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Abstract

We investigatethe cohomologystructureof a generalnoncritical WN string. We do
this by introducinga newbasisin the Hubertspacein which the BRST operatorsplits
into a “nested” sumof nilpotentBRST operators.We give explicit details for thecase
N = 3. In that casethe BRST operatorQ canbe written as the sumof two, mutually
anticommuting,nilpotentBRST operators:Q = Qo + Qi. Wearguethat if onechooses
for the Liouville sectora (p,q) W

3 minimal model then the cohomologyof the Q~
operatoris closely relatedto a (p,q) Virasorominimal model. In particular,thespecial
caseof a (4,3) unitary W3 minimal model with centralchargec = 0 leadsto a c = 1/2
Ising model in the Q~cohomology.Despite all this, noncritical W3 strings are not
identical to noncriticalVirasorostrings.

1. Introduction

Noncritical strings are strings in which the two-dimensionalgravitational
fields do not decouple after quantization but instead develop an induced
kinetic term. The string coordinatesare called “matter” fields while the non-
decoupledgravity fields are representedby a set of so-called“Liouville” fields.
The matter and Liouville fields together form a realization of the Virasoro
algebra.The spectrumof the noncritical string in less than or preciselyone
dimensionhas beencalculatedvia a BRST analysisin refs. [1—3].

Unfortunately, if the numberof dimensionsin which the noncritical string
propagatesis larger than one,tachyonsappearin thespectrum,andthe theory
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is ill-defined. It is believedthat it is possibleto makesenseout of noncritical
stringsin morethanonedimension,providedthe underlyingVirasoro algebra
is extendedto a nonlinear so-called W-algebra [4]. In the last few years
much researchhas beendevotedto investigatingthe structureof these W-
symmetries(for a recentreview, see e.g. ref. [5]). Noncritical string theories
with an underlying W-symmetryare referredto as noncritical W-strings.

Oneexpectsthat in a noncritical W-string the matter and Liouville fields
(representingthe “W-gravity” sector) separatelyform a realization of the
underlyingnonlinearW-algebra.Thuswearefacedwith animmediateproblem:
due to the nonlinearnatureof the W-algebrait is clear that the matter and
Liouville fields togetherdo not realize the sameW-algebra.This would seem
to makethe constructionof a nilpotent BRST operatorproblematic.A way
out of this apparentobstaclewas providedby the work of ref. [6] whereit was
shownthatneverthelessa nilpotent BRST operatorfor the matter + Liouville
systemcould be constructed.This is madepossible by the fact that at the
classicallevel the sumsof the generatorsof the W-algebrasin the matter and
Liouville sectorsstill form a closedPoissonbracketalgebra,albeit with field-
dependentstructurefunctions [7]. For definiteness,we will call this algebra
the “modified” ti~-algebra~. Alternatively, the existenceof this BRST operator
can be understoodfrom the covariantactionfor W-gravity coupledto matter
[81.

Having anilpotent BRST operatorat one’sdisposalone canproceedwith a
calculationof its cohomologyandthusthe spectrumof the noncriticalW-string.
Someresultsin this direction havebeenobtainedin refs. [6,9—12].

Recently,it hasbeenshown thatthe BRST operatorof an “unmodified” W3
algebra

2can be decomposedas the sum of two separate,mutually anticom-
muting, BRST operatorsby performinga particular canonicaltransformation
[141. This is relatedto the fact that after the canonical transformationthe
spin-3 generatorsof the classical w

3 algebra form a closedPoissonbracket
algebrawith field-dependentstructureconstants[15]. It turns out that quite
generallythe BRST operatorcorrespondingto a WN algebracan be written
as a “nested” sum of nilpotent BRST operatorsand the sameapplies to the
BRST operatorof the noncritical W-string [16].

Oneofthe advantagesof decomposingaBRST operatorinto a “nested”sum
of nilpotent BRST operators,is thatonecannow constructthe cohomologyby
an iterativeprocedure.Onefirst calculatesthe cohomologyof oneof the BRST
operatorsoccurringin the sum. In practiceit is easiestto startwith the BRST
operatorcorrespondingto the highest-spingenerator(seeref. [161 for more
details). One then includesthe next to highest-spingeneratorand the coho-

We denotethe quantumextensionof aclassicalw-algebra,providedit exists,by a W-algebra.
2 This caseis often referredto as the “critical” W-string. The possibility of constructingnew

critical stringtheoriesby exploiting the W-symmetneswasfirst suggestedin ref. [13]. Note that
the“critical” W-string can beobtainedfrom the “noncritical” W-string by settingthe Liouville
fieldsequal to zero.
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mologyof the combinedsystemcanbe obtainedfrom the one corresponding
to the highestspin generatorby a so-called“tic-tac-toe” procedure[17].

In refs. [18,19] a relationshiphasbeensuggested,on the basisof comparing
values of central charges,betweenthe spectraof “critical” WN strings and
Virasorominimal models.In the caseof the W3 string this relation hasbeen
mademore explicit in refs. [14,20—23].In particular, it was shownthat a
generalphysicalstateof the critical W3 stringcontainsa factor corresponding
to a c = 1/2 Ising model. In terms of the new basis discussedabove, it
meansthat the cohomologyof the BRST-operatorof the highest-spinsymmetry
correspondsto ac = 1/2 Ising model.

Using similar argumentsas in ref. [18,19], it canbe shown that the corre-
spondingsituationfor the noncritical WN string is as follows [16]. Given a
realizationof the matter andLiouville sectorsin termsof N — 1 free scalars,
one canalwaysperforma canonicaltransformationin the mattersector

1 such
that the “modified” ti~N-algebramanifestlyhasa “nested”set of subalgebras

VN~CV~’C...CVJ~_WN, (1)

wherethe subalgebrav~consistsof generatorsof spin s = {n, n + 1,.. . , N},
respectively.Eachgeneratorof spin s = n dependson N — n + 1 of the N — 1
matter scalarsand all the N — 1 Liouville scalars.In the newbasis the BRST
chargeQN of the tiJN algebrahasthe following nestedstructure:

Q~CQ~’C...CQ~QN, (2)

whereQ~is the BRST chargecorrespondingto the subalgebrav5~.The BRST
chargeQ7.,~dependson N— n + 1 matterscalars,all the N— 1 Liouville fieldsand
the ghostandanti-ghostfields of the spin n,. . . , N symmetries.The inclusion
symbols in (2) indicate that the BRST charge Q~can be obtainedfrom
the BRST chargeQ~’by setting in the expressionfor Q~/’the ghosts and
antighostscorrespondingto the spin- (n — 1) symmetriesequalto zero. In all
explicit examplesconsideredthusfar the nestedstructureof theBRST charges
(2) survivesquantization,wherethe BRST chargesbecomeBRST operators.
To distinguishbetweenBRST operatorsandBRST charges,we will write the
operatorswith boldface2.We notethat the caseN = 3 is special.In that case
the BRST operatordecomposesas the sum of two, mutually anticommuting,
nilpotent BRST operatorsas follows:

Q3=Qo+Q1, (3)

The discussionbelow can be repeatedif one performs the canonical transformationin the
Liouville sector.
2 The explicit form of theQ~operatorfor N = 4, 5,6 (with the Liouville fields set equal to

zero) is givenin ref. [24] while theexplicit expressionfor theQ~operator(without zeroLiouville
fields) canbefoundin ref. [16]. In the usualMiura basis [25,181,the BRST operatorof the W

4
algebrawasgiven in refs. [26,27].
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whereQi = Q~andQo is the nilpotent BRST operatorcorrespondingto the
Virasorosubalgebra.

By comparingthe valuesof centralcharges,it cannow be arguedthat, if one
restrictsthe Liouville sectorof a noncritical WN stringto a (p,q) WNminimal
model, thenthe cohomologyof theQ~BRST operatoris closely relatedto the
(p,q) minimal model of the W~1algebra.

