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Abstract

Closedsuper(p + 2)-formsin targetsuperspaceare relevantfor the constructionof the
usual superp-brane actions. Here we construct closed super (p + 1)-forms on a world-
volumesuperspace.They are built out of the pull-backs of the KaIb—Ramond super
(p + 1)-form and its curvature. We proposea twistor-like formulation of a classof super
p-braneswhich crucially dependson the existenceof these closedsuper(p + 1)-forms.

1. Introduction

The manifestly spacetimesupersymmetricformulation of string theory a Ia
GreenandSchwarzhasa fermionic gaugesymmetry,known asthe K-symmetry[1].
This symmetry is of crucial importancefor the model, but also gives rise to
formidableproblems in its quantization.A few yearsago a geometricalunder-
standingof K-symmetryhasemergedafterthe work of ref. [2] which also holdsthe
promise of better prospectsfor a quantization of the model [3]. It should be
emphasized,however, that a fully covariant quantization schemehas not yet
emerged.

In the simple situation of a superparticlein d = 3 dimensions,the theorywas
reformulatedin such a way that the K-symmetrycan be interpretedasan N= 1
local woridline supersymmetiy[2]. The key to this formulation is the introduction
of twistor-like variables,A, which arecommutingspinorsarisingas the superpart-
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nersof the targetsuperspacefermionic coordinates~. The idea is essentially to
make the changeof variable P~— Aay~APsuch that the mass shell constraint

= 0 is satisfied,andthat local supersymmetryis now formulatedwith the help
of the newvariable A. This constructionwas later generalizedto superparticlesin
higherdimensions[6—101,type-I superstringsin d = 3, 4, 6 [11]andd = 10 [12—141,
type-IT superstringsin d = 3 [15] andsupermembranesin d = 11 [16]. After these
works it becameclear that thereexistsa closedsuper(p + 1)-form (p = 0, 1, 2) on
the worldvolumesuperspacewhich plays a centralrole. This shouldbe contrasted
with the crucial role the super(p + 2)-forms in targetsuperspaceplay for the
existenceof the usualsuperp-branes.In fact, theclosedsuper(p + 1)-form on the
worldvolume superspaceis built out of the pull-backsof the super(p + 1)-form
andits curvaturein targetsuperspace.

The purposeof this paper is to investigatetwistor-Iike formulationsof other
superp-branesas well. Beyond the casesdiscussedabove,thereare four more
casesin the usualbrane-scan:(p = 3, d = 6, 8), (p = 4, d = 9) and(p = 5, d = 10),
where d is the dimensionof the target spacetime.We constructclosed super
(p + 1)-forms for (p = 3, d = 6) and (p = 5, d = 10), and using theseforms we
proposean action for the twistor-like formulation of these theories, thereby
generalizingpreviousresultsmentionedabove(whetherthe obstaclesencountered
for the casesof (p = 3, d = 8) and(p = 4, d = 9) are circumventableremainsto be
seen).We hope that,amongother things,this formulation will be useful in search
of the so far elusiveheterotic5-braneaction.

The caseof the superstringis somewhatspecialdue to the extraworldsheet
Weyl symmetry. This casehas beentreatedin great detail in ref. [13]. Herewe
shall focus on super p-braneswith p * 1, of which the massive superparticle
(p = 0) is the simplest,andthereforewe begin with its description.The massive
particlein d = 2 with worldline n = 1 local supersymmetryhasbeenconsideredin
refs. [17,181,andin d = 3 with n = 2, in ref. [181.The massiveparticleactionwhich
will be presentedherehasthe maximal n = 8 local worldline supersymmetry.

2. The massivesuperparticle(p = 0)

Considera superspace.4’ in d-dimensionalspacetimewith coordinatesZN =

(X°’, Of’). Following the notationand conventionsof ref. [13], we shall alwaysuse
underlinedindicesfor targetsuperspacequantities.Let us define the pulled-back
supervielbeinas

E~=a~ZME~, (2.1)

The word twistor-like is usedto avoid confusionwith the supertwistorwhich consistsof a multiplet
of fields forming a multipletof superconformalgroupswhich are knownto existsin dimensionsd ~ 6.
In fact suchvariables have been used previously in a twistor formulation of superparticlesand
superstringsin d = 3, 4, 6 [4]. A similar, but not quite thesame,multipletofvariableswasintroducedin
ref. [5] to give a twistor-like formulationof thesemodels in d = 10. The twistor-like formulationof ref.
[21,which we will be following in this paper,differs from both.
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where ~ denotesdifferentiation with respectto the worldline time variable.The
tangentspaceindexsplits as A = (a, a’r), wherea = 0, 1,. . ., d — 1 is the Lorentz
vector index, a = 1,.. . , M labels the spinor irrep of the Lorentz group and
r = 1,. . ., N labelsthe defining representationof the automorphismgroupof the
super-Poincaréalgebra in d dimensions.For the sake of definitenesswe shall
considerthe caseslisted in Table1. In fact, theyessentiallycorrespondto the cases
suggestedby the superp-branetheories.Furthermore,to simplify thenotation,we
shalldenotethepairsof indicescr’r by a singleindex a,e.g.Caj~= ~ = C~~~g7)rs

