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Background 

Sleep is thought to be a process that serves neuronal recovery and synaptic plasticity, which in 

turn is crucial for brain function and performance (Benington and Frank 2003; Meerlo et al. 2009; 

Tononi and Cirelli 2006). However, the exact neurobiological processes at the molecular and 

cellular level underlying this important function of sleep are still unknown.  

The expression of a wide variety of genes in the brain is regulated by sleep and altered 

by sleep deprivation (Cirelli 2002, 2006). Sleep loss can also influence the levels of brain 

neurotransmitters (Peñalva et al. 2003; Lopez- Rodriguez et al. 2003) and alter the expression 

and functionality of their receptors (Longordo et al. 2009). Several experiments show that 

restricted sleep affects different markers of adult neurogenesis as well (Meerlo et al. 2009). 

Through all these and other changes, sleep deprivation may ultimately impair the normal 

functionality of the brain and slowly increase the vulnerability to neuropathology. 

If indeed sleep is of crucial importance for the brain, it seems likely that insufficient sleep 

may have deleterious consequences, especially when it becomes a chronic condition. This is an 

important issue since restricted and/or disrupted sleep loss is a common problem in our society 

(Bonnet and Arand 1995; Rajaratnam and Arendt 2001). A large number of people experience 

regular sleep loss as a consequence of our modern around-the-clock life style, shift work and an 

overall increase in work pressure (Bonnet and Arand 1995; Pilcher et al. 2000; Rajaratnam and 

Arendt 2001). In addition, staying up late for leisure activities is a common practice (Van den 

Bulck 2004; Basner and Dinges 2009). Importantly, sleep loss is not only a problem of adult 

people but is increasing among adolescents and young children as well (Meijer et al. 2000; Van 

den Bulck 2004; Bixler 2009). In young people, television, internet, and computer games are the 

most common causes for sleep shortage (Van de Bulk 2004; Dworak et al. 2007).  

Sleep loss has various immediate effects, including tiredness, decreased attention, 

decreased motivation, and reduced cognitive function (Wolfson and Carskadon 2003; Durmer and 

Dinges 2005; Curcio et al. 2006; Banks and Dinges 2007). Moreover, some effects of sleep loss 

on cognitive functioning may accumulate over successive nights of sleep curtailment without 

being paralleled by equally increased feeling of sleepiness (Van Dongen et al. 2003). As 

consequence sleep loss is not always perceived as deleterious and therefore tends to become a 

habit more easily.  

Whereas subjects may initially recover from the effects of sleep loss after subsequent 

sleep, frequent or chronic sleep loss could induce changes that are not immediately evident but 

accumulate over time, ultimately with serious health consequences. Short sleep alters several 

physiological parameters such as blood pressure, inflammatory markers and metabolic hormones 

and affects neurobehavioral aspects increasing also the risk to develop various types of diseases 

(Banks and Dinges 2007). Short sleep or sleep disorders are often associated with an increased 

risk of brain pathologies (Livingston et al. 1993; Chang et al. 1997; Malow 2004; Buysse et al. 

2008; Germain et al. 2008; Roane and Taylor 2008).  
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Sleep loss and vulnerability to psychopathology  

There is a complex and bidirectional relationship between sleep problems and mood disorders. 

Although disturbed sleep is often considered as a symptom and consequence of mood disorders 

such as depression, there is a rapidly growing amount of data suggesting that in some cases 

sleep disturbance may precede, predict and perhaps contribute to the development of psychiatric 

illnesses.  

Subjects suffering from mood disturbances often complain of sleep problems. Many 

patients with depression experience insomnia (Lam 2006), have difficulty maintaining sleep, 

spend a shorter time in slow-wave sleep and have reduced REM sleep latency and increased 

REM sleep density compared to healthy individuals (Benca et al. 1992; Riemann et al. 2001). 

Interestingly, certain treatments administered for psychiatric disorders have a positive effect on 

sleep (Quera-Salva et al. 2010) and the other way around (Riemann et al. 2009). Moreover, 

insomniacs and other patients with sleep disorders often show depression and symptoms of 

anxiety (Taylor et al. 2005; Johnson et al. 2006; Macey et al. 2010). In fact, it has been suggested 

that insomnia in both young and adult subjects may be a risk factor to develop depression 

(Livingston et al. 1993; Chang et al. 1997; Buysse et al. 2008; Roane and Taylor 2008), the 

symptoms of which can appear also several years later (Chang et al. 1997).  

Sleep disruption before or immediately after a traumatic experience is thought to 

increase the risk for post traumatic stress disorder (PTSD) and can exacerbate the symptoms of 

the disease (Krakow et al. 2001; Germain et al. 2008). Also, sleep loss has been proposed as risk 

factor for mania in patients with bipolar disorders (Wehr 1991) and in normal subjects (Jackson et 

al. 2003) and it has been associated with the development of puerperal psychosis (Sharma 2003). 

A relationship exists also between sleep disorders or insufficient sleep and suicidal tendency in 

both adult and young subjects with and without depression (Liu and Buysse 2006). Furthermore 

at young age, sleep problems seems to be linked to substance abuse (Shibley et al. 2008).  

The cause effect-relation between sleep shortage and psychopathology is still unclear. 

Experiments in this thesis were based on the general hypothesis that sleep loss may affect brain 

vulnerability and sensitivity to psychopathologies, through a variety of different but interrelated 

pathways, including an increase in neurodegenerative processes and impairment of neuronal 

plasticity, both of which might be mediated by alterations in neurotransmitter systems (e.g., the 

serotonergic system) and changes in neuroendocrine regulation (e.g., the hypothalamic-pituitary-

adrenal axis). 

Neurodegeneration   

Based on the idea that sleep serves neuronal recovery and synaptic plasticity, it is generally 

thought that lack of sleep has harmful effects that may impair neuronal integrity and perhaps 

contribute to neurodegeneration. Although several studies were devoted to this topic, all together 
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the results do not provide a clear picture of the relationship between sleep loss and 

neurodegeneration.  

Different authors measured markers of neuronal degeneration after sleep deprivation in 

rat brain. Cirelli et al. (1999) showed no changes in markers of DNA damage and neuronal 

degeneration as measured by TUNEL and Fluor-Jade staining and no increase in the mRNA 

expression of apoptotic genes after total sleep deprivation for periods between 5 and 14 days. A 

study from Eiland et al. (2002) reported that 8-10 days of sleep deprivation did not induce cell 

damage, as assessed by silver staining, in most brain areas examined, except for a localized 

effect in the supraoptic nucleus of the hypothalamus. Other authors showed a temporary increase 

in the expression of apoptotic markers and an increase in the number of TUNEL- or silver-stained 

cells in several brain regions following rapid eye movement (REM) sleep deprivation lasting 

between 6 and 10 days (Biwas et al. 2006). In addition, various studies assessed measures that 

may indirectly indicate changes in neuronal viability. For example, some studies reported changes 

in measures of oxidative stress (D’ Almeida et al. 1997, 1998; Ramanathan et al. 2002) while 

others showed altered expression of structural proteins, cell size and nuclear volume in sleep 

deprived animals (Majumdar and Mallick 2005; Biwas et al. 2006).  

Establishing a link between sleep deprivation and neurodegeneration from the data of all 

these studies is complicated by several factors. First, most of the available data are based on 

animal studies that have used a variety of different sleep deprivation methods, including tread 

mills, rotating drums and platforms over water, each of which may be associated with different 

confounding factors and side effects that may not be related to sleep loss per se. In addition, the 

different methods have been applied to deprive animals of different sleep stages, i.e., total sleep 

deprivation or specific REM sleep deprivation.  Second, the studies applied a wide variety of 

methods and measures to determine neurodegeneration. Some of the markers used to assess 

cell degeneration in these experiments, are only expressed for a short time. For example TUNEL 

staining can recognize dying cells only during DNA degradation and therefore for a period of time 

of hours, while amino cupric silver staining can detect neurodegeneration over a couple of days. 

Therefore, many of these measures are not suitable to detect gradually accumulating 

neurodegeneration in the course of prolonged periods of restricted or disrupted sleep as it often 

occurs in society.  

Sleep loss might potentially increase the sensitivity to neurodegenerative processes 

through a variety of different routes, including changes in neuroprotective mechanisms or by 

influencing the sensitivity to excitatory pathways in the brain. Recent studies suggested that 

wakefulness and prolonged wakefulness by sleep deprivation are associated with synaptic 

potentiation and this is in part the result of enhanced expression of glutamate receptors 

(Vyazovskiy et al. 2008). The stimulation of glutamate receptors on neurons induces the influx of 

calcium that has important signaling functions inside the cell but may also lead to neuronal 

damage through different pathways when concentrations become too high (Ankarcrona et al. 

1995; Sattler and Tymianski 2000). There is evidence that the expression of molecules that take 
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part in calcium dependent neurodegenerative and neuroprotective pathways such as 

Ca2+/calmodulin-dependent protein kinase (CAMKII) and calcineurin (Xifrò et al. 2008; Ashpole 

and Hudmon 2011) are altered in sleep deprived animals (Guzman-Marin et al. 2006; Wang et al. 

2009; Alhaider et al. 2010). Moreover molecules having a function in neuroprotection against 

calcium toxicity like cAMP response element-binding (CREB), brain derived neurotrophic factor 

(BDNF) and nerve growth factor (NGF) (Kume et al. 2000; Gratacòs et al. 2001; Valera et al. 

2008; Kim et al. 2009) show different expression during sleep deprivation (Sei et al. 2000; 

Guzma-Marin et al. 2006; Alhaider et al. 2011). It is not known whether very long periods of sleep 

loss increase the expression of glutamate receptors to a level that is toxic for neurons and 

changes the calcium signaling pathways into a direction that may enhance neurodegeneration 

and contribute to neuropathology. In support of a causal role of sleep loss as a process that may 

contribute to neurodegeneration is the occurrence of sleep disturbances in neurodegenerative 

disorders like Alzheimer or Parkinson’s diseases and its association with the molecular and 

functional alterations in some of these diseases (Lauterbach et al. 2010). 

Neuronal plasticity and neurogenesis 

Irrespective of neurodegenerative processes, insufficient sleep may compromise brain function 

and contribute to neuropathology in more subtle ways by altering structural plasticity. The 

generation of new neurons in the adult brain has been associated with hippocampal functioning, 

memory formation (Deng et al. 2010) and emotional regulation (Perera et al. 2008). Reduced 

levels of such adult neurogenesis have been proposed as cause of mood alteration in depression 

(Sahay and Hen 2007; Perera et al. 2008). Animal models of depression based on exposure to 

stress have shown decreased neurogenesis in the dentate gyrus of the hippocampus (Czeh et al. 

2001; Pham et al. 2003; Malberg and Duman 2003; Alonso et al. 2004) and a normalization of 

neurogenesis with administration of antidepressants (Malberg et al. 2000; Malberg and Duman 

2003).  

Sleep loss can inhibit cell proliferation and neurogenesis in the dentate gyrus of the 

hippocampus (for a review, see Meerlo et al. 2009). In rodents, these negative effects have been 

demonstrated with different methods of sleep deprivation (Guzman-Marin 2003, 2005; Tung et al. 

2005; Guzman-Marin 2008; Mueller et al. 2008; Junek et al. 2010; Garcìa-Garcìa et al. 2011), 

sleep restriction (Hairston et al. 2005; Roman et al. 2005a) and sleep fragmentation (Guzman-

Marin et al. 2007; Sportiche et al. 2010) and generally only occur following multiple days of 

restricted or disrupted sleep (Meerlo et al. 2009).The latter confirms that certain effects of 

insufficient sleep may accumulate over time. Sleep disturbance for periods shorter than 24 hours 

do not appear to affect cell proliferation rates (Roman et al. 2005a; Mirescu et al. 2006; Van der 

Borght et al. 2006; Guzman-Marin et al. 2007) or even increases cell proliferation (Grassi Zucconi 

et al. 2006). Only few sleep deprivation studies considered the survival of new cells. While one of 
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them has shown that sleep loss reduces survival of newly generated cells (Hairston et al. 2005), 

other studies found no effect on survival (Roman et al. 2005a; Garcìa-Garcìa et al. 2011).  

The mechanisms by which sleep loss modulates neurogenesis are not known. The 

levels of neurogenesis in the hippocampus are regulated by a wide variety of molecules among 

which neurotransmitters, hormones, cytokines and growth factors (Abrous et al. 2005; Ming and 

Song 2005; Pathania et al. 2010; Platel et al. 2010) and are sensitive to various factors including 

stress, inflammation, and aging (Abrous et al. 2005; Lucassen et al. 2010).  

Sleep loss could decrease neurogenesis levels by activating stress systems. The results 

of one study suggested that sleep deprivation decreases neurogenesis by increasing circulating 

levels of the adrenal stress hormone corticosterone (Mirescu et al. 2006). However, other studies 

showed that the negative effects of sleep loss on neurogenesis do not depend on corticosterone 

levels (Guzman-Marin et al. 2007; Mueller et al. 2008). Other potential mechanisms underlying 

the effect of sleep loss may involve changes in neurotransmitter systems, inflammatory 

processes, neurotrophic factors and cell signals that regulate neurogenesis (Meerlo et al. 2009; 

Lucassen et al. 2010; Pathania et al. 2010).  

Another link between sleep loss, brain plasticity and neuropathology comes from data on 

changes in volume of the hippocampus and other brain regions. Neuroimaging studies in patients 

with mood disorders demonstrated reduced volume of the hippocampus (Sapolsky 2000; Czeh 

and Lucassen 2007; Perera et al. 2008, Boldrini et al. 2009, Lucassen et al. 2010) and decreased 

grey matter in some cortical regions (Bora et al. 2011). Decreased hippocampal volume and 

reduced cortical gray matter have been reported also in patients with chronic insomnia and 

obstructive sleep apnea (OSA) (Morrell et al. 2003; Riemann et al. 2007; Altena et al. 2010; 

Neylan et al. 2010; Torelli et al. 2011). These last findings may suggest that the sleep 

disturbances often present in patients with mood disorders contribute to the volume reduction in 

the examined brain areas.  

Neurotransmitter systems: Serotonergic system  

Insufficient sleep may also affect brain vulnerability through changes in neurotransmitter systems, 

e.g., the serotonergic system. Serotonergic neurons are located mostly in the raphe nuclei of the 

brainstem and send their innervation to the whole nervous system and in particular to the cerebral 

cortex, limbic areas, forebrain, basal ganglia, brainstem and grey matter in the spinal cord (Tork 

1990). Through a complex system of different receptor subtypes (Martin and Humphrey 1994), 

serotonin is involved in the regulation of emotional, neuroendocrine, cognitive and motor functions 

in the central nervous system (CNS) (Dinan 1996; Monti and Jantos 2008). The serotonergic 

system plays an important role in the regulation of the sleep wake cycle (Portas et al. 2000). The 

extracellular concentration of serotonin in the brain stem and in cortical and sub-cortical areas 

receiving serotonergic projections, is highest during waking, decreases during slow wave sleep 

and reaches lowest values during REM sleep. This reflects the pattern of discharge of the 
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serotonergic neurons in the dorsal raphe nucleus which show the highest activity during the 

waking period, decrease their firing in slow wave sleep and are silent in the phase of REM sleep 

(Portas et al. 2000; Sakai and Crochet 2001).  

The serotonergic system is sensitive to sleep loss. Studies in rodents have shown that 

sleep deprivation increases the firing rate of serotonergic neurons in the dorsal raphe (Prevot et 

al. 1996; Gardner et al. 1997) and increases the release and concentration of serotonin in some 

of the projection areas such as the hippocampus (Lopez-Rodriguez et al. 2003; Peñalva et al. 

2003). It also enhances the serotonin turnover (Asikainen et al. 1995, 1997; Senthilvelan et al. 

2006) and decreases serotonin transporter binding in some brain areas (Hipòlide et al. 2005). 

Together these results indicate a potentiated serotonergic signaling following sleep deprivation. 

The effects of chronic sleep loss on the serotonergic neurons are not well known; however, 

chronic sleep restriction in animals has been shown to cause a gradually developing 

desensitization of the serotonin-1A receptors (5-HT1A) (Roman et al. 2005b, 2006). It has been 

suggested that this effect could be the result of the repeated stimulation of these receptors due to 

an enhanced serotonin release. 

Reduced serotonergic transmission and reduced sensitivity of the 5-HT1A receptor 

system represent a potential pathway through which sleep loss may alter neuronal plasticity and 

enhance the sensitivity to neurodegeneration. Agonists of the 5-HT1A receptors can prevent 

neuronal apoptosis caused by different factors (Ahlemeyer and Krieglstein 1997; Semkova et al. 

1998; Suchanek et al. 1998; Ahlemeyer et al. 1999) and activation of the 5-HT1A receptors have 

neuroprotective effects in several models of brain damage such as excitotoxicity (Oosterink et al. 

2003), ischemia (Semkova et al. 1998; Alessandri et al. 1999; Kukley et al. 2001) and traumatic 

brain injury (Kline et al. 2001; Cheng et al. 2007). The mechanisms responsible for the 5-HT1A -

mediated neuroprotective action include membrane hyperpolarization and reduced excitability 

(Kruger et al. 1999), reduced release of glutamate (Mauler et al. 2001) and blockade of voltage-

sensitive Na+ channels (Melena et al. 2000). A desensitization of the 5-HT1A receptors by 

chronically insufficient sleep might result in a decrease neuroprotection and therefore higher 

sensitivity to neurodegenerative processes. 

In the long run, changes in the serotonergic system resulting from sleep loss might also 

contribute to psychopathology. Serotonergic neurotransmission is impaired in depression and 

other mood disorders. In postmortem brain tissue of depressed patients, the concentration of 

serotonin as well as the number of serotonin transporter binding sites is decreased, while the 

density of serotonin 2 receptor (5-HT2) binding sites is increased. In depressed patients the 

concentrations of tryptophan in the plasma and the major metabolite of serotonin, 5-

hydroxyindoleacetic acid, in the cerebrospinal fluid (CSF) are decreased. Moreover 

pharmacological studies have shown that the 5-HT1A receptor is desensitized in depressed 

subjects (Lesch 1991; Mann et al. 1995) similarly to sleep deprived animals (Roman et al. 2005b, 

2006). The latter is consistent with the idea that sleep disturbance by itself might be able to induce 

alterations that predispose individuals to mood disorders. 
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Neuroendocrine regulation: HPA axis  

Another pathway through which restricted and disrupted sleep might affect brain vulnerability is by 

changes in neuroendocrine regulation, particularly changes in the HPA axis. The HPA axis is one 

of the major neuroendocrine systems involved in stress responses (de Kloet et al. 1993, 2005). A 

stressful stimulus in the organism induces the release of corticotropin releasing hormone (CRH) 

from the paraventricular nucleus (PVN) of the hypothalamus. CRH is transported through the 

portal system to the anterior pituitary where it induces the secretion of adrenocorticotropin 

hormone (ACTH) into the bloodstream. In turn, ACTH stimulates the release of glucocorticoids 

(corticosterone in rodents and cortisol in humans) from the adrenal cortex. Glucocorticoids have 

to two types of receptors, the high affinity mineralcorticoid receptors (MR) or type 1 receptors and 

the low affinity glucocorticoids receptors (GR) or type 2 receptors. Through these receptors, 

glucocorticoids regulate a wide variety of processes in brain and body from energy homeostasis 

to cognitive function (de Kloet et al. 2005) and send feedback inhibition to the PVN and pituitary 

controlling the synthesis and release of CRH and ACTH (de Kloet et al. 1993; Yudt and Cidlowsky 

2002). The HPA axis receives important regulatory inputs from the hippocampus, amygdala, bed 

nucleus of the stria terminalis, and the brain stem (Ulrich-Lay and Herman, 2009).  Also the raphe 

serotonergic system regulates the HPA axis at multiple sites, mostly through the 5-HT1A receptors 

(Dinan 1996).  

Under normal baseline conditions, HPA axis activity displays a clear daily rhythm that is 

controlled by the suprachiasmatic nucleus of the hypothalamus (Moore and Eichler 1972) and is 

characterized by parallel changes in the levels of corticosterone and ACTH (Weitzman et al. 1983; 

Gudmundsson and Carnes 1997; Pruessner et al. 1997). In both diurnal and nocturnal species, 

glucocorticoid concentrations are lowest early in the resting phases and peak around or just 

before the start of the main activity phase (Weitzman et al. 1983; Gudmundsson and Carnes 

1997; Pruessner et al. 1997). 

Several studies indicate that sleep loss affects the HPA axis (for review, see Meerlo et 

al. 2008). Sleep deprivation in humans have been shown to induce activation of the HPA axis, 

increasing cortisol levels (Von Treuer et al. 1996; Leproult et al. 1997; Spiegel et al. 1999). 

Increased HPA axis activity occurs also in sleep deprived animals although the level of such 

activation can in part result from the sleep deprivation method used (Suchecki et al. 1998; Meerlo 

et al. 2002; Hipolide et al. 2006). This increased HPA axis activity during sleep deprivation may be 

a consequence of increased expression and release of CRH by PVN (Koban et al. 2006). 

Interestingly, sleep disorders such as insomnia and OSA have been associated with HPA axis 

dysfunction (Bratel et al. 1999; Vgontzas et al. 2001).  

 In addition to a direct activating effect of sleep deprivation on the HPA axis, chronically 

insufficient sleep may gradually alter the regulation of the HPA axis in more fundamental ways 

and change the reactivity of this system to subsequent new stressors. A number of studies have 

shown an altered HPA reactivity in sleep deprived animals that displayed blunted ACTH response 



GENERAL INTRODUCTION 

15 
 

to a stressor (Meerlo et al. 2002; Sgoifo et al. 2006). The mechanisms mediating these effects of 

chronic sleep loss on HPA axis regulation are not known but could involve the HPA axis itself, as 

well as its regulatory input systems, including the serotonergic system (Prevot et al. 1996; 

Gardner et al. 1997; Lopez-Rodriguez et al. 2003; Peñalva et al. 2003; Hipòlide et al. 2005; 

Roman et al. 2005b; 2006; Alfaro-Rodriguez et al. 2006).  

Regular sleep may contribute to a normal HPA axis function and maintenance of the 

glucocorticoid concentrations in a range that is protective for the brain, while chronic sleep loss, 

by altering their concentration, could have harmful consequences for the brain and contribute to 

pathology. Indeed, while optimal levels of glucocorticoids in the brain have neuroprotective effects 

(Rasmussen and Gulati 1962; De Courten-Myers et al. 1994; Abraham et al. 1997, 2000; 

Felszeghy et al. 2004; Schmitt et al. 2006), frequent exposure to high concentrations of 

glucocorticoids are thought to promote neuronal damage and cell loss, particularly in the 

hippocampus (Sapolsky et al. 1985, Sousa et al. 1999, Watanable et al. 1992). Elevated doses of 

glucocorticoids can also exacerbate the damage induced by several types of insults in the 

hippocampus, cortex and striatum (Sapolsky et al. 1985; Sapolsky and Pulsinelli 1985; Koide et 

al. 1986; Sapolsky 1986; Supko and Johnston 1994; Abraham et al. 2000; Roy and Sapolsky 

2003). Moreover, different conditions with high glucocorticoids levels are associated with smaller 

hippocampal volume and cognitive impairment (Lupien et al. 1998; Sapolsky 2000, Huang et al. 

2009).  

In psychiatric disorders and especially in depression, the HPA axis shows abnormal 

activity. Depressed patients display elevated levels of CRF and cortisol (Nemeroff et al. 1984; 

Gillespie and Nemeroff 2005), reduced GR function (Pariante 2004), and in some cases a blunted 

ACTH response to CRF (Holsboer et al. 1984) that can be accompanied by increased volume of 

the pituitary and adrenal glands (Kessing et al. 2011).Considering that sleep loss affects the HPA 

axis function and that dysfunctional HPA axis is one of the most consistent findings in depressed 

subjects, it might be that sleep loss represents an important factor predisposing to depression 

through its influence on the HPA axis.  

Aims and outline of the thesis 

This thesis presents a series of studies on the consequences of chronic sleep restriction on brain 

vulnerability, with special emphasis on systems that have been implicated in psychopathology.   

Evidence suggests that sleep loss may increase the risk to develop psychopathology, although 

the mechanisms underlying this effect are largely unknown. Loss of sleep could increase the risk 

for psychopathology acting on various neurobiological systems. The work in this thesis focuses on 

the effects of sleep loss on serotonergic system (5-HT1A receptor functionality) and 

neuroendocrine regulation (HPA axis activity and reactivity) that in turn may affect neurogenesis, 

neuroplasticity and neurodegenerative pathways (see scheme below). All these systems are 

influenced by sleep loss and altered in depression or other mood disorders.  
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The experiments of this thesis used an established rat model of chronic sleep restriction to mimic 

sleep loss in humans (Meerlo et al. 2002; Roman et al. 2005a, 2005b). Animals were subjected to 

a protocol of sleep restriction with only four daily hours of sleep, which presumably is not enough 

to recover from the period of wakefulness.  

Based on the hypotheses that chronically insufficient sleep may increase brain 

vulnerability and sensitivity to neurodegenerative processes, in chapter 2 we examined the 

degree of neuronal damage induced by an acute neurotoxic insult in control animals and in 

animals that had been sleep restricted for 1 month. Animals received an injection with a 

neurotoxic concentration of NMDA in the cholinergic nucleus basalis magnocellularis (NBM) and 

established the degree of cholinergic cell and fiber loss.    