More precisely,the countingof the centralchargesis as follows [16]. Both
for the matter and the Liouville sectorswe realize the WN algebraby N — 1
scalarscbk and

0k~respectively.The backgroundchargesof thesefields are
fixed by the Miura transformation[25,18]. Considernow the Q~operator.
It dependson N — n + 1 matter scalars,the Liouville fields and the ghosts
andantighostsfor the spin n,. . . , N symmetries.In general,the centralcharge
contributionof the spin n,. . ., N ghostsandantighostsfor a given value of n
is given by

c~= —2~(6k2—6k+1). (4)

In particular,the contributionof all ghosts and antighosts is given by

c~=c~= —2(N—l)(2N2 +2N+ 1). (5)

The centralchargecontributionsof the Liouville andmattersectorsaregiven

by

cL = (N- 1){1 4(Q2 N(N 1))~ ~},

cm = (N— l){1 + 4Q N—i }‘ (6)

where Q is a free parameterwhich can be identified with the background
chargeof the matterfield ~N1• Note thatwe have

cm+cL+c~=0, (7)

as is requiredto allow for anilpotent BRST operator.We now choosefor Q

oneof the following values:

Q~= N(N—
1)(P-:) (8)

wherep andq arenon-negativeintegerswhich arerelativelyprime.The central
chargecontributionof the Liouville sector is thengiven by

cL~’~= (N_1){l_ (P;q~)
2N(N+1)}~ (9)
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which correspondsto the (p,q) minimal model of the WN algebra. Similarly,

the centralchargecontributionof the matter sectoris givenby

= (N_l){l + ;q~N(N+ l)}~ l0

which correspondsto the (p,—q) minimal model of the WN algebra. Finally,
for fixed n, the centralchargecontributionof theN — n + i matterscalarsis
given by

c~= ~ (1 + l2(ak)2), (11)
k=n—1

wherecvj,, is the backgroundchargeof the matterscalarc~k:

/k(k+ 1)
ak = Q

m~flj~N(N— i) (12)

Denoting all the different contributions of the fields occurring in the Q~
operatorby c~J~’°’~we find for a given choiceof p, q and n

n;(p,q) — ~(P~) ~ c~

N =(fl_2){(2n_i)2_n(nl)(P;q~)}, (13)

which correspondsto the (p,q) minimal model of the W~algebra. This
concludesour countingargument.

An interestingspecial casearisesif we choosethe Liouville sector to cor-
respondto the (N + 1, N) WN minimal model with c~’~1,N) = 0 [151. In
that casethe Liouville fields effectively decouplefrom the theory andwe end
up with a “critical” WN string. The centralchargecorrespondingto the Q~
operatoris in that casegivenby

n;(N+1,N) — 1 2)11 n(n— 1) ~ (14)
cN ~ N(N+l)f’

which is the (N + 1, N) minimal model of the W,~algebra’.For instance,
for n = N = 3 we find the ~ = 1/2 Ising model.

Another interestingcaseoccurs if we choosethe Liouville sectorto corre-
spondto the (n,n — I) minimal model of the WN algebrawith centralcharge
(2 ~ n ~ N)

= (N_l)~l_ N+ 1)1 (15)

~ n(n—l) j

This relationbetweencritical W-stringsandminimal modelshasbeensuggestedin refs. [28,23].
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In that casewe find that C~j’~’~ = 0. This meansthat all fields occurring
in the Q~cohomologydecoupleand we effectively end up with a “critical”
W~_,string theory. An interestingadditional feature of the Liouville central
chargegiven in (15) is that for this valuethe total centralchargecontribution
of the n — 2 Liouville scalarso~,.. . , ~ equalszero. For instance,if n = N
thenc~”~’~= —2 andthe centralchargecontributionof the N — 2 Liouville
scalarso~,... ,aN2 equals zero. In the particular caseN = 3 [7], we have
two Liouville scalarsa1 and a2. The centralchargecontributionof a1 is zero
andthe whole W3 algebracan in fact be realizedin termsof the singlescalar
a2 [29].

Fromagroup-theoreticpoint of view, the pictureis the following. Thematter
fields canbe seenas onescalarfield ç~with valuesin the Cartansubalgebraof
5lN. The energymomentumtensorof thesefields canbe written as

T = —~a93.8(o+ BPN•ö
2(0, (16)

with centralchargec = (N—1) + 12B2pN•pN.Here, ,ON is half the sumof the
positiverootsof S1N. If the Liouville sectoris a (p,q) minimal model,thenone
finds, on using (10) and ,ON = (N3 — N)/l2, that B = ~ + ~

To get the Q~operator,we haveto decouplen — 2 matter fields, which can
be done as follows. Takean embeddingof sl~_~into S1N, for instancemap
the n — 2 simple roots of sl~..,to the first n — 2 simple roots of 51N. Then,
decomposethe field ~ as ço~+ ~ where ço~is the orthogonalprojectionof
~ onto the Cartansubalgebraof sl~—i. The n — 2 matter fields we want to
decoupleare precisely given by the componentsof (0n. To find the energy
momentumtensorfor ço~,we haveto decomposePN into a piecewith values
in the sl~..

1Cartansubalgebraanda pieceperpendicularto that. But this latter
pieceis preciselyPN— Pn—1,becausebothPN andPn—1 haveinnerproductone
with the simple roots a1,. . . , ~ so that their differencehas inner product
zero with respectto thesesimple roots and is thereforeperpendicularto the
sl~1Cartansubalgebra.This demonstratesthat the energymomentumtensor
for (On is identical to (16), but with PN replacedby Pn—i. The valueof B
remainsthe same,sothat the centralchargeof the fields (on is equalto central
chargeof the matter fields in a theory of noncritical W~igravity, wherethe
Liouville fields form a (p,q) minimal modelfor the W0, algebra.This is the
samestatementas we madepreviously, andwe see that the fields that enter
the Q~operatorarethoseorthogonalto an sl,~_isubalgebraof S

1N. Later, we
will usethis observationto try to improveour understandingof the resultsof
the computationof the Q~ Q’ cohomology.

Since the BRST operatorfor the noncritical WN string can be derivedvia
hamiltonianreductionfrom the superalgebrasl(NIN — 1), it is an interesting

1 The parameter B is relatedto Qmj~(8) by Q
m1,, = ~ v/N(N — 1) B.
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idea to try derive the operatorsQ~from hamiltonian reduction as well,
employingthe group-theoreticalinsight obtainedabove.

In the above discussion,all relationsbetweennoncritical W-strings and
minimal modelshave been basedupon comparing valuesof central charges.
It is the purposeof this paperto confirm the relationssuggestedby the above
countingargumentsfor N = 3 by consideringthe weights of the primary
fields occurringin the cohomology.We will verify that theseweights indeed
correspondto the relevantminimal model. Note that for N = 3 the BRST
operatordecomposesaccordingto (3). Our main resultcanbestatedas follows.
Startingfrom a (p,q) W3 minimal model in the Liouville sector,we find that
the primary fields occurring in the cohomologyof the Qi operatorexactly
correspondto thoseof the (p,q) minimal modelof the Virasoroalgebra.More
precisely,all but oneof the primary fields occuras tachyonic statesat level 0
while the remainingoneoccursat level one. We suggestthat all othersolutions
of the cohomologycanbe obtainedby the actionof so-calledpicture-changing
andscreeningoperatorson this basis set of primary fields.

The organizationof the paperis as follows. In section2 we introducesome
basicnotionsof thenoncritical W3 string.In section3 we considerthe primary
fields occurring in the Qi cohomologyand show that for the choice (8) of
the backgroundchargeQ indeedtheycorrespondto (p,q) minimal modelsof
the Virasoroalgebra.In section4 we considerthe screeningoperatorsand the
picture-changingoperatorsof the Q’ operator.We will arguethat the complete
cohomologyof Qi is obtainedby actingon the basicprimaryfieldswith strings
of screeningandpicture-changingoperators1 Next, in section 5 we illustrate
our resultsby working out examplesfor specific valuesof p and q. Finally, in
section6 we will discussthe cohomologyof the Qi operatorfor a W3 minimal
model, the Qo + Qi cohomologyandgeneralizationsto other W-algebras.In
particularwe discussin what way noncriticalVirasoro stringsareembeddedin
noncritical W3 strings. Our resultsindicatethat the W3 (p,q) minimal model
coupledto W3 gravity is not the sametheory as the Virasoro (p,q) minimal
modelcoupledto ordinary gravity, althoughit is containedin the noncritical
W3 string. The Virasoro minimal model is recoveredby taking a modified
noncritical W3 string, that containsan additional setof screeningoperators.It
is interestingto comparethis with the work of Berkovits andVafa [30], who
demonstratedhow specialN = i strings reduce to arbitrary N = j strings,
j < i ~ 2. It is tempting to conjecturethat strings basedon certain chiral
algebrascan always somehowbe embeddedin strings basedon larger chiral
algebras.For example, it was shown recently [31] that the ordinary bosonic
string can be realized as a specific critical W3 string. This realizationdiffers
from ours, sincewe realizecertainbosonicstringsas subsectorsof non-critical
W3 strings. It would be interestingto see if thereis a deeperrelationbetween
the two realizations.