We next introduce the super one-form B = d z MBM whose~á~gent i~a~è
componentsare definedwith the help of the inverse supervielbeinas follows:
BA = EfBM. The action for a massivesuperparticle,whosemasswe shall set equal
to one,canthenbe written as

S = fdT(~~e1EyaEya+ -~-e+E~BA), (2.2)

where e is the einbein on the worldline. This action is invariant under the
following K-symmetrytransformations:

5Z~EgJ= 0, 5ZME~J= (1 +F)~K~, 8e = SaKa, (2.3)

where

= — ~E~(Ta)~, 5e = 4iE~°+ 2E~(uaa+ (2.4)

and u°a is an arbitrary F-traceless vector-spinorsuperfield, Va jS an arbitrary

Table 1
In this table d indicatesthe dimensionof spacetime,M is the dimension of the spinor irrep of
S0(d — 1, 1), N is the dimensionof thedefining representationof the automorphismgroup G of the
super-Poincaréalgebrain d dimensions,Cag~is thechargeconjugationmatrix, F~, are the Dirac
matrices(F5C),~and ,~,~ is the invarianti~nsorof G. We often use thenotati6ifin which a pair of
indices (a’r) is i~lacedby a single index a. Furthermore,in d = 6, 10 the matrices are chirally
projectedDirac matricesand F~Jfare projected with opposite chirality. In this not~fionraising or
lowering of the spinor indices is not needed.The typesof spinorsare characterizedaccordingto the
reality and chirality conditions imposed on them, namely Majorana (M), pseudo-Majorana(PM),
symplectic Majorana(SM), Majorana—Weyl(MW) and symplectic Majorana—Weyl(SMW). Corre-
spondingquantitiesare listed for the superp-branesthat arise in targetspacedimensionof d

Targetspacedata Woridvolumedata(p ~ 2)

d (M, N) G C~ F~, i~ Type p (m, n) G C,~ F,~, ~ Type

11 (32, 1) — A S — M 2 (2, 8) S0(8) A S S M
10 (16, 1) — A S — MW 5 (4, 2) USp(2) S A A SMW

9 (16, 1) — S S — PM 4 (4, 2) USp(2) S A A SM
8 (16, 1) — S S — PM 3 (4, 2) S0(2) A S S M
7 (8, 2) USp(2) S A A SM 2 (2,4) S0(4) A S S M
6 (4, 2) USp(4) S A A SMW 3 (4, 1) — A S — M
5 (4, 2) Usp(4) S A A SM 2 (2,2) S0(2) A S S M
4 (4, 1) S0(4) A S S M 2 (2, 1) — A S — M
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spinor superfieldand~ is the chargeconjugationmatrix [19]. The invarianceof
the action imposesthe following torsion T and H = dB constraints:

= 2~(F~)a
1t,Ta(bC)= UP(bFC)pa+ ~7bcVa~

— (2.5)
H~= —2iC~, H~=(E~v~+u~.

Notice that theRHS of the equationinvolving Ha~mustbesymmetric.Therefore,
d = 5, 8, 9 are singled out in Table 1. Lowefvalues of N can allow other
dimensions(e.g. d = 3) which canbe easily incorporatedto the presentschemeby
ammendingour notation slightly. The physical interpretationof the constraints
(2.5) requiresa lengthy analysisof the Bianchi identities,which we hopeto return
to elsewhere.The expectedresults is that theywill be consistentwith supergravity
theories,possiblycoupledto a matter/Maxwell sectorin appropriatedimensions.

For future use,we also write down the Nambu—Gotoform of the action,which
canbe obtainedfrom (2.2) by substitutingthe field equationof the einbein:

S = fdr{(E~Efl”
2 + E~BA1. (2.6)

Our purposenow is to reformulate the above theory in such a way that the
K-symmetry is traded for worldline local supersymmetry.Since the K-symmetry
parameterhas MN realcomponents,anddue to the usualargumentthat only half
of them count as true gauge transformationparameters,it follows that the
maximumworldline extendedsymmetryto expectis ~MN. From Table 1, we see
that for d = 9, 8, 5 we haven = 8. Thus let us elevatethe worldline to a super
worldline ~4’ with coordinatesZM = (‘r, Op), p. = 1,. . . , 8. Following refs. [10,13],
we shall take ,-f to be superconformallyflat. (We refer to refs. [10,131for a
detailedgeometricaldescriptionof such a space).In particular,the componentsof
the supertorsion TA’B will bethoseof a flat n-extendedworldline superspace:

T°= ~ T
0r°=0, I~’=0, T~=O. (2.7)

The superworidline tangentspaceindex A splits as A = (0, r), r = 1,. . . , 8. As
shownin refs. [10,13], the superdiffeomorphismswhich preservetheseconstraints
takethe form

~r=A_~OTD~A, ~O~= ~ (2.8)

where A is an arbitrarysuperfield. Thesetransformationscontain the worldline
diffeomorphismsandthe n = 8 localworidline supersymmetry.Under thesetrans-
formations,the covariantderivativeDr transformshomogeneously.

