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Abstract

We present a detailed analysis ofε′/ε within the Standard Model, taking into account the strong
enhancement through final-state interactions identified by Pallante and Pich in Phys. Rev. Lett. 84
(2000) 2568 and Nucl. Phys. B 592 (2000) 294. The relevant hadronic matrix elements are fixed
at leading order in the 1/NC expansion, through a matching procedure between the effective short-
distance Lagrangian and its corresponding low-energy description in Chiral Perturbation Theory.
All large logarithms are summed up, both at short and long distances. Two different numerical
analyses are performed, using either the experimental or the theoretical value forε, with compatible
results. We obtain Re(ε′/ε) = (1.7 ± 0.9) × 10−3. The error is dominated by the uncertainty in
the value of the strange quark mass and the estimated corrections from unknown 1/NC -suppressed
local contributions. A better estimate of the strange quark mass would reduce the uncertainty to about
30%. The Standard Model prediction agrees with the present experimental world average Re(ε′/ε) =
(1.93± 0.24) × 10−3.  2001 Elsevier Science B.V. All rights reserved.

PACS:13.25.Es; 14.40.Aq

1. Introduction

The CP-violating ratioε′/ε constitutes a fundamental test for our understanding of
flavour-changing phenomena within the Standard Model framework. It represents a great
source of inspiration for physics research and has motivated in recent years a very
interesting scientific controversy, both on the experimental and theoretical sides.

The experimental status [3,4] has been clarified recently. The CERN NA48 Collabora-
tion [5] has announced a preliminary value

(1)Re(ε′/ε) = (1.40± 0.43)× 10−3.

E-mail address:scimemi@hal.ific.uv.es (I. Scimemi).
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A larger result was obtained by the Fermilab KTeV Collaboration [6],

(2)Re(ε′/ε) = (2.80± 0.41)× 10−3.

The present world average [5],

(3)Re(ε′/ε) = (1.93± 0.24)× 10−3,

provides clear evidence for a non-zero value and, therefore, direct CP violation phenomena.
The theoretical status is more involved and not very satisfactory. There is no universal

agreement on theε′/ε value predicted by the Standard Model, since different groups, using
different models or approximations, obtain different results [7–16]. Nevertheless, it has
been often claimed that the Standard Model predicts a too small value ofε′/ε, failing
to reproduce its experimental world average by at least a factor of two. This claim has
generated a very intense theoretical activity, searching for new sources of CP violation
beyond the Standard Model framework [17].

It has been pointed out [1] that the theoretical short-distance evaluations ofε′/ε
had overlooked the important role of final-state interactions (FSI) inK → ππ decays.
Although it has been known for more than a decade that the rescattering of the two final
pions induces a large correction to the isospin-zero decay amplitude, this effect was not
taken properly into account in the theoretical predictions.1 From the measuredπ–π phase
shifts one can easily infer that FSI generate a strong enhancement of the predictedε′/ε
value, by roughly the needed factor of two [1,2]. A detailed analysis of the corrections
induced by FSI has been already given in Ref. [2], where the low-energy (infrared) physics
involved has been investigated and the size of the FSI enhancement and the associated
uncertainties have been quantified.

In this paper, we present a complete reevaluation ofε′/ε within the Standard Model. We
will show that with our present understanding of the different inputs, it is possible to pin
down the prediction of this important parameter with a theoretical accuracy of about 50%.
In order to achieve this goal, one needs to identify the most important corrections and find
appropriate expansion parameters to perform a perturbative approach with well-defined
power counting.

The large-NC expansion [18,19], withNC the number of QCD colours, turns out to be a
very useful tool to organize the calculation. It is a unique non-perturbative approach, with
a clear meaning within the usual perturbative expansion in powers of the QCD coupling.
At leading (non-trivial) order in 1/NC it is possible to compute all needed ingredients
and, what is even more important, the matching between short- and long-distance physics
can be done exactly. Moreover, FSI are zero at leading order in 1/NC ; this allows a clear
separation of these corrections, avoiding any possible ambiguity or double-counting.

SinceNC = 3 in the real world, the natural size to be expected for the 1/NC -suppressed
contributions is 30%. Actually, there is a quite compelling phenomenological evidence that

1 Some pion rescattering corrections have been included in Refs. [9–11]. Although computed in a model-
dependent way, those effects push theirε′/ε predictions to the correct 10−3 range, explaining the numerical
discrepancies with the estimates done in Refs. [7,8,16] where FSI are totally ignored.
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those corrections are usually smaller. For this to be true, however, one needs to make sure
that the 1/NC expansion does not involve large logarithms [20]; i.e., one should expand in
powers of 1/NC and not in powers of1

NC
ln (M/m), with M � m two widely separated

scales. Large logarithms are in fact the main source of complications in low-energy flavour-
changing processes, because the electroweak scaleMW where the short-distance quark
transition takes place is much larger than the long-distance hadronic scale.

The large short-distance logarithms can be summed up with the use of the Operator
Product Expansion (OPE) [21] and the renormalization group [22]. The proper way to
proceed makes use of modern Effective Field Theory techniques [23]. One starts above
the electroweak scale where the flavour-changing process, in terms of quarks, leptons and
gauge bosons, can be analyzed within the usual gauge-coupling perturbative expansion in
a rather straightforward way. The renormalization group is used to evolve down in energy
from the scaleMZ , where the top quark and theZ andW± bosons are integrated out. That
means that one changes to a different Effective Theory where those heavy particles are
no longer explicit degrees of freedom. The new Lagrangian contains a tower of operators
constructed with the light fields only, which scale as powers of 1/MZ . The information
on the heavy fields is hidden in the (Wilson) coefficients of those operators, which are
fixed by “matching” the high- and low-energy theories at the pointµ = MZ . One follows
the evolution further to lower energies, using the Effective Theory renormalization group
equations, until a new particle threshold is encountered. Then, the whole procedure of
integrating the new heavy scale and matching to another Effective Field Theory starts
again. In this way, one proceeds down to scalesµ<mc.

In this picture, the physics is described by a chain of different Effective Field
Theories, with different particle content, which match each other at the corresponding
boundary (heavy threshold). This procedure permits to perform an explicit summation
of large logarithmst ≡ ln (M/m), whereM andm refer to any scales appearing in the
evolution. One gets finally an effective�S = 1 Lagrangian, defined in the three-flavour
theory [24–27],

(4)L�S=1
eff = −GF√

2
VudV

∗
us

∑
i

Ci(µ)Qi(µ),

which is a sum of local four-fermion operatorsQi , constructed with the light degrees of
freedom,

Q1 = (s̄αuβ)V−A(ūβdα)V−A,

Q2 = (s̄u)V−A(ūd)V−A,

Q3,5 = (s̄d)V−A

∑
q

(q̄q)V∓A,

Q4,6 = (s̄αdβ)V−A

∑
q

(q̄βqα)V∓A,

Q7,9 = 3

2
(s̄d)V−A

∑
q

eq(q̄q)V±A,
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(5)Q8,10 = 3

2
(s̄αdβ)V−A

∑
q

eq(q̄βqα)V±A,

modulated by Wilson coefficientsCi(µ) which are functions of the heavy masses. Hereα,
β denote colour indices andeq are the quark charges (eu = 2/3, ed = es = −1/3). Colour
indices for the colour singlet operators are omitted. The labels(V ± A) refer to the Dirac
structuresγµ(1± γ5).

We have explicitly factored out the Fermi couplingGF and the Cabibbo–Kobayashi–
Maskawa (CKM) matrix elementsVij containing the usual Cabibbo suppression ofK

decays. The unitarity of the CKM matrix allows to write the Wilson coefficients in the
form

(6)Ci(µ) = zi(µ)+ τ yi(µ),

whereτ = −VtdV
∗
t s/VudV

∗
us . The CP-violating decay amplitudes are proportional to theyi

components.
The overall renormalization scaleµ separates the short- (M > µ) and long- (m < µ)

distance contributions, which are contained inCi(µ) andQi , respectively. The physical
amplitudes are independent ofµ; thus, the explicit scale (and scheme) dependence of the
Wilson coefficients should cancel exactly with the corresponding dependence of theQi

matrix elements between on-shell states.
Our knowledge of�S = 1 transitions has improved qualitatively in recent years, thanks

to the completion of the next-to-leading logarithmic-order calculation of the Wilson
coefficients [28,29]. All gluonic corrections ofO(αn

s t
n) andO(αn+1

s tn) are already known.
Moreover the fullmt/MW dependence (to first order inαs andα) has been taken into
account at the electroweak scale. We will fully use this information up to scalesµ ∼
O(1 GeV), without making any unnecessary expansion in powers of 1/NC .

