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Abstract

Closed super ( p + 2)-forms in target superspace are relevant for the construction of the
usual super p-brane actions. Here we construct closed super (p + 1)-forms on a world-
volume superspace. They are built out of the pull-backs of the Kalb—Ramond super
(p + 1)-form and its curvature. We propose a twistor-like formulation of a class of super
p-branes which crucially depends on the existence of these closed super (p + 1)-forms.

1. Introduction

The manifestly spacetime supersymmetric formulation of string theory a la
Green and Schwarz has a fermionic gauge symmetry, known as the x-symmetry [1].
This symmetry is of crucial importance for the model, but also gives rise to
formidable problems in its quantization. A few years ago a geometrical under-
standing of x-symmetry has emerged after the work of ref. [2] which also holds the
promise of better prospects for a quantization of the model [3]. It should be
emphasized, however, that a fully covariant quantization scheme has not yet
emerged.

In the simple situation of a superparticle in d = 3 dimensions, the theory was
reformulated in such a way that the x-symmetry can be interpreted as an N=1
local worldline supersymmetry [2]. The key to this formulation is the introduction
of twistor-like variables, A, which are commuting spinors arising as the superpart-
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ners of the target superspace fermionic coordinates *. The idea is essentially to
make the change of variable P* —>)\"y53/\5 such that the mass shell constraint
P*P, = 0 is satisfied, and that local supersymmetry is now formulated with the help
of the new variable A. This construction was later generalized to superparticles in
higher dimensions [6-10], type-I superstrings in d =3, 4, 6 [11] and d = 10 [12-14],
type-1I superstrings in d =3 [15] and supermembranes in d = 11 [16]. After these
works it became clear that there exists a closed super (p + 1)-form (p =0, 1, 2) on
the worldvolume superspace which plays a central role. This should be contrasted
with the crucial role the super (p + 2)-forms in target superspace play for the
existence of the usual super p-branes. In fact, the closed super ( p + 1)-form on the
worldvolume superspace is built out of the pull-backs of the super (p + 1)-form
and its curvature in target superspace.

The purpose of this paper is to investigate twistor-like formulations of other
super p-branes as well. Beyond the cases discussed above, there are four more
cases in the usual brane-scan: (p =3, d =6, 8),(p=4,d=9) and (p =5, d = 10),
where d is the dimension of the target spacetime. We construct closed super
(p + D-forms for (p=3, d=6) and (p =35, d =10), and using these forms we
propose an action for the twistor-like formulation of these theories, thereby
generalizing previous results mentioned above (whether the obstacles encountered
for the cases of (p =3, d =8) and (p =4, d = 9) are circumventable remains to be
seen). We hope that, among other things, this formulation will be useful in search
of the so far elusive heterotic 5-brane action.

The case of the superstring is somewhat special due to the extra worldsheet
Weyl symmetry. This case has been treated in great detail in ref. [13]. Here we
shall focus on super p-branes with p # 1, of which the massive superparticle
(p =0) is the simplest, and therefore we begin with its description. The massive
particle in d = 2 with worldline n» = 1 local supersymmetry has been considered in
refs. [17,18], and in d = 3 with n = 2, in ref. [18]. The massive particle action which
will be presented here has the maximal n = 8 local worldline supersymmetry.

2. The massive superparticle (p = 0)

Consider a superspace .# in d-dimensional spacetime with coordinates Z¥ =
(X2, 6#). Following the notation and conventions of ref. [13], we shall always use
underlined indices for target superspace quantities. Let us define the pulled-back
supervielbein as

E2=0ZYEgq, (2.1)

" The word twistor-like is used to avoid confusion with the supertwistor which consists of a multiplet
of fields forming a multiplet of superconformal groups which are known to exists in dimensions d < 6.
In fact such variables have been used previously in a twistor formulation of superparticles and
superstrings in d = 3, 4, 6 [4). A similar, but not quite the same, multiplet of variables was introduced in
ref. {5] to give a twistor-like formulation of these models in d = 10. The twistor-like formulation of ref.
[2], which we will be following in this paper, differs from both.
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where d_ denotes differentiation with respect to the worldline time variable. The
tangent space index splits as 4 = (g, a'r), where a =0, 1,...,d — 1 is the Lorentz
vector index, a=1,..., M labels the spinor irrep of the Lorentz group and
r=1,..., N labels the defining representation of the automorphism group of the
super-Poincaré algebra in d dimensions. For the sake of definiteness we shall
consider the cases listed in Table 1. In fact, they essentially correspond to the cases
suggested by the super p-brane theories. Furthermore, to simplify the notation, we
shall denote the pairs of indices a'r by a single index @, e.8.C . ;= C,, g; = C ypM