The changeof variable,which is sometimesreferredto as the twistor constraint,
which is neededto pass from the K-symmetric formulation to the woridline
supersymmetricone, is as follows:

= ~rs E,~, (2.9)

where A~are commuting spinorsreferred to as the twistor variables and E8 =

E~aMZME~.The strategyis to arrangethat this equationarises as the °r =
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componentof an appropriatesuperfieldequation.To this end, it is convenientto
definethe matrix

—
7Mf~9 ~1M\E4 2 10

~A-~A~M’--’ I
Using thesematrices,we canwrite the desiredsuperfieldequationas

(E~F~E~)= 5rsE~, (2.11)

with the identifications

E~0_0=A~, E8180 =ES. (2.12)

We use a notation in which the contracteda indices are suppressed,and the
parenthesesin (2.11) indicate that suchcontractionsaremade. In flat superspace,
these identifications mean that Oe(r, 0) = O~(T)+ A~(r)O’ + ..., i.e. the twistor
variable A°~is the superpartnerof the targetsuperspacefermionic coordinate

From the identity (2.11) it follows that

(ErFaEs) = rs(Eq1Eq) (2.13)

This identity has arisenin the twistor formulation of string theory in d = 10, and
its group theoretic interpretation has been given in ref. [81. Its dimensional
reductionfrom d = 10 down to d = 9,8, 5 yields, in additionto the corresponding
twistor identities of the form (2.13), other identities as well. In particular, the
following identity will arise:

(E~E~)+ ~rs(EqEq). (2.14)

Our task is to write an action in n = 8 worldline superspacewhich will
(a) give rise to the constraints(2.11) and(2.14), and,
(b) given the constraints (2.5) and (2.7), will possessa worldline n = 8 local
supersymmetry.

To this end,we proposethe following actionwhich is the appropriategeneral-
ization for a massivesuperparticleof the actiongiven for the masslesssuperparti-
cle in refs. [10,131:

S = fdr d8O[P~E~+PM(BM — BMQ)1, (2.15)

wherep~,p’s” and Q areLagrangemultiplier superfieldsand BM is definedby

E
~ M 1~O

M — M M 161 M rr’

where Hrr = E~E~HBAand HBA are the tangentspacecomponentsof the field
strengthH = dB:

H — ‘— 1\
4t~E~’MH 2~ ) L MN’

where the indices in the exponentindicate grassmannianparities. Recall that
M = (T, p.), A = (0, r), M = (rn, ,~)and A = (a, a). The indices of the bosonic
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(fermionic) coordinateshavethe parity 0 (1). This is consistentwith the fact that
the twistor variablesA~are commutingvariables. -

The aboveform of B is engineeredsuch that dB = 0 modulo the constraints
(2.5), (2.7), (2.11) and(2.14), aswe shall show below. Note that the independent
woridline superfieldsare:P~,pM, Q, E~and ZN. An importantpropertyof the
action (2.15) is that it is invariant under n = 8 local worldline supersymmetry,as
opposedto the K-symmetry. (Thelatter emergesas a specialcaseof the former in
a certaingauge.)The supersymmetryof thesecondandthird termsin the action is
manifest(everythingtransformslike supertensors),while the supersymmetryof the
first term is due to the fact that E~transformshomogeneouslylike D~does,and
this can be compensatedby a suitable transformationof the Lagrangemultiplier.

At this stage,to simplify matters,we shall set the inconsequentialsuperfields
u°.~and Va in (2.5) equal to zero, and take the resulting constraintsand their
Bianchi co7i-isequencesto characterizethe targetspacebackground.Thus we have
the constraints

T~t= —2i(F~)~,T~~=0,T
013-~=0, 218

H~= ~2~Cajt~ Haa=0. ( . )

With Eqs. (2.7) and (2.18) at hand, we can now analyzethe contentof the
superfield equationsthat follow from the action (2.15). Firstly, the equationof
motion for P~is simply

E~=0. (2.19)

The supercovariantderivativeof this equationin the spinorial directionevaluated
at 0’. = 0 givesthe desiredconstraint(2.11). To seethis, it is useful first to evaluate
the curl of E~defined in (2.10). We find