In order to predict physical amplitudes one is still confronted with the calculation of
hadronic matrix elements of quark operators. This is a very difficult problem, which so
far remains unsolved. As indicated in Fig. 1, below the resonance region one can use
global symmetry considerations to define another Effective Field Theory in terms of the
QCD Goldstone bosons (π , K, η). The Chiral Perturbation Theory (χPT) formulation
of the Standard Model [30–34] is an ideal framework to describe the pseudoscalar-
octet dynamics, through a perturbative expansion in powers of momenta and light quark
masses over the chiral symmetry breaking scale (Λχ ∼ 1 GeV). Chiral symmetry fixes
the allowedχPT operators, at a given order in momenta. The only remaining problem
is then the calculation of the corresponding chiral couplings from the effective short-
distance Lagrangian; this requires to perform the matching between the two Effective Field
Theories.

It is here where the 1/NC expansion proves to be useful. At leading order in 1/NC ,
the matching between the 3-flavour quark theory andχPT can be done exactly. We will
determine the needed chiral couplings in the large-NC limit, in a quite straightforward way.
The scale and scheme dependences of the short-distance Wilson coefficients are of course
completely removed in the matching process, at leading order in 1/NC . Any remaining
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Fig. 1. Evolution fromMW to MK .

dependences are higher-order in the 1/NC expansion and, thus, numerically suppressed;

they are included in our estimated theoretical uncertainty.
There is still an important source of large logarithms that needs to be identified and kept

under control. The FSI of the pseudo-Goldstone pions generate large infrared logarithms,
involving the light pion mass, which are next-to-leading in 1/NC . These chiral logarithms

can be computed within the effectiveχPT framework. Moreover, as shown in Refs. [1,2]

they can be exponentiated to all orders in the momentum expansion. Since this is a 1/NC

suppressed (but numerically large) effect, it generates an important correction, not included

in the previous leading-order determination of chiral couplings.
The paper is organized as follows. The usual isospin formalism forK → ππ decays

and the relevant formulae forε′/ε are collected in Section 2. Section 3 presents the low-

energyχPT description. The matching between the short- and long-distance effective
theories is performed in Section 4, at leading order in 1/NC . Section 5 summarizes the

large-NC predictions for the different isospin amplitudes. The one-loop chiral corrections

are discussed in Section 6. Section 7 incorporates higher-order corrections induced by
FSI, within the chiral framework. The Standard Model prediction forε′/ε is worked

out in Section 8, where two different numerical analyses are presented. The first one
incorporates the experimental value ofε, while in the second one its theoretical prediction

is used instead. Both analyses give compatible results. Our conclusions are finally given in

Section 9. We have collected in several appendices the analytical results from the one-loop
chiral calculation of the differentK → ππ amplitudes.
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2. K → ππ amplitudes

We adopt the usual isospin decomposition:

A
[
K0 → π+π−]≡A0 + 1√

2
A2,

(7)A
[
K0 → π0π0]≡A0 − √

2A2.

The complete amplitudesAI ≡ AI exp{iδI0} include the strong phase shiftsδI0. The S-wave
π–π scattering generates a large phase-shift difference between theI = 0 andI = 2 partial
waves [35]:

(8)
(
δ0

0 − δ2
0

)(
M2

K

)= 45◦ ± 6◦.

There is a corresponding dispersive FSI effect in the moduli of the isospin amplitudes,
because the real and imaginary parts are related by analyticity and unitarity. The presence
of such a large phase-shift difference clearly signals an important FSI contribution toAI .

In terms of theK → ππ isospin amplitudes,

(9)
ε′

ε
= eiΦ

ω√
2|ε|

[
Im(A2)

Re(A2)
− Im(A0)

Re(A0)

]
.

Owing to the well-known “�I = 1/2 rule”, ε′/ε is suppressed by the ratio

(10)ω = Re(A2)/Re(A0) ≈ 1/22.

The phases ofε′ andε turn out to be nearly equal:

(11)Φ ≈ δ2
0 − δ0

0 + π

4
≈ 0.

The CP-conserving amplitudes Re(AI ), their ratio ω and |ε| are usually set to their
experimentally determined values. A theoretical calculation is then only needed for
Im(AI ).

Using the short-distance Lagrangian (4), the CP-violating ratioε′/ε can be written as [7]

(12)
ε′

ε
= Im

(
V ∗
t sVtd

)
eiΦ

GF

2|ε|
ω

|Re(A0)|
[
P (0)(1−ΩIB)− 1

ω
P (2)

]
,

where the quantities

(13)P (I) =
∑
i

yi(µ)〈(ππ)I |Qi |K〉

contain the contributions from hadronic matrix elements with isospinI and

(14)ΩIB = 1

ω

Im(A2)IB

Im(A0)

parameterizes isospin breaking corrections. The factor 1/ω enhances the relative weight of
theI = 2 contributions.

The hadronic matrix elements〈(ππ)I |Qi |K〉 are usually parameterized in terms of
the so-called bag parametersBi , which measure them in units of their vacuum insertion
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approximation values. In the Standard Model,P (0) andP (2) turn out to be dominated by
the contributions from the QCD penguin operatorQ6 and the electroweak penguin operator
Q8, respectively [9]. Thus, to a very good approximation,ε′/ε can be written (up to global
factors) as [7]

(15)
ε′

ε
∼ [B(1/2)

6 (1−ΩIB)− 0.4B(3/2)
8

]
.

The isospin-breaking correction coming fromπ0–η mixing was originally estimated

to beΩ
π0η
IB = 0.25 [36,37]. Together with the usual ansatzBi ∼ 1, this produces a large

numerical cancellation in Eq. (15) leading to low values ofε′/ε around 7×10−4. A recent
improved calculation ofπ0–η mixing atO(p4) in χPT has found the result [38]

(16)Ω
π0η
IB = 0.16± 0.03.

This smaller number, slightly increases the naive estimate ofε′/ε.

3. Chiral Perturbation Theory description

In the limit mu, md , ms → 0, the QCD Lagrangian for light quarks has aSU(3)L ⊗
SU(3)R symmetry, which is spontaneously broken toSU(3)V . The lightest particles of
the hadronic spectrum, the pseudoscalar octet (π , K, η), can be identified with the
corresponding Goldstone bosons. Their low-energy interactions can be analyzed within
χPT [30–34], which is an expansion in terms of momenta and meson (quark) masses. The
Goldstone fields are parameterized as

(17)Φ =


√

1
2 π0 +

√
1
6 η π+ K+

π− −
√

1
2 π0 +

√
1
6 η K0

K− �K0 −
√

2
3 η

 ,

and appear in the Lagrangian via the exponential representationU = exp(
√

2iΦ/f ), with
f ∼ fπ = 92.4 MeV the pion decay constant at lowest order. Under a chiral transformation
g ≡ (gL,gR) ∈ SU(3)L ⊗ SU(3)R, the matrixU changes asU → gRUg

†
L.

The effect of strangeness-changing non-leptonic weak interactions with�S = 1 is
incorporated [39] in the low-energy chiral theory as a perturbation to the strong effective
Lagrangian. At lowest order, the most general effective bosonic Lagrangian, with the same
SU(3)L ⊗ SU(3)R transformation properties and quantum numbers as the short-distance
Lagrangian (4), contains three terms:

L�S=1
2 = −GF√

2
VudV

∗
usf

4
{
g8
[〈
λLµL

µ
〉+ e2f 2gew

〈
λU†QU

〉]
(18)+ g27

(
Lµ23L

µ
11 + 2

3
Lµ21L

µ
13

)}
,
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where the matrixLµ = −iU†DµU represents the octet ofV −A currents, at lowest order
in derivatives,Q= diag(2

3,−1
3,−1

3) is the quark charge matrix,λ ≡ (λ6 − iλ7)/2 projects
onto thes̄ → d̄ transition [λij = δi3δj2] and〈A〉 denotes the flavour trace of A.

The chiral couplingsg8 andg27 measure the strength of the two parts of the effective
Lagrangian (4) transforming as(8L,1R) and(27L,1R), respectively, under chiral rotations.
Chiral symmetry forces the lowest-order Lagrangian to contain at least two derivatives
(Goldstone bosons are free particles at zero momenta). In the presence of electroweak
interactions, however, the explicit breaking of chiral symmetry generated by the quark
charge matrixQ induces theO(p0) operator〈λU†QU〉 [40,41], transforming as(8L,8R)

under the chiral group. In the usual chiral countinge2 ∼ O(p2) and, therefore, thegew

term appears at the same order in the derivative expansion thang8 andg27. One additional
term [42] proportional to the quark mass matrix, which transforms as(8L,1R), has not
been written in the lowest-order Lagrangian (18), since it does not contribute2 to physical
K → ππ matrix elements [43–45].

