheses about the effects of the initial net-
work and information regime on efficiency follows from Fig. 4 and
Table 1.

Hypothesis 2.2. The higher the initial efficiency, the higher the
efficiency in stable states.

Hypothesis 2.3. The higher the initial network’s density, the lower
the efficiency in stable states.

Hypothesis 2.4. The higher the initial network’s density, the
stronger the effect of the initial behavioral distribution on the
emerging distribution of behavior.

Lastly, we derive a set of hypotheses that are concerned with
effects on heterogeneity following from the results on heterogene-
ity in Fig. 5.

Hypothesis 2.5. Higher initial network density leads to lower het-
erogeneity in stable states.

Hypothesis 2.6. In initially sparse networks, more information
leads to higher heterogeneity in stable states.

3. Experimental design

We test these hypotheses in a computer-aided experiment,
designed to reflect both the assumptions of the theoretical model
and its implementation in the simulation model as closely as pos-
sible. Subjects played the repeated coordination games used in the
simulation, choosing one strategy with all neighbors, while also
having the opportunity to choose with whom they interacted. The
experimental conditions included the three initial networks used
in the simulation (see Fig. 2), the two information regimes, and the
two risk levels. The games used in the experiment are shown in
Fig. 3. Groups of eight subjects played one of the games for 15 sub-
sequent periods. In each period, they faced the following decisions
(in this order):

(1) Decide whether to change one relation: that is, propose one new
link to another subject or unilaterally sever one existing link;

(2) Decide whether to accept incoming proposals from other sub-
jects;

(3) Choose their behavior (left or right).

Because subjects could also accept incoming proposals, more
than one tie per subject may change in a given period. This setup is
identical to the procedure used in the simulation. Only in the first
period could subjects not change their network, because this was
imposed as an experimental condition.

As in the simulation, the cost function for ties was k(ti) = 6ti + t2
i

,
with ti the number of ties for subject i. In practice, the cost function
was not presented to the subjects literally; instead, the instruction

included a table showing the total costs for each possible number
of ties.

Under global information, subjects were shown their current
neighbors at the beginning of each period, as well as group mem-
bers’ behavior in the previous period. Under local information,
subjects saw only the behavior of their neighbors from the previous
period. At the end of each period, the resulting payoffs were shown,
as were current neighbors and the behavior of either all subjects or
only neighbors (again, depending on the information regime).

Appendix A, available as an electronic supplement, provides
some translated screen-shots from the computer interface, as well
as the translation of the complete instructions. The experiment was
in Dutch. The interface did not provide any information about the
structure of the network, besides showing who the subject’s direct
neighbors were. This means that the two-squares network and the
circle network could not be distinguished by subjects. That is, on
screen, the two-squares network and the circle network looked
exactly the same. Therefore, differences in outcomes between these
two conditions can only be due to the dynamic process. At the bot-
tom of the screen, subjects could review the complete history of
their interactions. In this way, we meant to reduce unobserved
differences between subjects in their ability to memorize previ-
ous events. No communication between subjects was allowed. The
experiment was programmed and conducted with z-Tree software
(Fischbacher, 2007). After the experiment, subjects were paid D0.01
for every point earned during the experiment. All sessions took
place at the Experimental Laboratory for Sociology and Economics
(ELSE) at Utrecht University.

Subjects were recruited from amongst undergraduate students
at Utrecht University using the internet recruitment system ORSEE
(Greiner, 2004). Using this system, we recruited subjects year-
round and then invited them for experiments as needed.

For each session, 16 subjects were invited. Subjects were ran-
domly assigned to workstations, and received instructions on paper
after a short verbal introduction. After reading the instructions, the
subjects played three practice periods, in which they played against
simulated subjects instead of against one another. This facet was
explicitly communicated. During the entire experiment, subjects
were never deceived and were always allowed to ask for assistance
from the experimenters (which happened rarely).

After the practice periods, the subjects played the experimental
game for 15 periods in two groups of eight. After these 15 periods,
the subjects were re-matched into two different groups of eight,
and again played the game for 15 periods (though under a different
condition). The new condition always involved a different initial
network, a different information regime, and the same payoffs.