In subsequent chapters, we assessed the effects of chronic sleep restriction on 

serotonergic function and HPA axis regulation. Chapter 3 describes how chronic sleep restriction 

alters subsequent HPA responses to acute stress challenges. The HPA axis response was 

studied measuring the plasma levels of ACTH and corticosterone. To assess potential 

mechanisms that might be underlying sleep-restriction induced changes in HPA axis regulation, 

we directly stimulated the HPA axis of sleep restricted and control animals with either CRH or a 5-

HT1A receptor agonist. Since sleep deprivation affects metabolism and in rats most often leads to 

a decrease in body weight, which in turn may affect serotonergic function, in chapter 4 we 
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examined whether sleep-restriction induced changes in 5-HT1A sensitivity would persist 

independently of body weight loss. To prevent the decrease in body weight during sleep 

restriction, rats received a medium fat diet. In chapter 5, we studied the effect of chronic sleep 

loss on the HPA axis feedback system. In particular, we examined if the expression of MR and 

GR receptors is affected by chronic sleep restriction and chronic sleep restriction combined with 

repeated stress. In chapter 6, we extended our studies on the consequences of insufficient sleep 

to younger, adolescent animals and evaluated the effects of chronic sleep restriction on 

hippocampal plasticity, HPA axis activity and behavioral parameters of anxiety and anhedonia. 

The results of all the experimental chapters are finally discussed in chapter 7.  
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Abstract  

It has been hypothesized that insufficient sleep may compromise neuronal function and contribute 

to neurodegenerative processes. While sleep loss by itself may not lead to cell death directly, it 

may affect the sensitivity to a subsequent neurodegenerative insult. Here we examined the effects 

of chronic sleep restriction (SR) on the vulnerability of the brain to N-methyl-d-aspartate (NMDA)-

induced excitotoxicity. Animals were kept awake 20 h per day and were only allowed to rest 

during the first 4 h of the light phase, i.e. their normal circadian resting phase. After 30 days of SR 

all rats received a unilateral injection with a neurotoxic dose of NMDA into the nucleus basalis 

magnocellularis (NBM). Brains were collected for assessment of damage. In the intact non-

injected hemisphere, the number of cholinergic cells in the NBM and the density of their 

projections in the cortex were not affected by SR. In the injected hemisphere, NMDA caused a 

significant loss of cholinergic NBM cells and cortical fibers in all animals. However, the loss of 

cholinergic cells was attenuated in the SR group as compared with the controls. These data 

suggest that, if anything, SR reduces the sensitivity to a subsequent excitotoxic insult. Chronic SR 

may constitute a mild threat to the brain that does not lead to neurodegeneration by itself but 

prepares the brain for subsequent neurotoxic challenges. These results do not support the 

hypothesis that sleep loss increases the sensitivity to neurodegenerative processes.  
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Introduction  

Sleep is considered to be a process that serves neuronal recovery and synaptic plasticity, which 

in turn is crucial for brain function and performance (Benington and Frank 2003; Meerlo et al. 

2009; Tononi and Cirelli 2006). Along these lines, it is generally thought that insufficient sleep has 

detrimental effects that may threaten neuronal integrity and perhaps contribute to 

neurodegeneration. Several studies have been devoted to this issue, but no clear picture on the 

relationship between sleep loss and neurodegeneration has emerged. 

Several studies have examined this issue directly by staining for markers of dying 

neurons in brain tissue of sleep-deprived laboratory rats. One study reported that prolonged total 

sleep deprivation for 5–14 days had no effect on expression of apoptotic genes and did not 

increase staining for TUNEL and Fluor-Jade as markers of DNA damage and neuronal 

degeneration (Cirelli et al. 1999). Another study showed that sleep deprivation for 8–10 days did 

not increase cell damage in most brain regions as assessed by silver staining, except for a 

localized increase in the supraoptic nucleus of the hypothalamus (Eiland et al. 2002). A third study 

showed a temporary increase in the expression of apoptotic markers, and an increase in the 

number of TUNEL- or silver-stained degenerating cells in several brain areas of rats deprived of 

rapid eye movement (REM) sleep for 6–10 days (Biwas et al. 2006). 

Other experiments have assessed effects of sleep deprivation on indirect measures that 

may indicate neurodegenerative processes and cell damage. Yet, these measurements do not 

actually prove there is an increased neurodegeneration. For example, a number of papers have 

reported on changes in the expression of structural proteins and other structural measures such 

as cell size and nuclear volume (Biwas et al. 2006; Majumdar and Mallick 2005), or on measures 

of oxidative stress that could potentially lead to cellular damage (D’Almeida et al. 1998; 

Ramanathan et al. 2002). 

Interpretation of the data on sleep loss and neurodegeneration is complicated by the 

wide variety of experimental approaches used with respect to both duration (from days to weeks) 

and method of sleep deprivation (treadmills, rotating drums, platforms over water), as well as the 

sleep state most affected by it (non-REM or REM sleep). In addition, interpretation is further 

complicated by the variety of markers used to assess neurodegeneration and the fact that some 

of these are only expressed for a very brief period of time, which makes them unsuitable to 

establish cumulative cell loss over longer periods of sleep deprivation. 

Collectively, the available literature does not appear to make a convincing case for sleep 

loss-induced neurodegeneration. However, even when sleep deprivation has little or no direct 

neurodegenerative effect by itself, it might still change the integrity and function of neurons in 

such a way that they become more sensitive to other neurodegenerative inputs and processes 

(e.g. stress, stroke, ageing). 

Recent studies suggested that wakefulness and prolonged wakefulness by sleep 

deprivation are associated with synaptic potentiation, partly mediated by increased expression of 
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glutamate receptors (Vyazovskiy et al. 2008). A sleep loss-induced increase in glutamate receptor 

expression might increase the sensitivity of neurons to neurotoxic insults, which often involve 

glutamate signaling and calcium overload (Ankarcrona et al. 1995; Sattler and Tymianski 2000, 

2001). Therefore, rather than measuring the direct neurodegenerative effect of sleep loss itself, 

one might assess the sensitivity of sleep-deprived animals to an acute glutamate receptor-

mediated neurotoxic stimulus. 

In the present study, we aimed to test whether chronic sleep restriction (SR) increases 

the subsequent sensitivity to a neurotoxic challenge by applying a well-validated 

neurodegeneration model. Particularly, we experimentally induced local damage of the nucleus 

basalis magnocellularis (NBM) in laboratory rats by overstimulation of the N-methyl-d-aspartate 

(NMDA) glutamate receptors (Luiten et al. 1995; Stewart et al. 1986). Overstimulation of these 

receptors induces a cascade of events that leads to cell damage and eventually to cell death 

(Choi 1988; Stewart et al. 1986). As a measure of brain vulnerability in sleep-restricted and 

control rats, we assessed the loss of NBM cholinergic neurons and their cortical fiber projections 

in the cortex.  

Materials and methods 

Animals and housing 

This study was performed with adult male Wistar rats, weighing 200–300 g at the beginning of the 

experiment. Animals were individually housed in Plexiglas cages and kept in a room with a 

12 : 12 h light : dark cycle (lights on 9AM – 9PM) and a temperature of 21±1°C. Standard 

laboratory chow food and water were provided ad libitum. The experiment was approved by the 

Ethical Committee of Animal Experiments of the University of Groningen.  

 

Sleep restriction and controls 

A total of 30 animals were assigned to one of the following three groups (n = 10 in each): chronic 

SR, forced activity (FA) control or home cage control (HC). SR and control procedures were 

performed following the protocol used in previous studies (Novati et al. 2008; Roman et al. 2005a, 

2005b). To assess the effects of insufficient sleep on the subsequent sensitivity to a 

neurodegenerative insult, rats were subjected to chronic SR for 30 days. SR was achieved by 

placing the animals in 40 cm diameter drums, rotating at the speed of 0.4 m/min. Rats were sleep 

deprived 20 h per day (1PM – 9AM) and were left undisturbed for the remaining 4 h at the 

beginning of the light phase (9AM – 1PM). To examine whether effects of the treatment were 

caused by forced locomotion rather than SR, a FA group was included as control. Animals of the 

FA group were housed in the same type of drums, but rotating at double speed for half the time 

(0.8 m/min for 10 h). The FA animals therefore walked the same distance as sleep-restricted 

animals, but had sufficient time to sleep. The 10-h FA was done in the dark phase, the main 
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activity phase of the rats (11PM – 9AM). In addition to the FA control, we also used undisturbed 

controls that remained in their home cage throughout the experiment (HC). 

 

NMDA-induced damage to the NBM 

After 30 days of restricted sleep or control procedures, all rats received a unilateral injection with a 

neurotoxic dose of NMDA into the NBM (see Figure 1). This is a well-validated model to study 

neurodegenerative processes and treatments that modulate the degree of neurodegeneration 

(Dolga et al. 2009; Horvath et al. 2000; Luiten et al. 1995; Stewart et al. 1986). The NBM contains 

NMDA receptor-expressing cholinergic neurons that project to the neocortex (Mesulam et al. 

1983; Wenk et al. 1980). These cortical projections are exclusively unilateral (Semba et al. 1988). 

Therefore, with unilateral NMDA injection and selective damage to the NBM in one hemisphere, 

one can use the other hemisphere as an intact, within-individual control to assess loss of 

cholinergic cells and projections (Horvath et al. 2000; Luiten et al. 1995). Each rat received a 

unilateral injection of NMDA (60 nmol in 1 µl of phosphate buffer saline at pH 7.4; Sigma, St 

Louis, MO, USA) at the level of the NBM (coordinates: AP –1.5 mm, L 3.2 mm from bregma; V –

6.2 mm and –7 mm from the dura; Paxinos and Watson, 1986). The concentration of NMDA was 

chosen to produce submaximal damage (Luiten et al., 1995). At each of the two dorso-ventral 

injection sites, 0.5 µl NMDA was infused over a period of 5 min. After surgery, the animals were 

returned to their home cage and were allowed to recover for the next 8 days. 

 

Brain collection 

Eight days after the NMDA injection, the brains of the rats were collected for immunocytochemical 

analysis. Animals were injected with 2 ml/kg pentobarbital and transcardially perfused, first with 

saline and then with a 4% solution of paraformaldehyde in 0.1 m phosphate buffer. Brains were 

removed from the skull, postfixated in 4% paraformaldehyde for 24 h and immersed in 30% 

sucrose for 48 h for cryoprotection. Eight series of 20 µm sections were cut with a cryostat and 

preserved in 0.01 M PBS with 0.1% sodium azide for further processing.  

 

Immunocytochemistry 

The number of cholinergic cells in the NBM and the density of cholinergic fiber projections in the 

cortex were assessed on the basis of immunostaining for choline acetyltransferase (ChAT). This 

enzyme for the synthesis of acetylcholine is highly expressed in cholinergic cell bodies and 

terminals (Wu and Hersh 1994), and is commonly used as a marker to estimate the number of 

cholinergic cells and fibers (Dolga et al. 2009; Horvath et al. 2000; Luiten et al. 1995); for an 

illustration see Fig. 1. Immunostaining for ChAT was performed following previously published 

methods (Dolga et al. 2009; Horvath et al. 2000). Sections were pretreated for 30 min with 0.3% 

H2O2 and 1 h with 5% normal rabbit serum to prevent non-specific staining before incubation with 

1 : 400 goat anti-ChAT primary antibody (Chemicon International, Temecula, CA, USA) for 48 h at 

4 °C. Tissue was exposed to 1 : 500 rabbit anti-goa t secondary antibody for 2 h (Jackson 
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ImmunoResearch, Suffolk, UK). Sections were then incubated for 2 h with 1 : 500 avidine-biotine 

complex (Elite Vector Laboratories, Burlingame, CA, USA). The staining was developed through 

reaction with 0.2 mg/ml diaminobenzidine and 0.003% H2O2.  

 

Quantification 

Cholinergic cells were counted in the NBM of both brain hemispheres, in three sections per 

animal between bregma −1.2 and −1.8, with about 280–300 µm intersectional distance (Paxinos 

and Watson 1986). Cell counting was carried out using a microscope at a 400x final 

magnification. The number of cells in the examined sections was divided by the NBM surface 

(mm2) as measured in the same sections with a computerized image analysis system (Leica 

Qwin, Rijswijk, the Netherlands). The resulting value was expressed as number of cells per mm2. 

Quantification of the cholinergic fiber density was performed in the same sections with the same 

image analysis system. The coverage area of ChAT-positive fibers was measured in layer V of 

the somatosensory cortex, with three measurements per hemisphere, per section for each animal. 

After background subtraction and grey-scale threshold determination, the surface area of 

skeletonized ChAT-positive fibers was computed (the area covered by ChAT-positive fibers/total 

sampling area). The loss of cholinergic cells and fibers induced by the NMDA injection was 

calculated for each animal by comparing the intact hemisphere with the damaged side and was 

expressed as percentage difference.  

 

Statistics 

To establish if the NMDA injection effectively induced neurodegeneration in each of the three 

treatment groups, ChAT-positive cell number and fiber density in the intact and damaged 

hemisphere were compared with a paired t-test. To establish if SR by itself had an effect on the 

NBM cholinergic cell number and projection density, independent of the NMDA injection, cell 

number and fiber density in the intact hemisphere of the different treatment groups were 

compared by one-way analysis of variance (ANOVA). To assess if SR altered the sensitivity to 

NMDA-induced damage, the percentage cell loss and fiber loss in the three treatment groups 

were also compared by one-way anova. When anova revealed a significant treatment effect, a 

post hoc Fisher’s LSD test was applied to determine differences between specific groups. The 

level of significance for all tests was set at P < 0.05. All data in text and figures are expressed as 

average per group ± SEM.  

Results  

Figure 1 shows representative photographs of the ChAT-positive cells in the NBM as well as 

ChAT-positive fiber projections in the cortex. The photographs also illustrate the effect of the 

NMDA injection into the NBM.  
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From the 30 animals used (n = 10 in each groups), four were excluded from the analysis because 

the NMDA injection was not centered in the NBM (2 HC, 2 SR). Due to damaged section and 

staining artifacts, four additional animals had to be excluded from the cortical fiber density 

analysis (1 HC, 2 FA, 1SR).  

Chronic SR by itself had no significant effect on ChAT-positive cell number and fiber 

density in the intact, non-damaged hemisphere (cell number: F2,23=0.99, P=0.39; Fig. 2a; fiber 

density: F2,19=0.64, P=0.54; Fig. 3a). 

In the injected hemisphere, NMDA caused a highly significant loss of ChAT-positive 

cholinergic  neurons in the NBM as compared with the number of cells in intact hemisphere in all 

three treatment groups (HC: t=11.80, P<0.001; FA: t=17.57, P<0.001; SR: t=8.35, P<0.001; 

Fig. 2b). It also caused a highly significant loss of ChAT-positive fibers in the cortex in all three 

groups (HC: t=8.67, P<0.001; FA: t=10.75, P<0.001; SR: t=11.32, P<0.001; Fig. 3b). 

Importantly, the NMDA-induced loss of cholinergic cells in the NBM differed among the 

experimental groups (F2,23=8.17, P=0.002). On average, cell loss in the SR rats was significantly 

smaller than in FA and HC control groups (post hoc LSD test: SR versus FA P=0.032; SR versus 

HC P<0.001; FA versus HC P=0.061; Fig. 2b). Also the loss of ChAT-positive fibers in the cortex 

was affected by the experimental treatment (F2,19=7.98, P=0.003), and was lower in SR and FA 

rats as compared with the HC group (post hoc LSD test: SR versus HC P=0.019; FA versus HC 

P<0.001; Fig. 3b).  

Fig.1.  Unilateral injection of N-methyl-D-aspartate (NMDA) in the nucleus basalis magnocellularis (NBM). NMDA 
infused in the NBM of one hemisphere induces degeneration of the resident cholinergic cells and their projection to the 
cortex. As the cholinergic projections to the cortex are exclusively unilateral, the loss of cholinergic cells and fibers 
occur only in the injected hemisphere. A, B) Photographs of ChAt-positive fibers in the cortex and ChAt-positive cells in 
the NBM in the intact hemisphere. C, D) Photographs of ChAt-positive fibers in the cortex and ChAt-positive cells in the 
NBM in the injected hemisphere. 
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Discussion  

The aim of this study was to test the hypothesis that chronically insufficient sleep sensitizes the 

brain to neurodegenerative processes, specifically glutamate receptor-mediated neurotoxicity. 

After 30 days of SR, rats received an injection with a neurotoxic dose of NMDA unilaterally into 

the NBM of the basal forebrain, which caused a significant loss of cholinergic neurons and fiber 

projections to the cortex. However, contrary to the hypothesis, this effect was smaller in sleep-

restricted animals as compared with non-sleep-restricted controls. 

Fig.2 . Chronic sleep restriction (SR) and cholinergic cell 
numbers in the NBM. A) The number of choline 
acetyltransferase (ChAT)-positive cells in the intact side of the 
NBM was not significantly different in the three groups of rats. B) 
The percentage of ChAT-positive cells lost in SR animals was 
significantly lower than in forced activity (FA) and home cage 
(HC) animals. * P < 0.05 
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Rats in the present study received a unilateral injection of NMDA in the NBM, which allows for a 

comparison of the damaged hemisphere with the intact hemisphere. Analysis of the intact side 

showed similar cholinergic cell numbers and cortical fiber densities in all groups, indicating that 

chronic SR by itself had no effect on the cell numbers and fiber projections. This finding is in 

agreement with earlier studies suggesting that prolonged sleep deprivation per se does not lead 

to widespread neuronal damage and death (Cirelli et al. 1999; Eiland et al. 2002). 

While SR had no direct neurodegenerative effect, it attenuated the damage induced by 

the NMDA injection into the NBM. This attenuated NMDA-induced neurodegeneration in sleep-

restricted rats was to some extent observed in the FA controls as well. These animals were 

housed in the same rotating drums as the sleep-restricted animals, but walked for half the time at 

double speed. Thus, they covered the same distance, but had sufficient time to sleep. The 

Fig.3.  Chronic sleep restriction (SR) and cholinergic fiber density 
in the cortex. A) The area covered by fibers in the fourth layer of 
the somato-sensory cortex of the intact side was comparable 
among experimental groups. B) The loss of ChAt positive fibers in 
the cortex was significantly lower in both SR and forced activity 
(FA) groups compared with home cage (HC) controls. * P < 0.05 
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cholinergic cell loss of these animals was in between that of sleep-restricted rats and home cage 

controls (significantly different from SR and a trend towards a difference with HC). Therefore, 

while the mild FA involved in our sleep deprivation procedure may have been partly responsible 

for the attenuated cell loss, it does not explain all of it. 

Although the NMDA-induced cholinergic cell loss in the NBM was stronger in the FA 

control rats than in the SR rats, the reduction in fiber density in the cortex was similar. The reason 

for this is unclear but it may be that in sleep-restricted rats more cells were preserved, but these 

surviving cells had fewer projecting fibers. 

All together, while part of the effect of chronic SR may have been a non-specific effect of 

FA, sleep loss per se may have further attenuated cell loss. Importantly, the direction of this effect 

directly opposes the hypothesis that sleep loss increases the sensitivity to neurodegenerative 

processes. Yet, our results are in agreement with a number of other publications. Studies from at 

least two different laboratories reported attenuated damage in sleep-deprived rats subjected to 

cerebral artery occlusion, an experimental model of stroke (Hsu et al. 2003; Moldovan et al. 

2010). In one of these studies (Hsu et al. 2003), rats were sleep deprived for 5 days before 

undergoing cerebral ischaemia. The neuronal damage on the pyramidal cells in the CA1 of 

hippocampus and the glial reactivity following the ischaemic event was lower in sleep-deprived 

animals compared with control animals. The second study (Moldovan et al. 2010) assessed the 

damage induced by cerebral ischaemia after a brief episode of 6 h sleep deprivation. The authors 

reported reduced neuronal injury and better sensorimotor performance in sleep-deprived animals 

compared with control animals during the first week of recovery. In agreement with our findings, 

these experiments suggest that sleep deprivation prior to a neurodegenerative insult may reduce 

subsequent brain damage. In contrast, one recent study reported that 12 h sleep deprivation or 

3 days of sleep disturbance increased cell death and infarct volume in a rat model of focal 

cerebral ischaemia (Gao et al. 2010). In this latter study, rats were subjected to sleep deprivation 

or disturbance after the ischaemic insult, instead of before, as was the case in the other papers. 

Further studies are required to assess whether this indeed is a crucial difference leading to 

opposite results. Together these findings might indicate that sleep deprivation before a 

neurodegenerative insult attenuates the damage, whereas sleep deprivation after an insult 

increases the damage. 

The mechanism through which SR in our study attenuated experimental 

neurodegeneration remains to be established. Alterations in glutamate receptor expression and 

glutamate signaling might be one possibility as that is the system targeted in our model. In fact, 

we anticipated that SR might sensitize the brain to neurodegeneration on the basis of reports 

suggesting increased expression of glutamate receptors with prolonged wakefulness (Vyazovskiy 

et al. 2008). On the other hand, other studies have shown that sleep deprivation may decrease 

expression and functionality of glutamate NMDA and AMPA receptors (Hagewoud et al. 2010a; 

Kopp et al. 2006; McDermott et al. 2006). Such a decrease in glutamate receptor expression may 

not only reduce the functional excitability but also reduce the sensitivity to overstimulation and 
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excitotoxicity, which would be in line with our current findings. Yet, all of these studies applied 

relatively short sleep deprivation periods, and it remains to be established how glutamate receptor 

signaling is affected when SR becomes a chronic condition. 

An alternative pathway that might be involved in the attenuated neurodegeneration in 

sleep-restricted rats is the adenosine receptor system. Besides regulating sleep homeostasis in 

the basal forebrain (Bjorness et al. 2009; Porkka-Heiskanen et al. 1997; Thakkar et al. 2003), 

adenosine is known to exert neuroprotective functions that are mostly dependent on the 

adenosine A1 receptor (Cunha 2005). Acute sleep deprivation was found to increase the 

expression of adenosine A1 receptors (Basheer et al. 2007; Elmenhorst et al. 2007; Yanik and 

Radulovacki 1987), which would be in line with our findings of a reduced sensitivity to a neurotoxic 

insult. Again, it remains to be established how adenosine turnover and receptor expression are 

affected following SR over more prolonged periods of time. 

Recently it was shown that a brief 6 h sleep deprivation increases the activity of certain 

antioxidant enzymes and levels of antioxidants in various brain regions in the rat (Ramanathan 

et al. 2010). On the basis of this finding, one might argue that an increase in antioxidant defense 

responses constitutes another potential mechanism through which chronic SR might protect the 

brain against damage caused by an acute insult. However, the literature on sleep deprivation and 

antioxidant defense mechanisms is rather inconsistent. In fact, the majority of studies suggest that 

prolonged deprivation or disturbance of sleep either has no effect (D’Almeida et al. 1997; 

Gopalakrishnan and Cirelli 2004) or it reduces the antioxidant responses and increases measures 

of oxidative stress (D’Almeida et al. 1998; Ramanathan et al. 2002). The latter would not be in line 

with our findings. 

One way or another, sleep deprivation might constitute a threat to neuronal integrity that 

in itself is not sufficient to cause neurodegeneration but gradually activates compensatory 

neuroprotective mechanisms. As such, sleep deprivation might act as a pre-conditioning stimulus, 

which, when it precedes an acute insult, may attenuate the subsequent damage (Hsu et al. 2003; 

Moldovan et al. 2010). 

In conclusion, the present study shows that chronic SR results in an attenuation of the 

damage caused by an acute neurotoxic insult. The mechanism of this effect remains to be 

established, but this finding clearly opposes the hypothesis that insufficient sleep sensitizes the 

brain to neurodegeneration. 
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Abstract  

Frequently disrupted and restricted sleep is a common problem for many people in our Western 

society. In the long run, insufficient sleep may have repercussions for health and may sensitize 

individuals to psychiatric diseases. In this context, we applied an animal model of chronic sleep 

restriction to study effects of sleep loss on neurobiological and neuroendocrine systems that have 

been implied in the pathophysiology of depression, particularly the serotonergic system and the 

hypothalamic-pituitary-adrenal (HPA) axis.  

Adult rats were exposed to a schedule of chronic partial sleep deprivation allowing them only 4 h 

of sleep per day. Sleep restriction was achieved by placing the animals in slowly rotating drums. 

To examine the regulation and reactivity of the HPA axis, blood samples were collected to 

measure adrenocorticotropin (ACTH) and corticosterone (CORT) responses. 

While one day of restricted sleep had no significant effect on HPA axis stress reactivity, sleep 

restriction for a week caused a blunted pituitary ACTH response in a conditioned fear paradigm. 

Despite this lower ACTH response, adrenal CORT release was normal. The blunted pituitary 

response may be related to reduced sensitivity of serotonin-1A receptors and/or receptors for 

corticotrophin releasing hormone (CRH), since sleep restricted rats showed similar reductions in 

ACTH release to direct pharmacological stimulation with a serotonin-1A agonist or CRH. 

