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Abstract

We investigate the cohomology structure of a general noncritical Wy string. We do
this by introducing a new basis in the Hilbert space in which the BRST operator splits
into a “nested” sum of nilpotent BRST operators. We give explicit details for the case
N = 3. In that case the BRST operator Q can be written as the sum of two, mutually
anticommuting, nilpotent BRST operators: Q = Qo + Q;. We argue that if one chooses
for the Liouville sector a (p,q) W3 minimal model then the cohomology of the O,
operator is closely related to a (p,q) Virasoro minimal model. In particular, the special
case of a (4,3) unitary W; minimal model with central charge ¢ = Oleadstoac = 1/2
Ising model in the @; cohomology. Despite all this, noncritical W3 strings are not
identical to noncritical Virasoro strings.

1. Introduction

Noncritical strings are strings in which the two-dimensional gravitational
fields do not decouple after quantization but instead develop an induced
kinetic term. The string coordinates are called “matter” fields while the non-
decoupled gravity fields are represented by a set of so-called “Liouville” fields.
The matter and Liouville fields together form a realization of the Virasoro
algebra. The spectrum of the noncritical string in less than or precisely one
dimension has been calculated via a BRST analysis in refs. [1-3].

Unfortunately, if the number of dimensions in which the noncritical string
propagates is larger than one, tachyons appear in the spectrum, and the theory
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SSDI0550-3213(94)00020-F



380 E. Bergshoeff et al. / Nuclear Physics B 420 (1994) 379-408

is ill-defined. It is believed that it is possible to make sense out of noncritical
strings in more than one dimension, provided the underlying Virasoro algebra
is extended to a nonlinear so-called W-algebra [4]. In the last few years
much research has been devoted to investigating the structure of these W-
symmetries (for a recent review, see e.g. ref. [5]). Noncritical string theories
with an underlying W-symmetry are referred to as noncritical W -strings.

One expects that in a noncritical W -string the matter and Liouville fields
(representing the “W-gravity” sector) separately form a realization of the
underlying nonlinear W -algebra. Thus we are faced with an immediate problem:
due to the nonlinear nature of the W-algebra it is clear that the matter and
Liouville fields together do not realize the same W-algebra. This would seem
to make the construction of a nilpotent BRST operator problematic. A way
out of this apparent obstacle was provided by the work of ref. [6] where it was
shown that nevertheless a nilpotent BRST operator for the matter + Liouville
system could be constructed. This is made possible by the fact that at the
classical level the sums of the generators of the W-algebras in the matter and
Liouville sectors still form a closed Poisson bracket algebra, albeit with field-
dependent structure functions [7]. For definiteness, we will call this algebra
the “modified” w-algebra ! . Alternatively, the existence of this BRST operator
can be understood from the covariant action for W-gravity coupled to matter
[8].

Having a nilpotent BRST operator at one’s disposal one can proceed with a
calculation of its cohomology and thus the spectrum of the noncritical ¥ -string.
Some results in this direction have been obtained in refs. [6,9-12].

Recently, it has been shown that the BRST operator of an “unmodified” W;
algebra? can be decomposed as the sum of two separate, mutually anticom-
muting, BRST operators by performing a particular canonical transformation
[14]. This is related to the fact that after the canonical transformation the
spin-3 generators of the classical ws algebra form a closed Poisson bracket
algebra with field-dependent structure constants [15]. It turns out that quite
generally the BRST operator corresponding to a Wy algebra can be written
as a “nested” sum of nilpotent BRST operators and the same applies to the
BRST operator of the noncritical W-string [16].

One of the advantages of decomposing a BRST operator into a “nested” sum
of nilpotent BRST operators, is that one can now construct the cohomology by
an iterative procedure. One first calculates the cohomology of one of the BRST
operators occurring in the sum. In practice it is easiest to start with the BRST
operator corresponding to the highest-spin generator (see ref. [16] for more
details). One then includes the next to highest-spin generator and the coho-

1 We denote the quantum extension of a classical w-algebra, provided it exists, by a W-algebra.
2 This case is often referred to as the “critical” W-string. The possibility of constructing new
critical string theories by exploiting the W -symmetries was first suggested in ref. [13]. Note that
the “critical” W-string can be obtained from the “noncritical” W -string by setting the Liouville
fields equal to zero.
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mology of the combined system can be obtained from the one corresponding
to the highest spin generator by a so-called “tic-tac-toe” procedure [17].

In refs. [18,19] a relationship has been suggested, on the basis of comparing
values of central charges, between the spectra of “critical” Wy strings and
Virasoro minimal models. In the case of the W; string this relation has been
made more explicit in refs. [14,20-23]. In particular, it was shown that a
general physical state of the critical W3 string contains a factor corresponding
to a ¢ = 1/2 Ising model. In terms of the new basis discussed above, it
means that the cohomology of the BRST-operator of the highest-spin symmetry
corresponds to a ¢ = 1/2 Ising model.

Using similar arguments as in ref. [18,19], it can be shown that the corre-
sponding situation for the noncritical Wy string is as follows [16]. Given a
realization of the matter and Liouville sectors in terms of N — 1 free scalars,
one can always perform a canonical transformation in the matter sector! such
that the “modified” wy-algebra manifestly has a “nested” set of subalgebras

vy coNtc...cvf=ww, (1)
where the subalgebra v} consists of generators of spin s = {n,n + 1,..., N},

respectively. Each generator of spin s = n depends on N —n + 1 of the N — 1
matter scalars and all the N — 1 Liouville scalars. In the new basis the BRST
charge Qu of the wy algebra has the following nested structure:

ONcCON'c...cQk=0w, (2)

where QF is the BRST charge corresponding to the subalgebra v}. The BRST
charge QF depends on N —n + 1 matter scalars, all the N—1 Liouville fields and
the ghost and anti-ghost fields of the spin #,..., N symmetries. The inclusion
symbols in (2) indicate that the BRST charge Q% can be obtained from

the BRST charge Q%! by setting in the expression for Q%! the ghosts and
antighosts corresponding to the spin-(n — 1) symmetries equal to zero. In all
explicit examples considered thus far the nested structure of the BRST charges
(2) survives quantization, where the BRST charges become BRST operators.
To distinguish between BRST operators and BRST charges, we will write the
operators with boldface2. We note that the case N = 3 is special. In that case
the BRST operator decomposes as the sum of two, mutually anticommuting,
nilpotent BRST operators as follows:

Q; =Q +Qy, (3)

I The discussion below can be repeated if one performs the canonical transformation in the
Liouville sector.

2 The explicit form of the Qx operator for N = 4,5,6 (with the Liouville fields set equal to
zero) is given in ref. [24] while the explicit expression for the Qi operator (without zero Liouville
fields) can be found in ref. [16]. In the usual Miura basis [25,18], the BRST operator of the W,
algebra was given in refs. [26,27].
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where Q; = Q3 and Qy is the nilpotent BRST operator corresponding to the
Virasoro subalgebra.

By comparing the values of central charges, it can now be argued that, if one
restricts the Liouville sector of a noncritical Wy string to a (p,q) Wy minimal
model, then the cohomology of the O BRST operator is closely related to the
(p,q) minimal model of the W,_, algebra.