4. Results

We first present some general macro-level results, and then pro-
ceed to test the macro-level hypotheses (Section 4.1). In Section 4.2,
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Fig. 6. Average proportion left-choices in six conditions.

we test the micro-level hypotheses on individual decisions in the
coordination game. In Section 4.3, we test the micro-level hypothe-
ses on linking decisions.

4.1. Macro-level results

The experiment involved 12 sessions with 192 subjects, over 90%
of whom were students, mostly freshmen. Students came from over
30 different fields, the most numerous of these being sociology,
economics, and psychology. Out of all subjects, 61% were female
and the average age was 22.1 years. Each session took about 75 min
to complete. Subjects earned D12.30 on average. Because subjects
played under two conditions, we had a total of 48 groups. One of the
sessions (with two groups) did not completely run until the 15th
period in the second condition due to a technical problem, such that
we only have data from 46 groups for some of the analyses.

Fig. 6 presents the average proportion of people choosing left
per initial network per period for each information regime. From
this figure it is immediately clear that subjects had a tendency to
choose left. A majority of subjects chose left in all but one con-

dition from the first period. This is largely consistent with earlier
experimental research on coordination games (cf. Straub, 1995). In
the final period, 74% of all subjects played left. Of all groups, fif-
teen converged on playing left and only four converged on playing
right. Eight of the fifteen left-playing groups also reached a stable
state in tie choices; that is, they had established a full network after
15 periods. None of the right-playing groups managed to reach a
stable state in tie choices, although their behavior was stable. One
group reached a stable state with heterogeneous behavior under
global information: after 15 periods, the network consisted of a full
component of five subjects playing left, and a full component of
three subjects playing right, with no links between the two com-
ponents. A second group converged on this constellation under local
information, although this was not stable given model assumptions.

To investigate the macro-level outcomes of the co-evolution pro-
cess, we take all observations from the 15th period. Table 2 shows
the efficiency and heterogeneity for each experimental condition,
and also shows totals for the three initial networks and two infor-
mation regimes. Figs. 7 and 8 present a graphical impression of
these results in a similar fashion as that for the simulation (see
Figs. 4 and 5).

To test Hypothesis 2.1, we compare the average efficiency
between risk levels. Clearly, efficiency is lower in the high-risk con-
dition (.92 vs. .67), which is significant using a Mann–Whitney test
(p = 0.006) and supports Hypothesis 2.1.

In accordance with Hypothesis 2.3, efficiency is lowest for the
full initial network (rightmost column of Table 2). This difference,
however, is not significant. Moreover, closer inspection reveals that
the difference only occurs under global information; under local
information, the difference is either zero or reversed.

To test Hypotheses 6–8 on efficiency, we run a regression anal-
ysis similar to that in the simulated data (see Table 1): logistic
regression for grouped data on the number of left-choices in period
15 as the dependent variable. The unit of observation in this anal-
ysis is the individual decision; standard errors are adjusted to

Table 2
Efficiency and heterogeneity per experimental condition (N = 46).

Initial network Risk level and information regime

Low risk High risk Total

Local Global Total Local Global Total Local Global Total

Two squares Efficiency 0.97 0.75 0.90 0.66 1.00 0.83 0.81 0.92 0.86
Heterogeneity 0.11 0.50 0.24 0.30 0.00 0.15 0.20 0.17 0.19

Circle Efficiency 1.00 0.97 0.98 0.41 0.81 0.61 0.70 0.89 0.80
Heterogeneity 0.00 0.11 0.05 0.45 0.47 0.46 0.23 0.29 0.26

Full Efficiency 1.00 0.75 0.88 0.63 0.53 0.58 0.81 0.64 0.73
Heterogeneity 0.00 0.00 0.00 0.25 0.33 0.29 0.13 0.16 0.14

Total Efficiency 0.99 0.84 0.92 0.56 0.78 0.67 0.78 0.81 0.79
Heterogeneity 0.04 0.14 0.09 0.33 0.27 0.30 0.18 0.21 0.20

Efficiency = efficiency, Heterogeneity = heterogeneity.

Fig. 7. Average efficiency in the last period by risk level, initial network, and information regime (experimental results).



