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Roughness effect on heterojunction photovoltaics
G. Palasantzas and E. Koumanakos
G. S. A. Research and Development Center, Amygdaleza-Aharnes, 13600 Athens, Greece

~Received 11 December 1995; accepted for publication 29 February 1996!

In this work, we present an investigation of the junction interface roughness effect on the open
circuit voltage,Voc for thin film heterojunction photovoltaics. The roughness effect is studied for
self-affine rough interfaces, which are described in Fourier space by the correlation model
;s2j2(11aq2j2)212H. s, j, andH denote, respectively, the rms roughness, the in-plane roughness
correlation length, and the interface irregularity exponent~0,H,1!. The roughness effect becomes
significant for smallH ~,0.5!, and for large long-wavelength roughness of typical valuess/j;0.1.
The junction interface roughness may yield a contribution toVoc even up to 10%. Comparison of the
results is performed with predictions in real heterojunctions, e.g., CuxS/~Zn!CdS. © 1996
American Institute of Physics.@S0021-8979~96!05211-5#

I. INTRODUCTION

Among the various energy sources which involve con-
trol of natural phenomena, solar energy is possibly consid-
ered the most attractive. This is due to the fact that this
energy source is costless, renewable, and abundant. Conver-
sion of solar to electric energy is based on the photovoltaic
~PV! phenomenon.1 Even from the time they were first de-
veloped in the 1950s to provide electrical power for
spacecrafts,2 PV elements have been touted as an energy
source with a bright technological future.3

Despite the enormous efforts up to now, PV cells have
been less than a shining success. The basic reason is the high
production cost which limits their use to niche applications
such as powering watches and calculators or providing elec-
tricity in remote homes beyond the reach of power lines. PV
elements are generally constructed from semiconductorp–n
homojunctions ~i.e., Si!, and heterojunctions @i.e,
CuxS/~Zn!CdS, CdS/CdTe, AlxGa12xAs, CdS/Cu2SnS3,
CuInSe2, ITO/CdTe, In/CdTe, etc.#,

5 as well as organic sys-
tems~i.e., C60 polymers!.

4

Crystalline Si, which provides the most reliable solar
cells, is produced by a costly precision process akin to manu-
facturing computer chips, and organic solar cells have stabil-
ity problems when exposed to strong light and short
lifetimes.4 Alternatively, thin film heterojunctions for PV
elements5 can be produced from elements abundant in nature
with significant efficiency and having a large junction area.
If we denote byAx andAflat the junction area and the illu-
minated area of the PV element, the ratioAx/Aflat can dras-
tically affect the element’s characteristics. Moreover, this ra-
tio is not directly related to principal properties of the
semiconductors. It is related to the method and the film fab-
rication conditions, which can significantly affect the PV el-
ement’s efficiency.

In many instances, the fabrication of the thin film het-
erojunction includes vapor deposition and sputtering~i.e.,
CuxS/CdS, CdS/CdTe, etc.!, which are in general nonequi-
librium processes. The formation of surfaces/interfaces with
self-affine fractal morphology is observed in many cases for
vapor deposited and/or sputtered films under conditions far
from equilibrium.6 Although interface roughness has been

well studied in resonant tunneling diodes, a thorough study
of the interface junction roughness effect on PV devices is
still in its infancy. Therefore in this work, we will investigate
the effect of random roughness interface morphology on the
open circuit voltage~Voc!. It is expected that the presence of
junction interface roughness will degrade the electrical prop-
erties ~lower Voc in the present case! of the PV element.
Also, our results will be compared with experimental data.

II. BASIC PV-ELEMENT THEORY

The photovoltage is created by the dissociation of
electron–hole pairs due to incident photons within the junc-
tion built-in field. The energy gapEgap of the photon ab-
sorber should be adjusted to the energy of the incident pho-
tons. In fact, large energy gaps result in a small number of
generated charged pairs and thus small photocurrent, while
small energy gaps result in a small open circuit voltage. It is
estimated that a favorable energy gap for the photon absorber
must be in the range 1 eV,Egap,1.7 eV.5,7

The current–voltage (I –V) relation for a PV element is
given by2,5

I5AxJ0@e
q~V2IRs!/kT21#2AflatJphh~V!, ~2.1!

whereh(V) is the collection factor of thep–n junction.Ax

the junction area,Aflat the illuminated area,Rs the resistance
in series,Jph the photocurrent density,J0 the saturation cur-
rent at inverse polarization,T the system temperature,k the
Boltzman constant, andq the carrier charge.