This concernsthe stateswith continuousmomenta.The situationof the discretestatesis more
complicated.
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Table 1
The fields of the noncritical W

3 string. The scalarfields of the mattersector(~,~) andof
theLiouville sector(a1,a2) aregiven with their backgroundcharge, andtheir contribution to the
centralcharge.The fields (c, b) arethe spin-2, (y, fi) the spin-3ghosts.

Field Backgroundcharge Centralcharge

l+4Q
2

42 Q 1+12Q2

a
1 ~/3(6_Q

2) 25—4Q2

73—12Q2

c,b —26

y,fl —74

2. The noncritical W
3 string

In this sectionwe will illustrate the generalstructureof the quantumBRST
operatorsQ~for the noncritical WN string with the N = 3 case.We will
employa simplerealisationof the noncritical W3 string in termsof two scalars
in the mattersector,as well as two scalarsfor the Liouville or W-gravity sector,
two scalarsbeing the minimum number for a realisationof the W3 algebra
with arbitrarycentralcharge.

In Table 1 we presentthesefields with the correspondingbackgroundand
central charges.These chargesare limited by the requirementthat the total
centralchargeequals 100, thuscancellingthe contributionfrom the spin-2 and
spin-3 ghosts,and by the fact that the matterandLiouville sectorsseparately
realize a W3 algebra.This fixes the relativecoefficientbetweenthe background
chargesin thesetwo-scalarrealizations[32].

In termsof rootsof sl3, ~ correspondsto ct1 andq~to 2a2 + a1.
In ref. [15] the BRST operatorof the noncritical W3 string in the new basis,

discussedin the introduction, was calculated.It is given by Q = ~fI, with
J = Jo + Ji given by

jo=c{TM+ TL+ T(~,p) + ~T(~,b)}, (i7)

Ji ~ i2Q0~525
2~

2+ (—15 +4Q
2)D3ç~

2}

+i{WL- ~=ö~2TL + *QaTL}

—iv~{a~2ayfl+ .~Qa/Jay}}. (18)

The main advantageof the chosenbasisis that Qo = f Jo andQ1 = ~ Ii are
separatelynilpotent,and thereforeanticommute.

Note that the scalar~, and the spin-2 ghostsare absentfrom Ji~and that
the Liouville fields do not occurexplicitly in (18), but only in
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TL = Tai + Ta2

=_~(aal)2+h/3(6_Q2)a2al_~(Oa2)2+\/6_Q2O2a2, (19)

WL= ~iv’~{(aa2)3_3vf6_Q2aa2a2a2

+ 68a2T01 _3i~/6_Q28Tai}. (20)

TL and WL satisfy a W3 algebra. In JO we find, besides TL, the energy—
momentumtensorsof the matterandghostsectors:

TM = T,~1+ T~2

= _!(ol~51)2 + /~Qa
2ç~

1— ~(a~2)
2 + QO2~2, (21)

= —2b0c—(3b)c, (22)

T(~,p)= —3/Jay— 2(8/fly. (23)

For the convenienceof the readerwe will give someof the formulaeof the
introductionspecifically for N = 3. The total Liouville centralchargecL, and
c~,the contributionto the central chargeof the fields that play a role in Qi
(~‘2,the spin-3 ghosts,andthe Liouville scalars)aregiven by

cL=98—16Q2, (24)

c~=25—4Q2. (25)

If we chooseQ equalto

• 3(q+p) ‘6 Q2 — 3i(q—p) (26)
mm — ‘ V — mm —

we find the following values for cL andc~:

= 2(1 — l2(p — q)2~, (27)
pq j

= 1 — — q)2 (28)
pq

The values~ andc~°’~correspondto the central chargesof the (p, q)
W

3 minimal model, and the (p,q) Virasoro minimal model, respectively.
This relationshipbetween W3 and Virasoro minimal modelswill be further
elucidatedin the next two sections,wherewewill considerthe cohomologyof
Q~.

With the above formulae for N = 3, it is a simple matter to verify the
relationsbetweencentralchargesin the specialcasesconsideredin the intro-
duction. After treatingthe Q, cohomologyin the next two sections,we will
comebackto theseexamplesin section 5.
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3. The Qi cohomology

In this sectionwe will considerthe cohomologyof the operatorQi, acting
on Fock spacesof ~2, a1, a2 andof theghosts/J, y. The momentaof a1 and a2
will be chosento be equalto thoseappearingin the Felderresolutionof a W3
minimal model.In section6 we explainthe implicationsof theseresultsfor the
computationof the Qi cohomologywhenthe Fock spaceof a1,a2 is replaced
by the Hilbert spaceof a W3 minimal model.In particular,for the valuesof the
backgroundchargeQ correspondingto a W3 minimal model in the Liouville
sector,andthe momentaof a1,a2 equalto thosein the correspondingFelder
resolution,we want to identify the primaryoperatorsof the Virasoro minimal
modelwith centralcharge (28).

For this it turns out to be sufficient to consider the statesat level 0 and
level 1. At level 0 the statesof lowestghostnumberareof the form 1

V0(p2,s1,s2) = (8y)yeP2~2+15l~l+~202. (29)

The condition Q1V0(p2,s1,s2) = 0 determinesthe momentaof the three
fields. The resultingcubic equationfactorizes,and we obtain the following
threesolutions:

(A0) P2 = is2_iQ_.~/6_Q2, (30)

(Bo) P2 = +~1”~Sl — ~is2— iQ, (31)

(Co) P2 = —~i~/~s1— ~is2— iQ + V6— Q
2, (32)

wheresi ands
2 arearbitrary.

Now, if we choosethe parameterQ equalto (26), the centralchargeof the
Liouville sectorcorrespondsto thatof a (p,q) W3 minimal model.By choosing
S1 and ~2 appropriately,we restrict thesemomentato thoseof this minimal
model, and in that casewe expectthat the statesdeterminedby (30)—(32)
shouldcorrespondto the primary statesof the (p,q) minimal Virasoromodel.
The allowedvaluesof s1 ands2 are (see,e.g., ref. [5])

Si = —1L(qr2—pt2), (33)

S2 = — 1 (2(qr1 —pt1) + (qr2—pt2)), (34)

with the non-negativeintegersr1, r2, ti, t2 restrictedaccordingto 0 ~ r1 + r2 ~
p—3, 0~ti+t2~q—3.

The level of a stateis definedby level h + 3, whereh is the weight of the fields in front of
the exponential.For instance,the level of the state(29) is given by (—1 — 2) + 3 = 0. The state
(29) is the stateof lowest ghostnumberat level zero.Other level-zerostates,with ghostnumber
onehigher, haveafactor (0

2y)(öy )y in front of theexponential.
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For the abovevaluesof P2,S, and~2 wenow calculatethe conformalweight
of the state (29). The conformalweight of avertex operatorexp(ipçb), for a
genericscalarq~with backgroundchargeQ~,is given by

= ~(p + iQ~)2+ ~ (35)

This, togetherwith the weight—3 of the ghostcontributionto (29), determines
the allowed valuesof the conformalweights at level 0.

Note that the weight due to the Liouville fields is invariant under the
following transformationof the labelsr

1, r2, t1, t2 [5]:

(r1,r2,t,,t2) —+ (p —3— r1 — r2,r1,q —3—t1 — t2,t1) . (36)

Applying thistransformationgivessuccessivelynew Liouville momenta(sç,s~)
and (si’, sr), while applying (36) threetimesgivesback the originalmomenta.
A secondtransformationwhich leaves the Liouville weights invariant but
changesthe sign of the W3 weight is

(ri,r2,t1,t2) —~ (r2,r1,t2,t1). (37)

Note that (r1, r2, t1, 12) cannotbe invariantunder (36). Thereforethe weights
of stateswith momenta(33, 34) are either six-fold or three-fold degenerate,
the possibility of three-fold degeneracyoccurring when the W3 weight, which
is proportionalto [5]

[q(r1 — r2) —p(t1 — 12)] [q(r1 + 2r2 + 3) —p(t1 + 212 + 3)]

x [q(2r1 + r2 + 3) —p(2t1 + t2 + 3)] , (38)

vanishes.In a W3 minimal model, representationswhose labels are related
through (36) or (37) should beidentified, sincethe correspondingirreducible
W3 representationsare isomorphic. In a W3 minimal model each of these
shouldoccurwith multiplicity one only.