We next introduce the super one-form B =dz¥B,, whose tangent space
components are defined with the help of the inverse supervielbein as follows:
B, =EX¥B,,. The action for a massive superparticle, whose mass we shall set equal
to one, can then be written as

S = [dr(le 'ELEZ + je + EZB,), (2.2)

where e is the einbein on the worldline. This action is invariant under the
following x-symmetry transformations:

8ZMER =0, SZMEg=(1+T)"xy, bde=S5%,, (2.3)
where
1
_ aB a__ giFe af ,a
e = — SEH(I)*, S§*=4iE? +2E2(u%, + I'gv,) (2.4)

and u®, is an arbitrary I-fraceless vector-spinor superfield, v, is an arbitrary

Table 1

In this table d indicates the dimension of spacetime, M is the dimension of the spinor irrep of
SO(d —1, 1), N is the dimension of the defining representation of the automorphism group G of the
super-Poincaré algebra in d dimensions, C 4 is the charge conjugation matrix, I’ f/B’ are the Dirac
matrices (I'C) g and 7, is the invariant tensor of G. We often use the notation in which a pair of
indices (a'r) is Teplaced by a single index @. Furthermore, in d = 6, 10 the matrices I'y; are chirally
projected Dirac matrices and I'#8 are projected with opposite chirality. In this notation raising or
lowering of the spinor indices is not needed. The types of spinors are characterized according to the
reality and chirality conditions imposed on them, namely Majorana (M), pseudo-Majorana (PM),
symplectic Majorana (SM), Majorana—Weyl (MW) and symplectic Majorana-Weyl (SMW). Corre-
sponding quantities are listed for the super p-branes that arise in target space dimension of d

Target space data Worldvolume data (p > 2)
d (M,N) G Cap 1f, myType p (m,n) G Cyg Tig m.s Type
11 (32,1 - A S - M 2 (2,8 SO® A S S M
10 (16,1) - A S - MW 5 4,2 USp(2) S A A SMW
9 (16,1) - S N - PM 4 4,2 UsSp(2) S A A SM
8 (16,1) - S S - PM 3 (4,2 SOQ2) A N N M
7 (8,2 USp(2) S A A SM 2 2,9 SO4) A S S M
6 4,2 USp4) S A A SMW 3 4, 1) - A N - M
5 4,2 Usp(4) S A A SM 2 2,2 SO A S S M
4 4,01 SO A S S M 2 2,1 - A S - M
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spinor superfield and C,, is the charge conjugation matrix [19]. The invariance of
the action imposes the following torsion T and H = d B constraints:

T, = 20T Tuger =P, gy + Mocbis
H,z= —2iC,5, H,,=(I,)apt® +,,.

(2.5)

Notice that the RHS of the equation involving H «p Must be symmetric. Therefore,
d=5,8,9 are singled out in Table 1. Lower values of N can allow other
dimensions (e.g. d = 3) which can be easily incorporated to the present scheme by
ammending our notation slightly. The physical interpretation of the constraints
(2.5) requires a lengthy analysis of the Bianchi identities, which we hope to return
to elsewhere. The expected results is that they will be consistent with supergravity
theories, possibly coupled to a matter / Maxwell sector in appropriate dimensions.

For future use, we also write down the Nambu—-Goto form of the action, which
can be obtained from (2.2) by substituting the field equation of the einbein:

s = [dr[(E2E2)'* + EAB,)|. (2.6)

Our purpose now is to reformulate the above theory in such a way that the
k-symmetry is traded for worldline local supersymmetry. Since the k-symmetry
parameter has MN real components, and due to the usual argument that only half
of them count as true gauge transformation parameters, it follows that the
maximum worldline extended symmetry to expect is %MN. From Table 1, we see
that for d =9, 8, 5 we have n = 8. Thus let us elevate the worldline to a super
worldline .# with coordinates Z¥ = (r, 8*), u = 1,...,8. Following refs. [10,13],
we shall take .# to be superconformally flat. (We refer to refs. [10,13] for a
detailed geometrical description of such a space). In particular, the components of
the super torsion T, will be those of a flat n-extended worldline superspace:

T=-2i5 , 1,°=0, T, =0, T.7=0. 2.7
rs rs 0r 0 rs

N
The super worldline tangent space index A4 splits as A =0, r), r=1,...,8. As
shown in refs. [10,13], the superdiffeomorphisms which preserve these constraints
take the form

dr=A—120'D,A, 686, = —1iD,A, (2.8)

where A is an arbitrary superfield. These transformations contain the worldline
diffeomorphisms and the n = 8 local worldline supersymmetry. Under these trans-
formations, the covariant derivative D, transforms homogeneously.