Chronic sleep restriction may lead to changes in neurotransmitter receptor systems and 

neuroendocrine reactivity in a manner similar to that seen in depression. This experimental study 

thus supports the hypothesis that disrupted and restricted sleep may contribute to the 

symptomatology of psychiatric disorders.  
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Introduction  

Restricted or disrupted sleep is a widespread and serious problem in our western society (Bonnet 

and Arand 1995; Rajaratnam and Arendt 2001). Many people experience regular sleep loss due 

to our modern around-the-clock lifestyle, increased work pressure, and psychosocial stress. In the 

long run, insufficient sleep may have many yet unknown repercussions for health and well being. 

Controlled studies have shown that acute sleep deprivation affects cognitive performance and 

emotionality (Pilcher and Huffcutt 1996). Recent experimental studies in healthy subjects show 

that successive nights of restricted sleep result in a gradually accumulating decline in cognitive 

function (Dinges et al. 1997; Van Dongen et al. 2003). Whereas subjects may initially recover 

from these effects after subsequent sleep, frequent or chronic sleep loss may induce 

neurobiological changes that are not immediately evident but accumulate over time, ultimately 

with serious health consequences. Indeed, sleep complaints and restricted sleep have been 

identified as risk factors for various diseases including psychiatric disorders (Breslau et al. 1996; 

Chang et al. 1997, Ford and Kamerow 1989, Koren et al. 2002; Neckelmann et al. 2007; Buysse 

et al. 2008).   

Although sleep disturbances associated with psychiatric disorders are traditionally 

considered as a symptom of the disease, several studies suggest that the relationship between 

sleep changes and mood disorders is more complex and may work in the other direction as well. 

Instead of being a symptom, disrupted and restricted sleep may also be a causal factor that 

sensitizes individuals and contributes to the development of mood disorders (Riemann et al. 2003; 

Taylor at al. 2008). Consistent with this, primary insomnia often precedes and predicts the onset 

of a new depressive episode (Ford and Kamerow 1989; Breslau et al. 1996; Chang et al. 1997; 

Neckelmann et al. 2007; Buysse et al. 2008). However, in a clinical setting, cause and 

consequence are often difficult to separate, and the mechanisms by which disrupted sleep might 

contribute to the development of mood disorders are unknown. 

 In this context, we applied an animal model to establish the consequences of 

chronically disrupted and restricted sleep. We focused our attention on neurobiological and 

neuroendocrine systems that have been implicated in the pathophysiology of depression, 

particularly the serotonergic system and the hypothalamic-pituitary-adrenal (HPA) axis (Meerlo et 

al. 2002; Roman et al. 2005b, 2006).  

The HPA axis is an important neuroendocrine stress system, and depression is often 

described as a condition with HPA axis overactivity on the basis of elevated CRH and cortisol 

levels (Nemeroff et al. 1984; Gillepsie and Nemeroff 2005). On the other hand, depressed 

patients often display a blunted pituitary ACTH response (Holsboer et al. 1984, 1987). Perhaps 

the chronically elevated CRH levels gradually desensitize the CRH receptors, which in turn may 

be responsible for the attenuated pituitary responsiveness. Alternatively, the attenuated pituitary 

ACTH response may also be a result of reduced sensitivity of serotonin receptors and reduced 

serotonergic neurotransmission. The serotonin-1A receptors in particular are involved in 
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regulating ACTH release, not only directly at the level of the pituitary, but also at the level of the 

paraventricular nucleus of the hypothalamus (Fuller 1992; Dinan 1996). Several lines of evidence 

indicate that serotonergic neurotransmission is impaired in depression (Cryan and Leonard 2000; 

Sobczak at al. 2002; Stockmeier 2003). A decrease in serotonin-1A receptor-mediated signaling 

in depressed patients has been shown by pharmacological challenges (Lesch et al. 1990; Mann 

et al. 1995; Shapira et al. 2000) and positron emission tomography (PET) studies (Drevets et al. 

1999; Sargent et al. 2000; Drevets et al. 2007; Hirvonen et al. 2008). Although postmortem 

studies have yielded various results, some of them are consistent with a decrease in serotonin-1A 

receptor function in depression (Stockmeier 2003).  

The altered HPA axis regulation in depressed patients is often taken as an indication 

that depression is a disorder of stress. However, the question of whether changes in regulation 

and responsivity of the HPA axis are related to disrupted sleep has received little attention 

(Meerlo et al. 2008).  

The first aim of this study was to establish the effects of restricted sleep on 

neuroendocrine stress reactivity, particularly the reactivity of the HPA axis. Rats were subjected to 

chronic partial sleep deprivation for 7 d, after which they were exposed to a stressor to measure 

pituitary ACTH and adrenal CORT responses. To examine effects of sleep restriction on the HPA 

axis response to different kinds of stressors, the animals were subjected to a fear conditioning 

protocol, which consists of a stressor with a clear physical component (footshocks) and a more 

emotional stressor (re-exposure to the shock box, which is associated with a conditioned fear 

response).  

The second aim was to establish potential neurobiological mechanisms underlying sleep 

restriction-induced changes in HPA axis stress reactivity. In a previous study we showed that 

restricted sleep causes a gradual desensitization of the serotonin- 1A receptor system (Roman et 

al. 2005b). Similar to depressed patients, chronically sleep restricted rats had a blunted 

temperature response to direct stimulation of serotonin-1A receptors with a 1A agonist (Roman et 

al. 2005b, 2006). In the present experiment we studied whether changes in HPA axis reactivity 

might be related to this serotonin-1A receptor desensitization. In addition, we examined whether 

changes in HPA axis reactivity might be directly related to altered CRH sensitivity. We therefore 

injected sleep restricted and control rats with a serotonin-1A agonist or CRH and measured their 

ACTH and CORT responses.  

Material and methods 

Animals and Housing  

We used adult male Wistar rats (Harlan, Horst, The Netherlands) weighing approximately 350 g at 

the start of the experiments. Animals were housed under a 12 h light/12 h dark cycle, with lights 

on from 9AM to 9PM. Temperature in the room was maintained at 21±1°C. Rats were provided 
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with food and water ad libitum in all experiments. Experiments were approved by the Ethical 

Committee of Animal Experiments of the University of Groningen.  

 

Experimental Design  

Two experiments were performed with different groups of animals. In both experiments, animals 

were subjected to a protocol of sleep restriction, allowing them 4 h of sleep each day. Since rats 

normally sleep about 10 to 12 h each day, 4 h of sleep may not be sufficient to fully recover from 

20 h of wakefulness. In previous studies we have shown that rats survive well on this protocol but 

it does result in gradual neuroendocrine and neurobiological changes (Meerlo et al. 2002; Roman 

et al. 2005b). For example, although one day of sleep restriction had no significant effects on the 

systems that were studied, 8 days of restricted sleep caused a significant reduction in serotonin-

1A receptor sensitivity. In the first experiment of the present study, we examined the effect of 

sleep restriction on HPA axis stress responsivity. Rats were subjected to a fear conditioning 

protocol after 1 or after 7 days of sleep restriction. In the second experiment, we examined the 

effects of sleep restriction on serotonin-1A and CRH receptor sensitivity, particularly in relation to 

HPA axis responsivity. The HPA axis response to direct stimulation of serotonin-1A receptors and 

CRH receptors was measured after 7 and 8 days of restricted sleep, respectively.  

 

 

 

 

 

 

 

 

 

 

Sleep Restriction and Forced Activity  

Rats were subjected to a protocol of repeated partial sleep deprivation for 8 days, allowing them 

to sleep 4 h per day at the beginning of the light phase (9AM–1PM) in their home cage (Meerlo et 

Fig.1.  Experimental set-up of sleep restriction protocol and forced activity control. 
Top bar: rats were sleep restricted by forced locomotion (FA) for 20 h each day 
(grey section of the bar) and were allowed 4 h of rest (R) in their home cage (first 4 h 
of the light phase). Middle bar: rats were subjected to a protocol of forced activity at 
double speed (FA2) for half the time. Animals were subjected to the 10 h of forced 
activity in one block (dark grey section of the bar) which coincided with the last 10 h 
of the dark phase of the light-dark cycle. Lower bar depicts the 24-h light-dark cycle. 
As indicated by (*), the stress exposure in the first experiment (fear conditioning on 
day 1 / 2 or day 7 / 8) and the pharmacological challenges in the second experiment 
(8-OH-DPAT and CRH on day 7 and 8, respectively) took place between the third 
and fourth hour of the light phase. 
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al. 2002; Roman et al. 2005, 2006). The remainder of the time, animals were kept awake by 

placing them in slowly rotating wheels (40 cm in diameter) driven by an engine at constant speed 

(0.4 m/min). Since the sleep deprivation procedure includes mild forced locomotion, we used 

forced activity control rats to test whether effects of sleep restriction might be caused by forced 

activity rather than sleep loss per se. Animals of the forced activity group were placed in the same 

plastic drums as the ones that were used for sleep restriction. However, these wheels rotated at 

double speed (0.8 m/min) for half the time (10 h). Therefore, the rats of the forced activity control 

group walked the same distance as sleep restricted ones, but had sufficient time for sleep (14 h). 

Animals were subjected to forced activity during the last 10 h of the dark phase, i.e., their 

circadian activity phase (Figure 1). Before starting the experiments, all rats were habituated to the 

experimental apparatus by placing them in the wheels for 1-2 h on 3 successive days. 

 

Blood Sampling and Hormone Assays  

In the first experiment on HPA axis reactivity in a fear conditioning paradigm, blood samples were 

collected by making a small incision at the end of the tail (Meerlo et al. 2002). Although brief 

handling was required for this blood sampling procedure, it likely did not interfere with 

neuroendocrine responses, since it coincided with the beginning and end of the stress sessions. 

Any effect of the mild handling stress would be obscured by the more severe stress of the 

footshock conditioning protocol. In the second experiment, we aimed to measure the HPA axis 

response after direct stimulation of CRH and serotonin-1A receptors without stress exposure. In 

this case, we made use of permanent heart catheters that allowed stress-free and frequent blood 

sampling in unrestrained and freely moving animals (Steffens 1969). Rats were provided with a 

polyethylene catheter in the right atrium of the heart under isoflurane/N2O/O2 inhalation 

anaesthesia. The catheter was inserted through the right jugular vein and externalized on top of 

the head according to techniques described earlier (Steffens 1969). After surgery, rats were 

allowed ≥10 days of recovery before the start of experiments. During this period, animals were 

habituated to handling and blood sampling procedures. In all experiments, blood was collected in 

chilled centrifuge tubes (0°C) containing EDTA. Blo od samples were centrifuged at 4°C for 15 min 

at 2600 g, and the supernatant was stored at –80°C for later analysis. ACTH and CORT 

concentrations were determined by radioimmunoassay (ICN Biomedicals, Costa Mesa, CA).  

 

Conditioned Fear Challenge  

To establish the effect of restricted sleep on HPA axis stress reactivity, rats were subjected to a 

fear conditioning paradigm after 1 or after 7 days of sleep restriction. The experiments after 1 and 

7 days were done in separate groups of rats (in each experiment: 8 sleep restriction, 8 forced 

activity control, 8 home cage control). On these days, rats returned to their home cage after the 

daily sleep deprivation session and were exposed to a fearful environment approximately 3 h 

later. Rats were placed in a shock box (25×25×15 cm) for a half-hour, during which they received 
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3 shocks at t = 5, 15, and 25 min (2 sec, 0.8 mA each). After the shock session, rats were 

returned to their home cage. The next day, approximately 24 h later, the rats were re-exposed to 

the shock box for another 30-min period, this time without shocks, to establish HPA axis response 

to an emotional stressor. Sleep deprivation was not continued between the initial shock session 

and the shock box re-exposure. Importantly, we have previously shown that some effects of 

chronic sleep restriction persist for many days, even with unrestricted recovery sleep (Roman et 

al. 2005b). Therefore, we anticipated that changes in HPA axis reactivity would persist as well and 

not normalize with a single day of recovery sleep. Blood samples were collected to measure 

plasma levels of ACTH and CORT at the beginning of the stress session, the end of the stress 

session, and after 45 min of recovery in the home cage (t = 0, 30 and 75 min). On both days, the 

shock box was thoroughly cleaned and dried between the tests of successive animals.  

 

Serotonergic Challenge  

In order to examine the effect of sleep restriction on serotonin- 1A receptor sensitivity and 

serotonergic modulation of HPA function, the rats were pharmacologically challenged with the 

serotonergic 1A receptor agonist (±)-8-hydroxy-2-(di-n-propyl-amino) tetralin hydrobromide (8-OH-

DPAT; Sigma, St. Louis, MO). The experiment was done with a total of 30 rats (10 sleep 

restriction, 10 forced activity control, 10 home cage control). The challenge test took place after 7 

days of sleep restriction, during the 4-h rest period in the home cage, between the third and fourth 

hour of the light phase. Each rat received a tube for blood sampling and infusion of the agonist, 

which was connected to the permanent heart catheter that externalized on top of the head. After 

≥1.5 h, when any handling effect would have disappeared, rats received an intravenous injection 

of 8-OH-DPAT through the catheter (0.1 mg/kg body weight, dissolved in saline). The con-

centration of 8-OH-DPAT was based on earlier studies and was chosen to cause intermediate 

hormone responses (Korte et al. 1995). To measure plasma levels of ACTH and CORT in 

response to serotonin-1A receptor activation, blood samples were taken shortly before as well as 

5, 15, and 60 min after the 8-OH-DPAT injection. After the last blood sample, the rats were placed 

back in the rotating wheels to continue the sleep restriction regime.  

 

CRH Challenge  

In order to investigate whether sleep restriction alters CRH control of the HPA-axis, rats received 

an injection of ovine CRH (oCRH; American Peptide Company, Sunnyvale, CA). After 8 days of 

sleep restriction, i.e., one day after the 8-OH-DPAT challenge, the same rats were again 

connected to the sampling tubes while in their home cage during the daily 4-h resting phase. 

Between the third and fourth hour of the light phase, the rats received an intravenous injection of 

CRH through the jugular vein catheter (0.5 µg/kg body weight, dissolved in saline). The 

concentration of CRH was based on earlier studies and was known to induce intermediate ACTH 

and CORT responses (Buwalda et al. 1999). Blood samples were taken to assess the sensitivity 
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of the pituitary gland to CRH. Blood sampling and hormone measurements for ACTH and CORT 

were carried out as described for the serotonin-1A challenge.  

 

Data Analysis and Statistics  

To test for effects of sleep restriction on the HPA axis responses to fear conditioning and to 

injections of 8-OH-DPAT and CRH, hormone data were subjected to analysis of variance 

(ANOVA) with repeated measures. When appropriate, post hoc Tukey test was applied to 

establish at which time points after stress exposure or pharmacological challenge the ACTH or 

CORT levels differed between experimental and control groups.  

Results  

Stress and Conditioned Fear Response  

Both the 30-min footshock session and the re-exposure to the shock box next day induced a 

pronounced HPA axis response. This response was not significantly altered after one day of sleep 

restriction (data not shown). However, 7 days of sleep restriction caused significant alterations in 

the HPA axis response (Figure 2). For the ACTH response to footshock, ANOVA revealed a 

significant treatment effect (F2,21=5.42, P=0.013) and a significant treatment × time interaction 

(F4,42=2.99, P=0.029). On average, the ACTH response was lower in sleep restricted animals than 

it was in forced activity controls and home cage controls (Figure 2A). This difference only reached 

statistical significance for the comparison with home cage controls (post hoc Tukey test: P<0.05 

for t=30 min and t=75 min). The plasma levels of CORT after the footshock session were not 

different between the groups (Figure 2B).  

Upon re-exposure to the shock box next day, chronically sleep restricted animals had a 

significantly blunted ACTH response compared to both control groups (Figure 2C; ANOVA: 

treatment effect F2,21=10.73, P<0.001 and treatment × time interaction F4,42=5.77, P<0.001; post 

hoc Tukey test: P < 0.01 versus home cage controls at t=30 min and t=75 min, and P<0.05 versus 

forced activity controls at t=30 min). Also the CORT response upon re-exposure to the shock box 

was slightly but significantly lower in sleep restricted animals (Figure 2D; ANOVA: treatment effect 

F2,21=5.54, P=0.012 and treatment × time interaction F4,42=3.43, P=0.016; post hoc Tukey test: P 

< 0.05 versus home cage controls at t = 30 min and t = 75 min, and P<0.05 versus forced activity 

controls at t = 30 min). 

 

Serotonergic Challenge  

Due to partially blocked catheters, blood samples could not be drawn from 2 of 30 animals (both 

were sleep restricted rats). An IV injection of the serotonin-1A agonist 8-OH-DPAT induced a 

clear HPA axis response in all animals. On average, the ACTH response of the sleep restricted 

rats was lower than that of the home cage control animals, which in turn was lower than that of 

the forced activity control rats (Figure 3A). Repeated measures ANOVA revealed a significant 
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treatment effect (F2,25=6.16, P=0.007) and a significant treatment × time interaction (F6,75=4.32, 

P=0.001). 
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Post hoc Tukey test indicated that the response of sleep restricted animals was significantly lower 

than that of forced activity control animals (P<0.01 for t = 15 min and P<0.05 for t = 60 min). In 

contrast, the CORT response to 8-OH-DPAT was not significantly different between sleep 

restricted and control rats (Figure 3B).  

 

Fig.2.  Effect of sleep restriction on the HPA axis response to stress. Sleep restricted and control rats were 
exposed to a 30-min session of footshocks after 7 days (left panels, A and B) and a 30-min re-exposure to 
the shock box on day 8 (right panels, C and D). Significant differences in ACTH and CORT responses 
between sleep restricted and control animals: a = p<0.05 compared to home cage control, b = p<0.05 
compared to forced activity control. All data are expressed as average ± SEM. 
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CRH Challenge  

Because of blocked catheters, blood samples could not be taken from 2 animals (1 home cage 

control and 1 sleep restricted rat). The IV injection of CRH resulted in a clear ACTH and CORT 

response. However, the magnitude of the ACTH response differed between the groups (Figure 

4A). 
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Fig.3.  Effect of sleep restriction on serotonin-1A 
mediated HPA axis responsivity. After 7 days of 
sleep restriction, rats received an IV injection of 
the serotonin-1A receptor agonist 8-OH-DPAT 
and blood samples were taken to establish 
ACTH and CORT responses (A and B 
respectively). Significant differences between 
sleep restricted and control animals, b = p<0.05 
compared to forced activity control. All data are 
expressed as average ± SEM. 
 

Fig.4. Effect of sleep restriction on CRH-
induced HPA axis responses. After 8 days of 
sleep restriction, rats received an IV injection 
of CRH and blood samples were taken to 
establish ACTH and CORT responses (A and 
B respectively). Significant differences 
between sleep restricted and control animals: 
a = p<0.05 compared to home cage control, b 
= p<0.05 compared to forced activity control. 
All data are expressed as average ± SEM. 
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Repeated measures ANOVA indicated an overall treatment effect (F2,25=3.54, P=0.044) and a 

treatment × time interaction (F6,75=4.03, P=0.001). Post hoc Tukey test showed that ACTH 

release in sleep restricted animals was significantly lower than that in forced activity controls 

(P<0.05 for t = 5 min) and lower than that in the home cage controls (P<0.05 for t = 15 min). Yet, 

despite a lower ACTH response, the adrenal CORT response was not significantly different 

between the treatment groups (Figure 4B).  

Discussion  

This experimental study in rats shows that chronic sleep restriction may lead to alterations in 

neurotransmitter receptor systems (the serotonin-1A receptor and CRH receptor system) and 

neuroendocrine stress systems (the HPA axis), which are quite similar to changes that have been 

reported for major depression. While one day of restricted sleep had no significant effect on the 

HPA axis response to stress, sleep restriction for a week caused a blunted pituitary ACTH 

response in a conditioned fear paradigm. This blunted pituitary response may, in part, be related 

to a reduced sensitivity of the CRH and/or serotonin-1A receptors since sleep restricted rats 

showed a similar reduction in ACTH release to direct pharmacological stimulation with CRH and 

the serotonin-1A agonist 8-OH-DPAT.  

The finding of a blunted pituitary ACTH response in a fear conditioning paradigm is 

consistent with an earlier study showing a chronic sleep restriction-induced attenuation of the pitu-

itary response to restraint stress (Meerlo et al. 2002). In the present study, pituitary ACTH release 

was significantly reduced upon re-exposure to the fearful environment in which the rats had 

previously received a series of shocks. On average, the ACTH response of sleep restricted rats to 

the initial footshock session itself was lower as well, but this reduction was smaller and statistically 

significant only in comparison with the home cage controls (but not the forced activity controls). It 

cannot be ruled out that the actual footshocks represented a stronger stressor, whereby a ceiling 

effect in the HPA axis response may have prevented larger differences between sleep-restricted 

animals and control groups. However, another explanation for the more pronounced effect of 

sleep restriction on the response to shock box re-exposure versus the weaker effect on the 

response to the actual shock session may lie in the nature of the stressor. The footshocks are a 

direct and physical stimulus whereas re-exposure to the shock box constitutes a more 

psychological stress. Perhaps effects of sleep loss on stress reactivity are more pronounced in 

case of psychological stressors (Meerlo et al. 2008). Although most stressors, both physical and 

emotional, are associated with the acute and typical increase in HPA axis activity, the magnitude 

of this response is regulated and modified by different brain circuits (Lopez et al. 1999; Herman et 

al. 2003). Many brain regions are activated regardless of the nature of the stressor; for other 

regions there is some specificity in the activation depending on the stimulus. It may be that some 

of the brain regions and circuits that are specifically involved in the regulation and modulation of 
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emotional stress responses are more sensitive to sleep loss than the circuits involved in physical 

stress (Meerlo et al. 2008).   

The second experiment of this study suggests that the blunted pituitary ACTH stress 

response of sleep restricted rats may at least partly be the result of a reduced sensitivity to 

serotonergic and CRH input. When serotonin-1A receptors or CRH receptors were stimulated 

directly, via an intravenous injection of an agonist, a similar attenuation of the ACTH response 

was found. However, for the serotonin-1A mediated ACTH response, this attenuation in sleep-

restricted rats was statistically significant relative only to the forced activity controls but not the 

home cage controls. Interestingly, the ACTH response in sleep-restricted animals to both CRH 

and the serotonin-1A agonist 8-OH-DPAT was lower than that of the home cage control animals; 

whereas the response in the forced activity controls, if anything, was higher than that of home 

cage animals. In other words, restricted sleep and forced activity appeared to have opposite 

effects. The increase in ACTH responsivity in the forced activity control group may have been the 

result of mild stress experienced by these animals (Roman et al. 2005a). Indeed, a similar 

increase in ACTH response to CRH was found in a model of social stress (Buwalda et al. 1999). 

Thus, mild forced activity involved in our sleep restriction procedure may have partly counteracted 

the effects of sleep loss per se. Sleep loss without forced activity might result in an even stronger 

attenuation of the pituitary ACTH response.  

The attenuated ACTH release upon injection of CRH in sleep-restricted rats suggests a 

desensitization of CRH receptors in the pituitary gland. Such desensitization might be the result of 

prolonged activation of the CRH system itself. Although information is limited, a number of animal 

studies suggest that sleep deprivation is indeed associated with elevated expression and release 

of CRH (Fadda and Fratta 1997; Fujihara et al. 2003; Koban et al. 2006). Especially in cases 

where disrupted and restricted sleep are a chronic condition, the corresponding overstimulation of 

CRH receptors by their own ligand might result in a downregulation of these receptors.  

The attenuated ACTH response to serotonin-1A stimulation in sleep-restricted animals 

may be the result of changes at the level of pituitary or changes in other brain areas that provide 

input to the pituitary. Part of the attenuated serotonin-1A response may be an indirect effect 

related to the attenuated sensitivity to CRH discussed above. As injection of 8-OH-DPAT stimu-

lates release of CRH from the paraventricular nucleus of the hypothalamus (Dinan 1996), the 

reduced ACTH response to 8-OH-DPAT may in part be a result of reduced sensitivity to CRH. It is 

also possible that the attenuated response to 8-OH-DPAT is a consequence of reduced sensitivity 

of the serotonin-1A receptors themselves at the level of the pituitary and the hypothalamus or 

even in other brain areas that innervate the HPA axis, such as the amygdala (Calogero 1990; 

Dinan 1996). In accordance with this, bilateral lesions of the central amygdaloid nucleus lead to a 

marked decrease in the ACTH release during stress (Beaulieu et al. 1986; Herman et al. 2005). A 

reduction in serotonin- 1A receptor sensitivity in sleep-restricted rats is supported by our earlier 

studies, showing that not only 1A receptor-induced ACTH release but also other 1A-receptor 

mediated responses are decreased. In reaction to 8-OH-DPAT, chronically sleep-restricted rats 
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displayed a significantly attenuated hypothermic response (Roman et al. 2005b; Roman et al. 

2006). The finding of a reduction in multiple physiological responses makes it likely that this 

attenuation is, at least partly, a consequence of a reduced sensitivity of the serotonin- 1A receptor 

system itself. The mechanism underlying such a sleep-restriction induced serotonin-1A 

desensitization may be similar to the one proposed for a desensitization of the CRH receptors. 

Since the levels of serotonin are higher during wakefulness and sleep deprivation than they are 

during sleep (Portas et al. 2000), chronic sleep restriction and prolonged wakefulness may lead to 

overstimulation and ultimately downregulation of the serotonin receptors (Roman et al. 2005b).  