The tree-levelK → ππ amplitudes generated by theO(p2) χPT Lagrangian (18) are:

A0 = −GF√
2
VudV

∗
us

√
2f

{(
g8 + 1

9
g27

)(
M2

K −M2
π

)− 2

3
f 2e2g8gew

}
,

(19)A2 = −GF√
2
VudV

∗
us

2

9
f
{
5g27

(
M2

K −M2
π

)− 3f 2e2g8gew
}
.

The strong phase shifts are zero at lowest order. Taking the measured phase shifts into
account, the moduli ofg8 andg27 can be extracted from the CP-conservingK → 2π decay
rates. A lowest-order phenomenological analysis [46], neglecting3 the tiny electroweak
corrections proportional toe2gew, gives:

(20)|g8| � 5.1, |g27| � 0.29.

The huge difference between these two couplings shows the well-known enhancement of
octet|�I | = 1/2 transitions.

The isospin amplitudesAI have been computed up to next-to-leading order in the chiral
expansion [44,45,47–50]. Decomposing the isoscalar amplitudes in their octet and 27-plet
components asA0 = A(8)

0 + A(27)
0 , the results of those calculations can be written in the

form:

A(8)
0 = −GF√

2
VudV

∗
us

√
2fπg8

{(
M2

K −M2
π

)[
1+∆LA(8)

0 +∆CA(8)
0

]
(21)− 2

3
e2f 2

π

[
gew
(
1+∆LA(ew)

0

)+∆CA(ew)
0

]}

2 The contributions of this term toK → ππ amplitudes vanish atO(p2), while at O(p4) they can be
reabsorbed through a redefinition of the localO(p4) �S = 1 chiral couplings [43–45].

3 A general analysis of isospin breaking and electromagnetic corrections toK → ππ transitions is presented
in Refs. [47–49].
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for the octet isoscalar amplitude,

(22)A(27)
0 = −GF√

2
VudV

∗
us

√
2

9
fπg27

(
M2

K −M2
π

)[
1+∆LA(27)

0 +∆CA(27)
0

]
for the 27-plet isoscalar amplitude and

A2 = −GF√
2
VudV

∗
us

2

9
fπ

{
5g27

(
M2

K −M2
π

)[
1+∆LA(27)

2 +∆CA(27)
2

]
(23)− 3 e2 f 2

πg8
[
gew
(
1+∆LA(ew)

2

)+∆CA(ew)
2

]}
for theI = 2 amplitude. The electroweak penguin contributions have been also included.
These formulae contain chiral loop corrections∆LA(R)

I , coming from the lowest-order
Lagrangian (18) and its strong counterpart. Loop corrections are always subleading in the
1/NC expansion, so that they do not enter the large-NC matching procedure outlined in the
introduction. One-loop corrections toK → ππ have been extensively analyzed in Ref. [2],
with the aim of identifying and resum FSI effects. Those effects, subleading in 1/NC but
numerically relevant, will be taken into account in Sections 6 and 7.

At next-to-leading order in the chiral expansion, i.e.,O(GFp
4) andO(GF e

2p2), the
complete Lagrangian which mediates non-leptonic weak interactions with�S = 1 can be
written as follows [44,45,47–51]:

(24)

L�S=1
4 = −GF√

2
VudV

∗
usf

2

(
g8

∑
i

EiO
8
i + g27

∑
i

DiO
27
i + g8e

2f 2
∑
i

ZiO
EW
i

)
.

For the octet and 27-plet weak operatorsO8
i andO27

i the basis constructed in Ref. [45]
has been adopted.4 For the electroweak operatorsOEW

i we use the basis5 of Ref. [47]. We
refer to those references for the explicit form of the operators.

TheO(p4) andO(e2p2) tree-level contributions to theK → ππ amplitudes are easily
computed with the Lagrangian (24) and its strong counterpart. The complete expressions
can also be obtained from Refs. [45] and [47]:

∆CA(8)
0 = ∆̃C + 2M2

K

f 2
π

(E10 − 2E13 +E15)

(25)+ 2M2
π

f 2
π

(−2E1 − 4E2 − 2E3 + 2E10+E11 + 4E13),

∆CA(27)
0 = ∆̃C + M2

K

f 2
π

(D4 −D5 − 9D6 + 4D7)

(26)+ 2M2
π

f 2
π

(−6D1 − 2D2 + 2D4 + 6D6 +D7),

4 For the octet operators one can use either the basis of Ref. [45] or the basis of Ref. [50]. For completeness
we provide the transformation rules between the two bases in Appendix A.

5 Our operatorsOEW
i

are denoted withQi in Ref. [47] and their couplingG8 is related to ourg8 via the

identity G8 = −(GF /
√

2)VudV
∗
usg8.
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∆CA(ew)
0 = gew∆̃

(ew)
C + 2M2

K

f 2
π

(Z1 + 2Z2)+ M2
π

f 2
π

(4Z1 + 2Z2 −Z6)

(27)

− M2
K −M2

π

6f 2
π

(8Z3 − 24Z4 + 9Z5 + 6Z7 − 3Z8 − 3Z9

− 2Z10 + 2Z11+ 2Z12),

(28)∆CA(27)
2 = ∆̃C + M2

K

f 2
π

(D4 −D5 + 4D7)+ 2M2
π

f 2
π

(−2D2 + 2D4 +D7),

∆CA(ew)
2 = gew∆̃

(ew)
C + M2

K

f 2
π

(2Z1 + 4Z2 −Z6)+ 2M2
π

f 2
π

(2Z1 +Z2)

(29)

+ M2
K −M2

π

3f 2
π

(−4Z3 + 12Z4 − 3Z8 − 3Z9 − 2Z10+ 2Z11 + 2Z12),

where

∆̃C = −4L5

f 2
π

(
M2

K + 3M2
π

)− 16L4

f 2
π

(
2M2

K +M2
π

)
,

(30)∆̃
(ew)
C = −4L5

f 2
π

(
M2

K + 5M2
π

)− 24L4

f 2
π

(
2M2

K +M2
π

)
.

There are seven(8L,1R) operatorsO8
i (i = 1,2,3,10,11,13,15), six (27L,1R)

operatorsO27
i (i = 1,2,4,5,6,7) and twelve electroweak operatorsOEW

i (i = 1, . . . ,12)
contributing toK → ππ matrix elements [45,47]. The practical limitation of a systematic
χPT evaluation of theK → ππ isospin amplitudes is in the fact that the counterterms
which appear at next-to-leading order are not fully known and their determination would
require the experimental knowledge of a large set of weak�S = 1 processes.

In addition, there are contributions involving the lowest-order�S = 1 Lagrangian
(18) combined with theO(p4) strong chiral operators with couplingsLi , introduced
in Ref. [31]. In previous analyses [44,45,48,49] these corrections, shown in Eqs. (30),
were factorized as global factors in front of the corresponding amplitudes: 1+ ∆̃C

.=
f 4/(f 3

π fK) ≈ 0.65, 1+ ∆̃
(ew)
C

.= f 6/(f 5
π fK) ≈ 0.58. A factorf 3/(f 2

πfK) arises from
wave-function renormalization, while the remaining powers off/fπ are needed to rewrite
in terms of the physical pion decay constant the explicit dependences of the tree-level
amplitudes (19) on the chiral Lagrangian couplingf . This procedure induces a sizeable
suppression which is finally compensated by large and positive corrections from theO(p4)

weak counterterms. We prefer to keep allO(p4) local contributions together and perform
a consistent large-NC calculation of their global size.

4. Large-NC matching

In the large-NC limit the T-product of two colour-singlet quark currents factorizes:

(31)〈J · J 〉 = 〈J 〉〈J 〉
{

1+O
(

1

Nc

)}
.
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In other words, colour exchanges between the two currentsJ are 1/NC suppressed and in
this limit the factorization of four-quark operators is exact. Since quark currents have well-
known realizations inχPT [31–33], the hadronization of the weak operatorsQi can then
be done in a quite straightforward way. Thus, at large-NC the matching between the short-
distance Lagrangian (4) and its long-distanceχPT realization can be explicitly performed.