The open circuit voltageVoc is obtained from Eq.~2.1!
by settingI50. Thus, we have

qVoc'kT lnFJphh~Voc!

J0
G1~qVoc!r ,

~2.2!

~qVoc!r52kT lnF Ax

Aflat
G

because in generaleqV/kT@1. This can readily be seen from
the fact that atT;300 K we havekT;0.028 eV and since
qV;0.1–1 eV, we obtaineqV/kT@1. The first term in Eq.
~2.2! is positive, while the second term~Voc!r , which is
mainly related to the heterojunction fabrication conditions, is
negative sinceAx>Aflat .
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III. AREA OF A ROUGH SURFACE

If we denote the surface height profile byh(r ), which is
assumed to be a single-valued function of the in-plane posi-
tion vectorr5(x,y), the area of a rough interface is given by

Ax5E @11~¹h!2#1/2d2r . ~3.1!

For weak roughness u¹hu!1,
[11(¹h)2] 1/2'11(1/2)(¹h)22(1/8)(¹h)4,..., which
upon substitution into Eq.~3.1! yields up to second order

Ax'Aflat1
1

2 E ~¹h!2d2r2
1

8 E ~¹h!4d2r , ~3.2!

where the average flat area is given byAflat'*d2r . In the
strong roughness limit or u¹hu@1,
[11(¹h)2] 1/2'u¹hu1(1/2)u¹hu21, substitution into Eq.
~3.1! yields

Ax'E u¹hud2r1
1

2 E u¹hu21d2r . ~3.3!

IV. THEORY FOR RANDOM ROUGHNESS AND
SELF-AFFINE ROUGHNESS

The surface height profileh(r ) is assumed to be a sta-
tionary stochastic process witĥh(r )&50, and the surface
isotropic along thex andy axes. The angular brackets denote
an average over the ensemble realizations of the surface pro-
file, s25^h(r )2& is the mean-square departure of the surface
from flatness~rms surface roughness!, and j the in-plane
roughness correlation length which represents the average
distance between consecutive peaks or valleys on the sur-
face. In addition, we shall assumeh(r ) to be a random
Gaussian variable in order to calculate ensemble averaged
products ofh(r )’s ~see the Appendix!.

We will define the Fourier transform ofh(r ), and the
correlation functionC(r ) by

h~q!5
1

~2p!2
E h~r !e2 iqrd2r ,

~4.1!

C~r !5
1

Aflat
E ^h~r1r 8!h~r 8!&d2r 8

which in turn yield^h(q)&50 since^h(r )&50, and

^uh~q!u2&5
Aflat

~2p!4
E C~r !e2 iqrd2r ,

~4.2!

^h~q!h~q8!&5
~2p!4

Aflat
^uh~q!u2&d2~q2q8!.

The right-hand side of Eq.~4.2!, which gives the averaged
products^h(q)h(q8)&, means that the surface is assumed to
be statistically stationary up to second order or translation-
ally invariant.

A wide variety of surfaces and interfaces occurring in
nature are well represented by a kind of roughness associated
with self-affine fractal scaling, defined by Mandelbrot in
terms of fractional Brownian motion.8 Examples include the
nanometer topology of vapor-deposited films, the spatial

fluctuations of liquid–gas interfaces, the kilometer-scale
structure of mountain terrain, etc.6,8 Physical processes
which produce such surfaces include fracture, erosion, mo-
lecular beam epitaxy, fluid invasion in porous media, etc.6,8

The correlation function for any physical self-affine sur-
face is characterized by a finite correlation lengthj, which is
a measure of the average distance between peaks and valleys
on the surface such thatC(r )'s22Dr 2H for r!j, and
C(r )50 for r@j ~D;s2/j2H is a constant!.8–11 The rough-
ness exponent 0,H,1 is a measure of the degree of surface
irregularity.8,10 Small values ofH~;0! characterize ex-
tremely jagged or irregular surfaces, while large values char-
acterizeH~;1! surfaces with smooth hills and valleys, Fig.
~1!.10,11