In both experiments on HPA axis reactivity, despite reduced pituitary ACTH release, the 

adrenal glucocorticoid response was not affected or only mildly affected. Upon re-exposure to the 

shock box in the conditioned fear paradigm, the ACTH response of sleep-restricted animals was 

reduced by more than 60%, whereas there was only a minor, albeit significant, reduction of the 

CORT response. In reaction to pharmacological stimulation of the CRH or serotonin-1A receptors, 

the ACTH response of sleep restricted animals was attenuated, whereas the CORT response was 

not different from that of the control rats. An unchanged CORT response in the face of blunted 

ACTH levels can be explained by increased ACTH sensitivity in the adrenal cortex. This would 

imply that sleep restriction alters regulation of the HPA axis at multiple levels (Meerlo et al. 2002).   

It is noteworthy that the pharmacological CRH and serotonin-1A challenge tests that we 

applied in the present study have been used many times in clinical settings to investigate 

alterations in receptor sensitivity in psychiatric disorders such as depression. Very much like 

chronically sleep-restricted rats, depressed patients show blunted ACTH but normal cortisol 

responses to CRH injections (Holsboer et al. 1984, 1987). Also in response to serotonin- 1A 

agonists, depressed subjects show blunted physiological responses (Lesch 1991; Mann et al. 

1995; Shapira et al. 2000). A reduction in serotonin-1A receptor binding capacity in depressed 

patients has been confirmed by several PET studies (Drevets et al. 1999; Sargent et al. 2000; 

Drevets et al. 2007; Hirvonen et al. 2008). In one of these imaging studies, decreased 1A receptor 

binding potential was associated with the occurrence of insomnia, underscoring the complex 

relationship between sleep disturbance, depression, and changes in serotonergic 

neurotransmission (Hirvonen et al. 2008).   

In summary, chronic experimental reduction of sleep in laboratory rats causes gradual 

changes in neurotransmitter receptor systems and HPA axis regulation - changes similar to those 

seen in human depression. These data suggest that several important symptoms of depression, 

i.e., disturbed sleep, altered serotonergic neurotransmission, and changes in HPA axis regulation, 

may be interrelated. In fact, whereas changes in serotonin-1A receptor sensitivity may in part 

explain the alterations in HPA axis responsivity, sleep disturbance may be causal to both the 

neurobiological and neuroendocrine changes. On the basis of changes in the regulation and 

activity of neuroendocrine stress systems, depression is often considered a disorder of stress.  

However, our study suggests that some of the symptoms traditionally ascribed to stress may also 

be a result of insufficient sleep. This experimental study thus provides support for the hypothesis 
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that sleep disturbance and insomnia may contribute to the symptomatology of psychiatric 

disorders. Chronically disrupted and restricted sleep may lead to alterations in neurobiological 

systems and altered regulation of stress systems, which may eventually sensitize individuals to 

stress-related disorders such as depression.  

Acknowledgments  

The authors thank Jan Bruggink for his assistance with the surgeries, blood sampling and 

hormone analyses and Paulien Barf for her assistance with the experiments. This work was 

supported by the School of Behavioral and Cognitive Neurosciences and the Netherlands 

Organization for Scientific Research (VIDI grant 864.04.002 to P. Meerlo).



 

 

 

 

CHAPTER 4 

 
Changes in serotonin-1A receptor sensitivity following 

sleep restriction are not dependent on diet and  
body weight changes 

 

R Paulien Barf; Arianna Novati; Henriëtte J Hulshof; Anton J Scheurink; 
Peter Meerlo 



CHAPTER 4 

46 
 

Abstract  

Short and disrupted sleep has been linked to the development of a wide variety of diseases, 

including mood disorders such as depression. Insufficient sleep might contribute to these 

disorders by altering serotonergic neurotransmission. In support of this, experimental studies in 

rodents show that chronic sleep curtailment leads to desensitization of the serotonin-1A receptor 

system. According to the literature, such changes in serotonergic signaling may in part be a 

consequence of changes in metabolism and reductions in body weight. Therefore, in the present 

study, we assessed whether a medium fat food diet could protect against these effects of 

insufficient sleep. 

 Adult male rats were subjected to a schedule of chronic sleep restriction only allowing 

them 4h of undisturbed sleep per day. Half of the sleep restricted animals were maintained on a 

medium fat diet to prevent the decrease in body weight during sleep restriction. To study the 

serotonin-1A receptor sensitivity, we measured body temperature and endocrine responses to 

injections with the serotonin-1A agonist 8-OHDPAT after 8 days of sleep restriction. 

 Providing sleep restricted rats with a medium fat diet strongly attenuated the drop in 

body weight seen in sleep restricted animals on a standard Chow diet. However, this did not 

prevent desensitization of the serotonin-1A system. Sleep restricted animals on both medium fat 

and standard Chow food showed a similar blunted body temperature response and pituitary 

ACTH response upon stimulation of the serotonin-1A receptor system. Interestingly, insulin and 

leptin levels were equally decreased in both sleep restricted groups on different diets despite the 

differences in body weight. 

 In conclusion, the present study shows that changes in serotonin-1A receptor sensitivity 

following sleep restriction are not dependent on diet and body weight changes. The mechanism 

through which chronically restricted sleep gradually desensitizes the serotonin-1A system may be 

complex and multifactorial. It might be the result of altered regulation of physiological and 

endocrine factors such as insulin and it may in part be the consequence of a cumulative effect of 

sleep loss directly acting on the brain. 
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Introduction  

Restricted and disrupted sleep is a common problem in our Western society. Epidemiological and 

clinical studies suggest that chronically disrupted sleep may contribute to the development of 

various diseases, including mood disorders such as depression (Ford and Kamerow 1989; 

Breslau et al. 1996; Chang et al. 1997). Impairment of serotonergic neurotransmission might be 

one of the pathways through which insufficient sleep contributes to the onset of depressive 

symptoms. This idea is supported by experimental studies in laboratory rodents showing that 

chronic sleep restriction causes a gradually developing desensitization of the serotonin-1A 

receptor system and an attenuation of 1A-mediated functions (Roman et al. 2005b, 2006; Novati 

et al. 2008). Yet, it remains an important question what aspect of sleep disturbance is causing 

these alterations in serotonergic function. 

One factor that deserves attention in this context is metabolism. Controlled studies in 

humans have shown that sleep restriction is associated with changes in metabolic regulation, 

alterations in glucose homeostasis, and increases in appetite (Spiegel et al. 1999; Spiegel et al. 

2004; Donga et al. 2010). Also, numerous studies on prolonged sleep deprivation in rodents have 

reported increased food intake and reduced body weight (e.g. Rechtschaffen and Bergmann 

1995; Everson 1995; Hipolide et al. 2006). In recent studies, we focused on the metabolic 

consequences of insufficient sleep in our model of chronic sleep restriction in rats. Partial sleep 

deprivation for 8 days resulted in weight loss and reduced insulin responses, accompanied with 

glucose intolerance and hyperglycemia (Barf et al. 2010). 

Based on the data above, one could argue that changes in serotonergic 

neurotransmission resulting from chronically restricted sleep might be secondary to the effects on 

energy metabolism and body weight. Indeed, literatures shows that weight loss affects serotonin 

levels (Brewerton 1995; Bailer et al. 2005; Kaye 2005; Haleem 2009) and a decrease in body 

weight due to food restriction is associated with a desensitization of the serotonin-1A receptor in 

rats (Li et al. 2008; Li et al. 2009). Furthermore, preventing a decrease in body weight in socially 

stressed rats by providing them with a fat food diet also prevents the stress-induced serononin-1A 

desensitization (Buwalda et al. 2001).  

Therefore, in the present study we investigated whether sleep restriction induced 

changes in serotonergic signaling might be a consequence of changes in metabolism and body 

weight and we assessed if a fat food diet could protect against these effects of insufficient sleep.  

We performed a study during which half of the sleep restricted rats received a medium fat (MF) 

diet with a higher caloric density compared to standard Chow food. We hypothesized that the MF 

diet during the sleep restriction protocol would prevent at least partly the decrease in body weight 

compared to animals on standard Chow. To assess whether this would also prevent the changes 

in serotonin-1A receptor sensitivity, we measured body temperature and endocrine responses to 

injections with the serotonin-1A receptor agonist (±)-8-hydroxy-2-(di-n-propylamino) tetralin 

hydrobromide (8-OHDPAT) (Roman et al. 2005b; Novati et al. 2008).  
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Material and methods  

Animals and housing 

Male Wistar rats (weight ± 320g; Harlan Netherlands BV, Horst, The Netherlands) were 

individually housed in Plexiglas cages in a climate-controlled room (21°C±1) under a 12h:12h 

light-dark cycle (lights on at 10:00h). Water and food were available ad libitum throughout the 

study. Different experimental groups were fed with standard Chow food or MF food (respectively 

5.5% vs. 45.0% fat; Arie Blok Diervoeding B.V., Woerden, The Netherlands). Body weight and 

food intake were measured daily. Energy intake was calculated on the basis of the caloric density 

for both food types (Chow: 3.7 kCal/g; MF: 4.8 kCal/g). Experiments were approved by the Ethical 

Committee of Animal Experiments of the University of Groningen.  

 

Chronic sleep restriction 

Animals were subjected to chronic partial sleep deprivation according to previously published 

method (Roman et al. 2005a, 2005b; Novati et al. 2008; Barf et al. 2010). Sleep restriction groups 

were allowed to sleep in their home cage for 4 hours per day at the beginning of the light phase.  

During the remaining 20 hours, rats were kept awake by placing them in drums rotating at a 

constant speed of 0.4 m/min. Animals were subjected to this schedule of sleep restriction for 8 

days during which they had free access to food and water inside the drums. All rats were 

habituated to the experimental conditions by placing them in the drums for 1-2h on 3 consecutive 

days before the onset of the sleep restriction protocol. Control animals were left undisturbed in 

their home cage throughout the experiment.  

 

Experiment 1: Radio telemetry and serotonin-1A mediated temperature responses 

In the first experiment we assessed the effects of MF food during the sleep restriction protocol on 

the sensitivity of the serotonin-1A receptor by measuring the acute hypothermic response to an 8-

OHDPAT challenge. All animals were equipped with radio telemetry transmitters in the abdominal 

cavity to measure body temperature (model TA10TA-F40; Data Sciences, St. Paul, MN, USA). 

Surgeries were carried out under general 2% isoflurane inhalation anesthesia. The transmitters 

measured core body temperature and transformed temperature values into frequency coded radio 

signals. These radio signals were relayed to a PC by receivers placed underneath the home 

cages (model RPC-1; Data Sciences, St. Paul, MN, USA). Body temperature was sampled for 10 

seconds every 10 minutes and processed with Dataquest LabproTM (Data Sciences). After 10 

days of recovery from surgery, the animals were divided over three groups (n=8 in each group): 

home cage control on standard Chow food (Control-Chow), sleep restriction on standard Chow 

food (SR-Chow), and sleep restriction on medium fat food (SR-MF). In this first experiment we did 

not include a control group on MF food since previous studies indicated that MF per se does not 

affect serotonin-1A mediated body temperature responses (Buwalda et al. 2001). After the last 

sleep restriction session on day 8, during the fourth hour of the light phase, all rats received a 
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subcutaneous injection of the serotonin-1A receptor agonist 8-OHDPAT (Sigma, St. Louis, MO, 

USA) at a concentration of  0.25 mg/kg body weight (Roman et al. 2005b, 2006).  

 

Experiment 2: Blood sampling and serotonin-1A mediated HPA axis responses 

In the second experiment we studied the effects of MF food and sleep restriction on the serotonin-

1A receptor mediated hypothalamic-pituitary-adrenal (HPA) axis responses. All animals were 

equipped with a chronic heart catheter in the jugular vein allowing repeated and stress free blood 

sampling according to the method described by Steffens (Steffens 1969). Under 2% isoflurane 

inhalation anesthesia, a silicon heart catheter (0.95 mm OD, 0.50 mm ID) was inserted into the 

right jugular vein and kept in place with a ligament. The other end of the catheter was 

subcutaneously directed to the top of the head were it was fixed with dental cement and could be 

used to connect the animals to sampling tubes. After 10 days of recovery from surgery, the 

animals were divided over four groups (n=8 in each group): home cage control animals on 

standard Chow food (Control-Chow) or medium fat food (Control-MF), and sleep restriction 

animals on standard Chow food (SR-Chow) or medium fat food (SR-MF). After 8 days of sleep 

restriction, animals were prepared for blood sampling by connecting them to sampling tubes. After 

1h, when any handling effect should have disappeared, rats received an intravenous injection of 

8-OHDPAT through the catheter at a concentration of 0.1 mg/kg body weight (Novati et al. 2008). 

To measure plasma levels of ACTH and corticosterone in response to serotonin-1A receptor 

stimulation, blood samples were taken shortly before as well as 10, 20, 30 and 60 min after the 8-

OHDPAT injection. All samples had a volume of 250 µl, except the first one, which had a volume 

of 500 µl to allow analysis of plasma levels of insulin and leptin. The blood samples were 

collected in pre-cooled tubes containing EDTA (20 µL/ml blood). The samples were centrifuged at 

2600g for 10 min and plasma was stored at −20 °C un til analysis. Plasma ACTH levels were 

measured by ImmuChem 125l ACTH Radioimmunoassay and plasma corticosterone levels were 

measured by ImmuChem 125I Corticosterone Radioimmoassay (MP Biomedicals, Orangeburg, 

NY, USA). Plasma insulin levels were measured by Linco Research Rat Insulin Radioimmoassay 

and plasma leptin levels were measured by Linco Research Rat leptin Radioimmoassay (Linco 

Research, St Charles, MO, USA). 

 

Statistical analysis 

Body weight and energy intake data were subjected to an analysis of variance (ANOVA) with 

repeated measures. Effects of sleep restriction and diet on the 8-OHDPAT induced temperature 

response in experiment 1 and endocrine responses in experiment 2 were assessed with repeated 

measures ANOVA as well. Effects of the treatments on plasma insulin and leptin levels were 

analyzed with two way ANOVA. When appropriate, posthoc Tukey test was applied to establish 

differences between specific groups. P<0.05 was considered statistically significant. All data in 

text and figures are expressed as averages ± SEM.  



CHAPTER 4 

50 
 

Results 

Experiment 1: serotonin-1A induced temperature responses 

The change in body weight during the first experiment is shown in figure 1A. During the 8-day 

experiment, sleep restricted animals on standard Chow food significantly decreased in body 

weight compared to control animals on Chow (Repeated Measures ANOVA, sleep restriction x 

time: F11,154 = 33.58, P < 0.001). Sleep restricted animals on Chow also lost significantly more 

weight than sleep restricted animals on MF food (Repeated Measures ANOVA, diet x time: F11,154 

= 7.19, P < 0.001). During the same time period, energy intake did not differ between the three 

groups of animals. Despite the gradually developing differences in body weight, all groups 

maintained a stable and similar energy intake (average energy intake per day: Control-Chow: 88.6 

± 2.1 kCal; SR-Chow: 85.4 ± 2.7 kCal; SR-MF: 85.2 ± 1.8 kCal). 

Figure 1B depicts the body temperature responses to the 8-OHDPAT injection after 8 

days of sleep restriction. The subcutaneous injection of the serotonin-1A agonist caused an 

immediate hypothermia that reached lowest levels around 20-30 min post-injection. Body 

temperature returned to control values after 80 min. Sleep restricted animals on the standard 

Chow diet displayed a significantly attenuated temperature response compared to control animals 

on Chow (Repeated Measures ANOVA, sleep restriction x time: F12,144 = 3.60, P < 0.001). Sleep 

restricted animals on MF showed the same attenuated response and did not differ from the sleep 

restricted animals on Chow (Repeated Measures ANOVA, diet x time: F12,144 = 0.70, P > 0.5).  

 

Experiment 2: serotonin-1A induced endocrine responses 

The effects of sleep restriction and diet on body weight in the second experiment are shown in 

Figure 2A. Two Way Repeated Measures ANOVA revealed a significant effect of diet (diet x time: 

F11,308 = 4.07, P < 0.001), sleep restriction (sleep restriction x time: F11,308 = 58.97, P < 0.001), and 

an interaction between the two (sleep restriction x diet x time: F11,308 = 3.00, P < 0.01). The home 

cage control groups on the two different diets did not differ from each other. Sleep restriction 

caused a decrease in body weight but, as in the first experiment, this effect was strongly 

attenuated in the animals on MF food. Again, energy intake was not different between groups 

(average energy intake per day: Control-Chow: 88.6 ± 2.1 kCal; Control-MF: 87.6 ± 1.9 kCal; SR-

Chow: 89.4 ± 2.0 kCal; SR-MF: 88.9 ± 2.0 kCal).  

The injection of 8-OHDPAT induced a clear HPA axis response in all animals and 

treatment groups (ACTH: Figure 2B, corticosterone: Figure 2C). 
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The ACTH response was not affected by diet but ANOVA revealed a significant overall effect of 

the 8 days sleep restriction (F1,26 = 4.70, P < 0.05). Sleep restricted animals on average had a 

slightly attenuated ACTH response as compared to the control animals. In contrast, the 

corticosterone response to 8-OHDPAT was not affected by prior sleep restriction but, instead, was 

significantly altered by diet (diet x time: F4,108 = 12.07, P < 0.001). The animals on the MF diet 

showed a significantly stronger corticosterone response compared to the animals on a standard 

Chow diet.  

Fig.1. The effects of 8 days of sleep restriction on body weight and 
serotonin-1A sensitivity in rats receiving a standard Chow diet or a MF 
diet: (A) body weight changes in the course of the experiment; (B) body 
temperature responses to an injection with the serotonin-1A agonist 8-
OHDPAT (0.25 mg/kg) after 8 days of restricted sleep. The horizontal 
grey bar at the bottom of graph 1A represents the 8-day period of sleep 
restriction. N=8 in each group. Data are presented as average values ± 
SEM. See text for details on statistics. 
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Plasma levels of insulin and leptin after 8 days of sleep restriction are shown in Figure 3. 

Eight days of sleep restriction decreased both leptin and insulin levels compared to control 

animals (Two Way ANOVA: Leptin: F 1,27 = 21.32, P < 0.01; Insulin: F 1,27 = 14.63, P < 0.001), 

while a MF diet increased both leptin and insulin levels compared to animals on a Chow diet (Two 

Way ANOVA: Leptin: F1,27 = 12.19, P < 0.001; Insulin: F1,27 = 4.58, P < 0.05), but no interaction 

effects were found.  
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Fig.2.  The effects of 8 days of sleep restriction on body weight and serotonin-1A sensitivity in rats receiving a 
standard Chow diet or a MF diet: (A) body weight changes in the course of the experiment; (B) ACTH and (C) 
corticosterone responses to an injection with the serotonin-1A agonist 8-OHDPAT (0.1 mg/kg) after 8 days of 
restricted sleep. The horizontal grey bar at the bottom of graph 2A represents the 8-day period of sleep 
restriction. N=8 in each group. Data are presented as average values ± SEM. See text for details on statistics. 
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Discussion 

Previous studies in our laboratory showed that chronic sleep restriction is associated with a 

gradually developing desensitization of the serotonin-1A system (Roman et al. 2005b, 2006; 

Novati et al. 2008). In the present study we aimed to assess whether these changes are a 

secondary consequence of changes in metabolism and body weight. Providing sleep restricted 

rats with a MF diet strongly attenuated the drop in body weight that is normally seen in sleep 

restricted animals on a standard Chow diet. However, this did not prevent the desensitization of 

the serotonin-1A system. Sleep restricted animals on both MF and standard Chow food showed a 

similar blunted body temperature response and pituitary ACTH response upon stimulation of the 

serotonin-1A receptor system with the agonist 8-OHDPAT.  

Fig.3.  The effects of 8 days of sleep restriction on plasma levels 
of leptin (A) and insulin (B) in rats receiving a standard Chow diet 
or a MF diet. N=8 in each group. Data are presented as average 
values ± SEM. See text for details on statistics. 
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Interestingly, the MF diet caused a significant increase in the adrenal corticosterone 

response, independent of sleep restriction, suggesting that fat food per se may increase adrenal 

sensitivity. This finding appears to be in line with other published studies on the consequences of 

a chronic high fat diet. Indeed, animals on a high fat diet have enlarged adrenals, increased basal 

corticosterone levels, and increased adrenal responses to challenges during the first months on 

the diet (Tannenbaum et al. 1997). Even though in our study basal corticosterone levels were not 

affected, the corticosterone response to the 8-OHDPAT challenge was. Perhaps the MF food 

used in this experiment had the same effect on the adrenals compared to a high fat diet. Future 

experiments should therefore take adrenal size into account.  

The MF diet in the present study was administered to prevent the decrease in body 

weight that is normally seen during sleep restriction. As expected, the animals on the MF diet did 

not lose as much weight as the animals on regular Chow did. Nevertheless, the MF diet did not 

prevent the changes in serotonin-1A sensitivity seen after sleep restriction. In contrast, a previous 

study on the consequences of social stress showed that a high fat diet was able to prevent not 

only the stress-induced drop in body weight, but the stress-induced desensitization of the 

serotonin-1A receptor as well (Buwalda et al. 2001). Thus, whereas fat food ameliorates the 

effects of stress on the serotonergic system, it does not protect against the effects of sleep 

restriction. Apparently, the mechanisms through which stress and sleep disturbance affect the 

serotonin-1A sensitivity are different.  

Intriguingly, although the sleep restricted groups on control and MF diet differed in body 

weight, they had a similar energy intake as calculated from their food intake and the caloric 

content of their respective diets. Possible explanations for this discrepancy are that animals on a 

fat diet increase the actual absorption of energy in the intestinal system or a fat diet somehow 

lowers energy expenditure (Buwalda et al. 2001; Morens et al. 2006; Koolman et al. 2010). 

Literature shows that sleep restriction increases energy expenditure (Everson 1995; 

Rechtschaffen and Bergmann 1995) and a MF diet might influence this in such a way that it 

attenuates weight loss compared to animals on a standard Chow diet.  

Both sleep restriction and diet had specific and independent effects on basal levels of 

insulin and leptin. Sleep restriction decreased the levels of these hormones whereas a MF diet 

increased them. These changes may in part reflect the changes in body weight and fat content in 

the different groups (Picarel-Blanchot et al. 1995; Redman and Ravussin 2009). It remains 

unclear though why sleep restricted rats on a MF diet did not have significantly higher insulin and 

leptin levels than the sleep restricted animals on a standard Chow diet. Yet, the changes in the 

levels of these metabolic hormones may be relevant in the context of the changes in serotonin-1A 

sensitivity that we found. Particularly changes in the regulation of insulin may be associated with 

altered serotonin receptor sensitivity (Li et al. 2009). Rats receiving an intraperitoneal injection 

with streptozotocin, which is extremely toxic for the β-cells in the pancreas, have a decreased 

insulin production similar to what is seen in diabetic patients (Rerup 1970). After the injection, rats 

become hyperglycemic and hyperphagic but have decreased body weights, which is all 
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normalized after insulin treatment (Friedman 1977, 1978; Friedman and Ramirez 1994). Li and 

colleagues (2009) showed that the body temperature response to an 8-OHDPAT challenge was 

decreased 7 days after a streptozotocin injection, indicating reduced serotonin-1A sensitivity very 

much like in our sleep restricted rats. Again, the effect was reversible after 10 days of insulin 

treatment. It might thus be that an altered insulin regulation contributes to a desensitization of the 

serotonin-1A system in sleep restricted rats. 

Clearly, the exact mechanism through which chronically restricted sleep gradually 

desensitizes the serotonin-1A system may be complex and multifactorial. It may in part be the 

result of altered regulation of physiological and endocrine factors such as insulin and it may in part 

be the consequence of a cumulative effect of sleep loss directly acting on the brain. 

In conclusion, a MF food diet partially prevents the drop in body weight but not the 

desensitization of the serotonin-1A receptor system in sleep restricted rats. Chronically sleep 

restricted rats on a standard Chow diet and a MF diet showed a similar blunted temperature 

response and blunted pituitary ACTH response to stimulation of the 1A receptors with the agonist 

8-OHDPAT. The physiological and molecular mechanism through which sleep restriction 

gradually alters the serotonin-1A sensitivity remains to be established. 
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Abstract 

Since disrupted and restricted sleep is a major problem in our society, the question of whether 

sleep loss affects neuroendocrine stress systems and their brain receptor systems is important. 