The threesolutions(30)—(32) arein fact relatedby the transformation(36).
We find

p2(sç,s~)(A0) =p2(s1,s2)(Co),

p2(s~,s~)(Bo) p2(si,s2)(Ao),

p2(s~,s~)(C0) —p2(s1,s2)(B0). (39)

Thereforethe weightsobtainedfor the threesolutions(30)—(32) arethe same.
In the nextsectionwe will show that theserelationsbetween(30)—(32) can
be understoodfrom the actionof certainscreeningoperators.

The conformal weights of the primary operatorsof the (p,q) Virasoro
minimal model aregiven by

(q(r+ i)—p(t+ l))2_ (qp)
2

hvjr(r,t) = , (40)
4pq



390 E. Bergshoeffet a!. /Nuc!earPhysicsB 420 (1994)379—408

for 0 ~ r ~ p — 2, 0 ~ 1 ~ q — 2. h~ir is invariant underthe changeof labels

r—~p—2—r, t—~q—2—t. (41)

Again, in a Virasoro minimal model, we should identify two representations
whose labels are related through (41), since they give rise to isomorphic
irreducibleVirasoromodules.

We should now identify the calculatedweights of (29) with (40). The
following Virasoroweightsare obtained:

(A0) —~ hymr(r2, 12),

(B0) —* hvmr(l + r1 + r2, 1 + t1 + t2)

(Co)—~hy1r(r1,t1), (42)

with the values of r1, r2, t1, t2 restrictedby the conditionsbelow (34). If we
comparetheserestrictionswith the Virasoro conditionsbelow (40), we find
that only the statehyjr(p — 2,0), or, equivalently,hyjr(0, q — 2), is missingat
level 0. The conformalweightof this missing state is (p — 2)(q — 2)/4.

The identificationof the Virasoro minimal model by its primary operators
thereforecannotbe completedat level 0. For the caseof the critical string and
the Ising model, the authorsof refs. [20—23]indeedfound one of the three
primary operatorsof the Ising model, of weight ~, at level 1.

At level 1 we will consideroperatorsof the form

V1(p2,s,,s2)= yeiP2~2+1SlcI+is2a2

The condition Q1V1 (p2,s1,S2)= 0 determinesthe valuesof the momentafor
which V1 is a physical state~. This condition now comprisesfour quadratic
equationsin the momenta,of which the generalsolution is

(As) P2 = —.~(is2+

Si = 0, ~2 arbitrary, (44)
(B1) P2 = is2—~(iQ+ ~/6—Q

2),

Si = V’~s
2, ~2 arbitrary, (45)

(C1) P2 = is2 — ~(iQ + \/6 — Q
2),

Si = —V’~(s
2+ 4i.~/6— Q

2), ~2 arbitrary. (46)

As we did for level 0, we now chooseQequalto (26), andrestrictthemomenta
Si, S

2 to the allowedvalues (33), (34). However,at level 1 the momentaSi and
~2 arefurther restrictedby (44)—(46). It is easyto see that theseconditions,
andthe fact that p andq are relatively prime, imply

The stateV1 is the stateof lowest ghostnumberat this level,andthereforecannotbe written

asQi actingon anyother level 1 state.
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s1=0—r2=t2=0, (47)

s1=f.i~s2—’r1=t1=0, (48)

s1 = —v’i(s2 + 4i~/6— Q
2) —* no solution for r

1, r2,
t~,12. (49)

Thereforeonly the solutions(44) and (45) remain. On calculatingthe weight

of thesestateswe find the following Virasoroweights:
(Ai)—#hymr(ri,ti + 1), (B

1) —+hv~~(r2+ l,t2). (50)

The state hv~~(p— 2,0) is presentin (B1), the state hyjr(0,q — 2) in (A1).
Thereforethe statewhich was missing at level 0 is indeed found at level 1.
Note that all the other Virasoro weights which were obtainedat level 0 are
againobtainedat level 1, exceptthe two stateshyjr(0,0) andhyjr(p —2,q —2)
of weight 0.

The weights found in solutions (A1) and (B1) take on the samevalues.
This canbeunderstoodfrom applyingtwice the transformation(36), or, more
directly, from the invarianceof (40) underthe transformationr —~ p —2— r, t
q — 2 — t. The latter transformationgives a one-to-onemap of the Virasoro
weights correspondingto the (A1) solution onto those correspondingto the
(B1) solution.

Thus all primaryoperatorsof the (p, q) Virasorominimalmodelareobtained
at level 0 and 1 of the Qi cohomology.

Beforewe startto discussthe role of picture-changingandscreeningoperators
in all ofthis, wewill first try to understandthe cohomologyof Q a bit further,
in the spirit of ref. [3]. In this paperthe BRST cohomologyof the noncritical
string is computed,using a Felder resolution of the minimal model in the
matter sector, and using a general result for the cohomology of the BRST
operatorwhen acting on the tensorproduct of two Fock modules.The latter
cohomologyis quite simple, for genericmomentathecohomologycontainsonly
the tachyonic states,and for some specialvalues of the momentatwo extra
statesappear.Thesearerelatedto the existenceof singularvectorsin the Fock
modules.In the proofonereplacesthe matterandLiouville scalarfields ~M, ~/~L

by linear combinations~/~M±‘~/~L,which simplifies the analysisconsiderably.
Let us now presentsomeevidencethat asimilar structurealso existsin the

caseof the Qi cohomologyactingon the tensorproductof threeFock spaces.
First, we are going to perform a transformationof the fields by defining

Xi =0(~2—ia2), (51)

X2
0(c~2+ ~ia

2—~iaiv’~), (52)

X3
8(q52+ ~ia

2+ ~iaiv”~). (53)
The OPEsof the fields Xi read

Xi(Z)Xj(W)~ 7~. (54)
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In addition,we introducethe parametera, definedby

Q=i/~(a+!), (55)

(56)

For the (p, q) minimal W3 model, the parametera equals ~ In termsof
thesenew variablesand fields, the BRST current Ji reads

Ji =~/I{Y{X1(x2X3)- ~

_~(a(Xl8X3)+ _(0x1x3))+ (~__)~~x~2 a 2a 4

3 2 (3a2 3\ 2+~
8X2+ ~y—~)8X3

+~/J(8y(y(xi +X2+X3)))- ~/~(a +

(57)

To continuealongthe linesof ref. [3], we considerthe modeexpansionof
Qi, acting on a tensorproduct of threeFock modulesand the ghost Hilbert
space.We candecomposeit in termsof ghostzero modesas

Qi = d — /1
0M + y0W0+ y0/30H. (58)

Comparedto the ordinary noncritical string, an extracomplicationarises,in
that a term containing~ofloappears.The condition thatQ~= 0 translatesin
the conditions

d
2=MW

0, (59)

M(d+H)=dM, (60)

W0d=(d+H)W0, (61)

(d + H)
2 = W

0M. (62)

The operatord preservesthe subspaceof statesannihilatedby W0 andfib, and
on this spaceit satisfiesd

2 = 0, so thatonecanconsiderthe cohomologyof d
on this subspace(this cohomologyis usuallycalled the relativecohomologyof
Qi). In the caseof the non-critical Virasoro string, thereis a simple relation
betweenthe relativeandabsolutecohomology.Herethat relationis less clear,
since Wo is not diagonalizablein general. We will ignore this problemfor the
momentandfocusonly on d. It canbewritten as the sumof apiececontaining
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the termslinear in the oscillatorsandthe ghostsandasetof remainingterms.
We will be only interestedin the piecelinear in the ghostsandthe oscillators.
Denotingthe modesof~1by i~,so thatXi = ~z’~

1, we find for thispart
of d

~ [~P
2+(n)P3(n) + ~P1(n)P3(n) + ~Pi(n)P~(n)]

fl31 0

~ + n)(~ + + ‘h~), (63)
V

wherethe polynomialsP1,P~and P3 aregiven by

Pi(n)=p2—is2+i~a(n+2), (64)

P~(n) = P2 + ~ — ~S1~ + .~ (fl ±1 + a) , (65)

P~(n)=p2+ ~ ~ i~/~(a(n+ 1) +!), (66)

P3(n)=p2+—s2+—s1v’~+zj— . (67)
2 2 a

The almost factorized form of d in (63) is very suggestive.Maybe one can
definea modified operatord in sucha way that the lastterm in (63) is absent.
In any casenumericalevidenceshows that all the statesin the cohomology
of Qi havevalues of the momentarelated to zeros of the polynomials P1.
Restrictingattention to Virasoro primaries, we conjecturethat the relative
cohomologyof Qi canbe organizedas follows:

— For generic momentathere is only one state at ghost number two and
level zero, the standardtachyonic state, if Pi (0)P2(0)P3(0) = 0. (Here
P2(0) ~P~(0) = P~(0).)

