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1. Introduction

Supersymmetric sigma models in 2+1 dimensions with a Kähler target space gener-

ally admit static soliton-like ‘lump’ solutions with energy E = |T |, where T is the
topological charge

∫
ω obtained by integrating the Kähler 2-form ω over the image

in target space of the 2-dimensional space (see e.g. [1]). If the Kähler target space

admits a holomorphic Killing vector field k then one can perform a ‘Scherk-Schwarz’

(SS) dimensional reduction to arrive at a ‘massive’ supersymmetric sigma model

in 1+1 dimensions with a scalar potential V ∼ k2. This theory admits ‘Q-kink’
solutions [2, 3] with an energy

E =
√
Q20 +Q

2 , (1.1)

where Q0 is the Noether charge associated with k, and Q =
∫
ikω, the integral

being taken over the image in target space of the 1-dimensional space. Because k is

holomorphic the 1-form ikω is closed, so Q is a topological charge. When Q0 6= 0
the Q-kink is a time-dependent solution of the sigma-model field equations. When

Q0 = 0 it becomes a standard static kink solution.

A 2+1 dimensional supersymmetric sigma model with a Kähler target space has

an N=2 supersymmetry and the topological charge T appears as a central charge in

the supersymmetry algebra. This implies the bound E ≥ |T |, which is saturated by
the sigma-model lumps. Similarly, 1+1 dimensional massive supersymmetric sigma

models obtained by SS dimensional reduction actually have (2,2) supersymmetry,

and both Q0 and Q appear in the supersymmetry algebra as central charges. This

implies the bound E ≥
√
Q20 +Q

2, which is saturated by the Q-kinks.
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If the Kähler target space is actually hyper-Kähler then the topological charge

T of the 2+1 dimensional model is just one of a triplet of topological charges

T =
∫
ω , (1.2)

where ω is the triplet of Kähler 2-forms. The number of supersymmetries is also

doubled to N=4, and the triplet of charges T appear as central charges in the N=4

supersymmetry algebra. If the hyper-Kähler space admits a tri-holomorphic Killing

vector field k then SS dimensional reduction along its orbits yields a (4,4) supersym-

metric massive sigma model in 1+1 dimensions, again with V ∼ k2. The topological
charge Q is now one of a triplet of topological charges

Q =
∫
ikω , (1.3)

and the four charges (Q0,Q) appear as central charges in the (4,4) supersymmetry

algebra. This implies the bound

E ≥
√
Q20 +Q ·Q , (1.4)

which is saturated by the (hyper-Kähler) Q-kinks.

There is a close analogy here to N=2 and N=4 supersymmetric Yang-Mills (SYM)

theories in 4+1 and 3+1 dimensions [2, 4]. The lumps of the 2+1 dimensional sigma

model are similar to the instantonic solitons of the 4+1 SYM theory; for example,

they have no fixed scale. The Q-kinks of the 1+1 dimensional sigma model are

similar to the dyons of 3+1 SYM theory; for example the sigma model has a vacuum

angle and Q-kinks generally have fractional Q0-charge, just as SYM dyons generally

carry fractional electric charge for nonzero vacuum angle. The scale introduced by

the potential term in the 1+1 dimensional sigma model is analogous to the scale

introduced by the Higgs mechanism in the SYM case.

The N=2 and N=4 SYM theories have interpretations in IIB string theory as

effective field theories describing the fluctuations of D-branes around some ‘vacu-

um’ brane configuration. The dyon solutions are the field theory realization of (p,q)

strings, or string webs, stretched between the D-branes. A feature of the brane inter-

pretation of the SYM theories is that in a limit in which the individual branes become

widely separated the dyon solutions must transmute into a solution of the equations

governing the dynamics of a single brane. This is an Abelian SYM theory, although

not of a conventional type because the brane action involves higher derivative inter-

actions. These ‘DBI solitons’, were found in [5, 6]; the supersymmetric solutions are

worldvolume ‘spikes’ of infinite total energy per unit length equal to the tension of a

(p,q) string. Solutions with finite total energy can be found by considering the DBI

action in an appropriate supergravity background [7].

