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On K zrTr Decays in Quenched and Unquenched Chiral Perturbation 
Theory 
Maarten Gol terman a and El isabet ta  Pallante b* 

~Department of Physics, Washington University, St. Louis, MO 63130, USA 

bFacultat de Fisica, Universitat  de Barcelona, Diagonal 647, 08028 Barcelona, Spain 

We calculate the logarithmic corrections to the matrix elements for K + -~ 7r + and K ~ vacuum (which are 
used on the lattice to determine K --+ ~rTr amplitudes), in one-loop quenched and unquenched Chiral Perturbation 
Theory. We find that these corrections can be large. We also discuss, and present some results for, the direct 
determination of K --+ 7rTr amplitudes. In particular, we address effects from choosing ms = md and vanishing 
external spatial momenta, finite volume and quenching. In the quenched octet case, we find enhancedfmite-volume 
contributions which may make numerical estimates of this matrix element unreliable for large volumes. 

1. I n t r o d u c t i o n  simpler on the lattice [4]. 

Chiral Perturbat ion Theory  (ChPT)  helps us 
understand several systematic  errors which afflict 
lattice computat ions  of K -+ ~r~r decay ampli- 
tudes, and thus plays an impor tan t  role in as- 
sessing the reliability of such computat ions.  In 
particular, C h P T  can be used to gain insight into 
the size of finite-volume and quenching effects, 
as well as the modifications induced by an un- 
physical choice of kinematics and /or  the values of 
light quark masses. We consider two approaches 
to these amplitudes.  The first is the direct com- 
putat ion of such ampli tudes  with ms = m d  and 
external mesons at rest [1]. Three key ques- 
tions can be studied in ChPT:  1) how much do 
these unphysical choices affect the size of the chi- 
ral logarithms (with and without  quenching)?; 2) 
are there quenched chiral logari thms [2]?; 3) are 
there enhanced finite-volume corrections? Here 
we mainly answer the last two questions, while 
a more detailed analysis will be given elsewhere 
[3]. Second, we calculate the K -+ zr and K -+ 0 
(K to vacuum) mat r ix  elements at one loop in 
ChPT,  unquenched and quenched. The motiva-  
tion comes from the possibility of performing an 
indirect determinat ion of K --~ ~rzr amplitudes 
through the computa t ion  of reduced mat r ix  el- 
ements such as K --4 ~r and K --+ 0, which is 

*Presented by E. Pallante 

2. T h e  U n p h y s i c a l  K ° ~ ~+ lr-  a m p l i t u d e  

The Euclidean effective Lagrangian for AS  = 1 
hadronic weak transitions can, at leading order in 
ChPT,  be written as [4,5] (notation of [4]): 

£.~s:1 = -a27T~(EOuEt)~(~OuEt)'j  (1) 

-a?tr[h(OuN)(OuNt)]+a~ ~ t r [ A ( ~ M  + MtNt)] , 

where the first term transforms as (27L, 1R) under 
SU(3)xSU(3) and the last two terms as (8L, 1R). 

The term with coupling a~ is known as the 
"weak mass term," and mediates the K --+ 0 tran- 
sition at tree level. Its odd-pari ty part ,  which in 
principle can also contribute to the octet K --+ ~rTr 
amplitude, is proportional to ms - m d .  For 
ms ¢ md the weak mass term is a total  deriva- 
tive [4,6], and therefore does not contribute to any 
physical matr ix  element. Whether  this term con- 
tributes to the octet K --+ ~rlr matr ix  element for 
unphysical external momen ta  and ms = md is a 
more subtle question. Wha t  actually is computed 
on the lattice is the Euclidean correlation func- 
tion C(ta,t2) = (0]~r+(t2)~r -(tz)Os(tl)-R-°(0)10). 
Any contribution generated by the insertion of 
the weak mass te rm to the Euclidean correla- 
tion function at fixed times is proportional to 
ms - rnd in the limit ms --+ md and therefore zero 
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Figure 1. Some K -+ ~-Tr diagrams in ChPT.  The 
box is a weak vertex, the dot a strong vertex. 