The change of variable, which is sometimes referred to as the twistor constraint,
which is needed to pass from the x-symmetric formulation to the worldline
supersymmetric one, is as follows:

AT gpA8 =5, ES, (2.9)

where A% are commuting spinors referred to as the twistor variables and E§ =
Eg%9,,ZME},. The strategy is to arrange that this equation arises as the 6, =0
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component of an appropriate superfield equation. To this end, it is convenient to
define the matrix

E4=E}Y (3, ZM)Ef. (2.10)
Using these matrices, we can write the desired superfield equation as

(E.I'°E,) =6,,Ef§, (2.11)
with the identifications

Eflg_o=A%, Efls_o=ES. (2.12)

We use a notation in which the contracted o indices are suppressed, and the
parentheses in (2.11) indicate that such contractions are made. In flat superspace,
these identifications mean that 6%(z, 6) = 0%(7) + X2(7)6" + ..., ie. the twistor
variable A2 is the superpartner of the target superspace fermionic coordinate
0%(0).

From the identity (2.11) it follows that

(E,T'*E,) = §8,,(E,T°E,). (2.13)

This identity has arisen in the twistor formulation of string theory in d = 10, and
its group theoretic interpretation has been given in ref. [8]. Its dimensional
reduction from 4 = 10 down to d = 9,8, 5 yields, in addition to the corresponding
twistor identities of the form (2.13), other identities as well. In particular, the
following identity will arise:

(E,E,) + 8,(E,E,). (2.14)

Our task is to write an action in n = 8 worldline superspace which will
(a) give rise to the constraints (2.11) and (2.14), and,
(b) given the constraints (2.5) and (2.7), will possess a worldline n =8 local
supersymmetry.

To this end, we propose the following action which is the appropriate general-
ization for a massive superparticle of the action given for the massless superparti-
cle in refs. {10,13]:

S= fdf d*0| PIEZ + PM( By, — 9,0)]. (2.15)
where P;, PM™ and Q are Lagrange multiplier superfields and EM is defined by

By =0y,ZMB,, — HEYH,,, (2.16)

where H, = EAEEH ;, and Hp, are the tangent space components of the field
strength H=dB: o

H,p= (- 1)V EYEYH,,., (2.17)

where the indices in the exponent indicate grassmannian parities. Recall that
M=(r,n), A=, r), M=(m, LL) and A =(a, a). The indices of the bosonic
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(fermionic) coordinates have the parity 0 (1). This is consistent with the fact that
the twistor variables A7 are commuting variables.

The above form of B is engineered such that d B = 0 modulo the constraints
(2.5), (2.7), (2.11) and (2.14), as we shall show below. Note that the independent
worldline superfields are: P], PM, Q, E;; and Z¥. An important property of the
action (2.15) is that it is invariant under n = 8 local worldline supersymmetry, as
opposed to the k-symmetry. (The latter emerges as a special case of the former in
a certain gauge.) The supersymmetry of the second and third terms in the action is
manifest (everything transforms like supertensors), while the supersymmetry of the
first term is due to the fact that E? transforms homogeneously like D, does, and
this can be compensated by a suitable transformation of the Lagrange multiplier.

At this stage, to simplify matters, we shall set the inconsequential superfields
u¢, and v, in (2.5) equal to zero, and take the resulting constraints and their
Bianchi consequences to characterize the target space background. Thus we have
the constraints

T, = —2i(I%)ap, Tp' =0, T,z'=0, 218
H£= —2iC£, Ha_a=0. )

With Egs. (2.7) and (2.18) at hand, we can now analyze the content of the

superfield equations that follow from the action (2.15). Firstly, the equation of

motion for P; is simply

Ef=0. (2.19)

The supercovariant derivative of this equation in the spinorial direction evaluated
at 8" = 0 gives the desired constraint (2.11). To see this, it is useful first to evaluate
the curl of E4 defined in (2.10). We find

D4E§— (—1)?DyE§ = - T, °E§ + (- 1) " *PEREET, S, (2.20)

where the covariant derivative D, = EA'D,, rotates the indices 4 and A4 and the
tangent space components of the supertorsion Tyn" = dyES + QSPEy, —
(— DMN(M & N) are defined as follows:

TABC =(- I)A(B+N)E113VE,¥TMNCs (2.21)

and similarly for T, BQ. Taking the spinor—spinor component of (2.20) and using
the constraints (2.7), (2.14) and (2.19) we indeed obtain the twistor constraint
equation (2.11). The 8, =0 component of the equation gives (2.9) and one can
show that there is no further information coming from the higher order 6
expansion.