These considerations motivate us to seek an interpretation of sigma-model lumps

and Q-kinks as solitons on the worldvolume of the eleven-dimensional supermem-

brane [8], otherwise known as the M2-brane. An M2-brane in a vacuum background
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has supersymmetric, but infinite energy, vortex solutions that can be interpreted as

intersections with other M2-branes [5, 6, 9]. In a non-vacuum Kähler background we

may have the option of wrapping the ‘other’ M2-branes on finite area holomorphic

2-cycles of the background. These are finite energy solitons that provide the brane

realization of Kähler sigma-model lumps. We shall concentrate here on the hyper-

Kähler case; specifically, we shall consider the supermembrane in a background for

which the 4-form field-strength vanishes and the 11-metric takes the form

ds2 = ds2(E(1,5) × S1) + ds24 , (1.5)

where ds24 is the Kaluza-Klein (KK) monopole metric

ds24 = V
−1 (dϕ−A)2 + V ds2(E3) . (1.6)

The 1-form A on E3 satisfies ∇V = ∇ ×A, which implies that V is harmonic on
E
3. The vector field ∂/∂ϕ is Killing and triholomorphic. We take it to be the vector

field k of the previous discussion, i.e.

k =
∂

∂ϕ
. (1.7)

The orbits of k are Kaluza-Klein (KK) circles which shrink to points at singularities

of V . Let X be Cartesian coordinates on E3 and X0 a constant 3-vector from the

origin. The simplest choice of V that serves our purposes is

V = 1 +
1

|X+X0| +
1

|X−X0| , (1.8)

which describes a two-centre KK-monopole of M-theory.

Upon reduction on orbits of k, the KK monopole acquires an interpretation as

two parallel IIA D6-branes separated in E3 by the constant vector 2X0. The two

centres of the metric at X = ±X0 can be considered as the poles of a 2-sphere
parametrized by ϕ and the distance from one D6-brane along the line joining the

two of them. A membrane wrapped on this 2-sphere has a IIA interpretation as a

string stretched between the two D6-branes [10]. Now consider a D2-brane parallel

to the two D6-branes. In general it will not be colinear in E3 with the two D6-branes

and so will not intersect the string joining them. However, we may move it until it

does intersect. From the D=11 perspective we then have a pointlike intersection of

two M2-branes, one an infinite planar one and the other one wrapped on a finite area

2-cycle of the background. The singular intersection point may be desingularized so

that we have a single M2-brane with a non-singular lump soliton on it of some finite

size L. From the IIA perspective this corresponds to separating the points at which

the strings from each of the two D6-branes meet the D2-brane.
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In the case of the lump, the vacuum is an infinite planar M2-brane. To find a

brane interpretation of the hyper-Kähler Q-kink we will need to wrap this M2-brane

on some one-cycle of the background space. This corresponds to SS reduction on

some Killing vector field with closed orbits. The dimensional reduction will pre-

serve all supersymmetries only if this Killing vector field is triholomorphic. The

Killing vector field k of (1.7) is therefore an obvious candidate, but SS reduction

on orbits of k does not yield a potential V ∼ k2 as one might have expected from
our earlier summary of the results of SS reduction in sigma models. Rather, it

yields a non-vanishing, and non-uniform, IIA string tension. The non-uniformity

of the tension creates an attractive force between the string and the D6-brane but

on reaching the D6-brane core the string can simply dissolve into Born-Infeld flux.

To get the potential term in the dimensionally reduced action one must suppose

that the 11-metric (1.5) has another tri-holomorphic Killing vector field with closed

orbits. We may take this to be a vector field generating the U(1) isometry of the

S1 factor in this metric. Let us call this vector field `. Dimensional reduction on

orbits of k + ` leads to a bound state of the IIA string discussed above with a D2-

brane wrapped on orbits of `. This bound state is itself bound to the D6-brane.