at me = md; there are no subtleties with propaga- 
tor poles in Euclidean space from tree-level tad- 
pole diagrams [3]. This is also true for tadpole 
contributions as in diagram (a) of Fig. 1 with 
the insertion of an octet or a 27-plet weak opera- 
tor. Such contributions are absent for ms = md. 
We note that ,  choosing quark masses such that  
rn g : 2m~, as proposed in [7], the contribution 
from a2 s vanishes for the same reason as for the 
physical K ~ rrrr amplitude, but that,  in general, 
there are contributions from Fig. l(a).  

While the unphysical choice of kinematics and 
quark masses modifies the size of chiral log- 
arithms and finite-volume corrections, quench- 
ing also causes new "quenched-artifact" contri- 
butions, due to the presence of the double pole in 
the singlet propagator.  These are of two types: 
quenched chiral logarithms (QxL) and enhanced 
finite-volume corrections (discovered in quenched 
rrrr scattering [8]). In principle, both artifacts oc- 
cur in the quenched octet K --+ 7r~" amplitude. 

Only diagrams of type (b), (c) in Fig. 1 with 
the weak operator a l  s give rise to QxL in the un- 
physical K ° --+ ~r+Tr - amplitude at ms = rod. 
However, we find that  no QxL is present at one 
loop, due to a cancellation between contributions 
from type-(b) and type-(c) diagrams. 

In finite volume, only the "rescattering dia- 
gram" of type (b) gives rise to power-like finite- 
volume corrections. It was shown in the case of 
rrrr scattering [8] how, in the quenched approx- 
imation in a similar diagram, the presence of a 
double-pole singlet propagator gives rise to en- 
hanced (infrared divergent!) finite-volume cor- 
rections. The same happens for the octet K ° --+ 
rr + rr- amplitude. 

We have calculated the chiral logs and power- 
like finite-volume corrections for C(t l ,  t~)octet to 
one loop. In the unquenched case we find 

8i~sl M2L3 ¢ - 2 M ( t 2 - t l ) - M t l  
C(t l , t~)  - f3 (2M)3 

7 ]@3 (t2 _ t~) 1 - # ( M )  + 

M2 ( 41-597 62 7c2 ) ]  

(4~rf) ~ \ M L  + 3 (ML) 3 , (2) 

where M is the degenerate meson mass, f 
is the pion decay constant in the chiral limit 
(normalized such that  its value is 132 MeV 
at the physical pion mass), and #(M) = 
(M~/(16~r~f2))log(M2/A 2) is the chiral loga- 
rithm. In the quenched case we obtain 

8ia 8 M2L 3 e _ 2 M ( t 2 _ t l ) _ M t  1 
C(t l , t2)  - fa (2M) a (3) 

[ 1 + 5 (  lr~ 2rr2 
M2La (t2 - t l)  - ~--~-g(t2 - t l)  2 

3~r 2 2.2284 0.41877M _'~ 
+ 4(ML) - - - - ~  + M----~ 

+ 2 a # ( M )  

c~ M2 ~ 5rr 2 14rr 2 
+-~ (4rrf,~) 2 \ 2 ( M L )  3 M2L3(t2 - t l )  

4rr 2 31.198 ) ]  
+~--~g(t2 - t l )  2 + M ~  + 0.83754ML , 

where 5 = m~o/(24rr2f 2) contains the singlet mass 
m0 and a is another singlet parameter renormal- 
izing its kinetic term [2]. 

We have ignored O(p 4) contact terms, exponen- 
tially suppressed finite-volume effects, and contri- 
butions from excited states. The term linear in 
t 2 - t l  can be related to finite-volume energy shifts 
of the two-particle internal states of type-(b) di- 
agrams (at least in the unquenched case). The 
term linear in M L  inside the square brackets of 
Eq. (3) is the enhanced finite-volume contribu- 
tion, which is a quenched artifact, as is the term 
quadratic in t2 - tl .  