12 R. Corten, V. Buskens / Social Networks 32 (2010) 4–15

Fig. 8. Average heterogeneity in the last period by risk level, initial network, and information regime (experimental results).

account for the fact that individuals are clustered in 46 groups.
To improve statistical power, we pool observations from different
conditions and analyze them simultaneously, using control vari-
ables for the various conditions. As independent variables, we use
the distribution of behavior in period 1 (pleft), a dummy variable
indicating whether the initial network was the full network (full),
and the interaction between the two. The main effect of the net-
work dummy refers to the situation where efficiency in period 1
is .5, because this variable is centered at .5. Moreover, we include
a dummy for local information (local) and a dummy for high-risk
level (high risk). Table 3 presents the results of the analysis. There
is a strong positive effect of initial behavior on behavior in the last
period, which confirms Hypothesis 2.2. Also, there is a smaller but
significant negative effect of starting in the full network, which
supports Hypothesis 2.3.

There is a positive but insignificant interaction effect between
the initial proportion playing left and the full network. Hypothesis
2.4 can therefore not be confirmed.

Unlike in Table 2, there is no significant effect of high risk after
controlling for the behavior in the first period. This suggests that
differences between risk conditions in the final period are caused
by differences in subjects’ decisions in the first period, when they
are not yet reacting to other subjects, and not by differences in the
co-evolution process.

Table 2 shows average heterogeneity in the last period by exper-
imental condition. Hypothesis 2.5 predicts that a higher density
of the initial network leads to lower heterogeneity. Heterogene-
ity is indeed lower in the full network condition than in the other
two conditions combined. This difference, however, is not signifi-
cant using a Mann–Whitney test. Thus, Hypothesis 2.5 cannot be
supported.

Hypothesis 2.6 predicted that more information leads to greater
heterogeneity, especially in low-density networks. Heterogeneity
is lower under local information in the circle network (.23 vs. .29),
but not in the two-squares network (.20 vs. .17). Moreover, these

Table 3
Logistic regression for grouped data of the proportion playing left (experimental
results).

Coeff. S.e. p

pleft 8.77 2.71 0.00
full −2.25 0.87 0.01
full× pleft 8.81 7.07 0.21
local −0.76 0.61 0.22
high risk −0.32 0.71 0.67
Constant −2.38 2.32 0.30
Number of obs. 368
Log pseudolikelihood −100.09
McFadden’s pseudo R2 0.46

Fig. 9. Proportion of subjects playing left by proportion of their neighbors playing
left in the previous period.

differences are not significant. Also, if we compare heterogeneity
between local and global information over all networks, there is no
significant difference.3

4.2. Individual behavior I: decisions in the coordination game

We analyze individual behavior to assess the extent to which the
model reflects actual decision-making by subjects. Hypothesis 1.1
states that subjects should play left only if the proportion of their
neighbors who played left in the previous period exceeds the risk
threshold. First, we plot average efficiency against the distribution
of neighbors’ behavior in the previous period for both risk levels
separately. Under the assumption that people exclusively play a best
reply against what their neighbors did in the previous period, sub-
jects are expected to play right under low risk as long as less than
58% of their neighbors play left. Under high risk, this percentage is
73%.

Fig. 9 shows a somewhat more complicated picture. Clearly, sub-
jects switch to left at lower proportions than the .58 and .73 thresh-
olds. Already, the proportion of left-choices increases considerably
in both cases at levels above .35. This indicates that subjects tend
to take on more risk than the simple myopic best-reply heuristic of
the model assumes. However, subjects’ behavior is strongly asso-
ciated with their neighbors’ behavior in the previous period. For
the majority of subjects, the threshold for switching lies between

3 If we use regression analysis to predict heterogeneity with multiple predictors
simultaneously, we find the same results.
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Table 4
Logistic random intercept regression on playing left, per information condition.