More precisely, the counting of the central charges is as follows [16]. Both
for the matter and the Liouville sectors we realize the Wy algebra by N — 1
scalars ¢, and gy, respectively. The background charges of these fields are
fixed by the Miura transformation [25,18]. Consider now the Q% operator.
It depends on N — n + 1 matter scalars, the Liouville fields and the ghosts

and antighosts for the spin n,..., N symmetries. In general, the central charge
contribution of the spin #n,..., N ghosts and antighosts for a given value of n
is given by
N
c&=—22(6k2—6k+1). (4)
k=n

In particular, the contribution of all ghosts and antighosts is given by

e =ch=-2(N-1)2N? + 2N +1). (5)
The central charge contributions of the Liouville and matter sectors are given
by

N+1
— _ _ 2 _ -
o= W-n{1-4@- N - EET ).
N+1
cm—_—(N—l){1+4Q2N_l}, (6)

where Q is a free parameter which can be identified with the background
charge of the matter field ¢5_;. Note that we have

Cm + €L+ Gy = 0, (7

as is required to allow for a nilpotent BRST operator. We now choose for Q
one of the following values:
(0 + q)*
Qrznin=N(N_1)“‘W9 (8)
where p and ¢ are non-negative integers which are relatively prime. The central
charge contribution of the Liouville sector is then given by

P9 (N-1) 1_(17_—‘1)2N(N+1) 5 ®)
L bq
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which corresponds to the (p,q) minimal model of the Wy algebra. Similarly,
the central charge contribution of the matter sector is given by

2
4 = (N—l){l +("—:q"—)N(N+1)}, (10)

which corresponds to the (p, —¢) minimal model of the Wy algebra. Finally,
for fixed n, the central charge contribution of the N — n + | matter scalars is
given by

o = (1 + 12(ax)?), (11)

where «;, is the background charge of the matter scalar ¢y:

‘ [k(k + 1)
ax = Qmin m (12)

Denoting all the different contributions of the fields occurring in the Q%

operator by c,'(,;(” ‘9 we find for a given choice of p,q and n

c;f;(p,q) = C{p,q) + Cr’;l + C{;’h

2
=(n—2){(2n—1)2—n(n—l)M}, (13)
pq
which corresponds to the (p,q) minimal model of the W,_; algebra. This
concludes our counting argument.

An interesting special case arises if we choose the Liouville sector to cor-
respond to the (N + 1,N) Wy minimal model with ¢;"*"") = 0 [15]. In
that case the Liouville fields effectively decouple from the theory and we end
up with a “critical” Wy string. The central charge corresponding to the Q%
operator is in that case given by

) _ (n—z){l_%:;%}’ .

which is the (N + 1, N) minimal model of the W,_, algebra!. For instance,
for n = N = 3 we find the cg;“’” = 1/2 Ising model.
Another interesting case occurs if we choose the Liouville sector to corre-

spond to the (n,n — 1) minimal model of the Wy algebra with central charge
(2<n<N)

_ ¢

FICEN N (15)

P = (N - 1){1

! This relation between critical W -strings and minimal models has been suggested in refs. [28,23].
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In that case we find that ™"~ = 0. This means that all fields occurring

in the Q% cohomology decouple and we effectively end up with a “critical”
W,_, string theory. An interesting additional feature of the Liouville central
charge given in (15) is that for this value the total central charge contribution

of the n — 2 Liouville scalars oy,...,0,_> equals zero. For instance, if n = N
then ™V =1 = _2 and the central charge contribution of the N — 2 Liouville
scalars a1,...,0y_> equals zero. In the particular case N = 3 [7], we have

two Liouville scalars o; and o0,. The central charge contribution of o, is zero
and the whole Wj algebra can in fact be realized in terms of the single scalar
ay [29]

From a group-theoretic point of view, the picture is the following. The matter
fields can be seen as one scalar field ¢ with values in the Cartan subalgebra of
sly. The energy momentum tensor of these fields can be written as

1
T=—§8(/)-6(0+B,0N'32¢, (16)

with central charge ¢ = (N—1) 4+ 12 B2py - py. Here, py is half the sum of the
positive roots of sly. If the Liouville sector is a (p, ¢) minimal model, then one
finds, on using (10) and py - py = (N3 — N)/12, that B = \/p/q + \/a/p.
To get the QY operator, we have to decouple n — 2 matter fields, which can
be done as follows. Take an embedding of sl,_; into sly, for instance map
the n — 2 simple roots of sl,_; to the first n — 2 simple roots of sly. Then,
decompose the field ¢ as ¢, + ¢, where ¢, is the orthogonal projection of
¢ onto the Cartan subalgebra of sl,_;. The n — 2 matter fields we want to
decouple are precisely given by the components of ¢,. To find the energy
momentum tensor for ¢,, we have to decompose py into a piece with values
in the sl,_; Cartan subalgebra and a piece perpendicular to that. But this latter
piece is precisely py — p,_1, because both py and p,_; have inner product one
with the simple roots «y,...,a,_», so that their difference has inner product
zero with respect to these simple roots and is therefore perpendicular to the
sl,_; Cartan subalgebra. This demonstrates that the energy momentum tensor
for ¢, is identical to (16), but with py replaced by p,_,. The value of B
remains the same, so that the central charge of the fields ¢, is equal to central
charge of the matter fields in a theory of noncritical W,_, gravity, where the
Liouvilie fields form a (p,q) minimal model for the W, _, algebra. This is the
same statement as we made previously, and we see that the fields that enter
the Q}; operator are those orthogonal to an sl,_; subalgebra of sly. Later, we
will use this observation to try to improve our understanding of the results of
the computation of the Q3 = Q; cohomology.

Since the BRST operator for the noncritical Wy string can be derived via
hamiltonian reduction from the superalgebra sl(N|N — 1), it is an interesting

! The parameter B is related t0 Omin (8) by Omin = $4/N(N —1) B.
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idea to try derive the operators Q% from hamiltonian reduction as well,
employing the group-theoretical insight obtained above.

In the above discussion, all relations between noncritical W-strings and
minimal models have been based upon comparing values of central charges.
It is the purpose of this paper to confirm the relations suggested by the above
counting arguments for N = 3 by considering the weights of the primary
fields occurring in the cohomology. We will verify that these weights indeed
correspond to the relevant minimal model. Note that for N = 3 the BRST
operator decomposes according to (3). Our main result can be stated as follows.
Starting from a (p,q) W3 minimal model in the Liouville sector, we find that
the primary fields occurring in the cohomology of the Q, operator exactly
correspond to those of the (p,¢) minimal model of the Virasoro algebra. More
precisely, all but one of the primary fields occur as tachyonic states at level 0
while the remaining one occurs at level one. We suggest that all other solutions
of the cohomology can be obtained by the action of so-called picture-changing
and screening operators on this basis set of primary fields.

The organization of the paper is as follows. In section 2 we introduce some
basic notions of the noncritical W3 string. In section 3 we consider the primary
fields occurring in the Q; cohomology and show that for the choice (8) of
the background charge Q indeed they correspond to (p,¢) minimal models of
the Virasoro algebra. In section 4 we consider the screening operators and the
picture-changing operators of the Q; operator. We will argue that the complete
cohomology of Q; is obtained by acting on the basic primary fields with strings
of screening and picture-changing operators ! . Next, in section 5 we illustrate
our results by working out examples for specific values of p and ¢. Finally, in
section 6 we will discuss the cohomology of the Q; operator for a W3 minimal
model, the Qy + Q; cohomology and generalizations to other ¥ -algebras. In
particular we discuss in what way noncritical Virasoro strings are embedded in
noncritical Wj strings. Our results indicate that the W5 (p,q) minimal model
coupled to Wj gravity is not the same theory as the Virasoro (p,q) minimal
model coupled to ordinary gravity, although it is contained in the noncritical
W3 string. The Virasoro minimal model is recovered by taking a modified
noncritical Wj string, that contains an additional set of screening operators. It
is interesting to compare this with the work of Berkovits and Vafa [30], who
demonstrated how special N = i strings reduce to arbitrary N = j strings,
j < i < 2. It is tempting to conjecture that strings based on certain chiral
algebras can always somehow be embedded in strings based on larger chiral
algebras. For example, it was shown recently [31] that the ordinary bosonic
string can be realized as a specific critical W3 string. This realization differs
from ours, since we realize certain bosonic strings as subsectors of non-critical
W; strings. It would be interesting to see if there is a deeper relation between
the two realizations.