— If integers u1,u2 > 0 exist such that (i) P1(u1) = P2~(u2)= 0, (ii)
P~(u1)= P3(u2) = 0, or (iii) P1(u1) = P3(u2) = 0 therearetwo statesat
level u1u2 andghostnumbers2,3.

— If integers u1,u2 < 0 exist such that (i) P1(u1) = PjF(u2) = 0, (ii)
Pj(u1) = P3(u2) = 0, or (iii) P1(u1) = P3(u2) = 0 there aretwo statesat
level u1u2 andghostnumbers1,2.

— If integersu1,u2,u3,u4 exist such thatP1(ui) = P3(u4) = 0, and P~(u2)+
u~a= 0, P2~(u3) + u2/cl = 0, theremaybe extrastatesatlevel u1u3—u3u2 +
u2u4 andat threeconsecutiveghostnumbers.The preciseghostnumbers
dependon the signsof the u, but one of them is 2.
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The three kinds of statesare related to the six kinds of null statesthat
minimal W3 representationsgenericallyhave. Thesesix are reducedto three
heresincewe did not yet take the Qo cohomology.This is all similar very to
the analysisfor the noncritical ordinarystring,wherea similar thoughsimpler
resultholdsfor the cohomologyof the BRST operatoron the productof two
Fockspacesandthe ghostHilbert space.

To prove this conjecture,and specify more preciselythe cohomologyfor
the last of the four cases,onecould try to usethe samespectral sequence
techniquesas in ref. [3]. In this respect it is suggestivethat in terms of the
Xi no term in Q~containsanyXi more thanonce, and if one would assigna
positive degreeto say xi andnegativedegreeto the others,the first term in
the spectralsequencewould be the cohomologyof the ~ ~ term in (63).
Apart from the problemwith the extraterm in (63), this wouldshowthatone
needszerosof the polynomialsP, to get extra states,but the details are not
clear to us.

As an example,the third casewith u1 = = — I yields preciselythe series
of states(44)—(46).

4. Screeningand picture-changingoperators

In the previoussectionwe discussedin detail the Q~cohomologyfor level
0 and 1, and for the particular ghost structures(29), (43). In addition,we
conjecturedfor which momentatherewill be extrastatesat otherlevels.

In the caseof the critical W3 stringit hasbeenproposedthat all thesestates
canbeobtainedfrom the statesat level 0 and 1 by actingon themwith picture-
changingandscreeningoperators[20—23].Generalizingthe caseof the critical
string, we conjecturethatwith Q equalto Q~m(26) andthe momentaof the
Liouville fields restrictedto thoseof the (p,q) minimal model, all statesin
the Qi cohomologywill berelatedby picturechangingandscreeningoperators
to the statesobtainedthus far, or to descendantsof the primary operators
discoveredat level 0 and 1.

Screeningoperators (anti-)commutewith Qi, and have weight 0. They
transformphysical statesinto otherphysicalstates,providedthe actionof such
an operatoron a stateis well-defined (seeref. [22], andthe discussionbelow).
Screeningoperatorsmay changethe level.

Picturechangingoperatorsare of the form [Q,~],where~ is a scalarfield.
They also produce solutionsof the cohomologywhen acting on a physical
state.In our casethereare threesuch operators,correspondingto ~ a1 and
a2. They haveweight0, changethe ghostnumberof a physicalstateby a single
unit but do not changethe level. Applying the samepicture-changingoperator
twicegives 0.

We will not prove the aboveconjecturein this paper.We will provideevi-
dencefor it by showingthat the weightsof the Virasoro (p, q) minimal model
occurexactly onceamongthe level 0 and I stateswhich we obtainedin the
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previoussection,if statesrelatedby screeningandpicture-changingoperators
are identified. This illustratesthe use of theseoperators,andhopefully will
stimulateefforts in obtainingaproof.

Let us first give a list of the screeningoperatorswhich are relevantfor our
calculation. Therearetwo screeningoperatorsof the form

S, = ~dzfl(z)e~2~i#2( ~,51~~,fl2,51a2(z) . (68)

Theseoperatorsanticommutewith Qi provided the momentaa~,IJi, /32 take
on the following values:

Si : a~,s1= ~{iQ + \/6 — Q
2},

Pi,s~= 1i~~{iQ+ ~6 —

132,s
1 = ~i{iQ+ f6—Q

2}, (69)

S
2 : a~,s2= ~{iQ — ~/6 — Q

2},
Iii,s

2 = 0,

P2,s2 = —~i{iQ—i/6—Q
2}. (70)

Thentherearefour screeningoperatorswhich involve only the Liouville fields,

andwhich are of the form

T~= ~dz eifh,1~z mfl
2,7~,a2(z) (71)

They commutewith Qi for the following valuesof the momenta:

T1 : P1,T~= (Qj~/~_Q2)/~/~,
132,T

1 = 0, (72)
T2 : Pi,T2 = _(Q + — Q2)/~/’~,

P2,T2 = 0, (73)

T3 : fl1,T3 = ~(— Q + i~/6— Q2)/~/~,

P2,T3=—~(—Q+iV6—Q
2), (74)

131,T4= ~(Q+iV6_Q2)/1/~,

132,T4 = —~(Q+i~/6—Q2). (75)

Finally, we havetwo screeningoperatorsof the form

Ri=jdzy(z)e~(~2.Ri~2(2), (76)

with the correspondingmomenta:
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R1 : a2,R1 = —iQ—’./6—Q
2, (77)

R
2 : a2,R2 = —iQ+ ~/6—Q

2. (78)

The threepicture-changingoperatorsareP~
2= [Qi, ~], P~1= [Qi, a1] and

Pa2 = [Qi,a2]. We find for P~2

= .~[l2y(a~2)2+ l2Q(0y)Oq~2+ (—15 + 4Q2)82y]

+-,~yTL + iv”~y(8y)/J, (79)

andsimilar expressionsfor Pai andP~.In this sectionwe consideronly the
actionof thesepicture-changingoperatorson the vacuumstate (29). The only
term which then contributesis the 0

2y contribution,which is presentin all
threepicture-changingoperators.It producesphysicalstates

V
0(p2,si,s2) = (8

2y)(0y)ye1P2~~2~510~+122a2, (80)

for the samevaluesof the momentaobtainedin (30)— (32). Since all picture-
changingoperatorsact the sameway in this case,we will denotethemcollec-
tively by P.

The actionof thescreeningoperatorsis more complicated.All ourscreening
operatorsareof the form

S~= ~dz
1K~(fl(z~),y(z~)) exp [i~Pm~Si~m(zi)] , (81)

wherecbm is a set of scalarfields, andPm,51 arethe screeningmomentain the
operatorS1 for the mth field. Theseoperatorsact on statesof the form

o = L(fl(w),y(w)) exp {i~Pm~m(w)]. (82)

The condition underwhich this actionis well-definedis discussedin detail in
ref. [22]. If the actionof the product of n such screeningoperatorson 0 is
considered,thenthe number

Pn = fl — 1 + Prn,S1Pm,S~+ ~~Prn,S1Pm (83)
i,j=l, i<j m i1

should be an integer. This condition arises from the fact that the successive
OPEsgive, after appropriatechangesin the integrationvariablesz~,rise to a
single factor (z1 — w ) ~°‘ The OPEs of the ghostcontributionswill similarly
give a factor (z1 —w)

1’a”, whereP~is guaranteedto beaninteger.The integral
over z

1 thengivesawell-definedandnon-trivial result if
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P~+P~=-l. (84)

The momentaof the final state,0’ = S~. . . S,~0,if it is defined, are equal
to Pm + >iPm,S,, andthereforethe conformal weightof this proposed0’ can
be calculated.Using the condition that the weight of the screeningoperators
is zero, and, independently,that the weightsof 0’ and0 are equal, it is not
difficult to showthat

P,~= hL,o — hL,o’ — 1 + ~ h~<,, • (85)

where~ hL,o,hL,o’ are the conformal weightsof the ghostcontributionsto
S~,0 and0’ respectively.Therefore, if the conformal weights of the initial
andof the proposedfinal stateareequal,andif the momentaof the screening
operatorsinterpolatebetweenthe momentaof initial and final states,P,~is
automaticallyintegerandcanbe easilycalct~Iated.