Information regime

Global Local

Coeff. S.e. p Coeff. S.e. p

neigthres 1.01 0.45 0.03 −0.06 0.44 0.89
neighleft 3.78 0.67 0.00 5.98 0.77 0.00
egoleft 1.52 0.29 0.00 2.88 0.26 0.00
groupleft 2.11 0.77 0.01 – – –
high risk −0.16 0.37 0.67 −1.10 0.38 0.00
period 0.01 0.03 0.69 0.06 0.03 0.07
numties 0.06 0.08 0.49 0.07 0.08 0.37
part 0.76 0.39 0.05 0.25 0.30 0.40
Constant −4.07 0.55 0.00 −4.05 0.57 0.00
Var. ind. level 1.21 0.53 0.85 0.45
Var. group level 0.00 0.00 0.00 0.00
Number of obs. 2520 2677
Log likelihood −361.25 −324.22

.4 and .6. Although the payoff functions are different in both risk
conditions, subjects’ reactions to their neighbors are very similar.

Fig. 9 shows only the bivariate relation between neighbors’
behavior and the subjects’ own behavior. To isolate the effect of
neighbors’ behavior from those of other effects, we conduct a
logistic regression analysis with behavior as the binary dependent
variable and subjects’ decisions in every period as the unit of obser-
vation. Because observations within and between subjects are not
independent, we use a model with a random intercept at the indi-
vidual and the group levels. To test whether it is really the risk
threshold that matters, we include a dummy variable indicating
whether the proportion of neighbors who played left in the pre-
vious period exceeds the threshold (neigthres), in addition to the
proportion of the subject’s neighbors playing left (neighleft) in
the previous period. According to Hypothesis 1.1, neigthres should
have a significant positive effect, but there should be no addi-
tional significant effect of the proportion of neighbors playing left
(neighleft). As control variables, we include a dummy variable for
high risk (high risk), the subject’s own behavior in the previous
period (egoleft), and the proportion of the whole group playing
left (groupleft). The latter variable is only included in the model
for global information, as subjects were not informed about the
behavior of the group beyond their own neighbors. Furthermore, we
include time (period), the number of ties a subject has (numties),
and whether the decision was made in the first part or the sec-
ond part of the experiment (part). Because this set of variables
differs between information regimes, we estimate separate models
for each regime (Table 4).

To test Hypothesis 1.1, we compare the effects of neigthres and
neighleft. Under global information, there is a significant positive
effect of neigthres, as predicted: subjects are more likely to play
left if the proportion of neighbors who played left exceeds the risk
threshold. However, in contradiction with Hypothesis 1.1, there is
an additional effect of neighbors’ behavior (neighleft). Under local
information, there is only an effect of neighleft, and no significant
effect of the specific threshold. Thus, although these results again
show that subjects do strongly react to their neighbors’ behavior,
their behavior does not conform exactly to the threshold effect as
predicted by Hypothesis 1.1. There is also a significant effect of sub-
jects’ own behavior in the previous period, indicating some degree
of behavioral inertia, especially under the local information condi-
tion. Under global information, the average behavior of the group in
the previous period has a significant positive effect. Thus, control-
ling for the behavior of neighbors in the previous period, subjects
tend to go along with the rest of the group. A possible explanation
for this finding is that subjects are to some degree forward-looking;
that is, they adapt to the behavior by non-neighbors in anticipation

of becoming neighbors themselves. Under the global information
condition, there is also a weakly significant effect of part, indicating
that subjects were more likely to play left when they were play-
ing the second set of 15 periods, after the reshuffling of groups.
Nevertheless, additional analyses (not reported here), in which we
estimate the same models but use only observations from the first
15 periods (before rematching) do not show substantive differences.

These findings suggest ways in which our actor model could
be improved. One way would be to endow actors with forward-
looking capabilities. Deriving precise implications from such an
adapted model is beyond the scope of this paper (i.e., it would
require another simulation exercise as in Section 2). To specu-
late, however, we expect that if it is true that efficiency is higher
than expected because right-playing subjects anticipate ties with
left-playing non-neighbors, this effect is smaller under local infor-
mation (because subjects cannot observe non-neighbors). This is
consistent with the results in Table 2 showing that efficiency is
lower under local information.

4.3. Individual behavior II: linking decisions

Fig. 10 shows the proportion of ties created and dissolved by
information regime. The results distinguish between pairs playing
similar or dissimilar behavior. Ties between actors playing the same
action (similar pairs) are created more frequently than ties between
actors playing different actions (dissimilar pairs). Under local infor-
mation, this relationship is much weaker because actors have to
guess who will act similarly.4 Ties between dissimilar individuals
are more likely to be dissolved than ties between similar individ-
uals. These results are all significant. Thus, subjects tend to sever
ties with neighbors who behave differently in either information
regime, and create ties more often with subjects who display sim-
ilar behavior as far as they can observe. Hypotheses 2 and 3 are
therefore confirmed.