We next consider the equation of motion for the Lagrange multiplier P which
simply reads

Hyy =0y By — (—1)"8,B,, = 0. (2.22)
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This equation, together with (2.19), is at the center of the construction of the
model. Defining H=dB, and referring to its tangent space components, we obtain

Hyp= (- )" PEJESH 1~ 45i(~1) """V EYEY

<[ou(EYH,) - (~1) "oy (EL 1,
=0. (2.23)

where the (worldsheet) tangent space components H,, are related to the (target
space) tangent space components H ,, according to

Hyp=(-1)""*"PEEELH ;. (2.24)
We can write (2.23) as

Hyp=Hyp— ST H,, + %[ 83D H,, — (-1)*®83D,H,,| =0.  (2.25)
Taking the spinor—spinor component of this equation gives

H,, — 18, H,,=0. (2.26)

From (2.24) and (2.18), we see that H, = —2i(E E,), and hence (2.14) follows
from (2.26). Thus, we shall consider (2.14) to follow from the integrability condi-
tion of the PM equation of motion.

Next, we consider the time-spinor projection of (2.25). It yields,

H,, + iD,H,, = 0. (2.27)

This equation is precisely what one obtains by considering the Bianchi identity
D H,,—~ T H,,=0 and using Egs. (2.7) and (2.26). Therefore, (2.27) is satisfied
as well without implying new constraints. This concludes the proof that indeed
dB=0. As a consequence of this property, the action (2.15) has also the gauge
invariance

SPM =03, ANM, (2.28)

where AMV is an arbitrary graded antisymmetric superfield. In showing this
invariance we need to use (2.22), which in turn involves the use of the constraint
(2.19). This constraint follows as the field equation of the Lagrange multiplier P2
Such terms can be cancelled by an appropriate variation of the Lagrange multiplier
P2 Therefore, (2.28) is indeed a symmetry of the action.

Next, we consider the equation of motion for Q which reads

3, PM=0. (2.29)
This equation has the solution [13]

PM =g, SNM 1 g8 MT (2.30)



336 E. Bergshoeff, E. Sezgin / Nuclear Physics B422 (1994) 329-345

where T is a constant and 3™" is an arbitrary graded antisymmetric superfield.
Substituting P™ = 6%MT into the action (2.15) yields (setting 7 = 1)

S = [dr d% PJEZ + [dr B ,_,

= [dr &% PJES + [dr[0,2¥B,, - §E2(A,2,)]. (2.31)

To simplify this further, consider the following Dirac matrix identity which holds in
d=35,9:

I 572 5+ CoyCyy + cyclic(aBy) = 0. (2.32)

Multiplying this equation by ESEEEYE? and using the identities (2.13) and (2.14),
we find that (E, E,) = —8(EZE$)'/2. Evaluating this at § = 0 and substituting the
result into (2.31), we find

S = [dr % PJEL + [dr[0,2¥B) + EY(E$ED". (2.33)
Note that
ECES = EAES = E°, (2.34)

modulo the constraint (2.19). The effect of using the constraint (2.19) in the action
amounts to a redefinition of the Lagrangian multiplier P,. Therefore, using (2.34)
we can simplify the last term in the action and obtain

S= [dr d PJEE + [dr[0,Z4B, + (E2E2)"?]. (2.35)

We see now that the second integral in (2.35) agrees with the x-symmetric action
(2.6). Finally, following the same arguments in ref, [13], the component form of the
first term in the action can also be computed and one finds the following
component action:

S= /dT{pg[Eg — §(AI%,)] +0,Z4By, + (E2E2)'?}, (2.36)

where p, =(D"), P/ |4-0. With arguments parallel to those of refs. [10,13], we
expect that the Lagrange multiplier p, does not describe any new degree of
freedom, and the field equations of (2.6) and (2.36) are classically equivalent. In
the case of the massless superparticle, showing this equivalence requires the use of
an important abelian gauge symmetry [10]. A generalized version of this symmetry
is also present in the massive superparticle case. We find that the action (2.15) is
invariant under the gauge transformations

8P =D, (&I E,), 8PM= —EMD (£7°E,), (2.37)

where the parameter §§”(T, 9) is totally symmetric and traceless in its worldline
indices. Note that, unlike in the massless particle case, both of the lagrange
multipliers transform here. To show that this is an invariance of the action, we
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need to use the Dirac matrix identity (2.33) and the constraints (2.7) and (2.18),
which imply the target space equations of motion.