In discussingtheactionof thescreeningoperators,it is usefulto characterize
theireffect on the momenta,andon the labelsr1, r2, Ii, t2 in the Liouville sector.
Considerascreeningoperator

S = (R1)
1’ (R

2)
12(S

1)ml(52)rn2(T1)flt (T2)’
12(T

3)
03(T

4)’
14 (86)

If we choosea (p, q) W
3 minimal model, so that Q = Qrnjn with Qm~~given

in (26), the changesin the momentadueto (86) aregiven by

Ap2i[(2mi611)q+ (2m2—6l2)p]/~./~, (87)

= ~
5[(—m

1 + 2n1 — n3)q + (—2n2 + n4)p]/~/~, (88)

As2= [(—mi + 3n3)q + (2m2 — 3n4)p] ~ (89)

The changein the Liouville momentainduceschangesin the labelsr1, r2, t1, 12

in (33), (34). Thesearegiven by
Ar1 = ~i — 2n3 + Ip,

Ar2 = m1 —2n1 + n3 + kp,

At1 = m2 + n2 — 2n4 + lq,

At2 = —2n2 + n4 + kq, (90)

where1 and k areintegerschosenin sucha way that the Ar1 andAt~produces
labelsin the allowedrange0 ~ r1 +r2 ~ p—3, 0 ~ ti + t2 ~ q—3. Of course,
the action of S will be well-defined only if the initial and final conformal
weightsare equal.

Now that the action of the screeningoperatorshas beenclarified, let us
first discussthe way they acton the statesat level 0. We choosea (p,q) W3
minimal model. Thenthe Virasoroweightsfor, e.g., the physicalstates(A0),
as given in (42), occurwith a certainmultiplicity. Theseweights aregivenby
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hvjr(r2,t2), andthusindependentof r1 andIi. Using (90) it is easyto seethat
onecanpassbetweenthe statesof different r1 andt~with screeningoperators.
We haveon the states(Ao):

On (A0) 52P gives A(ri,r2,t1,t2) = (0,0,1,0),

51T1T3P gives A(ri,r2,t1,t2) = (—1,0,0,0). (91)

The presenceof the picture-changingoperatorP is requiredbecausethe extra
8

2y it introducesin V
0 ensuresthat in the OPEwith the screeningoperators

(84) is satisfied.
In the previoussectionwe showedthat the physical states(A0), (B0) and

(C0) are relatedby the discrete transformation(36). This inducestransfor-
mationssimilar to (91) for the states(B0) and (Co). Thesecanagainbe read
off from (90) andaregiven by

On (Bo) S2T4P gives A (r1,r2,t1,t2) = (0,0, —1,1),

51T,P gives A(ri,r2,t1,t2) = (i,—l,0,0), (92)

On (C’o) S2T2T4P gives A(ri,r2,t1,t2) = (0,0,0,—l),

S1P gives A(r1,r2,t1,t2) = (0,1,0,0). (93)

In fact, the relationbetween(30)—(32) dueto the discretesymmetry (36)
canbe representedby screeningoperators.Consideragainthe solutions (A0),
with Virasoroweightshvjr (r2, t2). If we performa transformation(36) on the
labels (ri, t1), wefind that 1 + r + r~= p —2— r2, 1 + 1’~ + t = q —2—12. This
meansthat hvjr ( i + r’1 + r~,1 + t’~+ t~)= hvmr (p —2— r2, q—2—12) = hvir (r2, t2).
Therefore,with this transformationon the labelswe find solutionsamongthe
(B0) stateswith the sameweight as the (A0) state.Given this changein the
labelswe use (90) to obtain the correspondingscreeningoperator.We find
that from anyphysicalstate (A0) a stateof type (B0) canbe obtainedusing

Vo,(B0)(p —3— r1 — r2,r1,q —3—t1— t2,ti)

= (T1 )i÷’~2 (T2)’+(2 (T3)

2+rl+r2 (T

4)

2+hl~l2 Vo,(A
0) (r1, r2,

ti, 12) . (94)

In asimilar way oneobtainsa relation betweenthe states(C
0) and (A0):

VO,(CO)(r2,p —3—r1 — r2, t2, q —3—t1— t2)

= (T1 )2+ri+r2 (T2)

2+tl+12 (T

3)l+rt (T4)l~t1 Vo,(A0) (r1, r2, t1, t2) . (95)

If we setup an equivalencerelationbetweenstates,underwhich two states
thatarerelatedby screeningoperatorsareequivalent,thenat this stagewe can
limit ourselvesat level 0 to the states (A0), with the further restriction that
from stateswhich differ only in the labels (ri, ti) only one representativeis
considered.The restrictionson (r2, t2) arethengiven by 0 ~ r2 ~ p — 3, 0 ~
12 ~ q — 3. The multiplicity of the remainingVirasoro weights can still be
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equalto two. The weightswith 1 ~ r2 ~ p — 3, 1 s~ 12 ~ q — 3 all occurtwice,
sinceboth the labels (r2, 12) and (p — 2 — r, q — 2 — t) are in the allowedrange.
The labelswith either r2 = 0 or t2 = 0 occuronly once.This doublingoccurs
forp ~ 5, q ?~4.

Thisremainingdoublingof the Virasoroweightscanalsobe lifted by screen-
ing operators.We find for all (p,q),p ~ 5, q ~ 4

Vo,(A0) (0,p —2— r2,0,q —2— r2)

=

xVo,(A0)(p—4—r2,r2,q—3—t2,t2). (96)

This relatesoneof the stateswith (r2, 12) to oneof the stateswith (p — 2 —

r2,q — 2 — r2). Up to equivalenceby screeningoperators,eachVirasoroweight
(except (p — 2)(q — 2)/4) thereforeoccursonceandonly onceat level 0.

In this applicationof the screeningoperatorsat level 0 we choosethe screen-
ing operatorssuchthat theygive the requiredA (r1, r2,

ti, t
2). By construction,

the screeningoperatorsinterpolatebetweenthe initial and final momenta,and
leavethe weight invariant.Therefore,as explainedabove,the factor P,~(83)
is an integer. In the application(91-93)P,~is equalto 2, while the OPEof the
ghostfi in 5, with (0

2y)(Oy)y givesP~,= —3 (as well as lesssingularterms).
In the secondapplication(94, 95) wefind immediatelyP,~= —1. In the third
application(96) we havean additional y from R

1. ThereforeP,~equals 3.
The OPE of the ghostsgivesP~= —4, leaving againthe combination (8y)y.
Thereforein all cases(84) is satisfied.

Now considerthe statesat level 1. Here we want to show that all states
exceptthosewith momentum(p — 2) (q — 2)/4 canbe obtainedfrom the level
0 statesusing screeningoperators.Since the momentaof all level 0 and level
1 statesare given in the previoussection, it is a simple matter to useagain
(87-90) to constructthe appropriatescreeningoperators.A useful hint about
this choicefollows from the valuesof the Virasoro weights.For instance,the
states(A1) have r2 = 12 = 0, andweighthvjr(ri, t1 + 1). For the level 0 states
with r2, 12 = 0 the weights are hv~~(0, 0) = 0, hvjr (1 + r1, 1 + l~), hvjr (r1, ti)
for solutions (A0), (B0), (C0), respectively.Since hvjr = 0 doesnot occur at
level 1 (seethe discussionat the end of Section 3), the states (A1) cannot
be obtainedfrom states(A0) with r2 = 12 = 0. They can be producedfrom
(B0) and/or (C’o). For (B0) we must chooseAr1 = l,At1 = 0, for (C0)
Ar, = 0, At1 = —1, with of courseAr2 = At2 = 0.

This leadsto the following result. Thestates(A1) canbe obtainedfrom level
0 by the following operators:

VI,(A1) (r1,0,t,,0) = (S2)
2T

2(T4)
2PVo(c

0)(ri,0, t1 + 1,0)

= (S1 )
2T,PVO,(B

0)(r1 — 1,0, ti,0) . (97)

Dependingon the values of the labelson the right-handside, both or only
one of the abovetransitionsis allowed.The picture-changingoperatoris again
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requiredto ensurethat (84) is satisfied.Notethat thestateV1,(A
1)(0,0, q—3, 0),

correspondingto the missing primary operatorat level 0, cannotbe obtained
in thisway becausethenthe valuesof the labelson the right-handsideof (97)
fall outsidethe allowedrange.