! This concerns the states with continuous momenta. The situation of the discrete states is more
complicated.
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Table 1

The fields of the noncritical W; string. The scalar fields of the matter sector (¢, ¢,) and of
the Liouville sector (o}, 0;) are given with their background charge, and their contribution to the
central charge. The fields (¢, b) are the spin-2, (y, f) the spin-3 ghosts.

Field Background charge Central charge
é V30 1 + 4Q2
¢ Q 1+ 1202

a 1V/36-0%) 25 - 4Q?
o /6 - 02 73— 1202
¢, b -26
¥, B -74

2. The noncritical W; string

In this section we will illustrate the general structure of the quantum BRST
operators QY% for the noncritical Wy string with the N = 3 case. We will
employ a simple realisation of the noncritical W; string in terms of two scalars
in the matter sector, as well as two scalars for the Liouville or W-gravity sector,
two scalars being the minimum number for a realisation of the W; algebra
with arbitrary central charge.

In Table 1 we present these fields with the corresponding background and
central charges. These charges are limited by the requirement that the total
central charge equals 100, thus cancelling the contribution from the spin-2 and
spin-3 ghosts, and by the fact that the matter and Liouville sectors separately
realize a W; algebra. This fixes the relative coefficient between the background
charges in these two-scalar realizations [32].

In terms of roots of sl3, ¢; corresponds to a; and ¢; to 2a; + «;.

In ref. [15] the BRST operator of the noncritical W; string in the new basis,
discussed in the introduction, was calculated. It is given by Q = ¢ j, with
J = Jo + j1 given by

Jo =C{TM + 1L + T(y’ﬂ) + %T(c,b)}, (17)

=7 [3——33 (4(06)° - 120062023 + (15 + 40%)8%¢,}

2 1
—\/—63052 L + V—gQa 1.}

~ivV6 {02078 + 100 07}]. (18)

+i{WL—

The main advantage of the chosen basis is that Qo = § jo and Q; = § j; are
separately nilpotent, and therefore anticommute.

Note that the scalar ¢;, and the spin-2 ghosts are absent from j;, and that
the Liouville fields do not occur explicitly in (18), but only in
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IL=T5 + Ty,
~1(801)% + 14/3(6 - Q) %01 — $(802)* + V6 — Q29%3;, (19)
W, = %i\/é{(aazﬁ - 36 - 02080,0%0,

+ (6 — Q*)33%a; + 600,T,, —3\/6—Q28T61}. (20)

T. and WL satisfy a Wj algebra. In j, we find, besides 7p, the energy-
momentum tensors of the matter and ghost sectors:

Tv=Ty + Ty,
= —1(861)* + $V300% - 1(842)* + 9%, (21)
Ticpy = —2bdc— (0b)c, (22)
Tiyp) = —3B0y —2(3B)y. (23)

For the convenience of the reader we will give some of the formulae of the
introduction specifically for N = 3. The total Liouville central charge ¢, and
c3, the contribution to the central charge of the fields that play a role in Q,
(¢, the spin-3 ghosts, and the Liouville scalars) are given by

=98 — 1602, (24)

c3 =25-4Q%. (25)
If we choose Q equal to

Omin = 3@+p) 6- 02 = 3ila—p) (26)

Vorq min = f6pq

we find the following values for ¢ and c3:

_ 2
(P = (1 - 1—2_%) , 27)
Dq
_ 2
ci;;(p,q) =1- 6(p—q) . (28)
bq

The values c”? and cg’;(‘”‘” correspond to the central charges of the (p,q)

W; minimal model, and the (p,q) Virasoro minimal model, respectively.
This relationship between W3 and Virasoro minimal models will be further
elucidated in the next two sections, where we will consider the cohomology of
Q:.

With the above formulae for N = 3, it is a simple matter to verify the
relations between central charges in the special cases considered in the intro-
duction. After treating the Q; cohomology in the next two sections, we will
come back to these examples in section 5.
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3. The Q; cohomology

In this section we will consider the cohomology of the operator Q,, acting
on Fock spaces of ¢,, 01,0, and of the ghosts §,y. The momenta of ¢; and o,
will be chosen to be equal to those appearing in the Felder resolution of a W3
minimal model. In section 6 we explain the implications of these results for the
computation of the Q; cohomology when the Fock space of gy, 0, is replaced
by the Hilbert space of a 13 minimal model. In particular, for the values of the
background charge Q corresponding to a W3 minimal model in the Liouville
sector, and the momenta of g1, g, equal to those in the corresponding Felder
resolution, we want to identify the primary operators of the Virasoro minimal
model with central charge (28).

For this it turns out to be sufficient to consider the states at level 0 and
level 1. At level O the states of lowest ghost number are of the form !

Vo(p2,51,8) = (3y)yePrrtinotisng (29)

The condition QVy(p,,s1,5;) = 0 determines the momenta of the three
fields. The resulting cubic equation factorizes, and we obtain the following
three solutions:

(49) pr=is; —iQ—+6-02, (30)
(Bo) p2= +3iV3s - Lis, —iQ, (31)
(Co) P2 = —4iV3s) - Lis —iQ + /6 - 02, (32)

where s; and s, are arbitrary.

Now, if we choose the parameter Q equal to (26), the central charge of the
Liouville sector corresponds to that of a (p, ¢) W3 minimal model. By choosing
51 and s, appropriately, we restrict these momenta to those of this minimal
model, and in that case we expect that the states determined by (30)-(32)
should correspond to the primary states of the (p, ¢) minimal Virasoro model.
The allowed values of s, and s, are (see, e.g., ref. [5])

1
- _ 33
1 \/m(qrz ptr), (33)
1
S2=—ﬁ(2(‘171—m1) + (qr2 — pt2)), (34)

with the non-negative integers ry, r,, {1, t; restricted according to 0 < ry + 1y <
p-3,0<t1+5<qg-3.

! The Jevel of a state is defined by level = 2 + 3, where h is the weight of the fields in front of
the exponential. For instance, the level of the state (29) is given by (—1 —2) 4+ 3 = 0. The state
(29) is the state of lowest ghost number at level zero. Other level-zero states, with ghost number
one higher, have a factor (82y)(8y)y in front of the exponential.
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For the above values of p,, sy and s, we now calculate the conformal weight
of the state (29). The conformal weight of a vertex operator exp (ip¢), for a
generic scalar ¢ with background charge Qg, is given by

hs=14(p +i0s) + 103 (35)

This, together with the weight —3 of the ghost contribution to (29), determines
the allowed values of the conformal weights at level 0.

Note that the weight due to the Liouville fields is invariant under the
following transformation of the labels r;, 3, t1,¢2 [5]:

(ri,r,ti,h) = (p=3-rn—r,r,gq—3—-t —t,1). (36)

Applying this transformation gives successively new Liouville momenta (s}, s3)
and (s{,s3), while applying (36) three times gives back the original momenta.
A second transformation which leaves the Liouville weights invariant but
changes the sign of the W3 weight is

(rl5r29tl,t2)_’ (rZ’rl,ZZ’tl)~ (37)

Note that (ry,r,,£;,t;) cannot be invariant under (36). Therefore the weights
of states with momenta (33, 34) are either six-fold or three-fold degenerate,
the possibility of three-fold degeneracy occurring when the W3 weight, which
is proportional to [5]

lgq(ri—n)—-pti—t)]la(ri +2r2 + 3) —p(t; + 2t + 3)]
x[q2ri+r+3)-p2t + 6 +3)], (38)

vanishes. In a W; minimal model, representations whose labels are related
through (36) or (37) should be identified, since the corresponding irreducible
W; representations are isomorphic. In a W; minimal model each of these
should occur with multiplicity one only.