The rest of the paper will be devoted to a discussion of the twistor-like
formulation of super p-branes with p > 2.

3. Super p-branes (p > 2)

The k-symmetric formulation of super p-branes is well known [20-22]. Here, we
shall directly investigate the construction of a worldvolume locally supersymmetric
version along the lines of the massive superparticle case described in detail above.
The relevant target spaces are listed in Table 1. As before, the maximum number
of real components of the worldvolume supersymmetry parameter is SMN. This
translates into n = 2, 4, 8 supersymmetry in various cases as indicated in Table 1.

The coordinates of the worldvolume superspace .# are ZM =(X™, 6*), m =
L,...,p+1, u=1,...,2MN. The supervielbein is again denoted by Ej;} with the
tangent space indices splitting as A=(a, a'r), a=1,...,p+1, o =1,...,m,
r=1,...,n (see Table 1). For simplicity in notation, we will indicate the pair of
indices a'r by a single index «. Following ref. [16], we shall take .# to be
characterized by the following super torsion constraints:

TaBu = _2i(Fa)aB7 Tbaa = 0’ Tbca = 0’ TOIBY =0. (31)

See Table 1 for the symmetry properties of the gamma matrices. In particular note
that (I'*), 3 = (I'"*)ygm,,, where 7, is the invariant tensor of the automorphism
group G. Thus, 7, is the unit matrix 8,, when G is an orthogonal group, and the
constant antisymmetric matrix {2, when G is a symplectic group. From Table 1 we
see that n,, = —en,, and I,y = —€l},,, with e = —1 for orthogonal G and € =1
for symplectic G. Similar properties hold for the corresponding target space
quantities.

The coordinates of target superspace .# are ZY =(X2, 0*), m=0,...,d — 1,
w=1,..., MN (see Table 1). The supervielbein is Ef with the tangent space index
splitting as 4 =(a, @), a=0,...,d—1, a=1,..., MN. The index « is short for a
pair of indices (a'r), with &' =1,..., M, r=1,..., N. The superspace .# is also
endowed with a super (p + 1)-form B whose curvature is H=dB.

The «-symmetry of the usual super p-brane action imposes constraints on the
torsion and the (p + 2)-form H [21]. As before, arbitrary superfields «%, and v,
arise [21,19]. As we did in the particle case, we shall set these inconsequential
superfields equal to zero, and furthermore we shall fix the target space supergeom-

etry, in a manner which is consistent with «-symmetry, to be characterized by the
following constraints:

T = —2i(I%)ap, Tpa"=0, T,

[23

H%ci=l§*1(nrﬂc_p) Habl =0’ HaB-y Ay A :()a

ap’ aby  bp+y ary i Ap-i

(3.2)

where ¢=(-1D®"27=9/% and 7 is a matrix chosen such that nI', .

At Te

is
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symmetric. n = 1 except for the following cases: n =I';; for (p =3, d = 8), with
the definition I, ;=TI - I;_,, and n =1Xa, for (p =2, d=15). See the
table for further information on the notation and properties of the Dirac matrices
in diverse dimensions.

In d =11 dimensions the above constraints describe the d = 11 supergravity
theories. In other cases, a detailed analysis of the constraint remains to be carried
out. Presumably, they describe supergravity theories containing (p + 1)-form po-
tentials.