The effective string action is the desired brane version of the massive hyper-Kähler

sigma model, admitting Q-kink solutions. T-dualizing in the (compact) ` direction

yields a (1,1) IIB string bound to a D5-brane. As we shall see, the Q-kink solu-

tion can then be interpreted as a (1,1) string that migrates from one D5-brane to

another.

Although lump and Q-kink solutions are known to minimise the energy of the

relevant sigma model it does not immediately follow that they minimise the en-

ergy on the M2-brane because of the nonlinearities of the Dirac membrane ac-

tion. By means of the brane version of the Bogomol’nyi argument [9], we show

that the energy of the M2-brane is indeed minimised by these solutions. We con-

sider the lumps first, as these are static, and then generalize to the Q-kinks. Both

configurations are then shown to preserve some fraction of the worldvolume su-

persymmetry. Again, this is known in the sigma-model case, but the supersym-

metry transformations of the supermembrane are different. They can be deduced

from a combination of the target space supersymmetry and the kappa-symmetry

of the supermembrane, and this leads to a simple condition for a worldvolume

field configuration to preserve some fraction of supersymmetry [11, 12, 13]. For

a vacuum background this condition is easily interpreted as a constraint on the

32 independent constant Killing spinors of the background, but its interpretation

is less direct in a non-vacuum background in which the Killing spinors are not

constant and span a space of lower dimension. Here we present a more geomet-

rical derivation of the conditions for preservation of supersymmetry and we dis-

cuss some subtleties of the non-vacuum case that have been passed over previ-

ously.
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2. Energy bounds

Our starting point for finding soliton solutions as minimum energy configurations of

the supermembrane will be its Hamiltonian formulation [14]. Let ξi = (t, σa) be the

worldvolume coordinates, with σa the worldspace coordinates, and let Xm be the

D=11 spacetime coordinates. The supermembrane Lagrangian, omitting fermions,

can then be written as

L = PmẊm − saPm∂aXm − 1
2
v
[
P 2 + det(gab)

]
, (2.1)

where

gab = ∂aX
m∂bX

ngmn (2.2)

is the induced worldspace metric, Pm is the 11-momentum conjugate to X
m, and sa

and v are Lagrange multipliers. Let Xm = (Y i, XI) (i = 0, 1, 2) so that

ds211 = dY
idY jηij + dX

IdXJgIJ , (2.3)

where η is the 3-dimensional Minkowski metric. We make the gauge choice Y i(ξ) =

ξi. This implies that

gab = ηab + ∂aX
I∂bX

JgIJ . (2.4)

It also implies that

Pm =
(
−ε− 1,−PI∂aXI , PI

)
, (2.5)

where ε is the energy density relative to the brane vacuum (which is taken to have

unit tension). The Hamiltonian constraint imposed by v can be solved for ε

(ε+ 1)2 = 1 +∇XI · ∇XJgIJ + (gIJ +∇XI · ∇XJ)PIPJ
+
1

2
(∇XI ×∇XJ)(∇XK ×∇XL)gIKgJL , (2.6)

where we have used standard 2D vector calculus notation for worldspace derivatives.

This expression differs in several respects from the corresponding expression for the

sigma-model energy density. Firstly, the supermembrane expression is quadratic in

ε; this is because the sigma-model approximation is a kind of non-relativistic ap-

proximation to the supermembrane (they differ in the same way that the energies of

a relativistic and non-relativistic particles differ). Secondly, the supermembrane ex-

pression involves terms quartic in derivatives that are absent in the sigma-model case.

2.1 Lumps

We now aim to rewrite the above expression for the energy density in the form

(ε+ 1)2 =
(
1± 1
2
∇XI ×∇XJωIJ

)2
+

+
1

2

(
∇XI ± ∗∇XKIKI

) (
∇XJ ± ∗∇XLILJ

)
gIJ +

+
1

4

6∑
r=1

(
∇XI ×∇XJΩ(r)IJ

)2
, (2.7)

5
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where we have set PI = 0 and ∗∇ = (∂2,−∂1) if ∇ = (∂1, ∂2). We assume that IIJ is
a complex structure, that the 8-metric gIJ is Hermitian with respect to it and that