The three solutions (30)~(32) are in fact related by the transformation (36).
We find

p2(s1,53) (Ag) = pa(s1,82)(Co),
p2(s1,55) (Bp) = p2(s1,52) (Ao),
D2(51,55) (Co) = pa(51,82) (Bp) . (39)

Therefore the weights obtained for the three solutions (30)—-(32) are the same.
In the next section we will show that these relations between (30)-(32) can
be understood from the action of certain screening operators.

The conformal weights of the primary operators of the (p,q) Virasoro
minimal model are given by

(gr+1)-p@t+1))*—(g—p)?

hViI‘(r’Z) = 4pq

(40)
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forO0<r<p-2,0<t<q-2. hyy is invariant under the change of labels
rop—2-r, t—g-—2-1t. (41)

Again, in a Virasoro minimal model, we should identify two representations
whose labels are related through (41), since they give rise to isomorphic
irreducible Virasoro modules.

We should now identify the calculated weights of (29) with (40). The
following Virasoro weights are obtained:

(Ao) — hvie(r2, 12)
(Bo) = hvie(l + 11+ 12,1 + 11 + 12),
(Co) = hvie(r, 1), (42)

with the values of ry, 7,1, restricted by the conditions below (34). If we
compare these restrictions with the Virasoro conditions below (40), we find
that only the state Av;:(p — 2,0), or, equivalently, Avi:(0,g — 2), is missing at
level 0. The conformal weight of this missing state is (p —2) (g — 2)/4.

The identification of the Virasoro minimal model by its primary operators
therefore cannot be completed at level 0. For the case of the critical string and
the Ising model, the authors of refs. [20-23] indeed found one of the three
primary operators of the Ising model, of weight %, at level 1.

At level 1 we will consider operators of the form

Vi(p2,51,5,) = pePrortinatinn (43)

The condition Q;V,(py,s51,52) = 0 determines the values of the momenta for
which V| is a physical state!. This condition now comprises four quadratic
equations in the momenta, of which the general solution is

(A1) p2=-3(is; + iQ — /6 - 0?),

s1 =0, s, arbitrary, (44)
(B)) p2=is—5(iQ +V6-07),

51 = V3s,, s, arbitrary, (45)
(C1) pr=is—L(iQ + V66— 0?),

si = —V3(s; + 2iy/6 - Q?), s, arbitrary. (46)

As we did for level 0, we now choose Q equal to (26), and restrict the momenta
51,8 to the allowed values (33), (34). However, at level 1 the momenta s; and
s, are further restricted by (44)-(46). It is easy to see that these conditions,
and the fact that p and g are relatively prime, imply

! The state V; is the state of lowest ghost number at this level, and therefore cannot be written
as Q; acting on any other level 1 state.
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s1=0-r=01=0, (47)
si=V3n-on=4=0, (48)
s1 = —V3(sy + 2iv/6 — Q2) — no solution for ry, 1, 11,1,. (49)

Therefore only the solutions (44) and (45) remain. On calculating the weight
of these states we find the following Virasoro weights:

(A1) = hvie(ri, 1 + 1), (Br) = hvie(ra + 1,82). (50)

The state hyir(p — 2,0) is present in (B;), the state Avi;(0,q — 2) in (A4;).
Therefore the state which was missing at level 0 is indeed found at level 1.
Note that all the other Virasoro weights which were obtained at level O are
again obtained at level 1, except the two states Avi-(0,0) and Avi: (p — 2,9 —2)
of weight 0.

The weights found in solutions (A4;) and (B;) take on the same values.
This can be understood from applying twice the transformation (36), or, more
directly, from the invariance of (40) under the transformation r — p—2—r,t —
q — 2 — t. The latter transformation gives a one-to-one map of the Virasoro
weights corresponding to the (A4;) solution onto those corresponding to the
(B;) solution.

Thus all primary operators of the (p, ¢) Virasoro minimal model are obtained
at level 0 and 1 of the Q; cohomology.

Before we start to discuss the role of picture-changing and screening operators
in all of this, we will first try to understand the cohomology of Q; a bit further,
in the spirit of ref. [3]. In this paper the BRST cohomology of the noncritical
string is computed, using a Felder resolution of the minimal model in the
matter sector, and using a general result for the cohomology of the BRST
operator when acting on the tensor product of two Fock modules. The latter
cohomology is quite simple, for generic momenta the cohomology contains only
the tachyonic states, and for some special values of the momenta two extra
states appear. These are related to the existence of singular vectors in the Fock
modules. In the proof one replaces the matter and Liouville scalar fields ¢, ¢
by linear combinations ¢ =+ i¢r, which simplifies the analysis considerably.

Let us now present some evidence that a similar structure also exists in the
case of the Q; cohomology acting on the tensor product of three Fock spaces.
First, we are going to perform a transformation of the fields by defining

X1 =0(d2—i02), (51)

X2 =90 ($2 + }ios — 3ic V3), (52)

x3=0(¢2 + Lioy + }icV3). (53)
The OPEs of the fields x; read
-3(1-4;)

xi(z2)xj{w) ~ (54)

(z—w)?
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In addition, we introduce the parameter «, defined by

Q=\/§(a+é), (55)
m=i\/§(a—é). (56)

For the (p,q) minimal W; model, the parameter « equals y/q/p. In terms of
these new variables and fields, the BRST current j; reads

) j 1
Ji1= %\/g{y [XI(X2X3) - a\/gB(XIXZ) —a\/ga(mm)
1
‘\/g(a(lla)h) + E(BXIXS)) + (2%2— %)82)(1

3.2 322 3\ .,
+Za X2+ (T—Z>3 X3]

#3070 0+ 12+ x0) = 313 (a+ 3 )oB0m) }
04

(57)

To continue along the lines of ref. [3], we consider the mode expansion of
Q1, acting on a tensor product of three Fock modules and the ghost Hilbert
space. We can decompose it in terms of ghost zero modes as

Qi =d — BoM + yoWy + yofoH . (58)

Compared to the ordinary noncritical string, an extra complication arises, in
that a term containing yof, appears. The condition that Q% = 0 translates in
the conditions

d*> = MW,, (59)
M(d+H)=dM, (60)
Wod = (d + HYW,, (61)

(d + H)? = WM. (62)

The operator d preserves the subspace of states annihilated by W, and S, and
on this space it satisfies 42 = 0, so that one can consider the cohomology of d
on this subspace (this cohomology is usually called the relative cohomology of
Q). In the case of the non-critical Virasoro string, there is a simple relation
between the relative and absolute cohomology. Here that relation is less clear,
since W, is not diagonalizable in general. We will ignore this problem for the
moment and focus only on d. It can be written as the sum of a piece containing
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the terms linear in the oscillators and the ghosts and a set of remaining terms.
We will be only interested in the piece linear in the ghosts and the oscillators.
Denoting the modes of x; by ni, so that x; = > niz —n-1"we find for this part
of d

21\/72)/ n P+(n)P3(n) +n;, Pl(n)P;;(n) +7n; Pl(n)P (n)]

n#0

ny n (2 4+ n) (g + 15+ 13) (63)

n#£0

where the polynomials P, P2i and P; are given by

Pl(n)=pz—iSz+i\/§a(n+2), (64)
P+(n)—P2+ s1f+ \/7 n+1 ) (65)
Pz_(n)=172+% slf+zf(a(n+l)+l) (66)
I i . /3n+2
P3(n)=p2+§sz+§s1\/§+z\/; —. (67)

The almost factorized form of d in (63) is very suggestive. Maybe one can
define a modified operator 4 in such a way that the last term in (63) is absent.
In any case numerical evidence shows that all the states in the cohomology
of Q; have values of the momenta related to zeros of the polynomials P;.
Restricting attention to Virasoro primaries, we conjecture that the relative
cohomology of Q; can be organized as follows:

— For generic momenta there is only one state at ghost number two and
level zero, the standard tachyonic state, if P(0)P,(0)P;(0) = 0. (Here
P,(0) = PF(0) = P;(0).)