Chronically restricted sleep is known to affect central systems involved in regulating the 

hypothalamic-pituitary-adrenal (HPA) stress response system. However, little is known on the 

effects of insufficient sleep on the expression of brain receptors for glucocorticoids, the final 

output of the HPA axis. In this study we examined if chronic sleep restriction alters the expression 

of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) in hippocampus and 

hypothalamus. Adult male rats were subjected to a schedule of chronic sleep restriction only 

allowing them 4h of sleep at the beginning of the light phase, i.e., their normal resting phase. The 

animals were sleep deprived for 20h each day by placing them in slowly rotating drums. Effects 

on MR and GR expression in the brain were established by in situ hybridization. In the first 

experiment, MR/GR expression was measured after 14 days of sleep restriction. In the second 

experiment, MR/GR expression was measured after 14 days of sleep restriction combined with a 

30-min daily restraint stress on day 9 - 13. On the first and last day of restraint stress, blood 

samples were collected to assess the corticosterone response and changes therein. The results 

did not show significant changes in GR and MR mRNA expression in the areas considered, 

neither after sleep restriction alone nor after sleep restriction combined with repeated restraint 

stress. Restraint stress induced a pronounced corticosterone response, which was not different 

between experimental groups and did not habituate with repeated stress exposure. All together, 

these results do not support the hypothesis that chronically restricted sleep leads to altered 

corticoid receptor expression in the brain. 
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Introduction  

The hypothalamic-pituitary-adrenal (HPA) axis is one of the main neuroendocrine systems 

involved in the regulation of stress responses (de Kloet et al. 2005). The paraventricular nucleus 

of hypothalamus (PVN) produces corticotropin releasing hormone (CRH) that stimulates the 

release of adrenocorticotropin hormone (ATCH) from the anterior pituitary, which in turn 

stimulates the adrenal cortex to release glucocorticoids (CORT, cortisol in humans or 

corticosterone in rats). Glucocorticoids together with the other HPA axis hormones serve a wide 

variety of functions (de Kloet et al. 2005). They not only support metabolic processes and physical 

activity under acute stress but also affect brain function, cognition and mood (de Kloet et al. 

2005).  

 Glucocorticoids accomplish their tasks through two types of receptors, the 

mineralocorticoid receptors (MR) and the glucocorticoid receptors (GR), which have different 

patterns of expression in the brain (de Kloet et al. 1993, 2005). While GR are widely distributed in 

the brain, the expression of MR receptors is largely restricted to hippocampus, lateral septum, 

amygdale, olfactory nucleus, layer II of the cortex and brain stem (de Kloet et al. 1993). The MR 

has a higher affinity for glucocorticoids than the GR, which is activated only when glucocorticoids 

reach high concentrations, such as during stress (Datson et al. 2008). Through these receptors, 

glucocorticoids exert both rapid non-genomic effects and slow, long-lasting genomic effects and 

influence a wide variety of processes in the brain and body (Datson et al. 2008; de Kloet et al. 

2008, 2009). Also, by activating these receptors, glucocorticoids provide negative feedback to the 

HPA axis system and regulate their own release (Miller et al. 1992; de Kloet et al. 1993; Feldman 

and Weidenfeld 1999). It has been suggested that due to the difference in affinity for 

glucocorticoids, MR control the basal activity of the HPA axis, whereas GR regulate the HPA axis 

mostly under conditions of stress (de Kloet et al. 1998; Datson et al. 2008).  

 While changes in MR/GR expression in the brain and alterations in HPA axis regulation 

under conditions of chronic stress have been topic of numerous studies (e.g., Sapolsky et al. 

1984; Chao et al. 1993; Herman et al. 1995; Makino et al. 1995; Gomez et al. 1996; Yau et al. 

2001), little is known on the consequences of disrupted and restricted sleep, although the latter in 

itself is sometimes considered as a stressful condition (for review and discussion, see Meerlo et 

al. 2008). Since disrupted and restricted sleep is a major problem in our society, the question of 

whether sleep loss affects the neuroendocrine stress systems and their brain receptor systems is 

important. Given the wide range of actions of CORT in the brain, effects of sleep loss on these 

receptor systems might have direct functional consequences for the way we perform and deal 

with everyday challenges.  In fact, chronically disrupted and restricted sleep is considered to be 

an important factor contributing to the development of mood disorders (Meerlo et al. 2008; 

Riemann and Voderholzer 2003).  Changes in HPA axis regulation and corticoid receptor 

expression might be one potential pathway underlying this.  
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 Studies in both humans and rodents have shown that sleep deprivation and sleep 

restriction are conditions sometimes associated with mild, temporary increases in the activity of 

the major neuroendocrine stress systems, including the HPA axis (for review, see Meerlo et al. 

2008). Most of the experiments considered mainly changes in HPA axis hormone levels, while the 

effects of sleep loss on HPA axis negative feedback and expression of corticoid receptors in the 

brain are largely unknown. It is noteworthy that the expression of MR and GR in the brain is 

regulated by a variety of neurotransmitters and hormones such as serotonin, noradrenaline, CRH, 

AVP and CORT (Sapolsky et al. 1984; Maccari et al. 1992, Alema et al. 1995; Hügin-Flores et al. 

2003; Robertson et al. 2005), some of which are also influenced by sleep deprivation (Fadda and 

Fratta. 1997; Spiegel et al. 1999; Lac and Chamoux 2003; Hipolide et al. 2005; Roman et al. 

2005b). 

 In the present study, we applied an animal model of sleep restriction and sleep 

restriction in combination with repeated restraint stress to examine whether chronic sleep 

restriction alters the expression of corticoid receptors in the brain.  

Material and methods 

Animals and housing 

Forty-eight male Wistar rats weighing 400-450 g at the beginning of the treatment were used in 

this study. Animals were housed in a room with a 12h light - 12h dark cycle (lights on 9AM – 9PM) 

and constant temperature of 21 ±1 °C. Standard labo ratory chow and water were provided ad 

libitum. Experiments were approved by the Ethical Committee of Animal Experiments of the 

University of Groningen. 

 

Experimental design 

We examined the effects of chronic sleep restriction on MR/GR expression and adrenal CORT 

responses in two different experiments. In the first experiment, rats were subjected to a sleep 

restriction protocol for 14 days and brains were collected for analysis of MR/GR expression by in 

situ hybridization. In the second experiment, rats were again sleep restricted for 14 days but this 

time they were also exposed to a daily 30-min restraint from day 9 until day 13.  Blood samples 

were taken on the first and fifth day of restraint stress to assess the adrenal CORT response. 

After the last sleep restriction session on day 14 brains were again collected to assess possible 

changes in MR/GR receptor expression when sleep restriction was combined with stress 

exposure. Each of the two experiments included three groups of rats: sleep restriction (SR), 

forced activity controls (FA) and home cage controls (HC), with n=8 per group. 

 

Sleep restriction and forced activity controls 

In both experiments, animals were subjected to a protocol of sleep restriction allowing them 4h of 

sleep each day at the beginning of the light phase (9 AM – 1PM) (Roman et al. 2005b, Novati et 
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al. 2008). The remainder of the time, animals were kept awake by placing them in slowly rotating 

drums (40 cm in diameter) driven by an engine at constant speed (0.4 m/min). Since the sleep 

deprivation procedure includes mild forced locomotion, we used forced activity control rats to test 

whether effects of sleep restriction might be due to forced activity rather than sleep loss per se. 

Animals of the forced activity group were placed in the same drums as the ones that were used 

for sleep restriction. However, in this case the wheels rotated at double speed (0.8 m/min) for half 

the time (10h). Therefore, the rats of the forced activity control group walked the same distance as 

sleep restricted ones but had sufficient time for sleep (14h). Animals were subjected to forced 

activity during the last 10h of the dark phase, i.e., their circadian activity phase.  

 

Restraint stress 

In the second experiment, rats were subjected to restraint on 5 consecutive days, from day 9 until 

13 of the sleep restriction protocol. Each time, at the end of the daily 4h resting phase, the rats 

were placed in cylindrical wire-mesh restrainers for 30 min (Meerlo et al. 2002). 

 

Blood sampling and CORT assay 

For repeated blood sampling, all rats in experiment 2 received permanent polyethylene heart 

catheters according to procedures previously described (Steffens 1969). Under 2% isoflurane 

inhalation anaesthesia, one end of a silicon heart catheter (0.95 mm OD, 0.50 mm ID) was 

inserted in the right atrium of the heart through the jugular vein and kept in place with a ligament.  

The other end of the catheter was subcutaneously directed to the top of the head, where it was 

fixed with dental cement and could be used to connect the rats to sampling tubes. After surgery, 

rats were allowed at least 10 days of recovery before the start of experiments. During this period, 

animals were habituated to handling and blood sampling procedures. To asses adrenal CORT 

responses, blood samples were taken on the first and last restraint stress day at the beginning of 

the 30-min restraint session, at the end of the restraint session, and after 45 and 65 min of 

recovery in the home cage (t = 0, 30, 75, 100 min). All blood samples were collected in chilled 

Eppendorf tubes containing EDTA. The samples were centrifuged at 4°C for 15 min at 2600g and 

the supernatant was used to measure the concentration of CORT by radioimmunoassay (MP 

Biomedicals, Orangeburg, NY, USA). 

 

Brain collection and tissue preparation 

At the end of the last sleep restriction session on day 14, after two hours of rest, animals were 

anaesthetized with dry ice CO2 and fresh brains were extracted from the skull, frozen in 

isopenthane on dry ice and preserved at -80 ºC until sectioning. 14 µm coronal sections through 

the entire PVN and dorsal hippocampus were cut with a microtome cryostat. The sections were 

mounted on poly-L-lysine-coated slides and then stored at -80 ºC until further processing for in 

situ hybridization.  
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In situ hybridization 

To measure the expression of MR and GR mRNA, in situ hybridization was performed using 35S 

labeled ribonucleotide probes, following a slightly modified version of published methods (Meijer 

et al. 2000, 2005). The MR probe was generated from a 500-bp fragment (EcoRI, Hind III 

fragment of rat MR cDNA) coding for rat MR exon two in pGEM4. A 510bp fragment of the original 

full-length GR clone (Sal 1-Hind III fragment of rat GR from exon 2), coding for the N terminus of 

the receptor, inserted in pGEM3, was used for the GR probe. Linearized plasmids were 

transcribed with RNA polymerase. 35S-labelled UTP were used to obtain antisense and sense 

probes (negative control). Mounted sections were fixed by placing the slides in 4 % 

paraformaldehyde with 0.5 % glutaraldehyde and then acetylated in 0.25% acetic anhydride in 0.1 

M triethanolamine / HCl. Dehydration followed in increasing concentrations of ethanol. Tissue 

sections were saturated with 120 µl hybridisation buffer containing 25 mM Tris-HCl at pH 7.4, 1.2 

mM EDTA (ph 8.0), 350 mM NaCl, 50% formamide, 10% dextran sulfate, 100 mM dithiothreitol, 

1x Denhardt’s in DEPC- H2O, RNA mix (0.1 mg/ml transfer RNA and 0.1 mg/ml hsDNA) and 2 x 

106 cpm of the labeled MR or GR probe. Following over night incubation at 55°C, the tissue was 

rinsed in 20x SSC, treated with 10 mg/ml RNAse A (30’, 37°C), washed in decreasing 

concentrations of SSC (65°C and RT) and dehydrated with increasing concentrations of ethanol. 

Air dried sections were placed on film (X-OMAT AR; Kodak, Rochester, NY) and developed (4 

days for MR and 12 days for GR). The mRNA expression was estimated by quantifying 

autoradiograph optical density with imaging software (Leica Qwink, NL). Measured values were 

corrected for film background.  

 

Statistics 

One-way analysis of variance (ANOVA) was used to analyze difference in MR/GR expression 

among the three animal groups, in selected brain areas. Repeated measures ANOVA was used 

for the analysis of corticosterone data. The level of significance was set at p<0.05. Data are 

expressed as average per group ±SEM. 

Results 

Adrenal CORT response 

The adrenal CORT response to repeated restraint stress was not significantly different among 

groups in day 1 or in day 5 (Figure 1). Rats in all groups displayed a robust CORT response to 

restraint, which, contrary to the expectation, was as high on the fifth restraint day as it was on the 

first.  
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Table 1. MR mRNA expression (in arbitrary units) in hippocampus and PVN and GR mRNA expression 
in hippocampus following two weeks of sleep restriction and two weeks of sleep restriction combined 
with 5 days restraint stress 

  2wk sleep restriction 2 wk sleep restriction + rest raint 

  HC FA SR HC FA SR 

MR 

CA1 153±15 143±16 164±17 286±25 251±18 266±21 

CA2 262±34 216±26 238±27 425±40 381±37 424±26 

CA3 121±14 121±12 138±16 187±17 164±15 165±11 

DG 207±22 198±21 236±22 365±35 291±26 317±17 

GR 

CA1 724±38 665±22 730±34 762±39 737±40 707±58 

CA2 200±16 196±13 171±12 191±21 181±15 173±25 

CA3 230±12 207±11 242±15 242±16 238±17 237±30 

DG 874±38 786±28 858±28 868±19 920±22 863±40 

PVN 687±41 670±25 618±11 685±25 694±15 685±28 

HC = home cage; FA = forced activity; SR = sleep restricted; MR = mineralcorticoid receptor; GR = glucocorticoid 
receptor; MR and GR expression in arbitrary units, values are group averages ± SEM. 
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MR and GR expression 

The expression of MR and GR receptor mRNA was analyzed after two weeks of sleep restriction 

(Exp. 1) and after two weeks of sleep restriction combined with repeated restraint (Exp. 2). For 

both the conditions, one-way ANOVA did not reveal any differences in the expression of MR and 

GR among experimental groups for the areas considered (Table 1, all p>0.05). 

Fig.1.  Effect of sleep restriction on the adrenal CORT response to repeated restraint stress. Sleep restricted and 
control rats were exposed to a 30-min session of restraint. Blood samples were collected before the restraint 
(baseline, t = 0), immediately after (t = 30) and during recovery (t = 75, t = 100). The CORT response did not 
differ among the three experimental groups and was comparable between day 1 (A) and day 5 (B). 
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Discussion  

This study examined the effects of chronic sleep restriction or sleep restriction, alone or 

combination with repeated stress, on the expression of MR and GR in the brain. While 2 weeks of 

sleep restriction appeared to have no effect on CORT receptor mRNA in the brain, there is reason 

to consider these data with care. We measured MR and GR mRNA expression in brains collected 

two hours after the last sleep deprivation session on day 14 (in both experiments) and one full day 

after the last restraint session (in experiment 2). Changes in GR mRNA levels induced by acute 

stress were in some cases shown to normalize within a few hours following stress (Paskitti et al. 

2000). Therefore, we cannot exclude that restraint, perhaps in combination with sleep restriction, 

has short-lasting effects on MR/GR expression that went unnoticed in our experiment.  

Another potential complication is that we measured levels of MR and GR mRNA and not 

the actual receptor protein or the receptor functionality. The regulation of at least GR may occur at 

several post-transcriptional levels, through mechanisms of translational repression, post-

translational modification and alternative translation variants (Yudt and Cidlowsky 2002; Duma et 

al. 2006; de Kloet et al. 2009). Regulation of the receptor expression at post-transcriptional level 

could lead to changes in receptor protein expression that are not visible in mRNA analysis. 

Therefore, additional quantification of protein expression would provide a more complete overview 

of the effects of sleep loss on the corticoid receptors. 

 Also, in the present study we did not find adaptation of the adrenal CORT response to 

repeated restraint stress, neither in the control animals nor in the sleep restricted rats. This is not 

in line with the fact that repeated restraint has been extensively used as a model of adaptation to 

stress (Glavin et al. 1994) and several studies have reported a rapid decrease of the HPA axis 

response after few sessions (Melia et al. 1994; Ma and Lightman 1998; Cole et al. 2000; Pace et 

al. 2001; Barnum et al. 2007), although such decrease did not occur with all the experimental 

protocols used (Kant et al. 1983; Pitman et al. 1988). Our control animals even on the fifth 

exposure displayed a high CORT response that may have been near ceiling levels. One may 

speculate that, with a milder stress protocol, we might have found habituation and perhaps even 

differences in habituation between SR and non SR animals.  

 Notwithstanding the complications and limitations discussed above, the present study 

does not provide evidence for a strong effect of chronically restricted sleep on glucocorticoid 

sensitivity in the brain. In contrast to this lack of effect on downstream elements of the HPA axis, 

previous studies have shown that chronic sleep restriction does alter central systems that provide 

input to the HPA axis. Studies in rats have shown that chronic sleep restriction reduces sensitivity 

of the serotonin-1A receptors system and the CRH-receptor system (Roman et al. 2005b; Novati 

et al. 2008). Both of these systems play important roles not only within the brain but also provide 

input to the HPA axis. Besides stimulating the release of CRH and AVP from the paraventricular 

nucleus of the hypothalamus (Calogero et al. 1989, 1993), serotonin also regulate the release of 

ACTH and CORT at the level of the anterior pituitary and the adrenals respectively (Johns et al. 
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1982; Alper 1990; Calogero et al. 1993), while CRH activates the HPA axis inducing release of 

ACTH (Tsigos and Chrousos 2002) and facilitates the integration of the stress response (Bale and 

Vale 2004). The alterations of these systems reported in earlier sleep restriction studies, using the 

same protocol as in the present study, do not appear to be paralleled by changes of MR/GR 

expression.  

 In summary, chronic sleep restriction alone or combined to repeated restraint stress, as 

applied in these experiments, did not change the expression of MR and GR mRNA in the 

hippocampal and hypothalamic areas measured and did not influence the CORT response to 

repeated restraint stress.  
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Abstract  

Sleep loss strongly affects brain function and may even predispose susceptible individuals to 

psychiatric disorders. Since a recurrent lack of sleep frequently occurs during adolescence, it has 

been implicated in the rise in depression incidence during this particular period of life. One 

mechanism through which sleep loss may contribute to depressive symptomatology is by affecting 

hippocampal function. In this study, we examined the effects of sleep loss on hippocampal 

integrity at young age by subjecting adolescent male rats to chronic sleep restriction (SR) for 1 

month from postnatal day 30 to 61. They were placed in slowly rotating drums for 20 h per day 

and were allowed 4 h of rest per day at the beginning of the light phase. Anxiety was measured 

using an open field and elevated plus maze test, while saccharine preference was used as an 

indication of anhedonia. All tests were performed after 1 and 4 weeks of SR. We further studied 

effects of SR on hypothalamic-pituitary-adrenal (HPA) axis activity, and at the end of the 

experiment, brains were collected to measure hippocampal volume and neurogenesis. Behavior 

of the SR animals was not affected, except for a transient suppression of saccharine preference 

after 1 week of SR. Hippocampal volume was significantly reduced in SR rats compared to home 

cage and forced activity controls. This volume reduction was not paralleled by reduced levels of 

hippocampal neurogenesis and could neither be explained by elevated levels of glucocorticoids. 

Thus, our results indicate that insufficient sleep may be a causal factor in the reductions of 

hippocampal volume that have been reported in human sleep disorders and mood disorders. 

Since changes in HPA activity or neurogenesis are not causally implicated, sleep disturbance may 

affect hippocampal volume by other, possibly more direct mechanisms. 
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Introduction  

Restricted sleep in our society is a problem that not only affects adults but is increasingly common 

among children and adolescents as well (Meijer et al. 2000; Van den Bulck 2004; Bixler 2009). 

One contributing factor is that adolescence is characterized by spontaneous changes in circadian 

organization resulting in a stronger tendency for evening activities and delayed sleep timing 

(Crowley et al. 2007; Roenneberg et al. 2007; Hagenauer et al. 2009). Subsequently, the 

combination of late evening activities and early morning school or work obligations prevents a 

large number of young people from getting sufficient sleep (Meijer et al. 2000; Van den Bulck 

2004). Lack of sleep at this age, as in adulthood, has various immediate effects, including 

tiredness, decreased attention, decreased motivation, reduced cognitive function, and decreased 

academic performance (Wolfson and Carskadon 2003; Curcio et al. 2006). In addition, it might be 

that reduced sleep time at a younger age also affects ongoing brain development, perhaps 

leading to more persistent effects at later ages. 

 Many systems in the adolescent brain are still maturing and the morphology of several 

brain areas go through prominent changes in, for example, grey and white matter ratio (Sowell et 

al. 2002). The maturation of neurobehavioral systems in this early phase of life requires a high 

level of plasticity and is associated with strong emotional alterations that may increase the 

vulnerability to psychopathologies (Dahl and Gunnar 2009). Indeed, the prevalence of mood 

disorders such as depression seems to increase from childhood to adolescence (Birmaher et al. 

1996; Costello et al. 2002). This increase most likely is a complex interaction between 

endogenous developmental processes and external factors, one of which may be a recurrent lack 

of sleep. In agreement with this are various studies in young subjects that have linked the onset of 

anxiety and depression to short and disrupted sleep (Chang et al. 1997; Gregory et al. 2005; 

Buysse et al. 2008). In some studies, sleep problems preceded the onset of psychopathology with 

several years (Chang et al. 1997; Gregory et al. 2005).  

One of the brain regions that appears to be particularly sensitive to sleep disruption is 

the hippocampus (Graves et al. 2003; McDermott et al. 2003; Ruskin et al. 2004; Van der Werf et 

al. 2009). The hippocampus plays an important role in cognition and emotional regulation 

(Bannerman et al. 2004; Bast 2007) and is one of the few brain regions that displays 

neurogenesis continuing from adolescence into adulthood (Abrous et al. 2005; Ming and Song 

2005). Lower levels of hippocampal neurogenesis and reduced hippocampal volume have been 

implicated in the etiology and symptomatology of emotional and depressive disorders (Sapolsky 

2000; Czéh and Lucassen 2007; Perera et al. 2008; Boldrini et al. 2009; Lucassen et al. 2010). 

Moreover, experimental studies show that hippocampal integrity can be affected by prolonged 

restriction or disruption of sleep (McDermott et al. 2003; Roman et al. 2005a; Guzman-Marin et al. 

2006, 2007) while clinical studies have reported a reduction in hippocampal volume in primary 

insomnia and sleep apnea (Morrell et al. 2003; Riemann et al. 2007). However, most of these 

data are based on studies in adult animals or humans. The impact of chronically disrupted sleep 
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on hippocampal integrity at a young age, when the brain might be particularly sensitive, has so far 

received little attention. 

In the present study, we applied an animal model of chronic sleep restriction that is 

aimed at mimicking chronically insufficient sleep as it often occurs in human society. Thus, rather 

than total sleep deprivation, rats were allowed to sleep part of the day but, presumably, not 

enough to fully recover (Roman et al. 2005b; Novati et al. 2008). We used the model in the 

adolescent period to study whether insufficient sleep (i) changes hypothalamic-pituitary-adrenal 

(HPA) axis activity, (ii) affects hippocampal volume and neurogenesis, and (iii) alters anxiety and 

anhedonic behavior. 

Material and methods  

Animals and housing 

This study was performed with 48 male Wistar rats, 25 or 28 days old at the start of the 

experiments. Animals were housed in pairs in a room with a 12 h: 12 h light-dark cycle (lights on 

9AM – 9PM) and temperature of 21±1 °C. Standard lab oratory chow and water were provided ad 

libitum. Experiments were approved by the Ethical Committee of Animal Experiments of the 

University of Groningen.  

 

Experimental design 

Two experiments were performed in this study. In the first one, we examined effects of sleep 

restriction on anxiety and depression like behavior measured in an open field test, an elevated 

plus maze and a saccharine preference test. Rats were sleep restricted throughout adolescence, 

from postnatal day (PD) 28 to 61. All behavioral tests were performed on consecutive days, after 

1 and 4 weeks of sleep restriction. In the second experiment, rats were sleep restricted from PD 

30 to 61. Blood samples were collected after 7 and 25 days of sleep restriction to assess plasma 

levels of stress hormones and brains were collected after 4 weeks of sleep restriction to measure 

hippocampal volume and examine hippocampal neurogenesis. To quantify survival of newly 

generated hippocampal cells, all rats received an intraperitoneal injection with the thymidine 

analogue 5-bromodeoxiuridine (BrdU) at PD 25, 5 days before the start of the experiment (100 

mg/kg BrdU in saline, pH = 7.0, Sigma, St Louis, MO, USA). As BrdU is incorporated into the DNA 

of cells in S phase of the cell cycle, it is used to label newborn cells (Kee et al. 2002). Within 1–4 

days after injection, BrdU labeled cells stop dividing and any change in the number of labeled 

cells thereafter indicates a change in survival (Dayer et al. 2003). Five days after the BrdU 

injection, at PD 30, the sleep restriction treatment started and continued until PD 61. 

 

Sleep restriction and forced activity controls 

For both experiments, 24 animals were assigned to one of the following groups (n = 8 in each): 

chronic sleep restriction (SR), forced activity control (FA), and home cage control (HC). Details on 
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our sleep restriction and control procedures have been reported before (Roman et al. 2005a, 

2005b; Novati et al. 2008). Briefly, SR was performed by placing rats in drums of 40 cm diameter, 

rotating at a speed of 0.4 m/min. Animals were kept awake 20h per day (1PM – 9AM) and were 

left undisturbed for the remaining 4 h at the beginning of the light phase (9AM – 1PM). 

Electroencephalographic (EEG) recordings have shown that rats in the wheels have occasional 

brief sleep bouts. Since this adds up to no more than 10% of the time, the animals are severely 

sleep deprived on a daily basis, which is confirmed by a sleep rebound during the 4 h daily rest 

periods (Barf and Meerlo, unpublished results). To examine whether consequences of the 

treatment were caused by forced locomotion rather than sleep loss per se, a forced activity (FA) 

group was included as control. Animals of the FA group were housed in the same type of drums 

which were rotating at double speed for half the time (0.8 m/min for 10 h). As a result, the forced 

activity animals walked the same distance as sleep restricted animals, but had sufficient time to 

sleep. The 10 h forced activity took place during the last 10 h of the dark phase (11PM – 9AM), 

that is, during the main activity phase of the rats. In addition to the FA controls, we also used 

undisturbed, naïve controls that remained in their home cage throughout the experiment (HC). 