ωIJ = II
KgKJ is the corresponding closed Kähler 2-form. For the moment we leave

unspecified the six 2-forms Ω(r). These conditions are already sufficient to ensure

that all but the quartic terms in ∇X of (2.6) are reproduced. To reproduce the
quartic terms too we require that

XIJXKL
[
ωIJωKL +

6∑
r=1

Ω
(r)
IJΩ

(r)
KL − 2gKIgJL

]
= 0 , (2.8)

where

XIJ ≡ ∇XI ×∇XJ . (2.9)

Note that XIJ is an antisymmetric 8 × 8 matrix. If none of its 4 skew-eigenvalues
vanish, then (2.8) implies that

ωI(JωK)L +
6∑
r=1

Ω
(r)
I(JΩ

(r)
K)L = gI(KgJ)L − gKJgIL . (2.10)

For a membrane in flat space this condition is satisfied by taking the matrices

II
J ≡ ωIKgKJ , (J (r))I

J ≡ Ω(r)IKgKJ (2.11)

to be the seven complex structures of E8.

For every vanishing skew eigenvalue of XIJ the dimension of the transverse

space is effectively reduced by two. In this reduced space, we must again have (2.10)

but it may now be possible to choose some of the six J matrices to vanish. For

example, if XIJ has two vanishing skew-eigenvalues then the transverse space is

effectively 4-dimensional; in other words, there are four ‘active scalars’. We may

now set all but two of the J matrices to zero. The other two, together with I can

be taken to be the three almost complex structures of the transverse 4-manifold

(these will be covariantly constant if this transverse 4-space is hyper-Kähler, but we

need not assume any special properties at this point). If XIJ has three vanishing

skew-eigenvalues, corresponding to two active scalars, then the transverse space is

effectively two-dimensional, and we may take all the J matrices to vanish.

Given (2.8) we deduce that

ε ≥ 1
2
|XIJωIJ | (2.12)

with equality when

∇XI = ∓ ∗ ∇XJIJ I (2.13)

and

XIJΩ
(r)
IJ = 0 , r = 1, . . . , 6 . (2.14)

The condition (2.13) is the statement that in complex coordinates Zα, adapted

to the complex structure I, the functions Zα(z) are holomorphic on worldspace, with

6
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z = σ1 + iσ2. The conditions (2.14) are implied by (2.13) if the matrices J (r) are

such that
IJ (r) + J (r)I = 0 , r = 1, . . . , 6 . (2.15)

This is true when I, J (r) are the 7 complex structures of E8. It is also satisfied if

I, J (1), J (2) are the three almost complex structures of a 4-dimensional space, with

the other J matrices vanishing. This is the case of most interest here because we

may obviously reduce the transverse 8-space to an effective transverse 4-space by

requiring all scalars to vanish except those associated with the ds24 metric in (1.5).

This restriction still allows configurations with either two or four active scalars.

In the case of a flat background, a solution of (2.13) with 2n real ‘active scalars’

has the interpretation as the (orthogonal) intersection with the worldvolume of nM2-

branes, corresponding to a spacetime intersection of n+1 M2-branes. The spacetime

configuration is known to preserve the fraction 1/2n+1 of the spacetime supersym-

metry [15] so we may expect the fraction of worldvolume supersymmetry preserved

to be 1/2n. This can be confirmed directly from a consideration of κ-symmetry

of the supermembrane [16, 17]. The lump solution of (2.13) for the KK-monopole

background is also one with two ‘active scalars’ and preserves half the worldvolume

supersymmetry but the total number of worldvolume supersymmetries is half what

it would be in a flat spacetime. The fraction of supersymmetry of the M-theory

vacuum that is preserved by the total system is therefore 1/8 (1/2 for the solution,

1/2 for the brane and 1/2 for the background). We shall examine the question of

supersymmetry in more detail in section 3.