The Fourier transform̂uh(q)u2& of C(r ) according to
Eq. ~4.1! for self-affine fractals, has the scaling behavior
^uh(q)u2&}q2222H if qj@1, and^uh(q)u2&}const if qj!1.8

This scaling behavior Fourier space for self-affine structures
is satisfied by thek-correlation model.11 This model is valid
for the whole range of values for the roughness exponent
0<H,1, and following the notation of Ref. 11,^uh(q)u2& is
given by

^uh~q!u2&5
Aflat

~2p!5
s2j2

~11aq2j2!11H , ~4.3!

where the normalization condition @(2p)4/A#
3 *0,q,Qk

^uh(q)u2&d2q 5 s2 yields the parameter ‘‘a’’:
a51/2H[12(11aQc

2j2)2H], ~0,H,1! and
a51/2 ln~11aQc

2j2! ~H50!. Expressions valid forH50 can
be obtained from those valid forH.0, if we consider the
identity limH→0(1/H)[x

H21]5ln(x). The limiting case of
logarithmic roughness~H50! is related to predictions of
various growth models for the nonequilibrium analog12 of
the equilibrium roughening transition.13 In addition, the
knowledge of the following integral will be useful in calcu-
lations of the surface area~also see the Appendix!, which is
calculated analytically in terms of Eq.~4.3!,

FIG. 1. Schematics of the height profileh(X) vs the in-plane positionX for
self-affine structures in order to show the effect of the roughness exponent
H ~see Refs. 6 and 8!: ~a! H50.8, ~b! H50.5, ~c! H50.2.

8532 J. Appl. Phys., Vol. 79, No. 11, 1 June 1996 G. Palasantzas and E. Koumanakos

Downloaded¬19¬Dec¬2006¬to¬129.125.25.39.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jap.aip.org/jap/copyright.jsp



Sr~s,j,H !5
~2p!4

Aflat
E q2^uh~q!u2&d2q

5
s2

2a2j2 H 1

12H
@~11aQc

2j2!12H21#22aJ .
~4.4!

V. RESULTS AND DISCUSSION

Weak roughness limit:Fourier transformation of Eq.
~3.2! in combination with Eqs.~A3! and ~A4!, yields up to
second order of perturbation theory

Ax

Aflat
'11 1

2Sr~s,j,H !2 3
8@Sr~s,j,H !#2 ~5.1!

by proper Fourier transformation of the terms (¹h)2n ~n
51,2! in Eq. ~3.2!, and grouping of integrated ensemble-
averaged products with the 2n terms~see the Appendix!.

Strong roughness limit:In this case we can calculate
mainly an upper limit for the rough area. In fact, the inequal-
ity ^u¹hu&<^u¹hu2&1/2 yields, after substitution in Eq.~3.3!
to lowest order,

Ax

Aflat
'E ^u¹hu&d2r<E @^u¹hu2&#1/2d2r . ~5.2!

Fourier transformation of Eq.~5.2! and taking into account
Eq. ~4.4! yields

Ax

Aflat
<@Sr~s,j,H !#1/2

5
s

&aj
H 1

12H
@~11aQc

2j2!12H21#22aJ 1/2.
~5.3!

Thus, Eq.~5.3! yields an upper bound for the roughness con-
tribution to first order of approximation.

Prior to the presentation of the results, we point out the
following. The ratio s/j describes mainly the long-
wavelength~q!1/j! roughness characteristics. Finer rough-
ness details at short wavelengths~q@1/j! are revealed
through the effect of the roughness exponentH. The latter
describes the degree of height–height fluctuation irregularity
and density, and it is related with a local interface/surface
fractal dimensionD532H.8 In our calculations, we used,
for the correlation lengthj, the fixed valuej540.0 nm, and
values for the rms roughnesss such thats/j<0.1. The val-
ues of the roughness exponent H are considered in the range
0<H,1. The chosen values for the parameterss, j, andH
come from experimental roughness studies over a wide vari-
ety of surface systems.6,9 Finally, we will assume PV ele-
ments at room temperature,T;300 K, which result in
kT;0.028 eV.