The chiral couplings of the lowest-order Lagrangian (18) have the following large-NC

values:

g∞
8 = −2

5
C1(µ)+ 3

5
C2(µ)+C4(µ)− 16L5

( 〈q̄q〉(2)(µ)

f 3

)2

C6(µ),

g∞
27 = 3

5

[
C1(µ)+C2(µ)

]
,

(32)
(
g8e

2gew
)∞ = −3

(〈q̄q〉(2)(µ)

f 3

)2

C8(µ).

Together with theO(p2) amplitudes in Eqs. (19), these results are equivalent to the
standard large-NC evaluation of the usual bag parametersBi . In particular, forε′/ε,
where only the imaginary part of thegi couplings matter [i.e., Im(Ci)], Eqs. (32) amount
to B

(3/2)
8 ≈ B

(1/2)
6 = 1. Therefore, up to minor variations on some input parameters,

the correspondingε′/ε prediction, obtained at lowest order in both the 1/NC andχPT
expansions, reproduces the published results of the Munich [7] and Rome [8] groups.

The large-NC limit has been only applied to the matching between the 3-flavour quark
theory andχPT, as indicated in Fig. 1. The evolution from the electroweak scale down to
µ<mc has to be done without any unnecessary expansion in powers of 1/NC ; otherwise,
one would miss large corrections of the form1

NC
ln (M/m), with M � m two widely

separated scales [20]. Thus, the Wilson coefficients contain the fullµ dependence.
The operatorsQi (i �= 6,8) factorize into products of left- and right-handed vector

currents, which are renormalization-invariant quantities. The matrix element of each
single current represents a physical observable which can be directly measured; itsχPT
realization just provides a low-energy expansion in powers of masses and momenta. Thus,
the large-NC factorization of these operators does not generate any scale dependence. Since
the anomalous dimensions ofQi (i �= 6,8) vanish whenNC → ∞ [20], a very important
ingredient is lost in this limit [52]. To achieve a reliable expansion in powers of 1/NC , one
needs to go to the next order where this physics is captured [52,53]. This is the reason why
the study of the�I = 1/2 rule has proved to be so difficult. Fortunately, these operators
are numerically suppressed in theε′/ε prediction.

The only anomalous dimensions which survive whenNC → ∞ are the ones correspond-
ing to Q6 andQ8 [20,37]. One can then expect that the matrix elements of these two
operators are well approximated by this limit6 [52–54]. These operators factorize into

6 Some insight on these matrix elements can be obtained from the two-point functionsΨii (q
2) ≡

i
∫
d4xeiqx 〈T (Qi(x)Qi(0)†)〉, since their absorptive parts correspond to an inclusive sum of hadronic matrix

elements squared. The knownO(αs) results [52–54] show that the large-NC limit provides an excellent approx-
imation toΨ66, but an incorrect description ofΨ22.
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colour-singlet scalar and pseudoscalar currents, which areµ dependent. Since the products
mqq̄(1, γ5)q , are physical observables, the scalar and pseudoscalar currents depend onµ

like the inverse of a quark mass. Conversely, the Wilson coefficients of the operatorsQ6

andQ8 scale withµ like the square of a quark mass in the large-NC limit.
TheχPT evaluation of the scalar and pseudoscalar currents provides, of course, the right

µ dependence, since only physical observables can be realized in the low-energy theory.
What one actually finds is the chiral realization of the renormalization-invariant products
mqq̄(1, γ5)q . This generates the factors [mq ≡ mu = md ]

〈q̄q〉(2)(µ)

f 3 ≡ −B0

f
= −B0

fπ

fπ

f

= − M2
π

2mq(µ)fπ

[
1+ 4L5

f 2
π

M2
π + 4

2M2
K +M2

π

f 2
π

(3L4 − 4L6)

− 8
M2

π

f 2
π

(2L8 −L5)− 3νπ − νK − 1

3
νη

]

(33)

= − M2
K

(ms +mq)(µ)fπ

[
1+ 4L5

f 2
π

M2
π + 4

2M2
K +M2

π

f 2
π

(3L4 − 4L6)

− 8
M2

K

f 2
π

(2L8 −L5)− 2νπ − νK − 2

3
νη

]
,

in Eqs. (32), which exactly cancel theµ dependence ofC6,8(µ) at largeNC [20,37,51–54].
It remains a dependence at next-to-leading order. The parameterB0 is a low-energy
coupling of theO(p2) strong chiral Lagrangian, which accounts for the vacuum quark
condensate at lowest order in the momentum expansion. The one-loop correctionsνP (P =
π,K,η), defined in Appendix B, are identically zero in the limitNC → ∞.

While the real part ofg8 gets its main contribution fromC2, Im(g8) and Im(g8gew) are
governed byC6 andC8, respectively. Thus, the analyses of the CP-conserving and CP-
violating amplitudes are very different. There are large 1/NC corrections to Re(gi ) [52–
54], which are needed to understand the observed enhancement of the(8L,1R) coupling.
However, the large-NC limit can be expected to give a good estimate of Im(gi ).

Contrary to the otherQi operators, the leading-order contribution ofQ6 involves the
couplingL5 of the O(p4) strong chiral Lagrangian. The large-NC value of this chiral
coupling can be estimated from the ratio of the kaon and pion decay constants:

(34)L∞
5 = f 2

π

4(M2
K −M2

π)

(
fK

fπ
− 1

)
= 2.1× 10−3.

TheQ6 contribution dominates the numerical value of Im(g∞
8 ). In the large-NC limit, the

combined effect of all other operators only amounts to a 5% correction.
The O(p4) corrections introduce dependences on three additional strong chiral cou-

plings. At largeNC ,

(35)L∞
4 = L∞

6 = 0.
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To determineL8, we impose the stronger requirement of lowest-meson dominance [55,56]
and assume that the scalar form factors vanish at infinite momentum transfer. This implies
the relation [57]

(36)(2L8 −L5)
∞ = 0,

which is well satisfied by the phenomenological determinations of those constants [31,58].
The operatorsQ3 andQ5 start to contribute atO(p4), while the electroweak penguin

operatorsQ7,Q9 and Q10 give their first contributions atO(e2p2). The large-NC

matching at the next-to-leading chiral order fixes the couplingsEi , Di andZi of the long-
distance chiral Lagrangian (24). We only quote the values of those couplings contributing
to K → ππ amplitudes.

For theO(p4) couplings, one gets:

(g8E1)
∞ = −48X19

( 〈q̄q〉(2)(µ)

f 2

)2

C6(µ),

(g8E2)
∞ = −32X20

( 〈q̄q〉(2)(µ)

f 2

)2

C6(µ),

(g8E3)
∞ = −16X31

( 〈q̄q〉(2)(µ)

f 2

)2

C6(µ),

(g8E10)
∞ = 2 L5

[
−2

5
C1(µ)+ 3

5
C2(µ)+C4(µ)

]
− 8(2X14 + 2X15 +X38)

( 〈q̄q〉(2)(µ)

f 2

)2

C6(µ),

(g8E11)
∞ = 4L5

[
−2

5
C1(µ)+ 3

5
C2(µ)+C4(µ)

]
− 16(X15 + 2X17 −X38)

( 〈q̄q〉(2)(µ)

f 2

)2

C6(µ),

(g8E13)
∞ = 8(X15 − 4X16)

( 〈q̄q〉(2)(µ)

f 2

)2

C6(µ),

(g8E15)
∞ = 8(−X34 +X38)

( 〈q̄q〉(2)(µ)

f 2

)2

C6(µ),

(37)(g27D4)
∞ = 4 L5g

∞
27.

All other (27L,1R) couplings contributing toK → ππ (D1, D2, D5, D6 andD7) are zero
at large-NC.