 

Open field test 

An open field test was performed to assess effects of SR on general explorative activity and 

anxiety (Meerlo et al. 1996). The animals were subjected to a 5 min test twice, on days 7 and 31 

of the SR protocol, between the third and fourth hour of the daily rest period, before the SR 

animals were returned to the rotating drums. The open field consisted of a round arena (120 cm in 

diameter and 20 cm high walls) with a central zone and an outer zone (two imaginary concentric 

circles with diameters of 60 and 120 cm, respectively). Before the test of each new animal, the 

arena was thoroughly cleaned with water and soap to eliminate odor cues. Animals were 

transported in their home cage to the experimental room and placed in the outer zone of the 

arena. The behavior of the animals was recorded by a camera and analyzed with a computerized 

imaging analysis system (Ethovision, Noldus Information Technology, Wageningen, The 

Netherland). The time spent in the central and outer zone and the total distance covered in each 

of the two zones were calculated. 

 

Elevated plus maze 

On days 8 and 32 of the SR period, during the last two hours of the daily rest phase, animals were 

subjected to an elevated plus maze test, a widely used non conditioned anxiety test (Pellow and 

File 1986). The plus maze consisted of a black wooden apparatus with two open and two closed 

arms, 55 cm above the floor. Each arm was 45 cm long and 10 cm wide and the closed arms had 

50 cm high walls. Before the test of each new animal, the maze was thoroughly cleaned to 

eliminate odor cues. At the start of the test, the animals were placed in the centre of the plus 

facing a corner between a closed and an open arm. The test lasted 5 min and the behavior of the 
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animals was recorded on video for later analysis. Time spent in open and closed arms as well as 

time in the centre between the arms was scored and expressed as percentage of the total time. 

 

Saccharine preference 

To examine the effects of SR on depression-like behavior, we performed a saccharine preference 

test, which is often used to measure anhedonic behavior (Moreau 1997). On days 8 and 32 of the 

SR protocol, following the elevated plus maze test, rats were water deprived for 20 h (1 PM – 9 

AM) and then subjected to a two bottle choice preference task during the 4 h of rest (9 AM – 1 

PM). One bottle contained the regular tap water and the other one a sweet 0.05% saccharin 

solution. The bottles were placed in central position on the top of the cage to avoid position 

preference. The liquid intake was measured by comparing the weight of the bottles before and 

immediately after the test. Water or saccharine solution intake was expressed as percentage of 

the total fluid intake.  

 

Blood samples and hormones analysis 

To measure effects of chronic SR on plasma levels of stress hormones, 0.5 ml blood samples 

were taken from the tail of the animals at the end of the daily sleep deprivation phase (9AM) and 

at the end of the resting phase (1PM), after 7 and 25 days of SR. Samples were collected within 

1–2 min in cold Eppendorf tubes containing EDTA and centrifuged (4 °C, 2600 g, 15 min). The 

supernatant was stored at -80 °C for later analysis . Plasma concentrations of adrenocorticotropic 

hormone (ACTH) and corticosterone (CORT) were determined by radioimmunoassay according to 

the manufacturer’s instructions (MP Biomedicals, Orangeburg, NY, USA).  

 

Brain collection 

At PD, 61 brains of the rats from the second experiment were collected for immunocytochemical 

analysis. After injection with 2 ml/kg pentobarbital, the animals were transcardially perfused with 

0.9% saline followed by a 4% solution of paraformaldehyde (PFA) in 0.1 M phosphate buffer. 

Brains were removed from the skull and post-fixed in 4% PFA for another 24 hours. Then they 

were kept in 0.01 M PBS overnight and subsequently cryoprotected by 30% sucrose for 48 h 

before freezing. With a cryostat, eight series of 30 µm sections were cut and collected in 0.01 M 

PBS with 0.1% sodium azide until further processing.  

 

Immunohistochemistry 

Immunohistochemical staining for the neuronal marker NeuN was used to measure hippocampal 

volume. Differentiation of new hippocampal cells into neurons was examined by staining for 

doublecortin (DCX), a microtubule-associated protein that is found in immature neurons (Rao and 

Shetty, 2004; Couillard-Despres et al., 2005). Survival of newborn cells was assessed by staining 

for BrdU, which had been injected five days before the start of the SR protocol. 
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For BrdU immunostaining, first, DNA was denatured with 50% formamide in 2x saline 

sodium citrate (30 min, 65 °C), followed by repeate d rinsing in saline sodium citrate. Sections 

were subsequently placed in a 2 M HCl solution (30 min, 37 °C) and then in 0.1 M borate buffer 

(pH=8.5). After treatment with 0.3% H2O2 (30 min, RT), the sections were first incubated in 3% 

normal serum and 0.1% Triton-X-100 in 0.01 M TBS and then in primary antibody (rat anti-BrdU, 

1:800, Serotec, Oxford, UK) for 48 h at 4 °C. The s ections were then incubated in 3% normal 

serum and 0.01% Triton-X100 before the secondary antibody (donkey anti-rat 1:400, Jackson 

ImmunoResearch, Suffolk, UK) was applied (2 h, RT). Reaction with avidine biotin complex 

(1:500, ABC Elite Vector Laboratories, Burlingame, CA, USA) was done for 2 h at room 

temperature before development in 0.2 mg/ml diaminobenzidine and 0.003% H2O2.  

For DCX and NeuN immunostaining, sections were pretreated for 30 min with 0.3% and 

0.6% H2O2, respectively. After blocking of aspecific staining with normal serum (3% for DCX and 

0.3% for NeuN), sections were incubated with primary antibody (goat anti-DCX at 1:1000; Santa 

Cruz Biotechnology, Santa Cruz, CA, USA; or mouse anti-NeuN at 1:700; Chemicon, Temecula, 

CA, USA) for 48 h at 4°C. Following 40-min exposure  to a secondary antibody (Rabbit anti-Goat 

at 1:400 for DCX and goat anti-mouse at 1:400 for NeuN; Jackson ImmunoResearch, Suffolk, 

UK), sections were incubated with avidine-biotin complex (1:400 for DCX and 1:500 for NeuN; 

Elite Vector Laboratories, Burlingame, CA, USA) and the cell labeling was visualized through 

reaction with 0.2 mg/ml diaminobenzidine and 0.003% H2O2. 

 

Quantification 

All quantifications were conducted by an investigator blind to the experimental conditions. The 

number of BrdU positive cells was quantified in the granular cell layer (GCL) and subgranular 

zone (SGZ) of the dentate gyrus (DG) in every eighth section of the dorsal hippocampus (bregma 

–1.80 to –4.08; Paxinos and Watson, 1986) at a 400x magnification. Immunopositive cells less 

than one cell diameter away from the SGZ inner border were also included in the analysis, 

whereas other cells present in the hilus were excluded. In each section, the number of cells was 

divided by the length of the GCL in that section. The total number of cells per animal was 

expressed per mm GCL. 

DCX immunoreactivity in the DG was quantified by measuring optical density (OD) with 

a computerized image analysis system (Leica Qwin, Rijswijk, The Netherlands) according to 

previously published methods (Dagyte et al., 2009). The OD of DCX expression was measured in 

the GCL and SGZ and corrected for nonspecific background labeling measured in the corpus 

callosum. For each animal, DCX immunoreactivity was measured by delineating the entire GCL 

and SGZ in both hemispheres of three dorsal hippocampal sections (around bregma – 2.50, – 

3.20, – 4.00; Paxinos and Watson, 1986). OD values were expressed in arbitrary units 

corresponding to grey levels measured by the analysis system. 

To estimate the total volume of the dorsal hippocampus and the volume of its cellular 

subregions, every eighth section was stained with NeuN antibody (11 sections total). We 
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performed the volume measurements in the dorsal hippocampal area of 11 sections per animal 

(bregma – 1.80 to – 4.08; Paxinos and Watson, 1986) using the Leica Qwin image software 

(Rijswijk, The Netherlands). In each of these sections, the complete hippocampal area was 

outlined as indicated in Fig. 4A. The areas of the cellular subregions, particularly the GCL of the 

DG and the pyramidal cell layer of the CA1 and the CA2/3, were outlined as indicated in Fig. 4C. 

The volume estimate for the total hippocampus and the cellular subregions was based on the 

Cavalieri’s method and was obtained by multiplying the sum of the section areas per animal, by 

section thickness and number of series (Walker et al. 2002; Czéh et al. 2010). 

 

Statistics 

Immunohistochemical and behavioral data were statistically tested with a one-way analysis of 

variance (ANOVA). Repeated measures ANOVA was used for the analysis of ACTH and 

corticosterone data. When treatment effects were detected with ANOVA, a post hoc Tukey test 

was used to assess differences between specific treatment groups. A paired t-test was applied to 

assess differences in preference between water and saccharin in each group of animals. The 

level of significance was set to P=0.05. Data in text, tables, and figures are expressed as average 

per group ± SEM. 

Results  

Behavior 

The rats in the present study coped with the protocol of 1-month SR without visible signs of 

deterioration or illness. Growth was slightly suppressed in both the sleep-restricted rats and 

forced-activity controls as compared to the home cage controls, resulting in a significantly lower 

body weight by the end of the experimental period (SR: 234.6±8.1g, FA: 222.6±7.1g, HC: 

260.1±6.4g; treatment effect F2,21=7.01, P=0.005; post hoc Tukey test P>0.05 for both SR and FA 

vs. HC).  

No significant effect of SR was found on explorative behavior in the open field test 

(Table 1). In each of the two tests, after 1 and 4 weeks of treatment, all groups spent most of their 

time in the outer zone of the arena. Time spent in the central area and the distance traveled in the 

central area were small and did not differ between the groups (day 7: time F2,21=0.95, P=0.401; 

distance F2,21=1.91, P=0.174; and day 31: time F2,21=0.35, P=0.711; distance F2,21=1.68, 

P=0.209). 

Also, SR did not affect anxiety-related behavior in the elevated plus maze test (Fig. 1). 

Rats in all three groups spent a large part of the time in the closed arms and no difference was 

found between groups in the percentage of time spent in open arms (day 8: F2,21=1.06, P=0.363 

and day 32: F2,20=0.083, P=0.921).  
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Table 1.  Behavior in the open field test after 7 and 31 days of sleep restriction. Data show percentages 
of time spent and distance covered in the central zone of the arena 

 Day Home cage Forced activity Sleep restricted 

Time (%) 7  3.9 ± 1.0 2.3 ± 0.4 2.9 ± 0.8 

31 10.6 ± 1.5 8.9 ± 1.7 9.2 ± 1.5 

Distance (%)  7 11.3 ± 4.9 3.8 ± 0.9 5.9 ± 0.8 

31 17.0 ± 3.1 12.9 ± 2.4 20.2 ± 2.9 
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A saccharine preference test was used to measure anhedonia (Fig. 2). On day 9 of the 

experiment, HC animals displayed a clear and significant preference for saccharine over water 

(t1,7=4.13, P=0.004), which was less clear and not significant in the FA rats (t1,7=1.48, P=0.181) 

and completely absent in the SR rats (t1,7=-0.34, P=0.742). One-way ANOVA indicated a 

significant effect of treatment on saccharine intake (F2,21=6.07, P=0.008), but post hoc Tukey test 

only showed a difference between the HC and SR rats (P=0.007). After 4 weeks of treatment, all 

three groups displayed a clear preference for the saccharine solution over water (HC: t1,7=20.16, 

P=0.001; FA: t1,7=24.34, P=0.001; SR: t1,7=2.89, P=0.023). While the preference of the SR rats 

was on average still lower, ANOVA no longer indicated any significant treatment effect at this time 

point (F2,21=2.40, P=0.115). 

 
Stress hormones 

To examine the level of HPA axis activation in response to SR, blood samples were collected 

after 7 and 25 days of treatment (Table 2). Both immediately after the daily 20-h sleep deprivation 

and at the end of the daily 4-h resting phase, plasma ACTH and CORT levels in the SR animals 

were low and not different from FA or HC controls. Statistical analysis did not show significant 

differences in ACTH and CORT levels between experimental groups for any time point (P>0.05 in 

all cases). 

Fig 1.  Anxiety behavior in the elevated plus maze test on day 8 and 32 of the sleep restriction protocol (panel A 
and B, respectively). All rats had showed preference for the closed arms of the plus maze. The percentage of time 
spent in open arms was similar for all experimental groups on both test days.  
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Table 2.  Stress hormones concentrations after 7 and 25 days of sleep restriction. Plasma samples 
collected at the end of the daily 20h sleep deprivation session (9 AM) and after 4 hours rest (1 PM) 

 

ACTH (pg/ml) Corticosterone (µg/dl) 

Day 7 Day 25 Day 7 Day 25 

9 AM  1 PM 9 AM  1 PM 9 AM  1 PM 9 AM  1 PM 

HC 42.8±6.7 35.8±2.6 35.9±2.8 33.7±2.6 1.2±0.4 0.8±0.1  1.1±0.6 1.6±0.4 

FA 3.8±2.0 33.7±3.3 33.6±2.0 27.3±1.7 1.4±0.3 7.0±3.9 3.2±1.1 1.3±0.4 

SR 47.0±6.6 32.5±3.8 38.8±4.0 26.0±2.5 10.5±6.9 2.2±1. 0 3.7±0.9 1.1±0.1 

 

 

Hippocampal neurogenesis 

To investigate effects of chronic SR on survival of newly produced cells in the hippocampus, BrdU 

was injected in the rats 5 days before the beginning of the treatment. The number of BrdU-

positive cells determined at the end of the experiment, that is, at 36 days after BrdU injection, was 

not different between the groups (Fig. 3B, F2,21=0.77, P=0.478), suggesting that 4 weeks of SR or 

FA treatment had not affected survival of the newly formed cells in the dorsal hippocampus. Also 

the differentiation of new cells into neurons did not appear to be affected by the treatment as the 

optical density of DCX labeling in the GCL and SGZ of the DG did not differ between the groups 

(Fig. 3D, F2,21=1.32, P=0.288).  

 

Fig 2.  Saccharine preference test on days 9 and 33 of the sleep restriction protocol (panels A and B, 
respectively). Rats were water deprived for 20 h and then subjected to a two-bottle choice preference task during 
the daily 4-h rest period. On day 9, home cage control rats displayed a clear preference for saccharine over 
water. In both sleep restricted and forced activity rats saccharine intake was comparable to water intake showing 
a decreased preference for sweet taste. Saccharine intake in sleep restricted rats was significantly lower than in 
home cage controls (* P < 0.05). On day 33 all groups displayed a strong preference for the saccharine over 
water and there was no longer any difference between the treatments. 
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Hippocampal volume 

The volume of the dorsal hippocampus was estimated in NeuN stained sections (Fig. 4A). A 

number of animals had to be excluded from the volume analysis because of missing and/or 

damaged sections (one SR, two FA, and two HC). Chronic SR in adolescent rats caused a 

reduction in volume of the dorsal hippocampus of about 10% compared to controls (Fig. 4B). One-

way ANOVA revealed a significant treatment effect (F2,16=9.63, P<0.002) and post-hoc Tukey test 

indicated a lower volume in SR rats as compared to HC controls (P=0.009) and FA controls 

(P=0.003). Hippocampal volume in FA rats was not changed compared to HC controls (P=0.871). 

The effect of SR did not appear to be restricted to a specific hippocampal subregion 

(Fig. 4D). One-way ANOVA revealed a trend toward a treatment effect on the volume of the GCL 

of the DG (F2,16=2.95, P=0.085) and also a trend toward a treatment effect on the volume of the 

pyramidal cell layer of the CA1 region (F2,16=2.75, P=0.096). Moreover, ANOVA revealed a 

significant treatment effect on the volume of the pyramidal cell layer of the CA2/3 region 

(F2,16=5.91, P=0.014) with a significant reduction in SR rats compared to FA animals but not 

compared to HC rats (post-hoc Tukey P=0.011 and P=0.023, respectively). 

To assess if the overall decrease in hippocampal volume might reflect a more global 

change in brain size, we determined the thickness of the neocortex in the sections used for the 

hippocampal measurements. On average the cortical thickness was slightly lower in SR rats but 

this did not reach statistical significance. 

 

Fig.3.  Sleep restriction and hippocampal neurogenesis. (A) Photograph of BrdU-positive cells in the granular layer of 
the dentate gyrus. (B) Chronic sleep restriction did not affect the survival of newly formed cells in the dentate gyrus of 
the dorsal hippocampus. (C) Photograph of DCX expressing neurons in the dentate gyrus. (D) Chronic sleep restriction 
did not affect the optical density of DCX expressing new neurons in dentate gyrus of dorsal hippocampus. 
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Discussion  

The main finding of this study is that rats subjected to chronic SR during adolescence displayed a 

10% reduction in dorsal hippocampal volume. This reduction in size of the hippocampus was not 

associated with significant changes in survival of newly generated BrdU-labeled cells or changes 

in DCX expression as a marker of young neurons. Therefore, the volume reduction is not likely 

explained by a reduction in neurogenesis. During the extended period of SR, the young rats 

displayed a temporary anhedonia as reflected in reduced saccharine preference, but this effect of 

SR had normalized at the end of the experiment. SR did not affect anxiety-like behavior in the 

open field test and elevated plus maze test. 

In the current study, we did not quantify the exact amount of SR, although it may very 

well be that changes or lack of changes in some of the measures we took critically depend on the 

amount of sleep that is lost. Rats were subjected to a protocol of SR that only allowed them to 

sleep undisturbed for 4 h every day at the beginning of the light phase but it is not excluded that 

animals also had microsleeps even in the rotating wheels. Indeed, EEG recordings have shown 

that rats in the wheels have occasional brief sleep bouts that may add up to 10% of the time (Barf 

and Meerlo, unpublished observation). Furthermore, a recent study shows that after a long period 

without sleep, local clusters of cortical neurons may go offline while the rest of the brain is 

apparently awake (Vyazovskiy et al. 2011). The latter finding indicates that in general an exact 

Fig.4.  Sleep restriction and hippocampal volume. (A) Photograph of NeuN staining in the dorsal hippocampus. The 
hippocampal area measured in each brain section is indicated on the right. (B) Volume of dorsal hippocampus was 
significantly reduced in sleep restricted rats compared to home cage and forced activity control groups. (C) 
Photograph indicating the cellular subregions that were measured. (D) On average the volume of the cellular 
subregions was lower in the sleep restricted rats than in control rats but this difference only reached statistical 
significance for the CA2/3 subregion in comparison with the forced activity control rats. * P < 0.05, see text for details. 
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quantification of sleep loss may not be as straight forward as usually thought. Importantly, rather 

than trying to achieve total sleep deprivation or an exact amount of sleep deprivation, with our 

approach, we aimed to mimic chronically insufficient sleep as it often occurs in human society. 

While rats cope with our protocol of SR for prolonged periods of time without visible signs of 

illness, earlier studies had already shown that it gradually leads to neurobiological and 

neuroendocrine changes similar to what has been reported for depressed patients (Roman et al. 

2005b; Novati et al. 2008).  

In the present study, our analysis of SR effects on brain integrity was largely focused on 

the hippocampus and we only performed restricted control measurements in the cortex. The 

finding that cortical thickness was not significantly affected by SR suggests that the reduction in 

hippocampal volume was at least partly specific and did not simply reflect a more global change in 

brain morphology. On the other hand, this study certainly does not rule out the possibility that 

chronic SR affects other areas as well. Indeed, while the hippocampus appears to be particularly 

sensitive to sleep loss (Meerlo et al. 2009), other sensitive brain regions have been suggested, for 

example, the prefrontal cortex (Horne 1993; Muzur et al. 2002).  

Reductions in hippocampal volume have been found before in human sleep disorders 

such as primary insomnia (Riemann et al. 2007) and sleep apnea (Morrell et al. 2003). Also in 

psychopathologies such as major depression, reductions in hippocampal volume are commonly 

observed and have been implicated in specific symptoms of the disorders (Sapolsky 2000; Czéh 

and Lucassen 2007; Perera et al. 2008; Boldrini et al. 2009; Lucassen et al. 2010). Intriguingly, 

psychopathologies are often associated with disturbed sleep-wake patterns that may contribute to 

the development and aggravation of the disease (Tsuno et al. 2005; Riemann and Voderholzer 

2003). Along these lines, also the reduction in hippocampal volume in psychopathologies might 

be partly a consequence of the sleep-wake disturbance. Indeed, the present reduction in 

hippocampal volume after experimental SR under controlled conditions in rats suggests that the 

hippocampal volume reduction observed in human sleep disorders and mood disorders may be a 

direct consequence of disrupted sleep rather than a nonspecific side-effect.  

A variety of explanations have been proposed for a decrease in hippocampal volume in 

disease including neuronal death, neuronal shrinkage, lower dendritic arborization, reductions in 

neurogenesis, or decreases in glia numbers and production (Czéh and Lucassen 2007). The lack 

of effects of SR on different markers of neurogenesis in the present study does not support the 

hypothesis that the smaller hippocampal size was related to a reduction in neurogenesis. In fact, 

even if SR would have fully suppressed neurogenesis it still could not have explained the 

magnitude of the hippocampal volume reduction we found. Moreover, measurements of the 

cellular subregions suggest that the volume reduction was not limited to the DG but may have 

included the non-neurogenic CA regions as well. Since there is little to no evidence for massive 

neuronal death even after prolonged total sleep deprivation (Cirelli et al. 1999; Eiland et al. 2002), 

it seems more likely that part of the volume reduction was caused by a decrease in the size of 
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neuronal cell bodies and dendritic arborizations or by changes in the number and size of glia 

cells.  

In the present study, we focused our analysis of neurogenesis on survival of new BrdU-

labeled cells and differentiation of new cells into young DCX-expressing neurons. While we did 

not specifically assess effects of SR on cell proliferation, a strong reduction in proliferation in the 

later part of the experiment most likely would have shown up in a reduced DCX expression as 

well since these DCX positive cells were born in the last 1 or 2 weeks of the experiment. This was 

clearly not the case. However, we cannot exclude that SR may have suppressed cell proliferation 

in the first half of the experiment, which would not be visible in DCX expression. Another limitation 

of our study is that we only assessed cell survival and differentiation in the dorsal limb of the 

hippocampus. One might argue therefore that SR possibly had an effect on neurogenesis in the 

ventral hippocampus that went unnoticed in our analysis. Yet, although one study on sleep 

deprivation in adult rats indeed showed a stronger suppression of cell proliferation in the ventral 

part of the hippocampus (Tung et al. 2005), most studies report a reduction of neurogenic 

measures in the dorsal limb as well (Guzman-Marin et al. 2007; Roman et al. 2005a). All together, 

the fact that our measures of neurogenesis were not affected by SR in young animals was 

somewhat unexpected. One explanation may lie in the fact that we sleep restricted rats during the 

transition from adolescence to adulthood, when neurogenesis rapidly declines toward the low 

levels that then persist in the mature brain throughout middle age and senescence (Heine et al. 

2004; He and Crews 2007; Cowen et al. 2008). Perhaps the additional impact of SR on 

neurogenesis is modest during a phase where neurogenesis already shows a strong and 

spontaneous decrease. Alternatively, the lack of an SR effect may be related to the social housing 

conditions in the current experiment. We chose to house the adolescent rats, two per cage or per 

SR drum because in this phase of their life social contact and play behavior is important for 

normal development. However, it might be that the enriched social housing condition has 

compensated for the adverse effects of SR. In support of this explanation are studies showing that 

environmental enrichment or exercise promote hippocampal neurogenesis (Kempermann et al. 

1997; Van Praag et al. 2000) and may even decrease or reverse earlier brain deficits (Twiggs et 

al. 1978; Francis et al. 2002; Bredy et al. 2003; Nithianantharajah and Hannan 2006; Naylor et al. 

2008). Importantly, even if the present housing conditions modulated the consequences of SR 

and counteracted putative effects on neurogenesis, it clearly did not prevent the reduction in 

hippocampal volume.  

Hippocampal atrophy as observed in various pathologies is often proposed to be a result 

of elevated concentrations of glucocorticoid stress hormones (Sapolsky 2000; Czéh and 

Lucassen 2007). However, smaller hippocampal size and cortisol levels do not always correlate 

(O’Brien et al. 2004). In the present study, SR did not lead to a major activation of the HPA axis. 

ACTH and CORT concentrations measured after 1 and 4 weeks of SR were similar to the levels in 

FA and HC controls. Obviously, given the restricted number of samples and time points, these 

data need to be considered with care. One might argue that samples collected at the end of the 
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daily 20-h sleep deprivation session do not necessarily reflect HPA axis activity during the initial 

hours of sleep deprivation. Yet, previous studies with our model have shown that, if anything, 

CORT levels are low at the beginning of sleep deprivation and gradually increase towards the end 

(Meerlo et al. 2002). Moreover, the results are in line with various other studies showing only mild 

effects of sleep deprivation on HPA axis activity (see Meerlo et al. 2008 for review), which often 

do not explain sleep deprivation-induced changes in hippocampal integrity and function (Guzman- 

Marin et al. 2007; Mueller et al. 2008; Tiba et al. 2008; Hagewoud et al. 2010b). Together the data 

indicate that the reduction in hippocampal volume in our study is not easily explained by elevated 

HPA axis activity and glucocorticoid release. 

Alternatively, a smaller hippocampus may have resulted from a reduction in trophic 

factors or a dysregulation in their signaling. One of the possible mechanisms involves altered 

expression of brain-derived neurotrophic factor (BDNF), which is highly expressed in the adult 

hippocampus (Schmidt-Kastner et al. 1996) and stimulates dendritic arborization (McAllister et al. 