— If integers uj,u; > O exist such that (i) Pi(u;) = Pf(up) = 0, (ii)
Py (u1) = P3y(u3) = 0, or (iii) Py(u;) = P3(uz) = O there are two states at
level u u; and ghost numbers 2, 3.

— If integers u;,u; < O exist such that (i) Pj(u;) = P (u;) = 0, (ii)
Py (u) = P3(up) = 0, or (iii) Py(u,) = P3(uz) = O there are two states at
level u;u, and ghost numbers 1, 2.

— If integers uy, Uy, us, u4 exist such that P, (u;) = P3(u4) = 0, and Py (u3) +
usa = 0, P (u3) + uz/a = 0, there may be extra states at level u;u3—uzup +
Usug and at three consecutive ghost numbers. The precise ghost numbers
depend on the signs of the u; but one of them is 2.



394 E. Bergshoeff et al. / Nuclear Physics B 420 (1994) 379-408

The three kinds of states are related to the six kinds of null states that
minimal Wj representations generically have. These six are reduced to three
here since we did not yet take the Qp cohomology. This is all similar very to
the analysis for the noncritical ordinary string, where a similar though simpler
result holds for the cohomology of the BRST operator on the product of two
Fock spaces and the ghost Hilbert space.

To prove this conjecture, and specify more precisely the cohomology for
the last of the four cases, one could try to use the same spectral sequence
techniques as in ref. [3]. In this respect it is suggestive that in terms of the
Xi no term in Q; contains any y; more than once, and if one would assign a
positive degree to say y; and negative degree to the others, the first term in
the spectral sequence would be the cohomology of the 3" y_,7) term in (63).
Apart from the problem with the extra term in (63), this would show that one
needs zeros of the polynomials P; to get extra states, but the details are not
clear to us.

As an example, the third case with #; = u, = —1 yields precisely the series
of states (44)-(46).

4. Screening and picture-changing operators

In the previous section we discussed in detail the Q; cohomology for level
0 and 1, and for the particular ghost structures (29), (43). In addition, we
conjectured for which momenta there will be extra states at other levels.

In the case of the critical #; string it has been proposed that all these states
can be obtained from the states at level 0 and 1 by acting on them with picture-
changing and screening operators [20-23]. Generalizing the case of the critical
string, we conjecture that with Q equal to Qmin (26) and the momenta of the
Liouville fields restricted to those of the (p,q) minimal model, all states in
the Q; cohomology will be related by picture changing and screening operators
to the states obtained thus far, or to descendants of the primary operators
discovered at level 0 and 1.

Screening operators (anti-)commute with Q;, and have weight 0. They
transform physical states into other physical states, provided the action of such
an operator on a state is well-defined (see ref. [22], and the discussion below).
Screening operators may change the level.

Picture changing operators are of the form [Q, ¢], where ¢ is a scalar field.
They also produce solutions of the cohomology when acting on a physical
state. In our case there are three such operators, corresponding to ¢, o; and
0,. They have weight 0, change the ghost number of a physical state by a single
unit but do not change the level. Applying the same picture-changing operator
twice gives 0.

We will not prove the above conjecture in this paper. We will provide evi-
dence for it by showing that the weights of the Virasoro (p,¢) minimal model
occur exactly once among the level 0 and 1 states which we obtained in the
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previous section, if states related by screening and picture-changing operators
are identified. This illustrates the use of these operators, and hopefully will
stimulate efforts in obtaining a proof.

Let us first give a list of the screening operators which are relevant for our
calculation. There are two screening operators of the form

S; = fdz [g(z)eiaz,s,-¢2(z)+iﬂ1,s,-ﬂl(Z)+iﬂz,s,-<72(2) . (68)

These operators anticommute with Q; provided the momenta a3, §1, 2 take
on the following values:

S1 t s = HiQ + V6 - 02},
Bis, = 3iV3{iQ + V6 - 0%,

Bas, = §i{iQ + V6 - Q?}, (69)
S: : s, = ${iQ- V607,

Bis, =0,

Brs, = —4i{iQ - V6 - Q%}. (70)

Then there are four screening operators which involve only the Liouville fields,
and which are of the form

T; = f dz eihrro(@+ibanon(a) (1)

They commute with Q, for the following values of the momenta:

Ti : Bur = (Q-iv6—02)/V3,

Brr, =0, (72)
T : B =—(Q+iV6-02)/V3,
B, =0, (73)

T3 : Bir = 5(-Q+iV6-0Q2%)/V3,
ﬂz,T3=—%(—Q+i\/6—7), (74)
Ts : P, = $(Q + ivV6-02)/V3,
Bor, = —3(Q + iV6 - 02). (75)
Finally, we have two screening operators of the form

R,‘ = fdz y(z)eiaZ,Rid’z(z) , (76)

with the corresponding momenta:
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Ry : ayp, =—-iQ—-V6- 02, (77)
R, : Q2 R, = —iQ +v/6-02. (78)
The three picture-changing operators are Py, = [Qy, ¢2], P, = [Qq,01] and
P;, = [Qy,0;]. We find for Py,
i
Py =———
¢2 3\/3

2i .
+=yTL + iV6y(97)8, (79)
\/—6—]’
and similar expressions for P, and P;,. In this section we consider only the
action of these picture-changing operators on the vacuum state (29). The only
term which then contributes is the 82y contribution, which is present in all
three picture-changing operators. It produces physical states

12y(8¢2)% + 12Q(87)0¢, + (=15 + 40%)3%y

Vo(p2,51,8) = (8%y) (9y)yePrhrtisoting (80)

for the same values of the momenta obtained in (30)-(32). Since all picture-
changing operators act the same way in this case, we will denote them collec-
tively by P.

The action of the screening operators is more complicated. All our screening
operators are of the form

Si = }{dziK,-(,b’(zi),y(zi)) exp [inm,wm(zi)} ; (81)

where ¢, is a set of scalar fields, and p,, s, are the screening momenta in the
operator S; for the mth field. These operators act on states of the form

O = L(B(w),y(w)) exp [iZDmtbm(w)] : (82)

The condition under which this action is well-defined is discussed in detail in
ref. [22]. If the action of the product of # such screening operators on O is
considered, then the number

n n
Po=n-1+ Z Z Dm,SiPm,s; + ZZPm,S,Pm (83)

m ij=1, i<j m j=1

should be an integer. This condition arises from the fact that the successive
OPEs give, after appropriate changes in the integration variables z;, rise to a
single factor (z; — w)®». The OPEs of the ghost contributions will similarly
give a factor (z; —w )%, where P, is guaranteed to be an integer. The integral
over z; then gives a well-defined and non-trivial result if
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Pyt Py=-1. (84)

The momenta of the final state, O’ = S;...S,0, if it is defined, are equal
t0 Pm + Y; Pm.s;> and therefore the conformal weight of this proposed O’ can
be calculated. Using the condition that the weight of the screening operators
is zero, and, independently, that the weights of O’ and O are equal, it is not
difficult to show that

P,=hro—hro—-1+ ZhK,-, ) (85)

where hg,, hro,h o are the conformal weights of the ghost contributions to
S;, O and O’ respectively. Therefore, if the conformal weights of the initial
and of the proposed final state are equal, and if the momenta of the screening
operators interpolate between the momenta of initial and final states, P, is
automatically integer and can be easily calcutated.