In Fig. 2, we present schematics of the upper bound
given by Eq.~5.3! as a function of the roughness exponent
H, and for values of the ratios/j in the range 0.01,s/j
,0.1. It is observed that the upper bound of the rough sur-
face area could be as large as ten times the average flat area
~strong roughness limit orSr.1!. This occurs mainly at large

ratioss/j;0.1, and small roughness exponentsH. The latter
is in agreement with the fact that asH becomes smaller
~H,0.5!, the number of surface crevices increases~see Fig.
1!, therefore exposing a larger area. Comparisons with real
systems reveal that the values for the rough area upper bound
can be realistic, since they produce deviations between
theory and experiment as we will see later on. Moreover,
from Fig. 2 we can see that the dominant effect comes from
the ratios/j. In fact from Eqs.~4.4! and ~5.3!, the upper
bound for the rough area is directly proportional tos/j;
Ax/Aflat}s/j. Nevertheless, the increment at smallH ~,0.5!
appears to be characteristically steep as a function ofH.

In Figs. 3~a!–3~c!, we plot simultaneously the weak
roughness limit effect@Eq. ~5.1!#@ #with the upper bound
strong roughness limit@Eq. ~5.3!#@ #as a function ofH, and
ratioss/j of 0.03, 0.05 and 0.07. In all the schematics, there
is a discontinuity in~Voc!r as function ofH which signifies
the crossover from the strong to weak roughness limit re-
gime. Furthermore,~Voc!r in the strong roughness limit is the
regime to the order of;10221023 V, while ~Voc!r in the
weak roughness limit is in the regime of mV and lower
~;1023–1024 V!. From the same schematics, we observe
that as the ratios/j increases the crossover occurs at larger
roughness exponentsH. More precisely, we obtain fors/j
50.03 a crossover atH;0.4 for s/j50.05 atH;0.55, and
for s/j50.07 atH;0.65.

In order to judge the significance of the roughness effect
on Voc, comparisons with theoretical and experimental pre-

FIG. 2. Schematics of the upper bound forAx/Aflat vs the roughness expo-
nentH in terms of Eq.~5.3!: dotss/j50.03, solid lines/j50.05, and dashes
s/j50.07. The fixed value for the correlation lengthj540 nm was used
during the calculations.
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dictions on real heterojunction systems should be performed.
In measurements ofVoc, e.g., in CuxS/ZnCdS films,5 the
measured voltage values were Voc;0.65–0.71 V. Nonethe-
less, a theoretical value was predicted to beVoc;0.74 V. On
the other hand, as can be seen from Fig. 3 such a difference
between theory and experiment is of the order of~Voc!r
~roughness contribution! at small roughness exponents
H,0.5, and typically large ratioss/j ~;0.1!. In CuxS/CdS

films, with a different fabrication process of CuxS, where the
latter would not enter too deeply inside the crystallites of
CdS, it is possible to yield an improvement ofVoc even of
;0.06 V ~Aperathitis!, which is about 10% ofVoc.

5 Such a
contribution from roughness is closely attained during our
calculations in the regime of strong roughness@see Figs.
3~a!–3~c! for H,0.3# Thus, the roughness effect can be re-
sponsible for significant deviations from expected theoretical

FIG. 3. Schematics of the roughness effect on the open circuit voltage
~Voc!r vs the roughness exponentH for ~a! s/j50.03, ~b! s/j50.05, ~c!
s/j50.07. The fixed value for the correlation lengthj540 nm was used
during the calculations. We include both the strong~upper bound! and
weak roughness roughness limit.
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predictions. Furthermore, our calculations can have a close
connection with reality, and can be the basis for direct quan-
titative analysis of junction interface roughness effects in
thin film heterojunction PV.