DAE~_(_1)A
8DBE,~= TAB Ec (—1) E~EXTED, (2.20)

wherethe covariantderivativeDA = E,~’DM rotatesthe indices A and A andthe
tangent space components of the supertorsion TMNC= 3MEN + (MEND —

(~l)MN(M ~- N) aredefinedasfollows:

T C — — l\A(B+N)ENEMT C 2 21AB~ ) B A MN’

and similarly for TAB~.Taking the spinor—spinorcomponentof (2.20) and using
the constraints(2.7k(2.14) and (2.19) we indeed obtain the twistor constraint
equation(2.11). The Or = 0 componentof the equation gives (2.9) and one can
show that there is no further information coming from the higher order 0

expansion.
We next considertheequationof motion for theLagrangemultiplier pM which

simply reads

HMN=0MBN— (_1)M1\TaNBM=0. (2.22)
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This equation,togetherwith (2.19), is at the centerof the constructionof the
model.Defining H = dB, andreferringto its tangentspacecomponents,we obtain

— f l\A(B±B) Br-A 1 .~
1~A(B±N),.N M

AB~

1) B’-~A AB16~1) ‘—~B A

x [8M(ENHrr) — (— 1)MN3N(EZHrr)1

‘0. (2.23)

wherethe (worldsheet)tangentspacecomponentsHAB are related to the (target
space)tangentspacecomponentsH~ accordingto

H —~‘ 1 \A(B+B)EBEAH 2 24
AB~ ~) B A Am

We canwrite (2.23) as

HAB—HAB — ~~TAB°Hrr+ ~~[~DBHrr_(_1Y”t6~DAHrrj =0. (2.25)

Taking the spinor—spinorcomponentof this equationgives

H~
5— ~rsHqq = 0. (2.26)

From (2.24) and (2.18), we seethat H’.~= —2i(E’.E5), and hence(2.14) follows
from (2.26). Thus,we shall consider(2.14) to follow from the integrabilitycondi-
tion of the pM equationof motion.

Next, we considerthe time—spinorprojectionof (2.25). It yields,

H0’. + ~giDrHqq = 0. (2.27)

This equationis preciselywhat one obtainsby consideringthe Bianchi identity
D(rHSt) — T(rsHt)O= 0 andusingEqs.(2.7) and(2.26). Therefore,(2.27) is satisfied
as_wellwithout implying new constraints.This concludesthe proof that indeed
dB = 0. As a consequenceof this property, the action (2.15) has also the gauge
invariance

,~pM =

3NA, (2.28)

where flMN is an arbitrary graded antisymmetric superfield. In showing this
invariancewe needto use (2.22), which in turn involves the use of the constraint
(2.19). This constraintfollows as the field equationof the Lagrangemultiplier P,.”.
Suchtermscanbe cancelledby an appropriatevariationof the Lagrangemultiplier
~ Therefore,(2.28) is indeeda symmetryof the action.

Next, we considerthe equationof motionfor Q which reads

= 0. (2.29)

This equationhasthe solution [13]

pM = aN~ + 08~’T, (2.30)
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where T is a constantand ~MN is an arbitrarygradedantisymmetricsuperfield.
SubstitutingpM = 088~”Tinto the action (2.15) yields(setting T= 1)

S = fd~ d80 P,
2’E~+ fdr Ej~

= fdT d
80 Pa’.E~+ I dT[3TZMBM — ~E~(ArAr)]. (2.31)

To simplify this further, considerthe following Dirac matrix identitywhich holdsin
d = 5, 9:

+ ~ + cyclic(cr/3y) = 0. (2.32)

Multiplying this equationby E~°E~E~1E~andusingthe identities(2.13) and (2.14),
we find that (ErEr) = —8(E~E~)’~2.Evaluatingthis at 0 = 0 andsubstitutingthe
result into (2.31),we find

S = Jdr d80 P,E~+ fdT[oTZMBM + E~(E,~E~)’~21. (2.33)

Note that

E~E~= E~E~= E~, (2.34)

modulothe constraint(2.19). The effect of usingthe constraint(2.19) in the action
amountsto a redefinitionof the Lagrangianmultiplier P~.Therefore,using(2.34)
we cansimplify the last termin the action andobtain

= fir d80 ~ + fdr[8TZMBM+ (E~E~)”2]. (2.35)

We seenow that the secondintegral in (2.35) agreeswith the K-symmetricaction
(2.6).Finally, following the sameargumentsin ref. [13], the componentform of the
first term in the action can also be computed and one finds the following
componentaction:

S = fd~{pa[E8 — ~(ArF~Ar)1+3TZMBM+ (E~E~)’~2}, (2.36)

where Pa = (D7)rP~’ ~. With argumentsparallel to those of refs. [10,131,we

expect that the Lagrangemultiplier Pa does not describeany new degree of
freedom, and the field equationsof (2.6) and (2.36) are classicallyequivalent.In
the caseof the masslesssuperparticle,showingthis equivalencerequiresthe useof
an importantabeliangaugesymmetry[10]. A generalizedversion of this symmetry
is also presentin the massivesuperparticlecase.We find that the action(2.15) is
invariantunderthe gaugetransformations

,~P~r=Dq(4:~rsF~E
5), ~ _E7Dq(~~rsE5), (2.37)

where the parameter~~rS(~ 0) is totally symmetric and tracelessin its worldline
indices. Note that, unlike in the masslessparticle case,both of the lagrange
multipliers transformhere.To show that this is an invarianceof the action,we
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needto usethe Dirac matrix identity (2.33) and the constraints(2.7) and (2.18),
which imply the targetspaceequationsof motion.

The rest of the paper will be devoted to a discussionof the twistor-like
formulation of superp-braneswith p ~ 2.

3. Superp-branes(p ~ 2)

The K-symmetricformulation of superp-branesis well known[20—221.Here,we
shall directly investigatethe constructionof a worldvolumelocally supersymmetric
versionalong the linesof the massivesuperparticlecasedescribedin detailabove.
The relevanttargetspacesare listed in Table 1. As before,the maximum number
of real componentsof the worldvolume supersymmetryparameteris -~-MN.This
translatesinto n = 2, 4, 8 supersymmetryin various casesas indicatedin Table 1.

The coordinatesof the worldvolume superspace4’ are ZM = (X”’, 0’~),m =

1,. . . , p + 1, p. = 1,.. ., ~MN. The supervielbeinis againdenotedby E~with the
tangent space indices splitting as A = (a, a’r), a = 1,. . . , p + 1, a’ = 1,.. . ,

r = 1, . . . , n (see Table 1). For simplicity in notation, we will indicate the pair of
indices a’r by a single index a. Following ref. [16], we shall take .4’ to be
characterizedby the following supertorsion constraints:

Ta~a=_2j(pa)a~, Tba~=0~ TbCa=0, Taj~~=0. (3.1)

SeeTable 1 for thesymmetrypropertiesof the gammamatrices.In particular note
that (~‘~)ait= ~ where ij’.~ is the invariant tensorof the automorphism
groupG. Thus, ~1rs is the unit matrix ‘3rs when G is an orthogonalgroup,andthe
constantantisymmetricmatrix ~‘

2rswhenG is a symplecticgroup.FromTable 1 we
seethat i~’.~ = —�i~~’. and ~‘a’~’ = ~ with e = —1 for orthogonalG and e = 1
for symplectic G. Similar properties hold for the correspondingtarget space
quantities.

The coordinatesof targetsuperspace.4’ are Z~-’= (X~°,elf), rn = 0,. . . , d — 1,
p. = 1,. . ., MN (seeTable1). The supervielbeinis E~with the tangentspaceindex
~plittingas A=(a, a), a=0,...,d— 1, a= 1,...,MN. The index a is short for a
pair of indices (a’r), with a’ = 1,.. ., M, r = 1,. .., N. The superspace.4’ is also
endowedwith a super(p + 1)-form B whosecurvatureis H = dB.

The K-symmetryof the usual superp-braneaction imposesconstraintson the
torsion and the (p + 2)-form H [21]. As before, arbitrarysuperfieldsu°~and Va

arise [21,191.As we did in the particle case,we shall set theseinconsequential
superfieldsequalto zero,andfurthermorewe shall fix thetargetspacesupergeom-
etry, in a mannerwhich is consistentwith K-symmetry, to be characterizedby the
following constraints:

T’.,,,~t=—2i(F~)~,T~Jt=0, Ta~=0~

H~ ~=i’(s~F~ c)p~ H~ ~,=0, H~ ~ A=°’ (3.2)

where ~=(_
1) 2~j~5),’4 and i~ is a matrix chosen such that s~F~ is
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symmetric.~j = 1 exceptfor the following cases:~j = Fd+l for (p = 3, d = 8), with
the definition Td+l = f’

0F1 ... Fdl, and ~j = 1 X u2 for (p = 2, d = 5). Seethe
table for further information on the notationandpropertiesof the Dirac matrices
in diversedimensions.

In d = 11 dimensionsthe aboveconstraintsdescribethe d = 11 supergravity
theories.In othercases,a detailedanalysisof the constraintremainsto be carried
out. Presumably,they describesupergravitytheoriescontaining(p + 1)-form po-
tentials.