TheO(p4) contributions from the operatorQ6 have been computed using theO(p6)

Lagrangian of Ref. [59]; the couplingsXi refer to the list ofO(p6) SU(3) operators given
in that reference. These couplings however are unknown, so in practice theQ6 contribution
is missing in Eqs. (37). The remaining terms are in agreement with the results obtained in
Ref. [50].
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The non-zeroO(e2p2) couplings relevant forK → ππ are:

(
g8e

2Z1
)∞ = −24

(〈q̄q〉(2)(µ)

f 3

)2

L8C8(µ),(
g8e

2Z5
)∞ =C10(µ),(

g8e
2Z6

)∞ = −12

(〈q̄q〉(2)(µ)

f 3

)2

L5C8(µ),

(
g8e

2Z8
)∞ = 3

2

[
C9(µ)+C10(µ)

]
,

(38)
(
g8e

2Z9
)∞ = −3

2
C7(µ).

5. Isospin amplitudes at leading order in 1/NC

Combining the results of the previous sections, one gets the predictedK → ππ

amplitudes at leading order in 1/NC . The different contributions to the isospin amplitudes
take the following form:

(39)

g∞
8

[
1+∆CA(8)

0

]∞ =
{
− 2

5
C1(µ)+ 3

5
C2(µ)+C4(µ)

− 16L5C6(µ)

[
M2

K

(ms +mq)(µ)fπ

]2}
f Kπ

0

(
M2

π

)
,

(40)

g∞
27

[
1+∆CA(27)

0

]∞ = g∞
27

[
1+∆CA(27)

2

]∞ = 3

5

[
C1(µ)+C2(µ)

]
f Kπ

0

(
M2

π

)
,

(41)

e2g∞
8

[
gew +∆CA(ew)

0

]∞ = −3C8(µ)

[
M2

K

(ms +mq)(µ)fπ

]2[
1+ 4L5

f 2
π

M2
K

]
− 3

4
[C7 −C9 +C10](µ)

M2
K −M2

π

f 2
π

f Kπ
0

(
M2

π

)
,

(42)

e2g∞
8

[
gew +∆CA(ew)

2

]∞ = −3C8(µ)

[
M2

K

(ms +mq)(µ)fπ

]2[
1+ 4L5

f 2
π

M2
π

]
+ 3

2
[C7 −C9 −C10](µ)

M2
K −M2

π

f 2
π

f Kπ
0

(
M2

π

)
.

For the operatorsQi (i �= 6,8), which are products of colour-singlet vector and axial-
vector currents, these are exact large-NC results to all orders in the chiral expansion, as can
be easily seen factorizing the operators at the quark level. TheχPT framework discussed
before reproduces these results in a perturbative way, through the momentum expansion of
theKπ scalar form factor atO(p4):

(43)f Kπ
0

(
M2

π

)≡ f Kπ+
(
M2

π

)+ M2
π

M2
K −M2

π

fKπ−
(
M2

π

)= 1+ 4L5

f 2
π

M2
π + · · · .
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Table 1
Numerical values of the weak chiral couplings in the large-NC limit

g∞
8

[
1+∆CA(8)

0

]∞
(1.3± 0.2± 0.1) + τ

(
1.12± 0.08+0.49

−0.30

)
g∞

27

[
1+∆CA(27)

0

]∞
(0.47± 0.01± 0.0)

e2g∞
8

[
gew +∆CA

(ew)
0

]∞ −(0.085± 0.085+0.035
−0.023

)− τ
(
2.33± 0.07+0.83

−0.52

)
e2g∞

8

[
gew +∆CA(ew)

2

]∞ −(0.07± 0.07+0.03
−0.02

)− τ
(
1.34± 0.03+0.68

−0.42

)
The form factorsfKπ± (t) are defined through the matrix element of the vector current,

〈π |s̄γ µq|K〉 = CKπ

{
(PK + kπ)

µfKπ+ (t) + (PK − kπ)
µf Kπ− (t)

}
(44)(q = u,d),

wheret ≡ (PK − kπ)
2, CK0π0 = −CK+π0 = 1/

√
2 andCK0π− = CK+π+ = −1.

The wave-function renormalization corrections∆̃C [Eq. (30)] have been cancelled by
weakO(p4) contributions, as it should since we are dealing with conserved currents. Once
theO(p2) results are written in terms of the physical pion decay constantfπ , higher-order
chiral contributions only introduce the small correction factorf Kπ

0 (M2
π) ≈ 1.02.

The hadronic matrix elements of the operatorsQ6 andQ8 factorize into products of
scalar and pseudoscalar currents, which cannot be directly measured. TheχPT predictions
are then needed to determine those hadronic currents. The electroweak penguin matrix
elements are known toO(p4). Again, one observes that the contributions from local weak
terms (Z1 andZ6) cancel the negative contribution from̃∆(ew)

C and reverse the sign of the
O(p4) correction. The contribution of the penguin operatorQ6 is only known atO(p2).
ForQ6 we cannot just include thẽ∆C correction, because the corresponding weakO(p4)

counterterms are unknown and large cancellations can be expected. In Eq. (39) we have
taken a global correction factorfKπ

0 (M2
π ) for the octet amplitude. This is a reasonable

assumption,7 since nearly all known pieces have this common correction. Only〈Q8〉0 gets
a different (and larger) correction.

The scalar and pseudoscalar currents introduce a quadratic dependence on quark
masses in the contributions from the operatorsQ6 andQ8. At present, the most reliable
determinations of the light quark masses givems(1 GeV) = (150± 25) MeV [60–65] and
(mu +md)(1 GeV) = (12.8± 2.5) MeV [66], at the scaleµ = 1 GeV. We then take:

(45)(ms +mq)(1 GeV) = (156± 25) MeV.

Table 1 shows the resulting numerical predictions for the weak chiral couplings. The
central values have been obtained atµ = 1 GeV. The first errors indicate the sensitivity
to changes of the short-distance renormalization scale in the rangeMρ < µ < mc and to
the choice ofγ5 scheme in the next-to-leading order calculation of the Wilson coefficients.
The second uncertainties correspond to the input values of the quark masses.

7 In fact, the factorfKπ
0 (M2

π ) already appears in the lowest-orderQ6 contribution tog8, through theO(p4)

correction in Eq. (33).



456 E. Pallante et al. / Nuclear Physics B 617 (2001) 441–474

For historical reasons, the values of the short-distance Wilson coefficients are usually
given in terms ofΛQCD (in the three or four flavour theory). Nowadays, thatαs is
experimentally known with rather good accuracy, it is unnecessary to introduce this
additional auxiliary parameter which only complicates the final expressions. Since the
most importantαs corrections appear at the lowest scaleµ ∼ O(1 GeV), we have fixed
the strong coupling at theτ mass, where it is known [67] with about a few percent level of
accuracy:

(46)αs(Mτ ) = 0.345± 0.020.

The high-energy matching scale is chosen to be intermediate between theW -boson and the
top quark mass scale. We have performed the matching directly at theZ-boson mass scale
whereαs is best known [68],

(47)αs(MZ) = 0.119± 0.002.

The measured values (46) and (47) are in perfect agreement, if one performs [69] a four-
loop evolution ofαs betweenMZ andMτ , with the appropriate matching conditions at
the different thresholds [70]. The values ofαs at the other needed scales can be deduced
from (46). The numerical uncertainties associated with the present error onαs have been
included in our results, but they are negligible in comparison with the uncertainties from
other sources.

The dominance ofQ6 andQ8 in the CP-odd amplitudes (the ones proportional to the
CKM factor τ ) is apparent in Table 1, where those pieces show a very strong dependence
on quark masses (second error bars). In comparison, the short-distance uncertainties are
much smaller. The opposite behaviour is observed in the CP-conserving couplings Re(g8)

and Re(g27), which are dominated byQ1 andQ2. The 27-plet coupling, which does not
get any penguin contribution, satisfies Im(g27) = 0 for all practical purposes.

TakingΩ
π0η
IB = 0.16, Im(V ∗

t sVtd) = 1.2× 10−4 and the central values in Table 1 for the
CP-odd amplitudes, one gets the large-NC prediction Re(ε′/ε) ≈ 0.8 × 10−3. Although
numerically suppressed, the operatorsQ1, Q2 andQ4, which are not well approximated by
the large-NC limit, provide also small corrections to Im(A0). In Refs. [7,28] the measured
CP-conserving rates are used to estimate those contributions. This amounts to multiply the
corrections from these operators by a factorξ0 ≈ 4.9, to compensate for the underestimated
coupling Re(g8). Adopting this prescription, one gets Re(ε′/ε) ≈ 0.5×10−3, in agreement
with the findings of Refs. [7,8].

6. Chiral loop corrections

The previous tree-level amplitudes do not contain any strong phasesδI0. Those phases
originate in the final rescattering of the two pions and, therefore, are generated by
chiral loops which are of higher order in the 1/NC expansion. Analyticity and unitarity
require the presence of a corresponding dispersive FSI effect in the moduli of the isospin
amplitudes. Since the strong phases are quite large, specially in the isospin-zero case,
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one should expect large higher-order unitarity corrections. Intuitively, the behaviour of
theI = 0 andI = 2 S-wave phase shifts as a function of the total invariant mass of the two
pions suggests a large enhancement of theI = 0 amplitude and a small suppression of the
I = 2 amplitude.