Moreover, it should be pointed out that during the op-
eration of a PV element, heating effects of the thin film can
change the junction interface morphology by reducingH and
s/j ~smoothening effects!, which in turn can affect the el-
ement’s performance. For example, the temperature effect on
Voc has been examined for In/CdTe junctions prepared by
evaporation of In onto sputter-etched surfaces of CdTe. A
decrease ofVoc in the range;1.0–0.4 V for temperatures in
the range of;50–300 K was observed~Courregeset al.!.5

VI. CONCLUSIONS

In conclusion, we combined knowledge of basic PV
theory with that of analytic height–height correlation models
for self-affine fractals, in order to investigate quantitatively
the heterojunction interface roughness effect on the open cir-
cuit voltage~Voc!. Our results show clearly that this effect
becomes of significant quantitative importance even to the
order of;1022 V for surfaces with large ratioss/j~;0.1!,
and small roughness exponentsH~,0.5! ~strong roughness
limit !. Comparisons with simple experimental systems show
the relevance of our calculations with reality. More precisely,
our estimations of the strong roughness limit are closer to the
presented experimental data where the corresponding rough
area isAoc;~9–10! Aflat .

Extensive studies will be required on each particular
thin-film structure to gauge precisely the junction-roughness
effect in connection with film fabrication conditions and sys-
tem temperature. Moreover in heterojunctions, problems re-
lated to lattice mismatch can contribute significantly to the
element’s efficiency. This is due to the fact that lattice mis-
match affects the recombination of the charged pairs prior to
their collection, and as a result their investigation remains of
crucial technological importance in the solar cell industry.
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APPENDIX

The assumption thath(r ) is a Gaussian variable means
that the average of any odd number of factors ofh(r ) with
the same or different arguments vanishes, whereas the aver-
age of the product of an even number of factors ofh(r ) is
given by the sum of the products of the averages ofh(r )’s
paired two-by-two in all possible ways, i.e., we have14

^h~r !h~r 8!h~r 9!h~r-!&

5^h~r !h~r 8!&^h~r 9!h~-!&1^h~r !h~r 9!&^h~r 8!h~r-!&

1^h~r !h~r 99!&^h~r 8!h~r 9!&. ~A1!

In fact, each pair ofh(r )’s on the right-hand side of Eq.~A1!
is called a contraction. Moreover, Fourier transformation of
Eq. ~A.1! yields

^h~q!h~q8!h~q9!h~q-!&

5^h~q!h~q8!&^h~q9!h~q-!&1^h~q!h~q9!&

3^h~q8!h~q-!&1^h~q!h~q99!&^h~q8!h~q9!&, ~A2!

where each pair in Eq.~A2! can be calculated according to
Eqs.~4.1!, ~4.2!, and~4.3!.

In Eq. ~3.2! after ensemble average and substitutions of
the Fourier transforms forh(r ), integrals of the form

^~¹h!2n&5 i 2nE K )
j51

2n

h~qj !L
3)

j51

2n

qj expF2 i S (
j51

2n

qD r G)
j51

2n

d2qj ~A3!

will appear withi 2n5(21)n. These integrals forn51,2 can
be calculated by using Eqs.~4.2!, ~4.3!, and~A.2!. Thus, the
integrals in Eq.~A3! for n51,2 will be given by

2E ^h~q1!h~q2!&~q1q2!e
2 i ~q11q2!rd2q1d

2q2

5Sr~s,j,H !, ~A4a!

E K )
j51

4

h~qj !L S )
j51

4

qj D expF2 i S (
j51

4

qj D r G)
j51

4

d2qj

53@sr~s,j,H !#2. ~A4b!

For n.2, we obtain

i 2nE K )
j51

2n

h~qj !L S )
j51

2n

qj D
3expF2 i S (

j51

2n

qj D r G)
j51

2n

d2qj5P~n!@Sr~s,j,H !#2n,

~A5!

where further concepts of statistics are needed to calculate
P(n), which represents all possible ways to group 2n
2h(q)’s ensemble averaged in pairs of two.15 In fact, the
full expansion in Eq.~3.2! after ensemble average is given
by

Ax'Aflat1 (
n51

1`
1/2~1/221!•••~1/22n11!

n!

3E ^~¹h!2n&d2r , ~A6!

and after substitution from Eqs.~A5! and ~A3! yields

Ax'Aflat1 (
n51

1`
1/2~1/221!•••~1/22n11!

n!
P~n!

3@Sr~s,j,H !#n ~A7!

with P~1!51 andP~2!53.
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