Having specified the geometry of the worldvolume and target superspaces, our
next goal is to write down an action for twistor-like super p-branes in analogy with
the action (2.15). Such an action has already been proposed in ref. [16] for the case
of the supermembrane. Here we generalize that result and propose the following
action for all super p-branes:

S:fdp+10_ dme PgaEg+PM1“.MP+1(B-M]~~'M[;+1—-aMlQMZ-"Mp+l)], (33)

where P27, PMi--Mpe1 and QM .M, are Lagrange multiplier superfields (the latter
two are graded totally antlsymmetrlc) and the (p + 1)-form B is given by

53 _f _ e;7+1(1‘4’1L4) M, M
Buy wy = (—1) Oyy,  ZMoo1 .0y ZMByy
i

PO ... Ej} H
2mn(p+1) Cp+1[ A’f Mt taBey...cp,

+cyclic(M1...Mp+1)]. (3.4)
The grading factor is given by
p
Ep+1(M7 M) = Z (Ml M )( n+1 + n+1)’ (35)
n=1

and the pull-back of H by
Hyy.ooyor= (S0P EQ EQUH,

LA A A Ay (3.6)
The field equation for P;* is
E2=0. (3.7)
The integrability condition for this equation yields the analog of the twistor
constraint (2.13) for super p-branes. It can be obtained from (2.20), (3.1), (3.2) and
takes the form

(E,T°E,) =T%E¢. (3.8)

Recall that I'j; = I}m,,. We shall use (3.7) and (3.8) repeatedly in the following
calculations.
The field equation for PM1---Mp+1 s

HM1~--Mp+2 = aMlBM2'~~Mp+2 + cyclic(M,... M, ,) =0. (3.10)
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Given B as in (3.4), it is nontrivial to show (3.10). To this end, we first refer to the
tangent space components of (3.10) which read

_ | r1aB [e1gc 1
HAI"'Ap+2_HA1"'Ap+2 (2m Fcl TA1A2 8142 6/{;-12HOIBC2 p+1

l( _1)p+1 pee
_— I Cpr1
* 2mn(p + ]_) Fcl 3 1 ‘ 5"{;;+1DA,,+2H(XBCZ...CP+1

+cyclic( A, ... 4,.,)

=0. (3.11)

Using (3.1), (3.2) and (3.7) we find that all the projections of H are identically
vanishing except H cr...c, and H,. \...cpy,r The vanishing of the former gives the
equation

1
Hope,...c, m g F:H ycr...c +cychc(cl...cp+1)]. (3.12)

We observe that the expression in the square brackets is totally antisymmetric in

(¢y...c,,1) and therefore it must be proportional to the Levi-Civita symbol

€1 %+1, Thus we can write

Hchl.‘.cp=€c1,‘.cp+l‘rof§+lQ) (3.13)

for some (. Introducing the notation
Hege, o, =€, catlag, (3.14)
we can write (3.13) as
=I/0. (3.15)

From the definition of the pull-back of H and using the constraints (3.2) we
have

Hege,..c, =i 'ES ... fs(EanFC_lmc_pEﬁ). (3.16)
Using this equation, we now have to show that (3.15) is satisfied. Our strategy is to
replace one of the ES factors in (3.16), by using the following identity which
follows from (3.8):

1
a_ __ _JaB a
Ef=—I; (E,TEp), (3.17)

and then making use of the super p-brane Dirac matric identity

g Ie o, )y =0. (3.18)

SCpo1
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In this fashion, after a little bit of algebra, from (3.16) we obtain

p(mn+4)Hy = (Hy T — His TS, )

a\? ¢ aryY
+2HS (I°) g+ 2HS (T]) . (3.19)

We now decompose Hgj as follows:

Hep =50 + H(Iy) op + Hig, (3.20)
with H? traceless in ab and

(r*)** g2, =0. (3.21)

Substituting the above parametrization of H; into (3.19), after some calculation,

we find that Q is not determined, and that the expansion coefficient H b is equal

to zero. This leaves us with the following equation for H,:
p(mn+4)He,=2H: (I°) 5+ 2Hs (1Y) (3.22)

«

We now rewrite the 2-gamma matrix in the second term on the RHS of (3.22) as
(LAY, =(I),Y (see Table 1 for the symmetry of gamma matrices). Next we write
the 2-gamma matrices in Eq. (3.22) as products of 1-gamma matrices, and multiply-
ing this equation with I'’7 we obtain

[ pOmn +2) + 2} (Ha,TF") = 2( HE (1) ) (7)) TE7). (3.23)
Contracting this equation with 7 we find
H2, TP =0. (3.24)

It is convenient now to distinguish between different values of (p, m, n) (see
table). We first consider the cases with p=2, i.e. (p, m, n)=(2, 2, 8), (2, 2, 4),
(2,2, 2) or (2,2, 1). At this point it is useful to write out explicitly I wp =1ig0,,
(o =1,2,r=1,...,n) where I, wg are the two by two Pauli matrices. Multiplying

(3.23) with 82 we find a stronger version of (3.24) to hold, namely: H2, ,, I/*< = 0.
Using this equation and using the fact that the Pauli matrices satisfy the relation

F;’B'(Fa)'y'a’ = (CB"y'Ca’ﬁ’ + Ca'y'C,B/B')’ (3.25)

it is not too difficult to show that I-?,fB = 0. From the decomposition (3.20) then
immediately follows the desired equation (3.15).