1995). Evidence suggests that low levels of BDNF may play a role in the hippocampal atrophy 

associated with depressive disorders (Shimizu et al. 2003). Literature further suggests BDNF 

levels can be affected by sleep deprivation, although the direction of the effect differs between 

studies and is so far difficult to interpret (Adrien 2002; Fujihara et al. 2003; Cirelli 2006; Guzman-

Marin et al. 2006). In one study, 48 h of sleep deprivation resulted in decreased levels of BDNF in 

hippocampus (Guzman-Marin et al. 2006) while effects of longer periods of sleep deprivation or 

restriction on BDNF expression have not been reported. Should SR have a negative effect on 

BDNF expression, this may underlie hippocampal dendrite atrophy, which in turn could account 

for the reduction in hippocampal volume observed in this experiment. Future studies are needed 

to investigate the relationship between sleep, BDNF expression, and hippocampal integrity.  

The reduction in hippocampal volume in our study was not associated with obvious 

changes in explorative activity or anxiety in an open field and elevated plus maze test. This is 

consistent with other studies in our laboratory that failed to find clear anxiety effects of acute and 

short sleep deprivation on the elevated plus maze test (Hagewoud et al. 2010b). In fact, with a 

few exceptions (Silva et al. 2004), the majority of experimental studies show no effect or even 

indicate decreased anxiety in sleep-deprived rodents (Hicks and Moore 1979; Moore et al. 1979; 

Suchecki et al. 2002; Martinez-Gonzalez et al. 2004; Tartar et al. 2009). While there is some 

inconsistency in the literature, this may be the result of a complex interaction between the 

duration and method of sleep deprivation, the anxiety test involved, species and strain 

differences, and perhaps other factors. Also in humans, some studies report no relationship 

between sleep loss and anxiety (Bonnet and Arand 1998), while others suggest an association 

between lack of sleep and self-reported anxiety (Peeke et al. 1980; Sagaspe et al. 2006), and a 

correlation between sleep disturbance and the risk for anxiety disorders (Gregory et al. 2005; 

Roth et al. 2006). Apparently, the relationship between restricted or disrupted sleep and anxiety is 

complex and requires further study. 
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While chronic SR in adolescent rats did not affect specific measures of anxiety, the 

treatment did have a temporary effect on the preference for a sweet saccharine solution, a 

commonly used measure of anhedonia (Willner et al. 1992; Moreau 1997). Anhedonia refers to an 

inability to experience pleasure or to the loss of interest for normal aspects of life and is 

considered a psychological marker of depression (Schrader 1997). After 1 week, sleep restricted 

rats did not display the normal preference for the saccharine solution that was seen in HC control 

animals. However, this lack of preference also occurred in the FA controls and therefore we 

cannot distinguish between effects of chronic sleep loss and forced locomotion. Also, this 

anhedonia did not persist but gradually disappeared in the course of the experiment and was no 

longer noticeable after 1 month, when all groups exhibited a clear preference for saccharine 

solution over water. Few other published records exist on chronic SR and anhedonic behavior. In 

several unpublished experiments, we have examined the effect of prolonged SR on saccharine or 

sucrose preference in adult animals with the same protocol as we used in the present study but 

the results have been inconsistent (Novati et al. unpublished observation). It could be that the 

preference test is not sophisticated enough to really detect anhedonic behavior or, alternatively, 

SR may only have a weak effect that is easily modulated or overruled by other factors we are yet 

unaware of. 

In summary, the results of this experimental study suggest that lack of sleep during 

adolescence may reduce hippocampal volume, without affecting survival and differentiation of 

new neurons in the DG. The reduction in hippocampal volume was not associated with obvious 

changes in anxiety or persistent changes in anhedonic behavior. The mechanisms underlying the 

effect of SR on hippocampal volume require further investigation. 
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The consequences of chronic sleep restriction  

This thesis describes a series of experiments on the consequences of chronic sleep restriction 

and how this affects brain vulnerability with special emphasis on neurobiological and 

neuroendocrine systems involved in psychopathology. 

In chapter 2 we directly assessed the sensitivity of the sleep restricted brain to 

neurodegenerative processes by experimentally inducing local brain damage. Contrary to the 

expectation, the damage caused by an injection of NMDA into the NBM was lower in sleep 

restricted rats than in control rats. This result directly opposes the hypothesis that sleep loss 

sensitizes the brain to neurodegeneration. On the other hand, while insufficient sleep may not 

directly contribute to neurodegeneration, it may affect brain integrity and brain function in other, 

more subtle ways. Chapters 3 and 4 in this thesis show that chronic sleep restriction may 

gradually lead to changes in neurotransmitter systems (i.e., the serotonergic system) and 

neuroendocrine regulation (i.e., HPA axis) that are similar to what has been described for 

depression. In the long run, chronic sleep restriction may even cause morphological changes 

such as a decrease in volume of the hippocampus (Chapter 6), which is another frequently 

reported characteristic of depression. Together, the findings in this thesis strongly support the 

hypothesis that insufficient sleep may contribute to the development of psychopathology and 

provide clues to the potential underlying mechanisms.  

The experiments in chapter 3 show that chronic sleep restriction in rats affects the HPA 

axis reactivity in a fear conditioning paradigm. The ACTH response to foot shock stress and to 

subsequent re-exposure to the foot shock environment was blunted in sleep restricted rats. This 

effect was evident following 1 week, but not 1 day of treatment, which confirms the important 

notion that restricted sleep may have effects that are not immediately noticeable but gradually 

accumulate over time.   

The release of pituitary ACTH is under control of various neurochemical inputs, including 

CRH and serotonin. Direct stimulation of the 5-HT1A and the CRH receptors with the 5-HT1A 

receptor agonist 8-OH-DPAT and CRH respectively produced a similar blunted ACTH response in 

sleep restricted animals as found under real stress conditions. This suggests that mechanism 

underlying the sleep-restriction induced blunted ACTH response is caused by a desensitization of 

CRH and/or 5-HT1A receptors. Despite the changes in ACTH response, sleep loss did not have a 

strong influence on the adrenal CORT response to stress or to direct 5-HT1A and CRH receptors 

stimulation, suggesting an increased sensitivity to ACTH in the adrenals.  

Long term sleep deprivation in rodents has been shown to affect food intake and body 

weight, which in turn can influence the sensitivity of the 5-HT1A receptor systems. In chapter 4, we 

therefore performed an additional experiment to assess whether the sleep restriction-induced 5-

HT1A receptor desensitization reported in chapter 3 was the result of decreased body weight. The 

experiment examined the temperature and HPA axis response to stimulation with the 5-HT1A 

agonist 8-OH-DPAT comparing control and sleep restricted animals fed with a normal diet or a 
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medium fat diet that was meant to prevent the sleep restriction-induced decrease in body weight. 

The results show that the desensitization of the 5-HT1A receptors in sleep restricted rats persists 

even when the decrease in body weight is partially prevented. Since body weight in these animals 

was still lower than in controls, it cannot be completely excluded that such difference in body 

weight may have contributed to the changes in the 5-HT1A receptor system.  

Chapter 5 reports the effects of sleep loss, alone or in combination with repeated 

restrain stress, on the expression of corticoid receptors in the brain. The expression of these 

receptors is sensitive to stress and regulated by a variety of systems that in turn may be 

influenced by sleep loss. Yet, the results in this chapter do not show an effect of sleep restriction 

and/or restrain stress on the GR/MR mRNA expression. Further studies are required to assess if 

sleep restriction does not affect protein levels of the receptor or sensitivity of the receptor at a 

functional level. 

Data in chapter 6 show a reduced dorsal hippocampal volume in sleep restricted 

adolescent animals. The volume decrease was not accompanied by changes in HPA axis activity 

or in neurogenesis indicating that the mechanisms that mediated the volume reduction were 

independent of these factors. Chronic sleep restriction did not increase anxiety levels in these 

animals as assessed in an open field test and elevated plus maze test. Sleep restriction caused a 

temporary suppression in the normal preference of sweet solution over water, which might 

indicate a temporary increase in anhedonic or depression-like behavior. However, we could not 

rule out that this effect was related to forced activity associated with the sleep restriction method 

rather than insufficient sleep per se.  

Chronic sleep restriction and the sensitivity to ne urodegeneration 

Sleep is thought to be of primary importance for the brain and it has been proposed as a 

phenomenon necessary to maintain brain homeostasis favoring restoration, energy regulation and 

neuronal detoxification (Walker and Berger 1980; Bennington and Heller 1995; Inuoè et al. 1995; 

Scharf et al. 2008). Along this line, the common view is that sleep loss is bad for the brain and 

may in the long run increase neurodegenerative processes. The results in this thesis, showing 

that chronic sleep restriction attenuates the subsequent damage induced by an excitotoxic 

injection of NMDA, clearly do not fit with this simple view. Our findings, however, are in line with 

the results of several other studies combining sleep deprivation with a subsequent brain ischemia 

(Hsu et al. 2003; Moldovan et al. 2010) and with studies that did not show a strong 

neurodegenerative effect of sleep loss directly (Cirelli et al. 1999; Eiland et al. 2002).  

An important factor determining a protective effect in these studies may be that sleep 

loss was applied before the brain insult. Indeed, a recent study suggests that opposite results may 

be found when sleep deprivation follows an insult (Gao et al. 2010). To clarify whether the effect 

of sleep loss may go in opposite directions based on the order of the events in the experiment, 
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further studies should directly compare sleep deprivation pre- or post brain insult, with the same 

sleep deprivation or restriction method. 

 A possible explanation for the neuroprotective effect of sleep restriction may be that 

sleep loss is a challenge to the brain that by itself does not cause any immediate damage but is 

sufficient to activate neuroprotective pathways and defense mechanisms that would subsequently 

facilitate the response to more severe insults. In this direction, it has been suggested earlier that 

the neuroprotection induced by sleep loss is the result of a preconditioning effect (Hsu et al. 

2003). In other words, if sleep loss occurs before an acute insult, the resulting damage would be 

attenuated. Potential factors determining the decrease in sensitivity to neurotoxicity are changes 

in antioxidative stress mechanisms, altered inflammatory pathways as well as alterations in the 

expression, composition and signaling of the glutamate receptors since all these elements 

participate in neurodegenerative phenomena and appears to be sensitive to sleep loss 

(D’Almeida et al. 1998; Ramanathan et al. 2002; Guzman-Marin et al. 2006; Kopp et al. 2006; 

McDermott et al. 2006; Simpson and Dinges. 2007; Wang et al. 2009; Alhaider et al. 2010; 

Hagewoud et al. 2010a).  

Chronic sleep restriction and systems implicated in  mood disorders 

While sleep loss did not increase the sensitivity for a neurotoxic insult, it did lead to changes in 

HPA axis reactivity, serotonergic system and hippocampal structure that are similar to changes 

reported for depression. 

Postsynaptic serotonergic 1A receptor functionality appears to be impaired in 

depression. Imaging studies in depressed subjects show decreased binding potential of 5-HT1A 

receptors in various brain regions including the hippocampus and amygdala (Drevets et al. 1999, 

2007). Also, pharmacological challenge studies demonstrated attenuated decrease of the body 

temperature and smaller increase in plasma ACTH and cortisol in response to 5-HT1A receptors 

agonists in depressed patients (Lesch et al. 1990; Shapira et al. 2000). Our observations after 

chronic sleep restriction are in line with these findings. Chronic sleep restriction reduced the 

postsynaptic 5-HT1A receptor sensitivity as indicated by a reduced hypothermic response and a 

blunted ACTH in response to 5-HT1A receptors agonists. Similarly to depressed patients, the 

injection of CRH in sleep restricted rats resulted in blunted ACTH and normal cortisol responses 

(Holsboer et al. 1984, 1987). Blunted ACTH levels in response to CRH and 5-HT1A stimulation 

suggest altered regulation at the levels of both CRH and serotonergic 1A receptor systems. 

Quantification of the CRH and 5-HT1A receptors and study of their signaling pathways in 

distinguished brain areas regulating the HPA axis may help to understand the changes 

responsible for an altered HPA regulation axis regulation. The mechanisms accounting for normal 

corticosterone response despite a blunted ACTH response in sleep restricted rats, may be related 

to increased sensitivity of the ACTH receptors at the level of the adrenals and should be 

examined in new experiments.  
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Another finding that links sleep loss to the risk to develop psychopathology is the 

decreased hippocampal volume in sleep restricted rats. The hippocampus is thought to be an 

important structure for the etiology of mood disorders especially depression and to mediate the 

action of antidepressants (Samuels and Hen 2011). A smaller hippocampal volume is a 

characteristic often present in subjects with depression and other mood disorders and seems to 

be related to the severity of the symptoms (Sapolsky 2000).  

Interestingly, the smaller hippocampal volume in sleep restricted animals does not appear to be a 

consequence of high glucocorticoid levels as it has been proposed for depressed patients 

(Sapolsky 2000; Czeh and Lucassen 2007). As depressed patients often complain of sleep 

disturbances, it could be that hippocampal atrophy in these subjects is in part a consequence of 

chronically insufficient sleep and not entirely caused by increased glucocorticoid levels.  

It has been suggested that the decreased hippocampal volume in depression could be 

the reflection of structural plasticity such as decreased dendritic branches, decreased cellular 

volume, decreased number of neurons or astroglia, and perhaps lower levels of neurogenesis. In 

fact, it is generally believed that decreased levels of cell proliferation in the DG play a role in the 

pathology of depression while increased neurogenesis is necessary for antidepressant action 

(Perera et al. 2008; Samuels and Hen 2011). In chapter 6, survival of newly generated cells and 

their differentiation into new neurons was not affected in sleep restricted rats that had a reduced 

hippocampal volume. This seems to be consistent with our observation that sleep deprivation 

does not affect the process of neurodegeneration. We did not assess the levels of cell 

proliferation directly and this should perhaps be examined in future analysis. However, other 

studies in the literature show an effect of sleep deprivation on cell proliferation (Guzman-Marin et 

al. 2003, 2005; Roman et al. 2005a; Tung et al. 2005; Mirescu et al. 2006; Guzman-Marin et al. 

2007, 2008; Mueller et al. 2008) providing a link between sleep loss, decreased neurogenesis, 

and reduced hippocampal volume. At the same time, even a severe suppression of neurogenesis 

may not be sufficient to explain the reduction in hippocampal volume that we found in our study.  

One remaining question that deserves attention is whether the reduction in hippocampal 

volume and other possible alterations persist throughout adult age or are reversed by subsequent 

regular sleep. Longitudinal studies could be done in human subjects affected by sleep 

disturbances only in the course of their childhood or adolescence. In addition, experimental 

studies in laboratory rodents should study the temporal dynamics and underlying molecular 

mechanisms of hippocampal volume changes in more detail during both sleep restriction and 

recovery. Furthermore changes in other brain structures like amygdala and prefrontal cortex that 

are known to be affected in mood disorders and are still developing during the adolescent period 

(Gogtay et al. 2004; Toga et al. 2006) could be considered as well.  
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Sleep restriction and behavior  

Notwithstanding the effects of sleep loss on the brain, the results in this thesis do not show 

convincing behavioral changes in sleep restricted rats. Our assessment of behavior was limited to 

the experiments with adolescent rats described in Chapter 6 and a number of unreported 

experiments in adult rats. 

To measure anxious behavior, we subjected the animals to open field and an elevated 

plus maze test that are based on the natural conflict between the tendency of rodents to explore a 

new place and the fear for a potentially dangerous environment (Ramos 2008). These tests are 

generally considered reliable to study anxious behavior in animals and are frequently used in this 

context. As we did not detect any change in open field or EPM that should detect changes in 

different parameters of anxiety, we feel confident to conclude that chronic sleep restriction does 

not affect trait anxiety.  

This lack of effect of chronic sleep restriction on anxiety was not unexpected and in line 

with most of the available data from other rodent studies showing that (short) sleep deprivation 

does not cause major changes in behavioral measures of anxiety (Hicks and Moore 1979; Moore 

et al. 1979; Suchecki et al. 2002; Martinez-Gonzales et al. 2004; Tartar et al. 2009, Hagewoud et 

al. 2010b). We now confirm that even with prolonged chronic sleep restriction, rats do not become 

more anxious. Also in humans, the literature on restricted or disrupted sleep and anxiety shows 

contradictory results (Peeke et al. 1980; Bonnet and Arand 1998; Sagaspe et al. 2006).   

To test depressive behavior in our animals, we used the saccharin preference test that is 

commonly used to measure anhedonia in animal models (Moreau 1997). Anhedonia is defined as 

a strong reduction of interest and pleasure for all or most of activities (Moreau 1997) and is 

considered one of the core symptoms of depression (Moreau 1997; Schrader 1997). Sleep 

restriction in our animals affected the preference for a sweet saccharin solution, but this effect 

was only temporary and it was to a lesser extent present also in control animals subjected to 

forced locomotion. We also applied this test in several other, unpublished studies on sleep 

restriction in adult animals and the results were inconsistent. While in some experiments there 

was a tendency towards reduced saccharin preference, in others there was not. Together these 

data may indicate that the effect of restricted sleep on saccharine preference is weak or the 

saccharin preference test may not be sensitive enough to detect anhedonic behavior in our 

experimental model.  

 One reason for the minimal behavioral effects of sleep restriction may thus lie in the 

sensitivity of our tests and the crude behavioral measures that were used. Another consideration 

is that some of the neurobiological consequences of sleep restriction that we observed in the 

brain, such as the hippocampal volume reduction, may not actually indicate a state of depression 

but, instead, a state of increased sensitivity to depression that is not yet associated with functional 

behavioral changes. In real life, besides experiencing sleep restriction, individuals are often 

exposed to other challenges such as stress and traumatic events that, by affecting similar 
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neurobiological systems, can cause mood disorders. Even though sleep loss by itself may not be 

sufficient to cause psychopathology, it may still increase the risk to develop it in subjects that have 

a certain predisposition. For example, literature in humans suggests that the risk to develop post 

traumatic stress disorder (PTSD) is higher in subjects interested by chronic sleep loss before or 

after a trauma (Krakow et al. 2001). Future experiment should therefore aim at the hypothesis that 

sleep restricted animals may more readily fail to cope with traumatic events than controls. 

Sleep deprivation therapy  

While several findings indicate that chronic sleep disruption is depressogenic, it is well 

established that one night of sleep deprivation can significantly improve mood in 50-60% of 

depressed patients (Pflug and Tolle 1971). Differently from other antidepressant treatments that 

require few weeks before inducing a therapeutic response, sleep deprivation for one night exerts 

its effect already the following day, although a considerable part of the patients responding to it 

relapses after the next night of recovery sleep (Southmayd and David 1990). Besides the clinical 

data on sleep deprivation therapy, a number of animal experiments have shown that acute total 

sleep deprivation for a single rest phase can reverse stress-induced depression-like behavior in 

rats as well (Koolhaas et al. 1990, Meerlo et al. 1996).  

It may appear paradoxical that sleep deprivation is capable of improving mood in 

depressed subjects that already experience insufficient and irregular sleep, which in turn is even 

believed to contribute to the depressive symptomatology. The mechanisms underlying the 

antidepressant effect of sleep deprivation are not clear, although hypothesis have been made 

about physiological mechanisms (Beersma and Van den Hoofdakker 1992; Van den Burg et al. 

1992) and neurobiological systems, among which monoaminergic pathways, glutamate 

neurotransmission and hormonal signaling (Adrien 2002; Payne et al. 2002; Benedetti and 

Smeraldi 2009). There is also evidence suggesting that the antidepressant effect of sleep 

deprivation may be the effect of changes at neuroendocrine level (Schüle et al. 2001). 

Furthermore neuroimaging studies show that the antidepressant action of sleep deprivation may 

involve very specific brain areas such as the orbital medial prefrontal cortex and the ventral areas 

of the anterior cingulate cortex (Gillin et al. 2001). 

One of the mechanisms proposed for the antidepressant action of sleep deprivation 

involves the serotonergic system. Subjects homozygous for the long variant of the serotonin 

transporter gene, compared to the ones with the short variant, respond better to both sleep 

deprivation therapy and SSRI (Smeraldi et al. 1998; Benedetti et al. 1999). Experiments in rats 

showed that 24 h sleep deprivation produces desensitization of the 5-HT1A mediated firing 

response of NRD neurons, similarly to the effect induced by antidepressant treatment (Prevot et 

al. 1996). Similarly to antidepressants that work on the serotonergic system, sleep deprivation 

therapy would induce a desensitization of the 5-HT1A somatodendritic autoreceptors, which would 
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reduce the inhibitory feedback of serotonin on its own cells and, consequently, increase the 

release of serotonin in the projection areas (Adrien 2002).  

While these data may seem at odds with the findings presented in this thesis, it is 

important to realize that our experiments show that chronic sleep restriction most likely reduces 5-

HT1A sensitivity post-synaptically in the projection areas. We have shown blunted ACTH and body 

temperature responses to a 5-HT1A receptor agonist after 8 days of sleep restriction, which are 

mediated by postsynaptic 1A receptors (Fuller et al. 1996; Blier et al. 2002). In other words, while 

chronic sleep restriction decreases postsynaptic 1A sensitivity and may thereby reduce 

serotonergic neurotransmission in projection areas, sleep deprivation therapy reduces the 

sensitivity of auto-receptors on the raphe cells and through that ultimately enhances serotonergic 

neurotransmission. Acute sleep deprivation therapy and chronic sleep disturbance may thus exert 

their action at different levels of the serotonergic system and or differentially affect the sensitivity 

of the different 5-HT1A receptors resulting in opposite effects.   

An alternative hypothesis about the mechanisms of the antidepressant effect of sleep 

deprivation considers the expression of plasticity molecules such as pCREB, BDNF and TrkB 

through regulation of the noradrenergic system (Payne et al. 2002). This theory is based on the 

finding that the expression of these factors is enhanced by short term sleep deprivation and that 

such increase in expression is abolished by lesion of the noradrenergic system (Cirelli et al. 

2000).  

With all the potential mechanisms that have been proposed for the therapeutic effect of 

sleep deprivation, it is important to realize that the therapy perhaps only works in a depressed 

brain by reversing changes in a compromised system. In other words, sleep deprivation may have 

effects in depressed patients that are normally not seen in healthy subjects.  

Clearly, understanding the bases of the sleep deprivation therapy could help to clarify 

the pathways of this complex relation between sleep and mood disorders. Considering that sleep 

deprivation exerts a faster effect and has fewer side effects compared to antidepressants, 

knowing how it works would also be useful to explain the mechanism of action of antidepressants 

and to design new medications to treat depression. 

Concluding remarks  

The experiments in this thesis applied an animal model of chronic sleep restriction as it often 

occurs in our society to study the consequences of insufficient sleep in terms of brain vulnerability 

and susceptibility to psychopathology. The data in this thesis do not provide evidence for the 

hypothesis that chronic sleep loss induces neurodegeneration but they do show that chronic sleep 

restriction gradually leads to more subtle neurobiological and neuroendocrine changes that are 

very similar to what is seen in depressed patients, particularly, a desensitization of the 

postsynaptic 5-HT1A receptor system, an altered regulation and reactivity of the HPA axis and a 

reduction in hippocampal volume. These findings provide strong support for the hypothesis that 
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chronically insufficient sleep may increase the sensitivity and contribute to the development of 

mood disorders. This is important considering that an increasing number of people in our society 

are chronically sleep restricted. Supporting sleep hygiene education in order to avoid sleep loss 

as a habit together with an early diagnose and a proper therapy of sleep disorders could prevent 

serious consequences on health and wellbeing. Although sleep loss could increase the risk for 

psychopathology, in many cases it may not be a sufficient condition. A first interesting point is to 

clarify if and how sleep loss effectively increase the predisposition to psychopathology by studying 

its interaction with other elements that can cause mood disorders, in animal models. Second it is 

important to understand better which predisposing factors may make certain individuals more 

sensitive or more resistant than others against sleep loss in the context of psychopathology. 

These factors may be genetically determined and may affect the neurobiological pathways that 

sleep disturbances share with mood disorders. A deeper knowledge of these pathways will also 

help the interpretation of the complex relationship between sleep loss and mood disorders. 
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De neurobiologische gevolgen van chronisch slaaptek ort: implicaties voor depressie 

Slaaptekort komt in toenemende mate voor in onze Westerse samenleving. Veel mensen kampen 

met regelmatige slaapproblemen of lijken gewoonweg niet voldoende tijd te hebben voor slaap. 

De redenen hiervoor zijn divers en kunnen variëren van stress, hoge werkdruk, en ploegendienst 

tot ouderschap, maar ook recreatieve bezigheden in de late avonduren krijgen regelmatig 

voorrang boven slaap. Frequent slaaptekort is niet een specifiek probleem van hardwerkende 

volwassenen maar lijkt ook steeds meer voor te komen bij adolescenten en jonge kinderen. De 

redenen hiervoor zijn voorspelbaar: de jongeren kijken ’s avonds nog laat naar de televisie of 

surfen op het internet maar moeten wel de volgende ochtend vroeg weer op vanwege 

schoolverplichtingen.  