Having specified the geometryof the worldvolumeand targetsuperspaces,our
next goal is to write down anaction for twistor-like superp-branesin analogywith
the action (2.15).Suchan actionhas alreadybeenproposedin ref. [161for the case
of the supermembrane.Herewe generalizethat result and proposethe following
action for all superp-branes:

S=fd11O~dm~~0[PE~+PM1MP÷1(BM,M+,_dMlQM2M+,)], (3.3)

wherepar pM,... Mp+i andQM, M areLagrangemultiplier superfields(the latter
two are~raded totally antisymmetr~c)andthe (p + 1)-form B is given by

= — ~ ZMP+1 a ZMIBM1 .. . M~±1 ~. I M~+ M1 M1 M~~,- Fa$[E~+1...EJ~JH2mn(p+ 1) ‘.p+lt P+

1 aI3ci...c~

+cyclic(Mi...M~+i)~. (3.4)

The gradingfactor is given by

c~+
1(M, M) = n=1 (M1 + .. . M~)(M~±1+ ~), (3.5)

andthe pull-backof H by
HA A =(_1)EP+2~

4)EAp÷2...EA1HA A (3.6)
1- p+2 AT~i A~ i

The field equationfor P is

E~=0. (3.7)

The integrability condition for this equation yields the analog of the twistor
constraint(2.13) for superp-branes.It canbeobtainedfrom (2.20), (3.1),(3.2) and
takesthe form

1E r’~E \ =F~~ 38a f3J a/S a~

Recall that = F,,~/S~’qrs.We shall use(3.7) and(3.8) repeatedlyin the following
calculations.

The field equationfor pM,... M~+, is

HMM=3MBM
2M+cyclic(Ml...MP+2)=O. (3.10)
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Given .1~asin (3.4), it is nontrivial to show(3.10). To this end,we first refer to the
tangentspacecomponentsof (3.10) which read

HAA2=HA1A2— ~

i(—1)’~’
+ pa/Si . .. ~~‘DA H

2 mn(p + 1) C1 ~+1 ‘.‘+2 a/Sc2...cp+,

+cYclic(Ai...Ap+2))

= 0. (3.11)

Using (3.1), (3.2) and (3.7) we find that all the projections of H are identically
vanishingexcept Ha/SC,’. and ~ The vanishingof the former gives the
equation

Ha/SCi...Cp= mn(p+ 1)Fa$[P’.Hy~cC+cYclic(cl...cP+l)I. (3.12)

We observethat the expressionin the squarebracketsis totally antisymmetricin
(c1. . . c~~1)and therefore it must be proportional to the Levi—Civita symbol
E’.~1Cp+,. Thus we canwrite

Ha/SC, = ~ (3.13)

for some Q. Introducingthe notation

Ha/SCiC:=ECCaH:/S, (3.14)

we canwrite (3.13) as

H” pa 15a/S a/S

From the definition of the pull-back of H and using the constraints(3.2) we
have

~ CE/S). (3.16)

Using this equation,we now haveto show that (3.15) is satisfied.Our strategyis to
replace one of the E~factors in (3.16), by using the following identity which
follows from (3.8):

1

E~= ___F~a/S(E~F~E/S), (3.17)

andthenmakinguseof the superp-braneDirac matric identity

(3.18)
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In this fashion,aftera little bit of algebra,from (3.16) we obtain

mn + 4)Ha”/S = (H~FCY~F’.~~~— H.~PC~~T/S)

+ 2H~~(1~”)5/S+ 2H~y(Fc”)~a. (3.19)

We now decomposeHa”/S as follows:

Haa/S=Faa/SQ+Hab(Fb)a/S+Haa/S, (3.20)

with Hab tracelessin ab and

(pa)a/Sf2b~o (3.21)

Substitutingthe aboveparametrizationof Ha”/S into (3.19), after somecalculation,
we find that Q is not determined,andthat the expansioncoefficient Hab is equal
to zero.This leavesus with the following equationfor H~”/S:

p(mn + 4)I~/S= 2H,~
7(I~”)

7/S+ 2Hi~y(Fc”)5a. (3.22)

We now rewrite the 2-gammamatrix in the secondterm on the RHS of (3.22) as
(Tca)1~a = ~~c”~a~’(seeTable 1 for the symmetryof gammamatrices).Nextwe write
the 2-gammamatricesin Eq. (3.22) asproductsof 1-gammamatrices,andmultiply-
ing this equationwith F~ we obtain

[p(mn+2) ~ (3.23)

Contractingthis equationwith 5~we find

I4aF/SaO (3.24)

It is convenientnow to distinguishbetween different values of (p, m, n) (see
table). We first considerthe caseswith p = 2, i.e. (p, m, n) = (2, 2, 8), (2,2, 4),
(2, 2, 2) or (2, 2, 1). At this point it is useful to write out explicitly ~a”/S= ~a’/S”~rs

(a’ = 1, 2, r = 1,... , n) where F’.~/S~are the two by two Pauli matrices.Multiplying
(3.23)with we find astrongerversionof (3.24)to hold,namely: H,~’,r/S’SFf3”= 0.
Using this equationandusingthe fact that the Pauli matricessatisfy the relation

= ~ + Ca’y’C/S’~’), (3.25)

it is not too difficult to show that H,~= 0. From the decomposition(3.20) then
immediatelyfollows the desiredequation(3.15).