The size of the FSI effect can be estimated at one loop inχPT. The dominant one-loop
correction to the octet amplitude comes indeed from the elastic soft rescattering of the
two pions in the final state. The existing one-loop analyses [44,45] show that pion loop
diagrams provide an important enhancement of theA0 amplitude by about 40%, implying
a sizeable reduction of the phenomenologically fitted value of|g8| in Eq. (20).

The complete formulae for the one-loop corrections∆LA(R)
I are compiled in the

appendices. The usual one-loop functionB(M2
1,M

2
2,p

2) is defined in Appendix B, while
appendix Appendix C contains explicit results for the different isospin amplitudes. The
contributions proportional toB(M2

P ,M2
P ,M

2
K), with P = π,K,η, arise from intermediate

ππ , K �K and ηη states. Ats ≡ (pπ1 + pπ2)
2 = M2

K , the only possible absorptive
contribution comes from the elasticππ rescattering:

(48)∆LA(R)
0 = −1

2

(
2M2

K −M2
π

)
B
(
M2

π ,M
2
π ,M

2
K

)+ · · · ,

(49)∆LA(R)
2 = 1

2

(
M2

K − 2M2
π

)
B
(
M2

π ,M
2
π ,M

2
K

)+ · · · ,
where

(50)B
(
M2

π ,M
2
π ,M

2
K

)= 1

(4πfπ )2

{
σπ

[
ln

(
1+ σπ

1− σπ

)
− iπ

]
− ln

(
ν2

M2
π

)
− 1

}
,

with ν the chiral loop renormalization scale and

(51)σπ ≡
√

1− 4M2
π

M2
K

.

Thus, all isoscalar amplitudes get the same absorptive contribution, as it should, since
they have identical strong phase shifts. The same is true for the two amplitudes withI = 2.
The one-loop absorptive contributions reproduce the leadingχPT values of the strong
rescattering phasesδI0, with I = 0,2:

(52)tanδ0;2
0

(
M2

K

)= 1

32πf 2
π

σπ
(
2M2

K −M2
π ;2M2

π −M2
K

)
.

The numerical values ofδ0;2
0 (M2

K) predicted byχPT at leading order,δ0
0(M

2
K) = 25◦

and δ2
0(M

2
K) = −12◦, are significantly lower than their experimental values, implying

that higher-order rescattering contributions are numerically relevant. The phase-shift
difference,δ0

0 − δ2
0 = 37◦, is slightly less sensitive to higher-order chiral corrections [35].

The 2π intermediate state induces a large one-loop correction to theI = 0 amplitudes.
At ν = Mρ , the 2π contribution to the isoscalar amplitudes is∆LA(R)

0 |ππ = 0.43+ 0.46i,

while ∆LA(R)
2 |ππ = −(0.19+ 0.20i); i.e., the expected enhancement (suppression) of the

I = 0 (I = 2) amplitudes. The contributions from other one-loop diagrams, not related to
FSI, are different for the different amplitudesA(R)

I .
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Let us write our isospin amplitudes in the form

(53)A(R)
I =A(R)∞

I × C(R)
I ,

whereA(R)∞
I are the large-NC results obtained in the previous section. The correction

factorsC(R)
I contain the chiral loop contributions we are interested in. At the one-loop

level, they take the following numerical values:

C(8)
0 ≈ 1+∆LA(8)

0 = 1.27± 0.05+ 0.46i,

C(27)
0 ≈ 1+∆LA(27)

0 = 2.0± 0.7+ 0.46i,

C(ew)
0 ≈ 1+∆LA(ew)

0 = 1.27± 0.05+ 0.46i,

C(27)
2 ≈ 1+∆LA(27)

2 = 0.96± 0.05− 0.20i,

(54)C(ew)
2 ≈ 1+∆LA(ew)

2 = 0.50± 0.24− 0.20i.

The central values have been evaluated at the chiral renormalization scaleν = Mρ . To
estimate the corresponding uncertainties we have allowed the scaleν to change between
0.6 and 1 GeV. The scale dependence is only present in the dispersive contributions and
should cancel with the correspondingν dependence of the local counterterms. However,
this dependence is next-to-leading in 1/NC and, therefore, is not included in our large-
NC estimate of theO(p4) andO(e2p2) chiral couplings. Theν dependence of the chiral
loops would be cancelled by the unknown 1/NC -suppressed corrections∆CA(R)

I (ν) −
∆CA(R)∞

I , that we are neglecting in the factorsC(R)
I . The numerical sensitivity of our

results to the scaleν gives then a good estimate of those missing contributions.
The absorptive contribution induces a large one-loop correction to theI = 0 amplitudes.

The dispersive correction to∆LA(27)
0 is even larger, but it has a smaller phenomenological

impact because the isoscalarK → ππ amplitude is dominated by its octet component; this
27-plet correction has a strong dependence onν and, therefore, a rather large uncertainty.
Although the one-loop correction to theI = 2 (27L,1R) amplitude is rather moderate, the
electroweakI = 2 amplitude gets a large dispersive correction with negative sign. This
induces a corresponding suppression of|A(ew)

2 | by about 46%.
The numerical corrections to the 27-plet amplitudes do not have much phenomenolo-

gical interest for CP-violating observables, because Im(g27) = 0. Remember that the CP-
conserving amplitudes Re(AI ) are set to their experimentally determined values. What is
relevant for theε′/ε prediction is the 35% enhancement of the isoscalar octet amplitude
Im[A(8)

0 ] and the 46% reduction of Im[A(ew)
2 ]. Just looking to the simplified formula (15),

one realizes immediately the obvious impact of these one-loop chiral corrections, which
destroy the accidental lowest-order cancellation between theI = 0 andI = 2 contributions,
generating a sizeable enhancement ofε′/ε.

A completeO(p4) calculation [38,47] of the isospin-breaking parameterΩIB is not
yet available. The value 0.16 quoted in Eq. (16) only accounts for the contribution from
π0–η mixing [38] and should be corrected by the effect of chiral loops. Since|C(27)

2 | ≈
0.98± 0.05, one does not expect any large correction of Im(A2)IB , while we know that
Im[A(8)

0 ] gets enhanced by a factor 1.35. Taking this into account, one gets the corrected
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value

(55)ΩIB ≈ Ω
π0η
IB

∣∣∣∣C(27)
2

C(8)
0

∣∣∣∣= 0.12± 0.05,

where the quoted error is an educated theoretical guess. This value agrees with the result
ΩIB = 0.08± 0.05± 0.01, obtained in Ref. [71] by using three different models [9,50,53,
55,72,73] to estimate the relevantO(p4) chiral couplings.

The one-loop corrections increase the large-NC estimate fromε′/ε ≈ 0.8 × 10−3 to8

ε′/ε ≈ 1.8×10−3. The contributions to Im(A0) from the operatorsQ1,2,4 can be corrected
phenomenologically, as advocated in Ref. [28]; this requires now a smaller factorξ0 ≈ 3.5,
which results in9 ε′/ε ≈ 1.5× 10−3.

7. Final state interactions at higher orders

Given the large size of the one-loop contributions, one should worry about higher-order
chiral corrections. The fact that the one-loop calculation still underestimates the observed
δ0

0 phase shift indicates that a further enhancement could be expected at higher orders.
The large one-loop FSI correction to the isoscalar amplitudes is generated by large

infrared chiral logarithms involving the light pion mass [2]. These logarithms are universal,
i.e., their contribution depends exclusively on the quantum numbers of the two pions in
the final state [2]. As a result, they give the same correction to all isoscalar amplitudes.
Identical logarithmic contributions appear in the scalar pion form factor [31], where they
completely dominate theO(p4) χPT correction.

Using analyticity and unitarity constraints [74], these logarithms can be exponentiated
to all orders in the chiral expansion [1,2]. The result can be written as:

(56)C(R)
I ≡ C(R)

I

(
M2

K

)= ΩI

(
M2

K, s0
)
C(R)
I (s0).

The Omnès [74–76] exponential10

(57)ΩI (s, s0) ≡ eiδ
I
0(s)!I (s, s0) = exp

{
(s − s0)

π

∫
dz

(z− s0)

δI0(z)

(z − s − iε)

}
provides an evolution ofC(R)

I (s) from an arbitrary low-energy points0 to s ≡ (pπ1 +pπ2)
2

= M2
K . The physical amplitudes are of course independent of the subtraction points0.