Fig. 10 does not show how subjects make linking decisions under
local information. In the simulation model, we assumed that actors
use information on their neighbors’ behavior and “project” this
onto potential neighbors. To investigate whether subjects use this
heuristic, we run a random intercept logistic regression analysis of
the decision to create at least one new tie (either doing by making
or accepting a proposal). The unit of analysis is the subject-period;
the dependent variable is coded 1 if the subject created at least one
new tie during the period, and 0 otherwise. Because we are inter-
ested in the creation of new ties, we only include cases in which the
maximum profitable number of ties (5 or 7) was not yet reached.
Moreover, to account for the interdependence of decisions within
subjects over periods and between subjects within groups, we again
add random intercepts at the subject level (14 periods per subject)
and the group level (eight subjects per group).

We include as independent variables the number of ties the sub-
ject already has (numties), the subject’s behavior in the previous
period (egoleft), the average behavior of the subject’s neighbors in
the previous period (neighleft), and the proportion of neighbors
acting the same as the focal subject (neighsim). We hypothesize
that the effect of neighsim is positive: the more a subject experi-
ences that his local environment acts like him- or herself. Lastly,
we add the period (period), risk level (high risk), and whether the
decision was made in the first or second part of the experiment
(part).

Table 5 shows the results. First, the significant negative effect of
numties reflects the increase in marginal tie costs as implemented

4 The small difference still noticeable under local information might be due to
subjects avoiding other subjects with whom they just dissolved a tie: these subjects
are more likely to play dissimilar behavior.
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Fig. 10. Proportions of ties changed.

Table 5
Random intercept logistic regression analysis on creating at least one new tie with
local information.

Coeff. S.e. p

egoleft 0.01 0.17 0.95
neighleft 0.05 0.25 0.84
neighsim −2.15 0.30 0.00
numties −0.39 0.05 0.00
high risk −1.02 0.27 0.00
period −0.08 0.02 0.00
part 0.48 0.22 0.03
Constant 4.87 0.67 0.00
Var. ind. level 0.01 0.07
Var. group level 0.24 0.09
Number of obs. 1509
Log likelihood −869.29

in the cost function: the more ties a subject already has, the smaller
the probability that she will form another one. Moreover, the likeli-
hood of creating a new tie decreases with period and risk. Contrary
to expectations, the effect of neighsim is negative. Subjects are less
likely to create new ties when they are more similar to their neigh-
bors, and they thus are not using the heuristic assumed in the
simulation model. Rather, subjects seem to assume that unknown
potential neighbors are playing the alternative action. It might be
that this unexpected effect is the result of subjects remembering
interactions in previous periods, for which the theoretical model
does not allow. Fig. 10 shows that subjects tend to sever ties with
neighbors playing the alternative behavior, and it might be that
after such a deletion they conclude that these previous neigh-
bors (now invisible under local information) will persist in playing
the different behavior. This logic would result in a negative effect
of neighsim. Additional analyses show that the negative effect of
neighsim becomes stronger in later periods of the experiment. This
does indeed suggest that subjects make use of their knowledge of
the history of play, albeit in a manner different from the manner
proposed before.

5. Conclusions and discussion

We studied coordination in dynamic networks, focusing on
efficiency and heterogeneity of emergent behavior, and on the influ-
ence of information availability. We specified a game-theoretic
model and used simulation methods to generate specific predic-
tions about the effects of initial conditions and limited information
on the efficiency and heterogeneity of emergent behavior. We
tested micro- and macro-level hypotheses in a laboratory exper-

iment. Three macro-level hypotheses were confirmed. First, the
behavior of subjects in the first period determines to a large extent
their behavior in the final period. Second, efficiency is lower if risk
is higher. Third, efficiency is lower if the network is initially denser.
For the remaining three macro-level hypotheses on the effects of
initial network structure and information availability, the results
were always in the expected direction but not significant.