2.2 Q-Kinks

We now set
∂2X

I = kI , (2.16)

where k is a holomorphic Killing vector field. The holomorphicity condition ensures

that the dimensionally reduced 1+1 dimensional theory preserves the N = 2 super-

symmetry of the (2+1)-dimensional model. Any additional supersymmetries will be

associated with additional complex structures; if k is holomorphic with respect to

them too then the reduction will preserve these additional supersymmetries. For the

KK-monopole background we may take k to be the triholomorphic Killing vector

of (1.7). Using (2.16) in (2.6) we have:

(ε+ 1)2 = 1 +
(
gIJ + ∂XI∂XJ + kIkJ

)
PIPJ + |∂X|2 + |k|2 +

+ 2 ∂X [IkJ ]∂X [KkL]gIKgJL , (2.17)

where ∂X = ∂1X. Restricting to static (P = 0) and uniform (∂X = 0) configurations

yields ε =
√
1 + |k|2−1 ≈ 1

2
|k|2, which is the membrane version of the scalar potential

that leads to Q-kink solutions interpolating between its minima at fixed points of k

where |k| vanishes.

7
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Under the same conditions as before, the expression (2.17) for the energy density

can be rewritten as

(ε+ 1)2 =
[
1 + vk · P +√1− v2 ∂XIkJωIJ

]2
+ |P − vk|2 +

+
∣∣∣∂XI +√1− v2 kJIJ I ∣∣∣2 + (P · ∂X)2 +
+
[
v ∂XIkJωIJ −

√
1− v2 k · P

]2
+
∑
r

(
∂XIkJΩ

(r)
IJ

)2
. (2.18)

for arbitrary constant v with |v| < 1. We deduce that
ε ≥ vk · P +√1− v2 ∂XIkJωIJ , (2.19)

with equality when

P I = vkI , (2.20)

∂XI = −√1− v2 kJIJ I , (2.21)

since these equations imply the vanishing of the remaining terms.

Setting P I = ẊI in (2.20) we recover the equations found in [2], the solutions of

which are Q-kinks. The explicit Q-kink solution of [2] was given for the two-centre

metric with V as in (1.8) but without the constant term (i.e. for the Eguchi-Hanson

metric [18]). The explicit solution when V includes a constant term has been found

by Opfermann [19].

3. Supersymmetry

The supermembrane is invariant under all isometries of the background. Supersym-

metries correspond to Grassmann odd Killing vector superfields χ = χAEA, where

EA = EA
M∂M . The (Grassman even) spinor component χ

α is a Killing spinor in

the standard sense, at least in a purely bosonic background. The (Grassman odd)

vector component χa is a superfield satisfying the constraint Dαχa = (Γaχ)α. Let
{χ} be the complete set of these Killing vector superfields and let {ε} be a corre-
sponding set of anticommuting parameters. The supersymmetry transformations of

the worldvolume fields ZM are then

δεZ
M = ε · χM , (3.1)

where ε ·χ is used to denote the sum over the (ε, χ) pairs. Defining δEA = δZMEMA,
we then have

δεE
A = ε · χA . (3.2)

The κ-symmetry variation δκZ
M can be similarly expressed in the form

δκE
α = κβ(1 + Γ)β

α , δκE
a = 0 , (3.3)

8
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where

Γ =
1

6
√−g ε

ijkEi
aEj

bEk
cΓabc , (3.4)

with Ei
a = ∂iZ

MEM
a, and g is the determinant of the induced worldvolume metric

gij = Ei
aEj

bηab. To fix κ-symmetry, we make the gauge choice [11]

Eα(1 + Γ)α
β = 0 . (3.5)

This restricts only dZM , but this is sufficient. Note that this gauge choice is in-

variant under supersymmetry, at least in a bosonic background and for vanishing

worldvolume fermions; under these conditions we may neglect the variation of Γ,

while

δε(dZ
MEM

α) = D(ε · χ)α − ε · χβEγTγβα , (3.6)

which vanishes by the Killing spinor equation (the Tγβ
α component of the torsion

tensor is proportional to the 4-form field strength of D=11 supergravity).