In discussing the action of the screening operators, it is useful to characterize
their effect on the momenta, and on the labels r, 5, t;, £, in the Liouville sector.
Consider a screening operator '

S = (R (Ry)(S1)™ (8$2)™ (T1)™ (T2)" (T3)™ (T4)™. (86)

If we choose a (p,q) W; minimal model, so that Q = Qmin With Quin given
in (26), the changes in the momenta due to (86) are given by

Apy =i [(2m, - 6l))g + 2my — 6L1)p] /\/6p4q, (87)
As; = V3 [(=m; + 21y — n3)q + (=2n3 + n4)pl/ /604, (88)
Asy = [(—my + 3n3)qg + (2my —3n4)pl/+/6pq. (89)

The change in the Liouville momenta induces changes in the labels ry, r;, ¢,
in (33), (34). These are given by

Ary =n;—2n3 +Ip,

Ary =my—2n; + n3 + kp,

Aty =my + ny —2n4 + g,

Aty = —2ny + ny + kq, (90)

where / and k are integers chosen in such a way that the Ar; and At; produces
labels in the allowed range O < ry+ 7 < p-3, 0 < t; + 1, € g— 3. Of course,
the action of § will be well-defined only if the initial and final conformal
weights are equal.

Now that the action of the screening operators has been clarified, let us
first discuss the way they act on the states at level 0. We choose a (p,q) W3
minimal model. Then the Virasoro weights for, e.g., the physical states (Ap),
as given in (42), occur with a certain multiplicity. These weights are given by
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hvir (72, 1), and thus independent of r; and ¢,. Using (90) it is easy to see that
one can pass between the states of different r; and ¢, with screening operators.
We have on the states (Ag):

On (4o) S2P gives A(r,r,t,5) = (0,0,1,0),
S1T1T3P giVCS A(rlﬁrZatlatZ) = (_13030a0)~ (91)

The presence of the picture-changing operator P is required because the extra
8%y it introduces in V, ensures that in the OPE with the screening operators
(84) is satisfied.

In the previous section we showed that the physical states (Ap), (Bg) and
(Cp) are related by the discrete transformation (36). This induces transfor-
mations similar to (91) for the states (By) and (Cy). These can again be read
off from (90) and are given by

On (BO) SZT4P gives A(rlarZ,tlstZ) = (0:05'—1:1)9

SiT\P gives A(r,n,th,6h) =(1,-1,0,0), (92)
On (CO) S2T2T4P giVCS A(rl9r2’t1912) = (Oa050>_1)9
SIP giVCS A(rlsr25tl,t2) = (091)()’0)' (93)

In fact, the relation between (30)-(32) due to the discrete symmetry (36)
can be represented by screening operators. Consider again the solutions (Ap),
with Virasoro weights Avi (2, t;). If we perform a transformation (36) on the
labels (r,¢;), wefindthat 1 +r{+ 7, =p—-2—r, 1+¢;+1t), = g—2—1,. This
means that hvic (1+r1+7, 1+ 8 +1)) = hvie(D=2-12,9—2-1) = hvie(r2, 12).
Therefore, with this transformation on the labels we find solutions among the
(By) states with the same weight as the (4y) state. Given this change in the
labels we use (90) to obtain the corresponding screening operator. We find
that from any physical state (A4y) a state of type (Bp) can be obtained using

Vo) (P —3—r1—ryr,9—3—1t —l,11)
= (T7) T2 (Ty) H 2 (T3) 2N+ (Ty) 20+ Vg ) (1, t, 1) . (94)

In a similar way one obtains a relation between the states (Cy) and (Ap):

Yo,ccplr,p=3—-rn—-n,t,g-3—-t—t1)
= (T7)2+N+1(Ty) 20+ (Ta) 1 (T) 0 Vo (4 (r1s 12, 11, 82) . (95)

If we set up an equivalence relation between states, under which two states
that are related by screening operators are equivalent, then at this stage we can
limit ourselves at level 0 to the states (A4p), with the further restriction that
from states which differ only in the labels (r, ;) only one representative is
considered. The restrictions on (r;, ;) are then givenby 0 < r, < p-3, 0 <
t < g — 3. The multiplicity of the remaining Virasoro weights can still be
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equal to two. The weights with 1 < r, < p-3, 1 <1, < g—3 all occur twice,
since both the labels (r,,%,) and (p —2—r,q — 2 —¢) are in the allowed range.
The labels with either r, = 0 or ¢, = 0 occur only once. This doubling occurs
forp>=35, q=4.

This remaining doubling of the Virasoro weights can also be lifted by screen-
ing operators. We find for all (p,q),p > 5, ¢ > 4

VO,(AO) (Oap -2- r2707q -2- r2)
= R ()T (T) 2 (T3)P~2(T4) 1P
XVo. ) (p—4—n,10,4-3-1,1). (96)

This relates one of the states with (r,, ;) to one of the states with (p — 2 —
r, g —2—ry). Up to equivalence by screening operators, each Virasoro weight
(except (p —2)(g — 2)/4) therefore occurs once and only once at level 0.

In this application of the screening operators at level 0 we choose the screen-
ing operators such that they give the required A (ry, ,, t1, £). By construction,
the screening operators interpolate between the initial and final momenta, and
leave the weight invariant. Therefore, as explained above, the factor P, (83)
is an integer. In the application (91-93) P, is equal to 2, while the OPE of the
ghost B in S; with (82y)(8y)y gives Py, = —3 (as well as less singular terms).
In the second application (94, 95) we find immediately P, = —1. In the third
application (96) we have an additional y from R;. Therefore P, equals 3.
The OPE of the ghosts gives Py, = —4, leaving again the combination (9y)y.
Therefore in all cases (84) is satisfied.

Now consider the states at level 1. Here we want to show that all states
except those with momentum (p —2) (g —2)/4 can be obtained from the level
0 states using screening operators. Since the momenta of all level 0 and level
I states are given in the previous section, it is a simple matter to use again
(87-90) to construct the appropriate screening operators. A useful hint about
this choice follows from the values of the Virasoro weights. For instance, the
states (A;) have r, = t; = 0, and weight Avyi; (71, + 1). For the level 0 states
with ry, 1 = 0 the weights are Avi;(0,0) = 0,hvi: (1 + ri,1 + 1), Avic (11, 1)
for solutions (Ay), (Bg), (Cy), respectively. Since Avi; = 0 does not occur at
level 1 (see the discussion at the end of Section 3), the states (4;) cannot
be obtained from states (Ag) with r, = t, = 0. They can be produced from
(By) and/or (Cy). For (By) we must choose Ar; = 1,At; = 0, for (Cy)
Ary = 0,At; = —1, with of course Ar, = At; = 0.

This leads to the following result. The states (4;) can be obtained from level
0 by the following operators:

Vi) (71,0,11,0) = (52)2T2(T4)2P Vo,c,y (11,0, 2 + 1,0)
= (51)2T1P Vo (8, (r1 — 1,0,2;,0) . (97)

Depending on the values of the labels on the right-hand side, both or only
one of the above transitions is allowed. The picture-changing operator is again
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required to ensure that (84) is satisfied. Note that the state V, (,4,)(0,0,4-3,0),
corresponding to the missing primary operator at level 0, cannot be obtained
in this way because then the values of the labels on the right-hand side of (97)
fall outside the allowed range.

Similarly, for the solutions B; at level 1 we find that

Vi,8,)(0,72,0,82) = (S1)2(T1)*T3P Vo, (4,) (0,72 + 1,0,25)
= (52)2T4P Vo (5, (0,72,0,10 - 1). (98)

As a last point, we must now show that a screening operator connects the
two states with Virasoro weight (p —2) (g —2)/4, which does not occur at level
0. In fact, we can connect every state V (p,) to a state V; 4,) by screening
operators, analogously the relations (94-95) at level 0. A look at the form of the
Virasoro weights (50) tells us that we should correlate the labels (rq,0,¢;,0)
for (4,) and (0,7, = p—-3—-1r,0,t, = q—3 —1t;) at (B;). This leaves the
¢, momentum invariant, and corresponds to a transformation (36) in the
Liouville sector. It can be easily seen that this correspondence is realized by:

Vi)(0,p—=3-r,0,g-3-1)
= ()T (T3) 1 (T) 1V 4, (11,0, 141, 0) (99)

Thus all primary operators of the (p,q) Virasoro minimal model occur with
multiplicity 1, up to screening and picture-changing operators.