3. K + --~ 7r + a n d  K --+ 0 m a t r i x  e l e m e n t s  

Ref. [4] proposed an indirect determination of 
the K -~ 7rTr amplitudes with A I  = 1/2 and 3/2 
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by computing on the lattice the reduced ampli- 
tudes K + -+ ~r + and K --~ 0. The ratio of the 
AI ---- 1/2 and 3/2.K --4 ~r~r amplitudes can then 
be determined at tree level in ChPT through 

[K°-4~r+r-]½ [K+--~ ~r+]½ - b[K°-+0]] 
- -  , ( 4 )  

[KO--+ ~r+~r-]] - [K+-+ ~r+]] 

where b = iM2/f(rn2 g -m~) ,  M is the degenerate 
mass used to compute K + --+ r¢ +, and mK, m,r 
are the nondegenerate masses used to compute 
K --+ 0. The question arises how one-loop cor- 
rections modify Eq. (4). This problem was al- 
ready addressed in [6] in the unquenched case, 
however, what is calculated there is the full pseu- 
doscalar two-point function, and not the ampli- 
tude K --~ ~r. 

Here, we present the chiral logs for K + -+ 7r + 
and K --+ 0. For K + --+ 7r +, with degenerate 
masses, we find for AI  = 1/2, unquenched, 

[K+4M2/f2"~ rr+] \(1 - a? - 3 P ( M ) ]  

-a28 ( 1 +  3 # ( M ) ) - a 2 7 ( 1 - 1 2 p ( M ) ) ,  (5, 

while in the quenched case we obtain 

[K+ --+ 7r+] ( M2 ) 
4M~/f~ - a? 1 - 26 log -p -  + 4,~,(M) 

- a 2  s ( 1 +  ~ p ( M ) ) - a  2 7 ( l - 6 p ( M ) ) .  (6) 

The AI  = 3/2 amplitudes are obtained from this 
by setting c~ = a2 s = 0. Note that the contribu- 
tion from ordinary chiral logarithms is substan- 
tially reduced by quenching. One should keep in 
mind that the values of the a's are in principle 
different in the quenched and unquenched theo- 
ries. The one-loop K --~ 0 amplitude to leading 
order in m~: - m 2 is (with M 2 some average of 
m~ and rn~)), unquenched, 

[K -+ O]f = ia s (1-133 P( M)) + ic sl lO3 #( M ) 
4 ( m ~ - m ~ )  
while the quenched amplitude is 

[K--+O]f _ i a ~ ( l _ 4 a p ( M ) )  
4 ( m ~ - m ~ )  

+iast (23 log M2 - 4ap(M)) .  

Again, the chiral logarithms are potentially large, 
and reduced by quenching. One can now in prin- 
ciple extract unquenched 

8 al s _ [K + --+ ~r+]s(l - 3#)-b[K -+ 0](i + ~p) 
a 27 - -[K+ -+ ~r+]27(I + 12p) ' 

and quenched 
8 al  s [K + ~ ~r+]s - b[K --+ 0](1 + ~a/~) 

a27 -[K+ --~ ~r+]27(I + 6p) ' 

where U = p(M) = (M2/(16r2f2))log(M2/A2). 
It is clear that one-loop corrections are potentially 
large in the determination of weak-Lagrangian 
parameters from lattice computations. (For M = 
400 MeV, A = mp and f = 132 MeV, #(M) = 
-0.076, and e.g. 1 + 6p = 0.54.) 

Obviously, in order to go beyond these 
"leading-log" estimates, it is necessary to con- 
sider also the contributions of O(p 4) LECs to 
K + -~ ~r + and K --~ 0. Then, it is worth looking 
for ratios less sensitive to one-loop effects, if such 
exist (considering also other channels like K --+ 
and/or varying momenta or masses), and also, 
whether (combinations of) the O(p 4) LECs that 
appear in K -+ ~rr amplitudes can be extracted 
from amplitudes with less external legs. 
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