Similarly, for the solutionsB1 at level 1 we find that

Vl,(B1)(O,r2,O,t2) = (Sl)
2(TI)2T

3PVO,(A0)(0,r2+ 1,0,12)

= (S2)
2T

4PV0,(B0)(0,r2,0,t2—1). (98)

As a last point, we must now show that a screening operator connects the
two stateswith Virasoroweight (P—2) (q — 2)/4,which doesnot occurat level
0. In fact, we can connect every stateV,,(B1) to a state V1,(A1) by screening
operators,analogouslythe relations(94-95)atlevel 0. A look atthe form of the
Virasoro weights (50) tells us that we should correlatethe labels (r1, 0,11,0)
for (A1) and (0,r2 = p —3— r1,0,t2 = q —

3—ti) at (B
1). This leavesthe

‘/~2 momentuminvariant, and correspondsto a transformation(36) in the
Liouville sector. It canbe easilyseenthat this correspondenceis realizedby:

— 3—ri,0,q —3— ti)

= (T1 )2+rl (T2)
2+tl (T

3)
1~’~’(T

4)iitlVl,(Al) (ri,0, Ii, 0). (99)

Thus all primary operatorsof the (p, q) Virasoro minimal model occurwith

multiplicity 1, up to screeningandpicture-changingoperators.

5. Examples

In this sectionwe will illustrate the resultsfrom the previoussectionsfor
the cases(p,q) = (4,3) and (5,4).

In the first casec~
4’3~= i/2, so that the Virasoro minimal model corre-

spondsto the Ising model. The value of the backgroundcharge in this case
is

(p,q) = (4,3)—.Q=2i/~/~, ~/6_Q2=_3i/v”7~. (iOU)

This casehasbeenmuch studiedrecently in the caseof the critical W
3 string

[20—23].In our construction,the W3 minimal model we start out with has
= 0, so that the Liouville sectorcorrespondsto the “trivial” W3minimal

model.
In Table 2 we presentthe momentaandconformal weightsfor the physical

states(30). As we saw in the previoussection,the choices (31), (32) are
connectedto (30) by screeningoperators,and in this senseequivalent.The
threepossiblechoicesof the labels r1, r2, t~, 12 are relatedto eachotherby the
discretetransformation(36), so that the Liouville weight hL is equalfor the
threestates.Thereis only athree-folddegeneracy,becauseunder (37) no new
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Table 2
Momenta andconformal weightsfor the states~o,(A

0) (30) for p = 4, q = 3. Note that all
momentain thetablehavebeenmultiplied by a factorv7~.hL is thecontribution of theLiouville
sectorto the total conformalweighthvjr.

(r1,r2,t1,t2) P2~/
7~ s

1v’~ s2V’~ hL hvjr

(0,0,0,0) —18i 0 0 0 0
(0,1,0,0) —21i —3V’~ —3 0 1/16
(1,0,0,0) —24i 0 —6 0 0

Table 3

Momentaandconformalweightsfor the statesV1,(A1) (44) for p = 4, q = 3.

(r1,r2,t1,t2) P2’/i~ 5iV’~ 52V’~ hL hvjr

(0,0,0,0) —12i 0 0 0 1/2

(1,0,0,0) —9i 0 —6 0 1/16

labelsare generated.The Virasoro weight h~~1for thesestatesis completely
determinedby (r2, t2) (42), so that the equality of hvjr for (0,0,0,0) and
(1,0,0,0) is understood.In the previoussectionwe showedthat thesetwo
statescan also be relatedby screeningand picture-changingoperators.Note
that the ~2 momentafor thesetwo statesare conjugateto eachother, where
conjugationof a momentumPj~ for a field with backgroundcharge Q~,is
definedas

(p~)* —p~—2iQ~1,. (iOl)

However, the Liouville momenta are not related by conjugation, since the
latticechosenin (33), (34) doesnot transforminto itself underconjugation.

At level 0 we thereforefind that the two available Virasoro weights occur
with multiplicity 1, so that the operations(96) arenot required.

The level 1 statesof type V1,(A1) are given in Table 3. Here thereare only
two possiblestates.We showedin the previoussectionthat the state(1,0, 0, 0)
is relatedto Vo,(B0) (97), and, by implication, thereforealso to Vo,(A0).

As we have seen,the (4,3) casedoesnot containall the featuresdiscussed
in the previoussections.The case(p,q) = (5,4) correspondsmore closely to
the genericsituation.In this caseswe have

(p,q) = (5,4) —~ Q = 27/~JT~, ~6—Q
2 = —3i/Vi~. (102)

The Liouville sector correspondsto a W
3 minimal model with c~’~= 4/5,

andtheQ~cohomologywill result in the statesof the c~
5’4~= 7/10Virasoro

minimal model.
The numberof physicalstates(A

0) at level 0 is equalto

(P_l)(~_i) (103)
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Table4
Momentaand conformalweights for the statesVo,(A

0) (30) for p = 5, q = 4. Note that all

momentain the table have been multiplied by a factor v’T~.hL is the contribution of the
Liouville sectorto the total conformalweighthvjr.

(r1,r2,t1,t2) P2V’[~ s1v’T~O 52V’T~ hL hVir

(0,0,0,0) —24i 0 0 0 0
(0,0,0,1) —19i 5v~ 5 2/3 7/16
(0,0,1,0) —14i 0 10 2/3 0
(0,1,0,0) —28i —4v’~ —4 1/15 1/10
(0,1,0,1) —23i ~ 1 1/15 3/80
(0,1,1,0) —18i —4v’~ 6 2/5 1/10
(1,0,0,0) —32i 0 —8 1/15 0
(1,0,0,1) —27i ~ —3 2/5 7/16
(1,0,1,0) —22i 0 2 1/15 0
(0,2,0,0) —32i —8v’~ —8 2/3 3/5
(0,2,0,1) —27i —3v’~ —3 0 3/80
(0,2,1,0) —22i —8V’~ 2 2/3 3/5
(1,1,0,0) —36i —4V’~ —12 2/5 1/10
(1,1,0,1) —31i ‘./~ —7 1/15 3/80
(1,1,1,0) —26i —4V’~ —2 1/15 1/10
(2,0,0,0) —40i 0 —16 2/3 0
(2,0,0,1) —35i 5~/~ —ii 2/3 7/16
(2,0,1,0) —30i 0 —6 0 0

Table 5
Momentaandconformalweights for the statesV1,(A1) (44) for p = 5, q = 4. Note that all
momentain the table have beenmultiplied by a factor ~ hL is the contribution of the
Liouville sectorto the total conformalweight hyjr.

(r1,r2,t1,t2) p2~’i~ s1~’i~ s2Vi~ hL hyjr

(0,0,0,0) —15i 0 0 0 7/16
(0,0,1,0) —20i 0 10 2/3 3/2
(1,0,0,0) —lii 0 —8 1/15 3/80
(1,0,1,0) —16i 0 2 1/15 3/5
(2,0,0,0) —7i 0 —16 2/3 3/80
(2,0,1,0) —12i 0 —6 0 1/10

and thereforeincreasesquadraticallywith p andq. The 18 states (A0) for
p = 5, q = 4 are presented in Table 4. The multiplicity of the Liouville
weightsis either 3 or 6, as explainedin section3.

The multiplicity of Virasoro weightsh~11. (r2, t2) is equalto

(p—2—r2)(q—2—t2)+ r2t2. (104)

The secondterm is dueto the possibility of making the transformation(41),
andcontributesonly if r2 and 12 areboth unequalto zero.

The screeningoperatorswhich changer1 and Ii (91) lift part of the degen-
eracy.The only remainingdoublemultiplicity occursfor the labels (0,2,0,i)
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and (0,1,0,1) for weight 3/80.This is lifted by the transformation(96).
Nowconsider the states (A1) at level 1, with r2 = t2 = 0. The total number

of statesis thereforeequalto (p — 2) (q — 2). For any (p, q) the multiplicity
of Virasoro weights is either 1 or 2, dependingon the possibility of making
the transformation(41). Multiplicity 2 occurs when r1 ~ 1 and l~~ q — 4.
The Virasoroweightwhich wasabsentat level0 occursfor r1 = 0, t1 = q — 3,
andthereforehasmultiplicity 1. In Table 5 we give the states (A1) at level 1.
Note that indeedthe Virasoro weight0 is absent,and that the new weight3/2
occurswith multiplicity 1. The only weightwith multiplicity 2 is 3/80. In the
previous section we showed that all states except the one with Virasoro weight
3/2 canbe obtainedby screeningoperatorsfrom level 0.