5. Examples

In this section we will illustrate the results from the previous sections for
the cases (p,q) = (4,3) and (5,4).

In the first case c;;(“ ) = 1/2, so that the Virasoro minimal model corre-
sponds to the Ising model. The value of the background charge in this case
is

(p,q) = (4,3) > Q =21/V72, 6-02 =-3i/V72. (100)

This case has been much studied recently in the case of the critical W3 string
[20-23]. In our construction, the W; minimal model we start out with has
c£4’3) = 0, so that the Liouville sector corresponds to the “trivial” W; minimal
model.

In Table 2 we present the momenta and conformal weights for the physical
states (30). As we saw in the previous section, the choices (31), (32) are
connected to (30) by screening operators, and in this sense equivalent. The
three possible choices of the labels ry,7;,11,t; are related to each other by the
discrete transformation (36), so that the Liouville weight A is equal for the
three states. There is only a three-fold degeneracy, because under (37) no new
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Table 2
Momenta and conformal weights for the states Vg (4,) (30) for p = 4, ¢ = 3. Note that all

momenta in the table have been multiplied by a factor v72. Ay is the contribution of the Liouville
sector to the total conformal weight Av;;.

(ri,ma,ty, 1) j23%0 51V72 5V72 h hvir
(0,0,0,0) —18i 0 0 0 0
(0,1,0,0) —21i -3V3 -3 0 1/16
(1,0,0,0) —24; 0 -6 0 0

Table 3
Momenta and conformal weights for the states Vy (4,) (44) forp = 4, ¢ = 3.

(ri,ra, 8, t2) pz\/ﬁ Slm Szm hy hvir
(0,0,0,0) —12; 0 0 0 1/2
(1,0,0,0) —9i 0 -6 0 1/16

labels are generated. The Virasoro weight Avyi; for these states is completely
determined by (ry, ;) (42), so that the equality of Avi for (0,0,0,0) and
(1,0,0,0) is understood. In the previous section we showed that these two
states can also be related by screening and picture-changing operators. Note
that the ¢, momenta for these two states are conjugate to each other, where
conjugation of a momentum py for a field with background charge Qy is
defined as

(‘l)d,)”= E—p¢—2iQ¢. (101)

However, the Liouville momenta are not related by conjugation, since the
lattice chosen in (33), (34) does not transform into itself under conjugation.

At level 0 we therefore find that the two available Virasoro weights occur
with multiplicity 1, so that the operations (96) are not required.

The level 1 states of type Vj (4,) are given in Table 3. Here there are only
two possible states. We showed in the previous section that the state (1,0,0,0)
is related to Vg (g,) (97), and, by implication, therefore also to Vo (4,).

As we have seen, the (4, 3) case does not contain all the features discussed
in the previous sections. The case (p,q) = (5,4) corresponds more closely to
the generic situation. In this cases we have

(p,q) = (5,4) - Q = 27/V120, V6 —0? =-3i/V120. (102)

The Liouville sector corresponds to a W3 minimal model with c{s"” = 4/5,

and the Q, cohomology will result in the states of the C;;(5,4) = 7/10 Virasoro
minimal model.
The number of physical states (4g) at level 0 is equal to

(29 (2) 2
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Table 4
Momenta and conformal weights for the states Vg (4,) (30) for p = 5, ¢ = 4. Note that all

momenta in the table have been multiplied by a factor v 120. A is the contribution of the
Liouville sector to the total conformal weight Ay;;.

(ri,ra,t1, 1) pz\/m Sl\/m Sz\/iz—o hL hvir
(0,0,0,0) —24i 0 0 0 0
(0,0,0,1) —19i 5vV3 5 2/3 7/16
(0,0,1,0) —14i 0 10 2/3 0
(0,1,0,0) —28i -4v3 -4 1/15 1/10
(0,1,0,1) —23i V3 1 1/15 3/80
0,1,1,0) ~18i -4v3 6 2/5 1/10
(1,0,0,0) —-32i 0 -8 1/15 0
(1,0,0,1) —27i 5V3 -3 2/5 7/16
(1,0,1,0) —22i 0 2 1/15 0
(0,2,0,0) —-32i -8V3 -8 2/3 3/5
0,2,0,1) -27i -3v3 -3 0 3/80
(0,2,1,0) —22i -8V3 2 2/3 3/5
(1,1,0,0) —36i -4/3 -12 2/5 1/10
(1,1,0,1) —-31; V3 -7 1/15 3/80
(1,1,1,0) —26i -4V3 -2 1/15 1/10
(2,0,0,0) —40i 0 —16 2/3 0
(2,0,0,1) —35i 5V3 —11 2/3 7/16
(2,0,1,0) —30i 0 -6 0 0
Table 5

Momenta and conformal weights for the states V| (4,) (44) for p = 5, ¢ = 4. Note that all

momenta in the table have been multiplied by a factor v120. A is the contribution of the
Liouville sector to the total conformal weight Ay;,.

(ri,r, t, 1) V120 51v120 5,vV120 hy hvir
(0,0,0,0) —15i 0 0 0 7/16
(0,0,1,0) ~20i 0 10 2/3 3/2
(1,0,0,0) —-11i 0 -8 1/15 3/80
(1,0,1,0) —16i 0 2 1/15 3/5
(2,0,0,0) -7i 0 —16 2/3 3/80
(2,0,1,0) —-12i 0 -6 0 1/10

and therefore increases quadratically with p and g. The 18 states (A4y) for
p =5, g = 4 are presented in Table 4. The multiplicity of the Liouville
weights is either 3 or 6, as explained in section 3.

The multiplicity of Virasoro weights Avir (2, £) is equal to

P-2-n)g-2-1)+ nt. (104)

The second term is due to the possibility of making the transformation (41),
and contributes only if r, and ¢, are both unequal to zero.

The screening operators which change r; and ¢; (91) lift part of the degen-
eracy. The only remaining double multiplicity occurs for the labels (0,2,0,1)
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and (0,1,0,1) for weight 3/80. This is lifted by the transformation (96).

Now consider the states (A,) at level 1, with r, = £, = 0. The total number
of states is therefore equal to (p —2)(qg — 2). For any (p,q) the multiplicity
of Virasoro weights is either 1 or 2, depending on the possibility of making
the transformation (41). Multiplicity 2 occurs when r; > 1 and ¢; < g — 4.
The Virasoro weight which was absent at level 0 occurs forr; =0, ¢, = ¢—3,
and therefore has multiplicity 1. In Table 5 we give the states (A4;) at level 1.
Note that indeed the Virasoro weight 0 is absent, and that the new weight 3/2
occurs with multiplicity 1. The only weight with multiplicity 2 is 3/80. In the
previous section we showed that all states except the one with Virasoro weight
3/2 can be obtained by screening operators from level 0.