We next consider the cases (p, m, n) = (5, 4, 2) and (3, 4, 1) where the follow-
ing gamma matrix identity holds:

(r*)°rsm =y, (3.26)

This identity is related to the construction of superstrings in d = 6 and d = 4 target
space dimensions, respectively. Using this identity, the fact that I?By =H, ; and Eq.
(3.21), it is then not too difficult to show that again HS,; =0, and thus (3.15) is
indeed satisfied.
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This leaves us with the cases (p, m, n) =4, 4, 2) and (3, 4, 2). For these case
we can neither find a Fierz identity of the form (3.25) nor can we in the (4, 4, 2)
case apply the gamma matrix identity (3.26) since there are no superstrings in
d =5 target space dimensions. So far, we have not been able to proof the identity
(3.15) for these cases by other means. This completes our discussion of the identity
(3.15).

To complete the proof of (3.11) there remains to be shown that I—?acl,

vanishes. From (3.11) we obtain e

Ho o, = —_—Zmn(p e I“C‘;‘ﬁDyHmBchpH + cyclic(c¢...c ). (3.27)
Introducing the notation

Hyo =€ cppLar (3.28)
and using (3.12), we can write (3.27) as follows:

Q. =3i(-1)""'D,Q. (3.29)
To prove this equation, we consider the Bianchi identity D Hg,. . +
2ilpH ., ..., = 0. Using the notations (3.13) and (3.28), this can be written as

D HE, +3i(—1)""'1g,0  =0. (3.30)

Substituting (3.15) into this equation, we obtain the equation we wanted to prove,
namely (3.29). This completes the proof of Eq. (3.11). As a consequence, the action
(3.3) has the additional symmetry

8PM1---Mp+1=8N2NM1“-MP+I, (331)

where the parameter is completely graded antisymmetric.
Now we turn to the equation of motion for the Lagrange multiplier Q™1 >
given by

Gy P Mrs = 0, (3.32)

In analogy with (2.30), using the gauge invariance (3.31), the solution of the above
equation can be put into the form

PMyMoos g Temiempeighhh | 5Mpe197n, (3.33)

Substituting this into the action (3.3), we obtain (with T=1)

S= [d7*lo ™6 PRE+ Li(p+1)! [t io(det E2)Qly-q

p+1 my.. My M, M
+fd oe p1d,  ZMeri. .4, ZMB,

.. p+1|8=0.

(3.34)

P
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The last term coincides with the Wess—Zumino term of the usual super p-brane
action, but to show that the second term is the Nambu-Goto term requires quite a
bit of further work. To this end, it is convenient to introduce the following matrix:

¢
== P4 E%+[ , (3.35)
1/—g(p+1)! €1 e
where g = det g,,, with the definition
»=ESEL. (3.36)
Using (3.36) one can easily show that I'?> = 1. Next, we define the matrix
=EZI,, (3.37)

which satisfies
{Ta7 Tb}=2gab’ [Ta’F]=O’ Teyocp — _5_1601.. c+1FTCPHV_g' (338)

P *tp

Using (3.37) and (3.16) we can write (3.13) as
(Eanre, o Eg) = —ike., . J5%0. (3.39)

We _now derive an identity for (. Multiplying the cyclic identity (3.18) by
€1 o1 [ABLYOES -+ - E Soot (E Fn)"‘EﬂEVEB, and then using Egs. (3.8),
(335), (3.37), (3.38) and (3.36), we find that

2( _ 1)(P+1)§‘/_—g ecl...c‘p_lab
(mn)z( p+1)!
X(EnITE) TP (ED?,, . Eg), (3.40)

1.+ Cp—1
where 'Y, =T%, E?
The last term in this equatlon can be shown to vanish by Fierz rearranging the
expression €112 ['*B['Y% and then using the following identities (in fact, we
need only the trace of these identities in their symmetrized indices):

(ll);IB!(Ea'rT’Fﬂa)EB's) =0 (p = 27 n# la 2)7
(FSFc(b)aB(EaT’Fﬂa)czEﬁ) =0 (p = 3); (341)
ref o (Enls,,, . Eg)=0 (p=3,r=1,2p=5r=1).