6. Discussion

So far we have done all calculations in terms of free scalar fields with
backgroundcharges,althoughwe restrictedthe Liouville momentato those
correspondingto a W3 minimal model. Let us now discusswhat happensif
we computethe cohomology in casethe Liouville sector is a W3 minimal
model. To be able to apply the results obtainedso far, we need a Felder
resolution describing the irreducible W3 representationsthat constitutethe
minimal model. This resolution has been conjectured in ref. [34]. If we
denotethe Fock spaceof a1 and a2, with momentagiven by (33) and (34),
by Fri,r2ti,t2, thenthe Felder resolution is

Q-2 Q-i Qo Qi

-~ F-i —~ Fo—~Fi--~... (105)

whereQ~is a sumof productsof the screeningoperatorsT,, and

F2i = ~ ~r1 + (2k1 —k2)p,r2+ (2k2—k—1 )p;t1,t2
k, +k2+ i =0

~ Fr2.~(2k1—k2)p,—4—rj—r2+ (2k2—k—1)p;t~,t2

k~+k2+i=i

~ F_~_r~—r2 + (2k~—k2)p,r~+ (2k2—k—1 )p;t~ ,12 (106)
k1 +k2 + i =

= ~ F_2_~1+(2k1 —k2)p,ri+r2+1+(2k2—k—1)p;ti,t2
k1+Ic2 + 1=0

~ Frj +r2+ 1 +(2k1—k2)p,—2—r2+ (2k2—k—1)p;t1,12

k~+ k2+ i =0

~ F_2_ri + (2ki —k2)p,—2—r2+ (2k2—k—l)p;’i ,t2 (107)
ki+k2+i=i



404 E. Bergshoeffet aL /NuclearPhysicsB 420 (1994)379—408

Collectively, we denote this complex by F~(ri, r2 t~, 12) The conjecture is
that the zeroth cohomology of (105) is isomorphic to an irreducible W3
representation,andall othercohomologiesvanish.We denotethis symbolically
by 1~~tI,t2 = H~(F~(r1,r2ti,t2)).An example, which is relevant to the
critical W3 string, is to take the (4,3) W3 minimal model. In this casetaking
the cohomology with respectto the BRST operatorin (105) should be the
sameas putting the fields a1 = a2 = 0 by hand.

For a generalminimal model, we are interestedin the cohomologyof Q~
acting on the tensorproductof the ghostHilbert spacelIp~,, the Fock space
fl~ and ~rl,r2;sI ,t2~Using (105) this cohomology is

(108)

which, undercertainassumptions,is the sameas

~ (109)

This demonstratesthat if theLiouville sectoris a W3 minimal model,we have
to drop the statesin the Q, cohomologythat canbe build out of other states
using the screening operators T~alone.However, statesobtainedby actingwith
the screening operators R~and 5, represent new statesin the noncritical W3

string. This is an important observation,as it showsthat the noncritical W3

stringdoesnot simply reduceto an ordinarynoncritical stringtheory.Actually,
onestartsto suspectthatgiven anyrealizationof a c = c~j~Virasoroalgebra,
it is alwayspossibleto build a generalizedFeldercomplexwhosecohomology
is precisely that of the associated Virasoro minimal model. In our casethis
generalized Felder complex contains the Fock spacesof ~2, a1,a2 and the ghost
Hilbert space l-Ip,,, and the generalized Felder BRSToperatoris composedof
Qi and the screeningoperatorsR~,5,, Tfl. It would be interestingto see if one
canmakethis conjecturemore precise.

Once we know the Q~cohomology, we can try to usethis knowledgeto
computethe Qo + Q, cohomology.Assumingthe spectralsequenceassociated
to the decompositionQ = Qo + Qi collapsesafterthesecondterm,the Qo + Qi
cohomologyis the sameas the Qo cohomologyof the Qi cohomology.Now
the Q, cohomologyis the direct sumof a setof Virasoro moduleswith respect
to the stress-energytensorTL + T~2+ ~ If we knowwhat type of Virasoro
modules these are, we can use the resultsfor the noncritical string to find the
Qo cohomologyon this space,sinceQo is simply the BRST operatorof an
ordinarynoncritical string theory.Finally,given anystatein the Qo cohomology
of the Q 1 cohomology,we can use a standard tic-tac-toe construction [17] to
construct representatives for the Qo + Qi cohomology.It is straightforwardto
apply this to the states we computedin previoussectionsto obtain someof
the known statesin the Qo + Qi cohomology.

Additional insight in the structureof the Qi and Qo cohomology can be
obtained by the group-theoretical interpretation of the decomposition Q =

Qo + Qi sketchedatthe endof section 1. Therewe explainedthat the Qi part
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of Q is relatedto a projectionon the spaceperpendicularto the first simple
root a ~. To seewhat this implies for the cohomology,we noticethat thereis
a natural ansatz [ii] for the Q cohomology,basedon comparisonwith the
ordinarynoncritical string, seealsorefs. [10,12]. Thisansatzreadsas follows:
representthe irreducibleW3 representationlabeledby (r1, r2 ti, 12) by two sl3
weightsA~ = r1A1 + r2A2 and A~ = t1A, + t2A2. As usual,a~are the
simplerootsandA, the fundamentalweightsof sl3. Assumethat we aredealing
with the (p,q) W3 minimal model, with gcd(p,q) = 1, so that cv =

The matter momentaPi ,P2 canbe combinedto one weight

AM = —i (~ai +P2A2~/~). (110)

Let W be theWeyl group, W the affine Weyl group andp half the sumof the
positive roots, p = a1 + a2. Then the ansatzreadsthat there is a quartetof
statesat ghostnumber 3 + 1~(tuj), 4 + 1~(ti’), 4 + l~(th) and 5 + l~(tI~), if
w E W and th eW existsuchthat

(111)

Here, 1~(t1) is the twisted length of tI’ E W [35]. If ti, = t,w0, with t~a
translationin the y direction, y E (Zai + Za2), and w0 eW, then

= wo(A~+p)—p +py. (112)

The level of this quartet of states is given by

/ ~ ~ / l\
1=fa ——-----+(cv——)p,a(w*A~—A~

2 a \, a) \

(113)

As anon-trivial check, it hasbeenverified [11] that this correctly reproduces
all statesin the critical W3 string [33], by putting ~ = ~ = 0 in
(111). The operatorsx andy of ref. [33] are related to particular translations
t7 in the root lattice. If we decompose(111) in a componentin the a1
direction and in the A2 direction, we get two equations. The A2 component
determinesP2, andshouldbe the equationthatdescribesthe Qi cohomology.
The other equation describes the usual noncritical Qo Virasoro cohomology.
A possible proof of (ill) might consist of separatelyproving its a1 and
A2 components,using resultsfor the Qi and Qo cohomology, although this
obscuresthe group theoreticalstructureof (ill). An important messageis
thatby projecting(111) onto cvi, which reducesthe cohomologybasically to
that of the noncritical Virasoro string, we loseinformation.This information
loss is accomplishedby the screeningoperatorsR~and5,, if we usethem to
identify states.
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Finally, let us summarizethe main resultsand ideas put forward in this
paper,generalizedto an arbitrary WN (p,q) minimal model coupledto WN
gravity. Denoteby QN the BRST operatorfor this theory.Then

— There is a seriesof BRST operatorsQ~,i = 2,. . . , N, with Q~C ... c
such that (Q~)2 = 0, and Q~involves only N — n + i matter fields, all
Liouville fields, andthe ghostssystemof spin n up to spin N.

— This decompositioninducesamapH~N—f H,~which is neithersurjective
norinjective. In theroot spaceof SlN, thisprojectionis given by a projection
on the fundamentalweightsA~_1.. . AN_i.

— The cohomology~ formsa (reducible)modulefor the W,~1algebra,and
thereis a mapH~,—~ 7-I~( W,~1), where the latterdenotestheHilbert space
of the (p,q) minimal model for the W,~1algebra. This map is surjective
but not injective.

— There exists an additional set of screeningoperatorsacting on H~.If
we identify the statesin H~jn that are obtainedby acting with thesenew
screeningoperators,thenthe previousmapturns into an isomorphism.This
yields a new kind of resolution,differentfrom the usual Felderone, for the
(p,q) minimal modelsof the W~_1algebra.

— The noncritical (p,q) W,~1string is a subsectorof the (p, q) noncritical
WN string. A correlation function in the noncritical WNstring contains
a correlation function of the noncritical W,~string, if one would use the
extra screening operators previously mentioned to cancel the ghost number
anomaliesof the ghostsof spin n . . . N. In this way one avoidsthe problem
of dealingwith the WN moduli. However, as we argued,it is not allowed
to usethesescreeningoperatorsin the WN string, and if the ghostnumber
anomaliesdo not matchcorrectly,one still needsan additionalintegration
over the WN moduli to computethesecorrelationfunctions.Thus,the W,~1
string doesnot solve the full WN string.

A moredetailedinvestigationof thesestatementswill be left to future work.
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