The remaining physical variables are such that their variations are δEα(1−Γ)αβ.
The condition that the worldvolume configuration preserves some supersymmetry is

therefore

ε · χα(1− Γ)αβ = 0 . (3.7)

For flat superspace, χI
α = δI

α, so ε · χ = ε, a constant 32-component spinor. We
thus recover the flat space condition [11]

εα(1− Γ)αβ = 0 . (3.8)

More generally, we must take into account the fact that ε · χ is neither constant nor
a spinor with 32 independent components. For the simplest backgrounds, including

the KK-monopole background considered here, we have

ε · χ = fχ ε , (3.9)

where fχ is an ordinary function, and ε is a constant 32-component spinor satisfying

Pχ ε = 0 , (3.10)

with Pχ a constant projection matrix. For the KK-monopole background the matrix

Pχ is just the product of four constant Dirac matrices, one for each of the four

dimensions of the 4-metric, and it has the property (associated with the fact that

this background preserves 1/2 of the spacetime supersymmetry) that trPχ = 16.

The fraction of spacetime supersymmetry preserved by the brane plus background

configuration is therefore determined by the number of simultaneous solutions to (3.8)

and (3.10). Note that the function fχ of (3.9) is irrelevant to the final result.
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We now fix worldvolume diffeomorphisms by the ‘static gauge’ choice

Xm =
(
ξi, XI(ξ)

)
. (3.11)

With this gauge choice the condition (3.8) becomes

√−g ε =
[
Γ∗ + Γk∂kXIΓIΓ∗ +

1

2
Γkε

ijk∂iX
I∂jX

JΓIJ +

+
1

6
εijk∂iX

I∂jX
J∂kX

KΓIJK

]
ε , (3.12)

where

Γ∗ = Γ012 . (3.13)

In addition

g = det (ηij + g̃ij) , (3.14)

where

g̃ij = ∂iX
I∂jX

JgIJ . (3.15)

The condition (3.12) for preservation of supersymmetry can now be expanded

in a power series in ∂X. We assume here that each term in the series must vanish

separately.1 At zeroth order in this expansion we learn that

Γ∗ε = ε . (3.16)

Because the projector Pχ involves only the Γ
I matrices, this equation tells us that

the worldvolume vacuum preserves half the supersymmetries of the supergravity

background, i.e. that the M2–brane is 1/2 supersymmetric.

At first order in the ∂X expansion we learn that

Γk∂kX
IΓI ε = 0 . (3.17)

This implies various higher-order identities. In particular it implies that det g̃ij van-

ishes and that

ηimηjng̃jmg̃in =
1

2
(ηij g̃ij)

2 . (3.18)

Using these identities, and the constraints on ε quadratic and cubic in ∂X that

also follow from (3.17), one can show that the full constraint Γε = ε is satisfied.

Thus, (3.17) is the only condition (apart from Pχε = 0) that we need analyse to

determine the fraction of supersymmetry preserved by lump and Q-kink soliton so-

lutions.

1For a flat space background this amounts to the assumption that the worldspace is the contact

set of a Kähler calibration. Kähler calibrations are only ones of relevance here, although for the

M5-brane there are other calibrations for which the assumption would be false. See [16, 17, 20] for

a discussion of calibrations in relation to branes.
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Having found the conditions for partial preservation of worldvolume supersym-

metry, we are now in a position to verify that the lump and Q-kink solitons are

supersymmetric and to determine the fraction of supersymmetry they preserve. We

need not discuss the lump and Q-kink cases separately because the formalism to

follow will apply equally to both. For lumps we just set v = 0 while for Q-kinks we

set ∂2X
I = kI . We begin with the observation that the equations

ẊI = v∂2X
I , ∂1X

I +
√
1− v2 ∂2XJ IJ I = 0 , (3.19)

imply that

g̃ = g̃22 ×


v2 0 v

0 1− v2 0
v 0 1


 , (3.20)

which manifestly has vanishing determinant and solves (3.18). Using (3.19) in (3.17)

and Γ∗ε = ε, we have
∂2X

IΓJ
(
gIJ + Γ̃ωIJ

)
ε = 0 , (3.21)

where

Γ̃ =
1√
1− v2

(
Γ0 + vΓ2

)
. (3.22)