We next considerthe cases(p, m, n) = (5,4, 2) and(3, 4, 1) where the follow-
ing gammamatrix identity holds:

(pay5(Yp/S~i) = 0. (3.26)

Thisidentity is relatedto theconstructionof superstringsin d = 6 and d = 4 target
spacedimensions,respectively.Usingthis identity, the fact that H/Sr= H

5/S andEq.
(3.21), it is then not too difficult to show that again H~”/S= 0, and thus (3.15) is
indeedsatisfied.
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This leavesuswith the cases(p, m, n) = (4, 4, 2) and (3, 4, 2). For thesecase
we canneitherfind a Fierz identity of the form (3.25) nor canwe in the (4, 4, 2)
case apply the gammamatrix identity (3.26) since there are no superstringsin
d = 5 targetspacedimensions.So far, we havenot beenableto proof the identity
(3.15)for thesecasesby othermeans.This completesour discussionof the identity
(3.15).

To completethe proof of (3.11) there remains to be shown that HaC,c,

vanishes.From (3.11)we obtain

H5~’.= 2(1)FCIDYHa/SC2Cl+cYclic(cl...cP+l). (3.27)

Introducingthe notation

Haci...cp+, := Ec,...cp+iQa’ (3.28)

andusing(3.12),we can write (3.27)as follows:

Qa = ~i( — 1)~~’DaQ. (3.29)

To prove this equation, we consider the Bianchi identity D(aH/Sy)Cl c~,+

2iF~/SH5)’.’.,’. = 0. Using the notations(3.13) and (3.28), this can be written as

D(aHY) + 3i( — 1)~~[~/SQ5)= 0. (3.30)

Substituting(3.15) into this equation,we obtain the equationwe wantedto prove,
namely(3.29).This completesthe proofof Eq. (3.11). As a consequence,the action
(3.3) hasthe additional symmetry

~pM1...Mp±1aN~NM1...Mp*1 (3.31)

where the parameteris completelygradedantisymmetric.
Now we turn to the equationof motion for the Lagrangemultiplier QM1 M~

givenby

aMp lp*i=0. (3.32)

In analogywith (2.30),usingthe gaugeinvariance(3.31), the solution of the above
equationcanbe put into the form

pM,...Mp+,+T~m,..mp+,6Ml~Mp÷lOrnn (3.33)

Substitutingthis into the action (3.3), we obtain (with T = 1)

S=fdP~1cr dmfoP:E~+~i(p+1)!fdP+hff(det E~,)Q~~

+Jd1~÷1o.EmImP±amp+,Z~i...amiZN1B~~ (3.34)
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The last term coincideswith the Wess—Zuminotermof theusualsuperp-brane
action,but to showthat the secondterm is theNambu—Gototermrequiresquite a
bit of furtherwork. To this end,it is convenientto introducethe following matrix:

F = EC1.• ~ Eap+IF (3 35)

~ (p + 1)! C— a a’

where g = det gab, with the definition

~ (3.36)

Using (3.36) onecan easily showthat F2 = 1. Next,we definethe matrix

T~=ET~, (3.37)

which satisfies

(Ta, Tb) = 2gaa, [Ta, F] = 0, T~, . •‘.,, = — ~ ..cp+,T’T’~”’’ ~ (3.38)

Using (3.37) and(3.16)we canwrite (3.13) as

(Ea’IlTCi...CpE/S) = ~ (3.39)

We now derive an identity for Q. Multiplying the cyclic identity (3.18) by
E’.1Cp_lFaa/Sp,~E~ Ej(EaFl)eE~EylEI, and then using Eqs. (3.8),
(3.35), (3.37), (3.38)and (3.3~),we find that

2 2( — 1)(0~~ EC1’.p_1~
Q =detg+ 2

(mn) (p+l)!

x (Ea~FF~E
8)F:/SFJ~(EYI~F-”CIClE/S), (3.40)

where ~ =F~.. E~
The last term in this equationcanbe shown to vanishby Fierzrearrangingthe

expression�d,Cp,abF~~/SF~andthen usingthe following identities (in fact, we
needonly the traceof theseidentities in their symmetrizedindices):

F~’/S’(Ea’r1lF’._ia)E$’S) = 0 (p = 2; n * 1, 2),

(FSFC(b)~(Ea71F’._1a)CE/S)= 0 (p = 3), (3.41)

F~1,I~..(b,(Ea~1FC_1a)C2...CpIE/S)= 0 (p = 3, r = 1, 2; p = 5, r = 1).