Intuitively, what the Omnès solution does is to correct a local weakK → ππ transition
with an infinite chain of pion-loop bubbles, incorporating the strongππ → ππ rescattering
to all orders inχPT. The Omnès exponential only sums a particular type of higher-order
Feynman diagrams, related to FSI. Therefore, Eq. (56) does not provide the complete

8 This number is obtained taking the experimental value forε and Im(V ∗
tsVtd ) = 1.2 × 10−4. Using instead

the theoretical prediction forε, one would getε′/ε ≈ 2.2× 10−3. See Section 8 for more details on this second
kind of numerical analysis.

9 Using the theoretical value ofε, one findsε′/ε ≈ 1.8× 10−3.
10 Equivalent expressions with an arbitrary number of subtractions for the dispersive integral can be written [2].
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result. Nevertheless, it allows us to perform a reliable estimate of higher-order effects
because it does sum the most important corrections.11 Moreover, the Omnès exponential
enforces the decay amplitudes to have the right physical phases.

The Omnès resummation of chiral logarithms is uniquely determined up to a polynomial
(in s) ambiguity [2,74,77], which has been solved with the large-NC amplitudeA(R)∞

I . The
exponential only sums the elastic rescattering of the final two pions, which is responsible
for the phase shift. Since the kaon mass is smaller than the inelastic threshold, the virtual
loop corrections from other intermediate states (K → Kπ,Kη,ηη,K �K → ππ ) can be
safely estimated at the one loop level; they are included inC(R)

I (s0).
Taking the chiral prediction forδI0(z) and expandingΩI (M

2
K, s0) to O(p2),

(58)

ΩI

(
M2

K, s0
)≈ 1+ (M2

K − s0)

π

∫
dz

(z − s0)

δI0(z)

(z −M2
K − iε)

≡ 1+ δΩI

(
M2

K, s0
)
,

one should reproduce the one-loopχPT result. This determines the factorC(R)
I (s0) to

O(p4) in the chiral expansion:

(59)C(R)
I (s0) = C(R)

I

[
1− δΩI

(
M2

K, s0
)]≈ 1+∆LA(R)

I − δΩI

(
M2

K, s0
)
.

It remains a local ambiguity at higher orders [2,74,77].
Eq. (56) allows us to improve the one-loop calculation, by takings0 low enough that

the χPT corrections toC(R)
I (s0) are moderate and exponentiating the large logarithms

with the Omnès factor. Moreover, using the experimental phase shifts in the dispersive
integral one achieves an all-order resummation of FSI effects. The numerical accuracy of
this exponentiation has been successfully tested [2] through an analysis of the scalar pion
form factor, which has identical FSI thanA0.

At s0 = 0, the dispersive parts of the experimentally determined Omnès exponentials
are [2]:

(60)!0
(
M2

K,0
)= 1.55± 0.10, !2

(
M2

K,0
)= 0.92± 0.03.

The quoted errors take into account uncertainties in the experimental phase-shifts data and
additional inelastic contributions above the first inelastic threshold. These numbers fit very
well with the findings of the chiral one-loop calculation discussed in the previous section.
The corrections induced by FSI in the moduli of the decay amplitudesAI generate an
enhancement of the�I = 1/2 to�I = 3/2 ratio [1],

(61)!0
(
M2

K,0
)/!2

(
M2

K,0
)= 1.68± 0.12.

This factor multiplies the enhancement already found at short distances.

11 A more elaborated dispersive framework including “crossed-channel” contributions has been recently
discussed in Ref. [77]. The available non-perturbative information, needed to fix the corresponding subtraction
constants, does not allow an accurate calculation of those additional effects. Nevertheless, using the present
knowledge onπK scattering phase shifts [78], this dispersive analysis [77] corroborates that higher-orderπK

rescattering corrections are indeed negligible, as expected.
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At O(p4), the previous numbers should be corrected with the factorsC(R)
I (s0), which

incorporate additional one-loop contributions not related to FSI. These factors compensate
the obviouss0 dependence of the Omnès exponentials, up toO(p6) corrections. To
estimate the remaining sensitivity to this parameter, we have changed the subtraction point
betweens0 = 0 ands0 = 3M2

π and have included the resulting fluctuations in the final
uncertainties. The detailed numerical analysis is given in Appendix D. Atν = Mρ , we get
the following values for the resummed loop corrections:∣∣C(8)

0

∣∣= !0
(
M2

K, s0
)
C(8)

0 (s0) = 1.31± 0.06,∣∣C(27)
0

∣∣= !0
(
M2

K, s0
)
C(27)

0 (s0) = 2.4± 0.1,∣∣C(ew)
0

∣∣= !0
(
M2

K, s0
)
C(ew)

0 (s0) = 1.31± 0.07,∣∣C(27)
2

∣∣= !2
(
M2

K, s0
)
C(27)

2 (s0) = 1.05± 0.05,

(62)
∣∣C(ew)

2

∣∣= !2
(
M2

K, s0
)
C(ew)

2 (s0) = 0.62± 0.05.

These results agree within errors with the one-loop chiral calculation of the moduli of the
isospin amplitudes, indicating a good convergence of the chiral expansion.

To derive the Omnès representation, one makes use of Time-Reversal invariance, so that
it can be strictly applied only to CP-conserving amplitudes. Nevertheless, the procedure
can be directly extended to the CP-violating components relevant for the estimate ofε′/ε.
Working to first order in the Fermi coupling, the CP-odd phase is fully contained in the ratio
of CKM matrix elementsτ which appears in the short-distance Wilson coefficients and,
therefore, inA(R)∞

I . Decomposing the isospin amplitudes asA(R)
I =A(R)CP

I + τA(R)C/P
I ,

the Omnès solution can be derived separately for the two amplitudesA(R)CP
I andA(R)C/P

I

which respect Time-Reversal invariance.

8. Numerical analysis

The CP-violating ratioε′/ε is proportional to the CKM factor Im(V ∗
t sVtd ). The standard

unitarity triangle analyses [79] have estimated this parameter to be in the range

(63)Im
(
V ∗
t sVtd

)= (1.2± 0.2)× 10−4.

This determination is obtained combining the present information on various flavour-
changing processes; mainly,ε, B0–�B0 mixing and the ratioΓ (b → u)/Γ (b → c). The
final number is sensitive to the input values adopted for several non-perturbative hadronic
parameters and, thus, there are large theoretical uncertainties [80] which are not easy to
quantify.

Since the Standard Electroweak Model has a unique source of CP violation, the
same combination of CKM factors appears in the theoretical prediction forε, which is
proportional to theK0–�K0 matrix element of the�S = 2 operator:

(64)
〈�K0

∣∣(s̄LγµdL)(s̄Lγ µdL
)∣∣K0〉≡ 4

3
f 2
KM2

KBK(µ).
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The factor BK(µ) parameterizes this hadronic matrix element in vacuum insertion
units. The corresponding Wilson coefficientC�S=2(µ) is known at the next-to-leading
logarithmic order [27,81]. Taking appropriate values for the different inputs one finds:

(65)|ε| = 4

3
B̂K Im

(
V ∗
t sVtd

)
(18.9− 14.4ρ̄),

with ρ̄ one of the two CKM parameters, in the Wolfenstein [82] parameterization, which
characterize the upper vertex of the unitarity triangle. The standard analyses [79] favour
the rangeρ̄ = 0.2± 0.1, implying

(66)|ε| = 4

3
B̂K Im

(
V ∗
t sVtd

)
(16.0± 1.4) ,

whereB̂K = C�S=2(µ)BK(µ) is the scale-invariant bag parameter. In the large-NC limit,
B̂K = BK(µ) = 3/4.

The numerical values of both Im(V ∗
t sVtd) andρ̄ depend on hadronic inputs. However,ε

is rather insensitive to the precise value ofρ̄; it changes by less than 10% whenρ̄ is varied
within the previously quoted range.

Thus, we can make two different numerical analyses ofε′/ε:

1. The usual one, taking the experimental value ofε and adopting the range (63) for the
relevant CKM factor.

2. Using instead the theoretical prediction ofε in Eq. (66), the ratioε′/ε does not depend
on Im(V ∗

t sVtd) [10]. The sensitivity of this CKM factor to different hadronic inputs
is then reduced to the explicit remaining dependence onB̂K .

The second type of analysis is more suitable to a systematic 1/NC approach. The
theoretical prediction forε′/ε depends on ratios of hadronic matrix elements, i.e.,Bi/B̂K .
It is known [80] thatB̂K has sizeable large-NC [53,83,84] and chiral [85] corrections,
which are of opposite sign and could then cancel to some extent. Thus, one can expect the
limit NC → ∞ to provide a good starting point to analyze the relevant ratiosB

(1/2)
6 /B̂K

andB(3/2)
8 /B̂K .