6. Discussion

So far we have done all calculations in terms of free scalar fields with
background charges, although we restricted the Liouville momenta to those
corresponding to a W5 minimal model. Let us now discuss what happens if
we compute the cohomology in case the Liouville sector is a W; minimal
model. To be able to apply the results obtained so far, we need a Felder
resolution describing the irreducible Wj representations that constitute the
minimal model. This resolution has been conjectured in ref. [34]. If we
denote the Fock space of oy and o,, with momenta given by (33) and (34),
by F .. then the Felder resolution is

D FL B S ReAY . (105)

where Q; is a sum of products of the screening operators 7;, and

Fai = @ Fri+ ki ~ky)p,r+ 2y —k—1)pity ta
ki+ky+i=0

® @ ]:r2+(2k|—k2)p,—4—r,—r2+(2k2—k—1)p;t1,t2

k1+k2+i=1
® @B Fotn-rt@h—kpn+ a—k—pitiis (106)
k+ky+i=1
Fairt= P Foront@u-kpntnti+ -k
ky+ky+i=0

® @ ‘7:’1+’2+1+(2k1—kz)p,—2—’z+(2kz—k—1)17;t1,12
k| +k2+i=0

® P  Forns@ki-kp-2-r+ k-t (107)
kl +k2+i=l



404 E. Bergshoeff et al. / Nuclear Physics B 420 (1994) 379-408

Collectively, we denote this complex by F.(ry,r;t;,t2) The conjecture is
that the zeroth cohomology of (105) is isomorphic to an irreducible W;
representation, and all other cohomologies vanish. We denote this symbolically
by Hih., = Hy(Fu(r,rit 1)), An example, which is relevant to the
critical Wj string, is to take the (4,3) W5 minimal model. In this case taking
the cohomology with respect to the BRST operator in (105) should be the
same as putting the fields o; = g, = 0 by hand.

For a general minimal model, we are interested in the cohomology of Q;
acting on the tensor product of the ghost Hilbert space Hg,, the Fock space

H® and H™in, |, Using (105) this cohomology is

LIyt
HY, (Hpy @ M2 ® HYy (Fu(r1, 12311, 1)), (108)
which, under certain assumptions, is the same as
Hy (HY, (Hpy @ HY: @ Fu(ri,rasty, 1)) (109)

This demonstrates that if the Liouville sector is a W3 minimal model, we have
to drop the states in the Q; cohomology that can be build out of other states
using the screening operators 7; alone. However, states obtained by acting with
the screening operators R; and §; represent new states in the noncritical W;
string. This is an important observation, as it shows that the noncritical Wj
string does not simply reduce to an ordinary noncritical string theory. Actually,
one starts to suspect that given any realization of a ¢ = ¢{%?’ Virasoro algebra,
it is always possible to build a generalized Felder complex whose cohomology
is precisely that of the associated Virasoro minimal model. In our case this
generalized Felder complex contains the Fock spaces of ¢, g1, 5; and the ghost
Hilbert space Hy ,, and the generalized Felder BRST operator is composed of
Q; and the screening operators R;,S;, 7;. It would be interesting to see if one
can make this conjecture more precise.

Once we know the Q; cohomology, we can try to use this knowledge to
compute the Qp + Q; cohomology. Assuming the spectral sequence associated
to the decomposition Q = Qg +Q; collapses after the second term, the Qy + Q;
cohomology is the same as the Qp cohomology of the Q; cohomology. Now
the Q; cohomology is the direct sum of a set of Virasoro modules with respect
to the stress-energy tensor 71 + Ty, + Tp,. If we know what type of Virasoro
modules these are, we can use the results for the noncritical string to find the
Qo cohomology on this space, since Qp is simply the BRST operator of an
ordinary noncritical string theory. Finally, given any state in the Qg cohomology
of the Q; cohomology, we can use a standard tic-tac-toe construction [17] to
construct representatives for the Qg + Q; cohomology. It is straightforward to
apply this to the states we computed in previous sections to obtain some of
the known states in the Qg + Q; cohomology.

Additional insight in the structure of the Q; and Q, cohomology can be
obtained by the group-theoretical interpretation of the decomposition Q =
Qo + Q; sketched at the end of section 1. There we explained that the Q; part
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of Q is related to a projection on the space perpendicular to the first simple
root a1. To see what this implies for the cohomology, we notice that there is
a natural ansatz [11] for the Q cohomology, based on comparison with the
ordinary noncritical string, see also refs. [10,12]. This ansatz reads as follows:
represent the irreducible W; representation labeled by (ry, r; ¢, 1) by two sl3
weights Aff,i = nA; + rpA, and At(;tz) = 11A; + t2A,. As usual, o; are the
simple roots and A; the fundamental weights of sl3. Assume that we are dealing
with the (p,q) W3 minimal model, with ged(p,q) = 1, so that a = /q/p.
The matter momenta p;, p, can be combined to one weight

- 3
Ay = =i (\/Eal +p2A2\/;> . (110)

Let W be the Weyl group, W the affine Weyl group and p half the sum of the
positive roots, p = a; + a;. Then the ansatz reads that there is a quartet of
states at ghost number 3 + /,(w), 4 + I, (W), 4 + L, (w) and 5 + [, (W), if
w € W and w € W exist such that

w! (aw*A<+>—lA<—> 4 (a—1>p) - (AM Flat 1)p). (111)
[0 o (6

Here, I, (1) is the twisted length of w € W [35]. If w = t,wp, with ¢, a
translation in the y direction, y € (Za; + Zay), and wy € W, then
WxAH) = wo (A + p)—p + py. (112)

The level of this quartet of states is given by

BxAE) £ AG] AG) 1 e e
l—(a[ > ]— 3 +(a—a)p,a(w*A —-A )>

(113)

As a non-trivial check, it has been verified [11] that this correctly reproduces
all states in the critical W3 string [33], by putting A‘+) = A©) = 0 in
(111). The operators x and y of ref. [33] are related to particular translations
t, in the root lattice. If we decompose (111) in a component in the o
direction and in the A, direction, we get two equations. The A, component
determines p,, and should be the equation that describes the Q; cohomology.
The other equation describes the usual noncritical Qg Virasoro cohomology.
A possible proof of (111) might consist of separately proving its o, and
A, components, using results for the Q; and Qp cohomology, although this
obscures the group theoretical structure of (111). An important message is
that by projecting (111) onto «;, which reduces the cohomology basically to
that of the noncritical Virasoro string, we lose information. This information
loss is accomplished by the screening operators R; and S;, if we use them to
identify states.
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Finally, let us summarize the main results and ideas put forward in this
paper, generalized to an arbitrary Wy (p,q) minimal model coupled to Wy
gravity. Denote by Qx the BRST operator for this theory. Then '

— There is a series of BRST operators Qy, i = 2,...,N, with Q¥ C ... c Q%,
such that (Q%)* = 0, and Q% involves only N — n + 1 matter fields, all
Liouville fields, and the ghosts system of spin » up to spin V.

- This decomposition induces a map Hy, — Héx which is neither surjective

nor injective. In the root space of sly, this projection is given by a projection
on the fundamental weights A,_;... Ay_;.

- The cohomology Hé?‘v forms a (reducible) module for the W),_; algebra, and
there is a map H, *,.N — P4 (W, _,), where the latter denotes the Hilbert space

min
of the (p,q) minimal model for the W,_; algebra. This map is surjective
but not injective.

- There exists an additional set of screening operators acting on Hé,& I
we identify the states in Ha';v that are obtained by acting with these new

screening operators, then the previous map turns into an isomorphism. This
yields a new kind of resolution, different from the usual Felder one, for the
(p, g) minimal models of the W),_; algebra.

— The noncritical (p,q) W,_; string is a subsector of the (p,q) noncritical
Wy string. A correlation function in the noncritical Wy string contains
a correlation function of the noncritical W, string, if one would use the
extra screening operators previously mentioned to cancel the ghost number
anomalies of the ghosts of spin #...N. In this way one avoids the problem
of dealing with the Wx moduli. However, as we argued, it is not allowed
to use these screening operators in the Wy string, and if the ghost number
anomalies do not match correctly, one still needs an additional integration
over the Wy moduli to compute these correlation functions. Thus, the ¥,,_;
string does not solve the full Wy string.

A more detailed investigation of these statements will be left to future work.
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