Note that Γ̃2 = −1.
The matrices ΓI are space-dependent. We can write them in terms of the constant

complex matrices

Γα = ΓIeI
α (3.23)

and their complex conjugates Γ̄ᾱ, where eI
α is a complex target space vielbein (with

complex conjugate ēI
ᾱ) chosen such that

{Γα,Γβ} = 0 {Γα, Γ̄β̄} = δαβ̄ . (3.24)

Using the fact that ωαβ̄ = iδαβ̄ in this basis, we now have∑
α=ᾱ

[
eαΓ̄ᾱ + ēᾱΓα + i(eαΓ̄ᾱ − ēᾱΓα)Γ̃

]
ε = 0 (3.25)

where

eα = ∂2X
IeI
α . (3.26)

Each term in the sum must vanish separately. This leads to a set of equations, each

of which can be written in the form

(eΓ̄ + ēΓ)(1− iΓ̃[Γ, Γ̄])ε = 0 . (3.27)

It follows that either e = 0, which effectively requires one complex worldvolume

scalar to be constant, or ε must satisfy the constraint

(1− iΓ̃[Γ, Γ̄])ε = 0 , (3.28)

which reduces the fraction of supersymmetry preserved by two, unless it is already

satisfied by virtue of the Pχ projection imposed by the background.
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We briefly discussed the flat background case in section 2.1. Solutions with 2n

active (real) scalars preserve 1/2n of the worldvolume supersymmetry and hence

1/2n+1 of the spacetime supersymmetry; their spacetime interpretation is as n + 1

intersecting M2-branes. The computation of the fraction of worldvolume supersym-

metry preserved by the finite energy lumps and Q-kinks is slightly more involved

because the effects of the Pχ projection must be taken into account. However this

just reduces the initial number of supersymmetries by a factor of two. The M2-brane

breaks half of that and the lump and Q-kink solitons halve it again, exactly as in

the flat space case.

These results could be anticipated from the central charge structure of the super-

membrane worldvolume superalgebra. In the KK-monopole background we would

need to consider the N=4 D=3 worldvolume supersymmetry algebra. For simplicity

we concentrate here on the N=8 D=3 algebra relevant to a supermembrane in a flat

space background. As we are considering only scalar central charges, the supersym-

metry algebra is [21]

{QĨα, QJ̃β} = δĨ J̃Pαβ + εαβZ̃ ĨJ̃ , (3.29)

where the 8 supersymmetry charges QĨ transform as a chiral SO(8) spinor. The

antisymmetric central charge matrix Z̃ has four skew eigenvalues ζk (k = 1, 2, 3, 4).

The positivity of the {Q,Q} anticommutator implies the bound
M2 ≥ sup(ζ1, ζ2, ζ3, ζ4) . (3.30)

The fraction of worldvolume supersymmetry preserved is 2n−5 where n is the num-
ber of factors of det{Q,Q} of the form (M2 − ζ)2 that simultaneously vanish. For
example, states for which all four skew eigenvalues are equal, but non-zero, preserve

half of the worldvolume supersymmetry. Note that since Ĩ is a spinor index the

central charge Z̃ cannot be directly interpreted as the two-form topological charge Z

associated with a membrane in a given 2-plane; the relation between the two is such

that equal skew-eigenvalues of Z̃ corresponds to three vanishing skew-eigenvalues of

Z, and vice-versa.

4. IIB interpretation of Q-kinks

In the introduction we explained briefly the IIA superstring interpretation of the

supermembrane lump solutions. As mentioned there, the most natural superstring

interpretation of Q-kinks is in terms of IIB superstring theory. We now return to

this point.