Qr=det g+

The above 1dent1tles can be derived by multiplying the cyclic identity (3.18)
with I2fTY°E%,EE EY E}, or with TFA(I I, )°EZEZEEEYE}, or with
IePrye  E&2--- "B 1E"E“E’Ea, respectively, and then using Eq. (3.8).

Wlth the last term vanlshlng in (3.40), it follows that *

= (det g)"7. (3.42)

" We are grateful to M. Tonin for explaining to us the derivation of this identity for the supermem-
brane.
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Substitution of (3.42) into the action (3.35) yields the following simple result which
is a natural generalization of the massive superparticle case:

S = [d»*1g d™6 PRES + 4(p +1)! [dP™o( —det ESE®'?,_,

p+1 My mpyg M, M, I
+ [dotio € Oy 241 9, ZMBy gy |

, (3.43)

where we have used the constraint (3.7) in manipulations similar to (2.34).

In summary, our main result for super p-branes is the action (3.3) together with
the definitions (2.10) and (3.4) and the constraints (3.1) and (3.2). Elimination of
the Lagrange multiplier P™i---Ms+1 yields the result (3.43). Below we shall com-
ment on various aspects of these results and we shall discuss a number of open
problems.

4. Conclusions

We have found a twistor-like formulation of a class of super p-brane theories in
which «-symmetry is replaced by worldvolume local supersymmetry. The form of
the action (3.45) essentially coincides with the Nambu—-Goto form of the usual
super p-brane action. The difference is due to the Lagrange multiplier term. It is
not altogether clear whether the equations of motions are equivalent to those
which follow from the usual super p-brane action [21]. For this to happen, one
must show that there is a sufficiently powerful gauge symmetry of the action which
makes it possible to gauge away the Lagrange multiplier. We have shown that for
the massive superparticle such a gauge symmetry indeed exists (see Eq. (2.37)).
The existence of this gauge symmetry relies on the Dirac matrix identity (2.32). It
remains to be seen whether a similar gauge symmetry exists for other values of p.
We expect that the p-brane Dirac matrix identity (3.18) will play an essential role
in proving the existence of such a symmetry.

One of the essential ingredients of the twistor-like transform is the existence of
a closed super (p + 1)-form on the worldvolume superspace which is constructed
out of the pull-backs of a super (p + 1)-form and its curvature in target super-
space. We have shown that this closed (p + 1)-form exists for the cases (p, m, n)
=(2,2,8),(5,4,2),2,2,4),3,4,1), (2,2,2) and (2, 2, 1). The p = 2 cases were
already considered in ref. [16]. We believe that the existence of this closed
( p + 1)-form should have some interesting geometric interpretation, independent
of the role it plays in the twistor-like transform. For instance, it seems that it is
related to the light-like integrability principle [24,13]. We also note an interesting
relation between our work and that of refs. [25,26]. In both cases the tension
parameter is supposed to emerge as an integration constant of the equations of
motion. The p-form gauge potential occurring in ref. [26] seems to be closely
related to the p-form gauge potential QMI... M, occurring in our work. We hope
that a more precise understanding of all these connections may lead to a better
understanding of the theories in question.
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There are a number of open problems which deserve further investigation. To
name a few, what is the precise relation between our action and the usual one [21]
at the quantum level? What are the physical degrees of freedom described by this
action? Are the symmetries of the action anomaly-free? Can the quantization
problems of the usual x-symmetric action be avoided by the new action? Is the
theory finite?

Another open problem of considerable interest is how to couple the Yang—Mills
sector to the theory (such theories are usually referred to as heterotic p-brane
theories, because of their similarity to the heterotic string theory). It is tempting to
think that since in the twistor-like formulation the local worldvolume supersymme-
try is manifest in a superspace formalism, one may simply use the body of
knowledge available on superspace formulation of matter/ Yang-Mills systems
coupled to supergravity. However, there is an unusual property of the twistor-like
formulations, namely, the local supersymmetry does not seem to require kinetic
terms for the supergravity multiplet. On the other hand, in a supergravity plus
matter/ Yang—Mills system, typically one encounters these kinetic terms. Thus,
one may look for different than usual local supersymmetric invariants (using the
usual kind of tensor calculus when available) or consider the possibility of includ-
ing the supergravity kinetic terms in the spirit of ref. [28], where such terms do
arise in the context of finding effective actions for heterotic p-brane solitons. We
hope that the results of this paper will help in the eventual solution of this
problem.
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