Er wordt algemeen aangenomen dat slaap belangrijk is voor herstel en plasticiteit van 

zenuwcellen en daardoor uiteindelijk voor een goed functioneren van de hersenen. Wat slaap 

precies doet op moleculair en cellulair niveau is nog grotendeels onbekend maar het is duidelijk 

dat te weinig slapen directe effecten heeft op concentratievermogen, cognitieve prestaties en 

stemming. Deze acute effecten van slaaptekort lijken vrij snel te verdwijnen wanneer slaap wordt 

ingehaald. Echter, wanneer slaapverstoring of slaapgebrek een chronisch probleem wordt zouden 

er wel eens veranderingen in hersenen en lichaam kunnen optreden die ernstige gevolgen 

kunnen hebben voor de psychische en fysieke gezondheid.  

 Er zijn het afgelopen decennia talloze studies verschenen die een relatie aantonen 

tussen slaapduur en het risico op allerlei aandoeningen. Weinig slaap is geassocieerd met een 

verhoogde kans op infectieziektes inclusief griep en verkoudheid. Verder is een levensstijl met 

weinig slaap geassocieerd met een verhoogde kans op hart- en vaat ziektes, metabole 

stoornissen als diabetes, en stemmingsstoornissen als depressie, manie, en post-traumatisch 

stress syndroom. Vooral de relatie tussen verstoorde slaap en depressie lijkt erg sterk en is in 

talloze studies vastgesteld. Meestal is het onduidelijk wat oorzaak en gevolg is maar sommige 

studies laten zien dat insomnia vaak vooraf gaat aan veranderingen in stemming. Echter, ook in 

dat geval is het niet bewezen dat de verstoorde slaap daadwerkelijk een oorzaak is van de 

verstoorde stemming. Om dergelijke causale verbanden aan te tonen zijn goed gecontroleerde 

experimentele studies nodig waarbij men chronisch slaapverstoring toepast en vastlegt of dit leidt 

tot bepaalde kenmerken of symptomen van depressie.  

  In dit proefschrift zijn een aantal studies beschreven waarin werd gekeken naar de 

neurobiologische en neuroendocriene gevolgen van chronische slaaprestrictie in ratten. De 

experimenten waren in het bijzonder gericht op hersensystemen en processen die mogelijk 

betrokken zijn bij depressie. Het model van chronische slaaprestrictie dat werd gebruikt was 

gericht op het nabootsen van regelmatig slaaptekort in onze maatschappij. De dieren konden 

slechts 4 uur per dag slapen, veel minder dan de ruim 10 uur die ratten in het laboratorium 

normaliter slapen, en vermoedelijk niet voldoende voor een volledig herstel en verwerking van de 

dagelijkse wakker activiteiten. De ratten werden wakker gehouden door ze in langzaam draaiende 
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trommels te plaatsen. De rotatiesnelheid van de trommels was net voldoende om de dieren 

wakker te houden zonder een zware lichamelijke inspanning te vereisen. De dieren werden 

blootgesteld aan slaaprestrictie voor een periode van een week tot een maand en in de meeste 

experimenten vergeleken met twee controle groepen. De ratten in de eerste controle groep 

werden eveneens in trommels geplaatst. Deze trommels draaiden echter op dubbele snelheid 

voor de helft van de tijd waardoor deze dieren evenveel fysieke activiteit moesten uitvoeren maar 

toch voldoende tijd hadden om te slapen. Hierdoor konden effecten van slaaptekort en 

geforceerde activiteit worden onderscheiden. De tweede controle groep bestond uit dieren die 

gedurende het hele experiment ongestoord in hun thuiskooi verbleven.  

 Het experiment in hoofdstuk 2  is gebaseerd op het algemene idee dat slaaptekort op 

langere termijn het brein kwetsbaarder maakt voor neurodegeneratieve processen. Hoewel er in 

de literatuur weinig aanwijzingen zijn dat slaaptekort direct leidt tot celdood zou het wel de 

gevoeligheid kunnen verhogen voor een daarop volgende neurodegeneratief insult. Om dit te 

testen werd bij ratten na een maand van slaaprestrictie een gecontroleerde locale hersenschade 

geïnduceerd door injectie van een neurotoxische dosis N-methyl-d-aspartate (NMDA). De dieren 

kregen een unilaterale NMDA injectie in de nucleus basalis magnocellularis (NBM) welke 

resulteerde in een duidelijk verlies van cholinerge neuronen in de NBM zelf en vermindering van 

cholinerge vezelprojecties in de cortex. Tegen de verwachting in was de schade in ratten 

blootgesteld aan slaaprestrictie significant minder dan in controle dieren. Een mogelijke verklaring 

voor deze bevinding is dat chronische slaaprestrictie een milde stress is voor de hersenen die 

weliswaar niet direct tot schade leidt maar wel beschermende mechanismen activeert en 

daardoor de schade van een later optredend insult vermindert. Deze resultaten zijn duidelijk in 

strijd met de hypothese dat slaaptekort de gevoeligheid voor neurodegeneratie verhoogt. 

Hoewel slaaptekort niet direct leidt tot de dood van hersencellen kan het de morfologie 

en plasticiteit van het brein wel op andere, meer subtiele manieren aantasten die uiteindelijk grote 

gevolgen zouden kunnen hebben voor het functioneren van het brein. In hoofdstuk 3  werd 

onderzocht wat de invloed is van chronische slaaprestrictie op het serotonerge systeem, dat een 

belangrijke rol speelt bij de regulatie van emoties en stress. Tevens werd gekeken naar de 

effecten van slaaptekort op regulering en reactiviteit van de hypothalamus-hypofyse-bijnier (HPA) 

as, een van de belangrijkste neuroendocriene stress systemen van het lichaam. Ratten werden 

na slaaprestrictie blootgesteld aan verschillende stressoren door ze te onderwerpen aan een 

zogenaamd ‘fear conditioning paradigm’. Deze bestond allereerst uit een korte sessie met enkele 

milde elektrische schokken (een acute fysieke stressor), een dag later gevolg door hernieuwde 

blootstelling aan de schokkamer maar nu zonder schokken (een emotionele stressor). De HPA as 

respons werd bepaald door de plasmaspiegels van het hypofyse hormoon ACTH en het 

bijnierhormoon corticosteron te meten. Na beide stressoren vertoonden de dieren met chronisch 

slaaptekort een significant verminderde ACTH response. Deze verandering in hypofyse respons 

was alleen zichtbaar na 8 dagen slaaprestrictie maar niet na 1 dag. Dit laatste is een belangrijke 
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ondersteuning van het idee dat slaaptekort effecten kan hebben die niet onmiddellijk zichtbaar 

zijn maar zich geleidelijk aan opstapelen wanneer slaaptekort chronisch wordt. 

De activiteit van de hypofyse en de afgifte van ACTH in reactie op stress staat onder controle van 

diverse centraal-nerveuze signalen. In de eerste plaats is dat CRH vanuit de hypothalamus maar 

ook het serotonerge systeem speelt hierbij een belangrijke rol, vooral via de serotonine 1A 

receptor die aanwezig is in zowel de hypothalamus als de hypofyse. Teneinde het mechanisme 

dat ten grondslag ligt aan de veranderingen in hypofyse ACTH response na slaaprestrictie te 

onderzoeken, werd de HPA as direct gestimuleerd door infusie van een standaard dosis CRH of 

door infusie van een serotonine-1A receptor agonist (8-OH-DPAT). In beide gevallen vertoonden 

de dieren na chronisch slaaptekort een verminderde ACTH respons. Dit bevestigt eerdere 

bevindingen dat chronische slaaprestrictie leidt tot een verminderde gevoeligheid van het 

serotonine-1A receptorsysteem en suggereert ook een verminderde gevoeligheid van CRH 

receptoren. Beide kunnen bijdragen aan de verminderde hypofyse respons wanneer dieren met 

slaaptekort worden blootgesteld aan stress. Ondanks de verandering in hypofyse ACTH respons 

vertoonden ratten na chronisch slaaptekort een vrijwel normale bijnier corticosteron afgifte. Dit 

zou kunnen betekenen dat de bijnieren onder condities van slaaprestrictie juist gevoeliger worden 

voor ACTH zodat zelfs de verminderde ACTH afgifte leidt tot een even hoge corticosteron 

respons.  

Het is bekend dat slaapdeprivatie ook directe effecten heeft op het metabolisme en bij 

ratten vaak leidt tot een vermindering van groei of zelfs een daling van het lichaamsgewicht. Dit 

laatste kan op zijn beurt weer effecten hebben op het serotonerge systeem. Daarom werd in 

hoofdstuk 4  onderzocht of de slaaprestrictie-geinduceerde veranderingen in serotonine-1A 

gevoeligheid mede afhankelijk zijn van gewichtsverlies. Om gewichtsverlies door slaaprestrictie te 

voorkomen kreeg een deel van de ratten gedurende het experiment vet-verrijkt voedsel. Ondanks 

het feit dat dit dieet de vermindering in groei van dieren met slaaptekort deels voorkwam was de 

verminderde gevoeligheid van serotonine-1A receptor systeem nog steeds aanwezig. De 

slaaprestrictiedieren vertoonden nog steeds een verminderde hormonale respons en temperatuur 

respons in reactie op de seroninin-1A agonist 8-OH-DPAT. Deze resultaten ondersteunen dus 

niet het idee de verminderde gevoeligheid van het serotonin-1A systeem na slaaprestrictie een 

consequente is van veranderingen in metabolisme en lichaamsgewicht.  

In hoofdstuk 5  werd verdere studie verricht naar de effecten van slaaprestrictie op de 

gevoeligheid voor stress en met name op de expressie van corticoïde receptoren die een 

belangrijke rol spelen bij de effecten van het bijnier-stresshormoon corticosteron op 

hersenfuncties. De expressie van deze receptoren in de hersenen wordt gereguleerd door 

verschillende systemen en processen die op zich weer beïnvloed kunnen worden door 

slaaptekort. Er werd gekeken naar de expressie van mineralocorticoïd receptoren (MR) en 

glucocorticoïd receptoren (MR) in verschillende hersengebieden na chronische slaaprestrictie 

alleen en na slaaprestrictie in combinatie met herhaalde blootstelling aan immobilisatie stress. In 

situ hybridisatie liet echter in geen van de onderzochte gebieden veranderingen zien in de 
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expressie van MR/GR mRNA. Verder onderzoek is nodig om na te gaan of slaaprestrictie effect 

heeft op de concentratie van het functionele MR/GR receptor eiwit of op de gevoeligheid en 

werking van deze receptoren.  

Omdat slaaptekort in onze maatschappij een probleem is dat ook op jonge leeftijd 

steeds groter lijkt te worden, en een rol zou kunnen spelen in de toename van 

stemmingsstoornissen op deze leeftijd, werd in hoofdstuk 6  gekeken naar de gevolgen van 

chronische slaaprestrictie in adolescente ratten van postnatale dag 30 tot 61. De experimenten 

waren deels gericht op de morfologie en plasticiteit van de hippocampus, een hersenstructuur die 

een belangrijke rol speelt bij cognitieve processen en emoties. De belangrijkste bevinding van dit 

experiment was een significante 10% reductie in het volume van de hippocampus, zoals die ook 

vaak is gerapporteerd bij depressieve patiënten. De oorzaak van deze vermindering in 

hippocampaal volume is vooralsnog onduidelijk maar lijkt niet veroorzaakt te worden door een 

vermindering van neurogenese. Hoewel eerdere studies in volwassen dieren hadden aangetoond 

dat chronische slaapverstoring kan leiden tot een sterke reductie in de aanmaak van nieuwe 

neuronen in de hippocampus, werd dat in de huidige studie in jongere dieren niet bevestigd. Er 

werden ook diverse testen uitgevoerd om angst- en depressieachtig gedrag bij de jonge dieren te 

meten. In overeenstemming met de literatuur bleek slaaprestrictie geen duidelijk effect te hebben 

op het gedrag in klassieke angsttesten (open field, elevated plus maze). Wel veroorzaakte 

slaaptekort een tijdelijke onderdrukking in de normale voorkeur voor suikerwater boven normaal 

drink water, hetgeen kan wijzen op een tijdelijke anhedonie of depressieachtig gedrag. We 

konden in dit experiment echter niet uitsluiten dat deze anhedonie veroorzaakt werd door de 

geforceerde activiteit van de slaaprestrictie procedure in plaats van slaapgebrek per se. 

Conclusie . Veel van de waargenomen neurobiologische en neuroendocriene 

veranderingen na chronische slaaprestrictie in ratten komen sterk overeen met afwijkingen die 

zijn vastgesteld bij depressieve patiënten, met name de verminderde gevoeligheid van het 

serotonine-1A systeem, de veranderingen in HPA-as regulatie, en de reductie in hippocampaal 

volume. De resultaten van deze studies leveren dan ook een sterke ondersteuning van de 

hypothese dat verstoorde slaap niet enkel een symptoom is van depressie maar, bij een deel van 

de patiënten, mogelijk een causale rol speelt bij het ontstaan van de stemmingsstoornis. Tevens 

leggen deze resultaten potentiele mechanismes bloot waarlangs dat kan gebeuren.  
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Carenza di sonno, vulnerabilità cerebrale e psicopa tologia  

Una varietà di fenomeni nel nostro stile di vita, quali stress, ritmi di lavoro elevati ed attività 

ricreative notturne, causano la perdita di ore di sonno, un fenomeno sempre più diffuso non 

soltanto nella popolazione adulta, ma anche tra i bambini e gli adolescenti.  

Il sonno è fondamentale per la plasticità ed il recupero neuronali e di conseguenza 

anche per il normale funzionamento del cervello. La sua azione a livello molecolare è in gran 

parte sconosciuta, ma è ben noto che dormire troppo poco influisce negativamente sulle capacità 

cognitive, sull’abilità di concentrarsi ed anche sull’umore. Mentre questi effetti indotti dalla 

privazione acuta del sonno scompaiono abbastanza presto semplicemente recuperando il sonno 

perso, la carenza cronica di sonno potrebbe causare serie alterazioni fisiche e cerebrali 

rappresentando una minaccia per la salute.  

Diversi studi dimostrano una relazione tra la durata del sonno e il rischio per 

determinate patologie. Chi dorme poco contrae più facilmente infezioni respiratorie come 

l’influenza ed il raffreddore ed ha un’aumentata probabilità di sviluppare malattie 

cardiocircolatorie, diabete e disturbi dell’umore tra cui depressione, mania e disturbo post 

traumatico da stress. L’associazione tra disturbi del sonno e depressione è particolarmente forte 

ed è stata presa in considerazione in diversi studi, ma nel complesso rimane ignoto quale ne sia 

la relazione causa effetto. Alcune ricerche hanno rivelato che spesso, periodi di insonnia 

precedono l’insorgenza di stati depressivi, ma questo non vuol dire necessariamente che sia la 

perdita del sonno a causare la depressione. Per stabilire l’esistenza di una relazione causale, 

sono necessari degli studi sperimentali al fine di testare se la restrizione cronica del sonno porta 

ad alterazioni e sintomi tipici della depressione.  

Questa tesi consiste di una serie di studi sulle conseguenze neurobiologiche e 

neuroendocrine della restrizione del sonno nel ratto, con particolare attenzione a quei fenomeni e 

processi che sono alterati nella depressione. Allo scopo di riprodurre il fenomeno della perdita del 

sonno in modo simile a come avviene nella nostra società, viene usato un modello di studio in cui 

i ratti possono dormire soltanto quattro ore al giorno. Essendo considerevolmente inferiore alla 

normale durata del sonno nei ratti da laboratorio (~10 ore), tale quantità è insufficiente a garantire 

un normale recupero. In questo modello, i ratti vengono mantenuti svegli forzandoli a camminare 

in ruote rotanti a bassa velocità. Il lento movimento di rotazione è sufficiente ad impedire agli 

animali di addormentarsi senza indurre un forte stress fisico. Negli esperimenti qui riportati, i ratti 

vengono sottoposti alla restrizione cronica del sonno per periodi variabili da una settimana ad un 

mese e nella maggior parte dei casi sono messi a confronto con due gruppi di controllo. Come i 

ratti sottoposti a restrizione del sonno, quelli del primo gruppo di controllo vengono fatti 

camminare nelle ruote che però in questo caso, girano a velocità doppia e per la metà del tempo. 

In tal modo, i livelli di attività fisica sono simili per i due gruppi, ma i ratti nel gruppo di controllo 

non sono soggetti a restrizione del sonno. Dal paragone tra questi due gruppi sperimentali è 

possibile distinguere gli effetti causati dalla restrizione del sonno per sé da quelli indotti dal 
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metodo usato in questo modello. Gli animali appartenenti al secondo gruppo di controllo 

rimangono indisturbati nelle loro gabbie per tutto il corso degli esperimenti. 

Gli esperimenti nel secondo capitolo  di questa tesi si basano sull’idea che la 

privazione cronica del sonno rende il cervello più sensibile a processi neurodegenerativi. Anche 

se nella letteratura le evidenze in favore di una perdita neuronale come diretta conseguenza della 

privazione del sonno sono poco convincenti, la perdita del sonno potrebbe comunque aumentare 

la vulnerabilità del cervello ad insulti di tipo neurodegenerativo. Al fine di testare questa ipotesi, in 

ratti sottoposti a trenta giorni di restrizione del sonno, è stato indotto un evento neurodegenerativo 

mediante iniezione unilaterale di una dose neurotossica di N-metil-D-aspartato (NMDA) nel 

nucleo basale magnocellulare (NBM). L’iniezione di NMDA è risultata in una diminuzione del 

numero di cellule nel NBM e delle rispettive proiezioni alla corteccia nell’emisfero cerebrale 

iniettato. Contrariamente alle ipotesi, il danno era meno accentuato nei ratti sottoposti a 

restrizione del sonno rispetto ai controlli. Una possibile ragione per questo effetto è che la 

restrizione del sonno, agendo da stress moderato, sia insufficiente ad indurre un danno 

neurodegenerativo, ma attivi dei meccanismi di difesa che successivamente attenueranno il 

danno causato da un insulto più forte. 

Pur non inducendo neurodegenerazione, la restrizione del sonno potrebbe alterare 

plasticità e morfologia cerebrali in modo più subdolo, compromettendo il normale funzionamento 

del cervello. Gli esperimenti descritti nel capitolo tre  hanno lo scopo di investigare l’effetto della 

restrizione del sonno sia su regolazione ed attività dell’asse ipotalamo-ipofisi-surrene (HPA) che è 

uno dei maggiori sistemi neuroendocrini del nostro organismo, sia sul sistema serotoninergico 

che ha una funzione molto importante nella regolazione dello stress e delle emozioni. In seguito 

al periodo di restrizione del sonno, i ratti sono stati sottoposti ad un paradigma noto come 

‘condizionamento alla paura’. In questo paradigma gli animali vengono prima esposti ad una 

breve sequenza di scosse elettriche a basso voltaggio (stress fisico) all’interno di un box e il 

giorno successivo, vengono reintrodotti nello stesso box senza scosse (stress emotivo). La 

risposta dell’HPA viene determinata in base ai livelli plasmatici dell’ormone adrenocorticotropo 

(ACTH) e del corticosterone. Gli animali sottoposti a restrizione del sonno hanno dimostrato 

un’attenuazione nei livelli di ACTH in risposta ad entrambe le situazioni di stress (fisico ed 

emotivo). Tale attenuazione nei livelli di ACTH non era evidente dopo un giorno di privazione del 

sonno, ma soltanto dopo otto giorni di trattamento. Ciò suggerisce la possibilità che gli effetti della 

perdita del sonno non siano immediatamente evidenti, ma si accumulino nel tempo.  

L’attività dell’ipofisi e la risposta dell’ACTH allo stress vengono controllate da diversi 

segnali nervosi centrali. Tra questi, sono molto importanti l’ormone di liberazione della 

corticotropina (CRH) e il sistema serotoninergico che agisce specialmente attraverso il recettore 

1A per la serotonina presente a livello dell’ipotalamo e dell’ipofisi.  

Allo scopo di investigare i meccanismi alla base dei cambiamenti nella risposta dell’ACTH in 

seguito a restrizione del sonno, l’asse ipotalamo-ipofisi-surrene è stato stimolato direttamente, 

attraverso l’infusione di una dose standard di CRH o di un agonista del recettore 1A della 
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serotonina (8-OH-DPAT). In entrambi i casi, gli animali con restrizione del sonno hanno 

dimostrato una risposta ridotta dell’ACTH. Questi risultati confermano una ridotta sensibilità del 

recettore 1A della serotonina, riportata in studi precedenti e suggeriscono inoltre un’attenuazione 

della sensibilità dei recettori per il CRH in seguito a restrizione cronica del sonno. Entrambi questi 

effetti possono contribuire alla ridotta risposta pituitaria quando gli animali privati del sonno 

vengono esposti a stress. Nonostante il cambiamento della risposta dell’ACTH, ratti assoggettati 

a restrizione di sonno cronica hanno mostrato un rilascio quasi normale di corticosterone dalle 

ghiandole surrenali. Ciò potrebbe indicare che le ghiandole surrenali in condizioni di restrizione 

del sonno sono più sensibili all’ACTH e di conseguenza anche un rilascio ridotto di ACTH 

indurrebbe un rilascio normale di corticosterone.  

È noto che la privazione del sonno ha effetti diretti sul metabolismo e nei ratti spesso 

porta ad una diminuzione del peso corporeo che a sua volta può influenzare il sistema 

serotoninergico. Nel capitolo quattro  si esamina se le alterazioni indotte dalla restrizione del 

sonno a livello del sistema serotoninergico, sono dipendenti dalla perdita di peso. Per prevenire il 

calo del peso corporeo causato dalla restrizione del sonno, parte dei ratti nell’esperimento sono 

stati alimentati con una dieta arricchita di grassi. Nonostante questa dieta abbia prevenuto 

parzialmente la perdita di peso corporeo causata dal trattamento di privazione del sonno, la 

ridotta sensibilità del sistema recettoriale 1A della serotonina era ancora presente nei ratti con 

restrizione del sonno. Questi animali hanno dimostrato ancora un’attenuazione delle risposte 

ormonali e della temperatura in seguito a somministrazione di 8-OH-DPAT. Questi risultati non 

supportano quindi l’idea che la desensitizzazione del sistema serotoninergico negli animali con 

restrizione del sonno sia l’effetto di cambiamenti di peso.  

Nel quinto capitolo  si studiano gli effetti della restrizione del sonno sui recettori 

corticoidi che sono fondamentali per la regolazione delle funzioni cerebrali da parte del 

corticosterone. L’espressione di questi recettori nel cervello viene regolata da diversi sistemi e 

processi che a loro volta sono sensibili alla privazione del sonno. Negli esperimenti di questo 

capitolo l’espressione dei recettori mineralcorticoidi (MR) e glucocorticoidi (GR) è stata misurata 

in diverse aree cerebrali in seguito a restrizione del sonno da solo o in combinazione con 

l’esposizione ripetuta a stress da immobilizazione. L’ibridazione in situ non ha dimostrato 

cambiamenti nell’espressione dell’mRNA di questi recettori in nessuna delle aree considerate. 

Sono necessarie ulteriori ricerche per determinare se la restrizione del sonno influisce 

sull’espressione recettoriale a livello proteico o sulla funzionalità di questi recettori.  

Siccome dormire poco è un’abitudine che interessa sempre di più la popolazione più 

giovane e potrebbe avere una funzione nell’insorgenza di disturbi dell’umore in individui di 

giovane età, nel capitolo sei  si esaminano gli effetti della restrizione del sonno cronica nel ratto 

adolescente (periodo post-natale 30 – 61). Parte degli esperimenti sono stati centrati sulla 

morfologia e la plasticità dell'ippocampo, una struttura cerebrale che svolge un ruolo importante 

per i processi cognitivi e le emozioni. Ratti sottoposti a restrizione del sonno hanno dimostrato 

una riduzione del volume ippocampale di circa 10%, come osservato anche in soggetti affetti da 
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depressione. La causa di questa diminuzione del volume dell’ippocampo non è chiara, ma 

sembra essere indipendente da cambiamenti nei livelli di neurogenesi. Mentre studi in animali 

adulti hanno dimostrato che la privazione del sonno può ridurre la produzione di nuovi neuroni 

nell'ippocampo, ciò non è stato confermato dai risultati degli esperimenti qui riportati, con gli 

animali giovani. Un’altra parte degli esperimenti in questo capitolo riguarda gli effetti della 

privazione del sonno in ratti adolescenti sulla tendenza a sviluppare comportamnenti di tipo 

ansioso e depressivo. In accordo con altri studi nella letteratura, la restrizione del sonno non ha 

influenzato il comportamento di questi ratti in test classici per misurare l’ansia (open field, 

elevated plus maze). Negli stessi animali si poteva osservare una soppressione temporanea della 

preferenza per la bevanda dolce verso l’acqua non zuccherata, indicando la possibile presenza di 

anedonia. In ogni caso in questo esperimento non è stato possibile determinare se tale effetto era 

il risultato della privazione del sonno o era invece dovuto alla locomozione forzata usata per 

mantenere gli animali svegli.  

Conclusione . Molte tra le alterazioni neurobiologiche e neuroendocrine osservate nei ratti in 

seguito a restrizione cronica del sonno, sono simili a quelle riportate in pazienti che soffrono di 

depressione. I risultati di questi studi forniscono quindi supporto all’idea che nei soggetti depressi, 

i disturbi del sonno non siano soltanto un sintomo, ma contribuiscano all’insorgenza della 

depressione e suggeriscono alcuni dei meccanismi attraverso cui ciò potrebbe avvenire.  
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