The above identities can be derived by multiplying the cyclic identity (3.18)
with ~ or with ~ or with

~ b,E~ E~JE~E~_/SE!E~,respectively,andthenusingEq. (3.8).

With the last tern~’anishingin (3.40), it follows that ~
Q = (det g)”

2. (3.42)

We are gratefulto M. Tonin for explainingto us the derivation of this identity for thesupermem-

brane.
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Substitutionof (3.42) into the action(3.35)yields the following simpleresult which
is a naturalgeneralizationof the massivesuperparticlecase:

Sfd”~1o. dm1~oP~Eg+~(p+1)!fdP+1u(_detE~E,~)~”
2~

00

+ fdp+1UEm,mp+,3 zMp+i...a ZMIBM M (3.43)j m~+i ni, ~•• .,,+, o=0

wherewe haveusedthe constraint(3.7) in manipulationssimilar to (2.34).
In summary,our mainresult for superp-branesis the action(3.3) togetherwith

the definitions(2.10) and (3.4) and the constraints(3.1) and(3.2). Elimination of
the Lagrangemultiplier pMi . . . ~ yields the result (3.43). Below we shall com-
ment on various aspectsof theseresults andwe shall discussa numberof open
problems.

4. Conclusions

We havefound a twistor-like formulation of a classof superp-branetheoriesin
which K-symmetryis replacedby worldvolume local supersymmetry.The form of
the action (3.45) essentiallycoincideswith the Nambu—Gotoform of the usual
superp-braneaction.The differenceis due to the Lagrangemultiplier term. It is
not altogetherclear whether the equationsof motions are equivalentto those
which follow from the usual superp-braneaction [21]. For this to happen,one
mustshowthat thereis a sufficiently powerful gaugesymmetryof the actionwhich
makesit possibleto gaugeaway the Lagrangemultiplier. We haveshownthat for
the massivesuperparticlesuch a gaugesymmetryindeedexists (see Eq. (2.37)).
The existenceof this gaugesymmetryrelieson the Dirac matrix identity (2.32). It
remainsto be seenwhethera similar gaugesymmetryexists for othervaluesof p.
We expectthat the p-braneDirac matrix identity (3.18)will play an essentialrole
in proving the existenceof such a symmetry.

Oneof the essentialingredientsof the twistor-like transformis the existenceof
a closedsuper(p + 1)-form on the woridvolume superspacewhich is constructed
out of the pull-backsof a super(p + 1)-form and its curvaturein targetsuper-
space.We haveshown that this closed(p + 1)-form existsfor the cases(p, m, n)
= (2, 2, 8), (5, 4, 2), (2, 2, 4), (3, 4, 1), (2, 2, 2) and(2, 2, 1). The p = 2 caseswere
already consideredin ref. [16]. We believe that the existence of this closed
(p + 1)-form shouldhavesomeinterestinggeometricinterpretation,independent
of the role it plays in the twistor-like transform.For instance,it seemsthat it is
related to the light-like integrabilityprinciple [24,13].We also note an interesting
relation betweenour work and that of refs. [25,26]. In both casesthe tension
parameteris supposedto emergeas an integration constantof the equationsof
motion. The p-form gaugepotential occurring in ref. [26] seemsto be closely
related to the p-form gaugepotential QM, . . . M~ occurring in our work. We hope
that a morepreciseunderstandingof all theseconnectionsmay lead to a better
understandingof the theoriesin question.
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Thereare a numberof openproblemswhich deservefurther investigation.To
namea few, what is thepreciserelationbetweenour actionandthe usualone[211
at the quantumlevel?What are the physical degreesof freedomdescribedby this
action?Are the symmetriesof the action anomaly-free?Can the quantization
problemsof the usual K-symmetricaction be avoidedby the new action?Is the
theory finite?

Anotheropenproblemof considerableinterest is how to couplethe Yang—Mills
sectorto the theory(such theoriesare usually referred to as heterotic p-brane
theories,becauseof their similarity to the heteroticstringtheory). It is temptingto
think that since in the twistor-like formulation the local worldvolumesupersymme-
try is manifest in a superspaceformalism, one may simply use the body of
knowledgeavailable on superspaceformulation of matter/Yang—Mills systems
coupledto supergravity.However,thereis an unusualpropertyof the twistor-like
formulations, namely, the local supersymmetrydoesnot seemto require kinetic
terms for the supergravitymultiplet. On the other hand, in a supergravityplus
matter/Yang—Mills system, typically one encountersthesekinetic terms. Thus,
one may look for different than usual local supersymmetricinvariants(using the
usualkind of tensorcalculuswhen available)or considerthe possibility of includ-
ing the supergravitykinetic terms in the spirit of ref. [281,where such terms do
arise in the contextof findingeffective actionsfor heteroticp-branesolitons.We
hope that the results of this paper will help in the eventualsolution of this
problem.
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