At the micro level, we found that, by and large, individual behav-
ior appears to resemble behavior as assumed in the model, at least
when information on the behavior of non-neighbors is available.
Subjects adapt their behavior to that of their neighbors in the pre-
vious period (Hypothesis 1.1). In their choices of network relations,
subjects have a clear preference for subjects who play the same
action as themselves (Hypothesis 1.3) and exclude those who play
the alternative action (Hypothesis 1.2). Moreover, many experimen-
tal groups managed to converge on stable constellations that were
theoretically predicted involving both efficient conventions and sit-
uations in which no single convention was reached.

In some respects, the behavior of subjects also deviates from
the behavior assumed in the model: subjects more easily opt for the
payoff-dominant action than would be expected from myopic best-
reply behavior (Hypothesis 1.1). Moreover, if subjects are informed
on the behavior of the whole group rather than only their neigh-
bors, they are also influenced by the behavior of those who are
not their neighbors, which suggests some anticipation of future
interactions with these other subjects. For local information, it was
theorized that subjects use the average behavior of their neighbors
as a predictor for the behavior of potential neighbors (Hypothesis
1.4). However, subjects seem to use the behavior of their neighbors
as a predictor for what their neighbors are not doing. Furthermore,
we showed that this effect becomes stronger in later periods of
the experiment, which suggests that subjects use the history of
interactions in their decisions.

Before we move to broader conclusions based on the results, let
us briefly discuss some limitations of the experimental design and
analyses. First, the number of groups was relatively low given the
number of experimental conditions. This is the result of a practical
trade-off between group size and the number of groups. We feel
that for network experiments to capture the notion that individuals
cannot observe or influence the network as a whole (as is mostly the
case in real life), groups should be relatively large. Our experiment
is one of the few in which groups larger than six are used. The price,
due to practical and financial reasons, is fewer groups. The lack of
significant results at the group level (even though results tend to
be in the expected direction) might be due to this low number of
observations.
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Second, the choice of payoffs led subjects to choose the payoff-
dominant action relatively easily, resulting in little variation in
macro-level outcomes, especially under the low-risk condition. The
results might have been stronger if the differences between the
payoff-dominant equilibrium and the risk-dominant equilibrium
had been more pronounced.

The many interdependencies, especially with linking behavior,
posed significant methodological challenges that we dealt with
only in part. Multinomial logistic regression models for tie decisions
could have been used, which resemble other more sophisticated
methods for longitudinal network data (i.e., Snijders, 2001; Snijders
et al., 2007). Considering the already rather extensive theoretical
and empirical analyses, we chose not to introduce these further
complexities.

Our results indicate that people are able to coordinate on
efficient behavior if the interaction structure is not exogenously
determined, but rather co-evolves with behavioral choices. We also
found that the initial network structure matters: if the network is
initially denser, emerging conventions are more likely to be ineffi-
cient. We did not find convincing evidence that the emergence of
conventions is very dependent on information availability.: also if
subjects possessed only local information, they reached high effi-
ciency levels.

A further conclusion from our results is that the simple model
in which actors play the best reply against their neighbors’ behav-
ior in the previous period is too simple to adequately capture real
individual behavior in situations represented by the model. We saw
signs of both forward-looking and backward-looking behavior. This
seems to lead to a more frequent emergence of efficient behavior
than theoretically predicted. The discrepancy between the model
and the actual behavior of our subjects might be a reason for devi-
ations between predictions and observations at the macro-level as
well, although it is not yet clear how micro-level differences affect
macro-level outcomes. Therefore, extending the existing models to
incorporate more complex decision-making processes and derive
new macro-level implications is a desirable direction for further
research.

However, one might also argue that such effects are typical
for the relatively small group sizes used in our experiment. In
some real-life applications, where groups tend to be much larger,
both remembering previous interactions and anticipating behav-
ior in the population as a whole would be much harder. From this
perspective, our model might be judged as fairly appropriate for
modeling coordination in real networks. This is because behavior
on the individual level in the model approximates the empirical
behavior of subjects in the experiment fairly well. It remains to be
seen (in experiments with more observations on the group level or
in field applications) whether the predictions of the model also hold
on the macrolevel. Moreover, a remaining challenge is to under-
stand choices in network formation when limited information is
available.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.socnet.2009.04.002.
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