It was implicit in our discussion of the Q-kink in section 2.2 that ξ2 = ρ is

periodically identified; otherwise we do not have a genuine compactification. Since

we had already made the static gauge choice Y 2 = ρ, it follows that we must take Y 2

to be an angular variable, i.e. the coordinate of the S1 factor in (1.5). In fact, the

Killing vector field ∂/∂Y 2 can be identified as a multiple of the triholomorphic Killing
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vector field ` mentioned in the introduction. A standard dimensional reduction on

orbits of the triholomorphic Killing vector field k would imply that Y 2 is the only

field depending on ρ. However, the SS reduction ansatz of (2.16) means that Y 2 is

not the only ρ-dependent worldvolume field. In fact, given (1.7), the condition (2.16)

implies that ∂ρϕ = 1, or ϕ = ρ up to a constant. If we introduce the new coordinates

X0 = ϕ− Y 2 Ỹ =
1

2

(
Y 2 + ϕ

)
, (4.1)

then the combination of the static gauge choice and the SS reduction imply that

(X0,X) are ρ-independent while Ỹ = ρ. In other words, we are wrapping the

membrane on the Ỹ direction, i.e. on the k + ` cycle. We can consider this to be a

non-marginal bound state of a membrane wrapped on the k cycle with one wrapped

on the ` cycle [22]. The IIA interpretation of this bound state (with the k cycle

interpreted as the KK circle) was explained briefly in the introduction: a membrane

wrapped on the k cycle yields a IIA string in the D6-brane while a membrane wrapped

on the ` cycle yields a D2-brane, so we end up with a IIA string bound to a D2-brane

in a D6-brane. We now consider the IIB interpretation obtained by T-duality in the

` direction.

The IIB dual of a membrane wrapped once on each of the two cycles of the torus

relating the IIB theory to M-theory is a (1,1) string [23]. In our case the (1,1) string

is bound to the D5-brane that is the IIB dual of the KK-monopole. The binding is

due to the fact that the D5-brane attracts (1,0) strings and is neutral to (0,1) strings.

Thus, there is effectively a potential confining the (1,1) string to the D5-brane (as

expected from the V ∼ k2 potential relevant to the IIA description; in fact, the
potential is T-duality invariant [24]). Given sufficient energy, the (1,1) string could

migrate from one D5-brane to another one at some position in the transverse 4-

space specified by a 4-vector. In fact the supermembrane Q-kinks discussed earlier

correspond to strings which begin on one D5-brane but then jump over to another

one. The charge 4-vector (Q0,Q) is just the position 4-vector of the other D5-brane,

as we now explain.

The triplet of Kähler 2-forms associated with the 4-metric (1.6) is

ω = (dϕ+A · dX)dX− V dX× dX , (4.2)

where the wedge product of forms is understood. Hence the triplet of topological

charges Q is given by
Q =

∫
ikω =

∫
dX , (4.3)

where the integral is over the (1,1) string worldspace. For V as given in (1.8), the

potential k2 has minima at X = ±X0, so a string that starts at one minimum and
ends at the other one has a 3-vector kink charge Q = 2X0. This is the same charge

as in the IIA interpretation. However, the Noether charge in the IIA interpretation

becomes a fourth topological charge in the IIB interpretation (cf. [24]). To see this it

is simplest to get to the IIB theory by first compactifying on the ` cycle followed by
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T-duality on the k cycle. This leads to the S-dual of the configuration obtained from

performing these operations in the reverse order (i.e. a (1,1) string in a NS-5-brane),

but the result we are aiming at is unaffected by S-duality. Having compactified on

the ` cycle, T-duality on the k cycle takes ϕ̇ to ∂ϕ̃, where ϕ̃ is the T-dual coordinate,

and hence takes the Noether charge Q0 =
∫
V −1ϕ̇ to the topological charge

Q̃0 =
∫
dϕ̃ . (4.4)

This result is to be expected from the fact that the transverse space of the IIB D5-

brane is 4-dimensional. Thus, in the IIB theory the Q-kink charges (Q0,Q) become a

single topological 4-vector charge Q = (Q̃0,Q). A configuration for which this charge

is non-zero represents a (1,1) string that starts at one D5-brane and then migrates to

another one positioned at some distance |Q| from the first in the direction given by Q.
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