We have performed the two types of numerical analysis, obtaining consistent results.
This allows us to estimate better the theoretical uncertainties, since the two analyses have
different sensitivity to hadronic inputs. The contributions to Im(A0) from the operators
Q1,2,4 have been estimated, following the strategy adopted in Ref. [28]; i.e., we have
corrected them with the factorξ0 ≈ 3.5.

As a first estimate, we can perform the calculation ofε′/ε to O(p4) in χPT, without
making any Omnès resummation of higher-order corrections. Once the large one-loop
corrections are taken into account, all important ingredients are already caught. We find,
for the two different types of analysis:

(67)Re(ε′/ε) = 1.5× 10−3 Im(V ∗
t sVtd)

1.2× 10−4
= 1.8× 10−3.

To quantify the uncertainties, we need to consider higher-order effects. Performing the
Omnès resummation, as indicated in Eq. (56), one finds:
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(68)Re
(
ε′/ε

)= 1.4× 10−3 Im(V ∗
t sVtd)

1.2× 10−4 = 1.6× 10−3.

These numbers are quite close to the one-loop results (67), which indicates that the error
induced by the chiral loop calculation is not large.

From the previous numbers, we derive:

(69)Re(ε′/ε) = (1.7± 0.2+0.8
−0.5 ± 0.5

)× 10−3.

The first error indicates the sensitivity to the short-distance renormalization scale, which
we have taken in the rangeMρ <µ<mc . The uncertainty coming from varying the strange
quark mass in the interval(ms +mq)(1 GeV) = 156± 25 MeV [60–66] is indicated by the
second error. We have added a 30% uncertainty from unknown next-to-leading in 1/NC

local contributions (third error).

9. Discussion

The infrared effect of chiral loops generates an important enhancement of the isoscalar
K → ππ amplitude. This effect gets amplified in the prediction ofε′/ε, because at lowest
order (in both 1/NC and the chiral expansion) there is an accidental numerical cancellation
between theI = 0 andI = 2 contributions. Since the chiral loop corrections destroy this
cancellation, the final result forε′/ε is dominated by the isoscalar amplitude. Thus, the
Standard Model prediction forε′/ε is finally governed by the matrix element of the gluonic
penguin operatorQ6.

There are three major ingredients in our theoretical analysis:

1. A short-distance calculation at the electroweak scale and its renormalization-group
evolution to the three-flavour theory (µ � mc), which sums the leading ultraviolet
logarithms.

2. The matching to theχPT description.
3. Chiral loop corrections, which induce large infrared logarithms related to FSI.

The first step is already known at the next-to-leading logarithmic order [28,29]. The
short-distance results are then very reliable.

We have tried to achieve an acceptable control of the large infrared chiral corrections,
which are fully known at the one-loop level. A complete two-loopχPT calculation is not
yet available. Nevertheless, since the leading one-loop corrections are generated by the
FSI of the two pions, we can use the Omnès resummation to get an idea about the size
to be expected for the unknown higher-order contributions. The Omnès exponential only
sums a particular type of higher-order Feynman diagrams, related to FSI. Although it does
not give the complete result, it allows us to estimate the theoretical uncertainty in a very
reliable way, because it does sum the most important corrections. The one-loop results
and the Omnès calculation agree within errors, indicating a good convergence of the chiral
expansion.

The most critical step is the matching between the short- and long-distance descriptions.
We have performed this matching at leading order in the 1/NC expansion, where the result
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is exactly known toO(p4) andO(e2p2) in χPT [O(p2) for Q6]. This can be expected to
provide a good approximation to the matrix elements of the leadingQ6 andQ8 operators.
Since all ultraviolet and infrared logarithms have been resummed, our educated guess for
the theoretical uncertainty associated with 1/NC corrections is∼ 30%.

As our final result we quote:

(70)Re(ε′/ε) = (1.7± 0.9)× 10−3.

A better determination of the strange quark mass would allow to reduce the uncertainty
to the 30% level. In order to get a more accurate prediction, it would be necessary to
have a good analysis of next-to-leading 1/NC corrections. This is a very difficult task, but
progress in this direction can be expected in the next few years [9,12,53,84,86,87].

Note added

After this paper was submitted for publication, new experimental results have been
announced both by NA48 [88] and KTeV [89]:

Re(ε′/ε) =
{
(1.53± 0.26)× 10−3 [NA48],

(2.07± 0.28)× 10−3 [KTeV] .

The new world average,

Re(ε′/ε) = (1.72± 0.18)× 10−3,

is in excellent agreement with the Standard Model prediction in Eq. (70).
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Appendix A. Octet basis transformation rules

Following the same notation as the original references, one can change from the octet
basis

∑
i EiO

8
i of Ref. [45] to the one of Ref. [50],

∑
i NiW

8
i , using either the following

identities for the operators,

W8
5 = O8

10, W8
10 = O8

1,

W8
6 = 1

2
O8

12, W8
11 = O8

2,

W8
7 = O8

13, W8
12 = O8

3,
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W8
8 = O8

10 +O8
11 − 1

2

(
O8

12 +O8
13

)
, W8

13 = O8
4,

(A.1)W8
9 = O8

15, W8
36 = O8

1 −O8
3 +O8

5,

or the coefficient relations

N5 = E10 −E11, N10 = E1 −E5,

N6 = E11 + 2E12, N11 = E2,

N7 = 1

2
E11 +E13, N12 = E3 +E5,

N8 = E11, N13 = E4,

(A.2)N9 = E15, N36 = E5.

Appendix B. One-loop functions

The one-loop functionB(M2
1,M

2
2,p

2) is defined by the (dimensionally regularized)
basic scalar integral with two bosonic propagators:

(B.1)i

∫
dDq

(2π)D

1

(M2
1 − q2)[M2

2 − (p − q)2] = f 2
πB
(
M2

1,M
2
2,p

2)+ 2Λ
(
µ2),

where

(B.2)Λ
(
µ2)≡ 1

16π2

{
µD−4

D − 4
+ 1

2

[
γE − ln (4π)− 1

]}
.

It can be expressed in terms of the functionJ̄12(p
2) [31]:

(B.3)f 2
πB
(
M2

1,M
2
2,p

2)= −J̄12
(
p2)+ 1

16π2

(
ln

M2
2

ν2 + M2
1

M2
1 −M2

2

ln
M2

1

M2
2

)
,

with

J̄12
(
p2)= 1

16π2

{
1− 1

2

(
1+ M2

1

p2
− M2

2

p2

)
ln

M2
1

M2
2

+ M2
1

M2
1 −M2

2

ln
M2

1

M2
2

(B.4)− 1

2

λ

p2 ln
(p2 + λ)2 − (M2

1 −M2
2)

2

(p2 − λ)2 − (M2
1 −M2

2)
2

}
,

where

(B.5)λ2 ≡ λ2(p2,M2
1,M

2
2

)= [p2 − (M1 +M2)
2][p2 − (M1 −M2)

2].
ForM1 = M2 ≡ M one gets

(B.6)f 2
πB
(
M2,M2,p2)= −J̄

(
p2)+ 1

16π2

(
ln

M2

ν2 + 1

)
,

whereJ̄ (p2) is given by

(B.7)J̄
(
p2)= 1

(4π)2

{
2− σ ln

(
σ + 1

σ − 1

)}
, σ ≡

√
1− 4M2

p2
.
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The one-loop amplitudes contain an additional logarithmic dependence on the chiral
renormalization scaleν, through the factors (P = π,K,η):

(B.8)νP = M2
P

32π2f 2
π

ln
M2

P

ν2 .

Appendix C. One-loop amplitudes

The one-loopK → ππ amplitudes have been computed in Refs. [44,45], in the
absence of electroweak corrections. The electromagnetic contributions have been recently
calculated in Refs. [47–49]. The results take the form:

∆LA(8)
0 =

{
−1

2

(
2M2

K −M2
π

)
B
(
M2

π ,M
2
π ,M

2
K

)− 1

18
M2

πB
(
M2

η ,M
2
η ,M

2
K

)
+ 1

4

M2
K

M2
π

(
M2

K − 4M2
π

)
B
(
M2

K,M2
π ,M

2
π

)+ 1

12

M4
K

M2
π

B
(
M2

K,M2
η ,M

2
π

)
+ M4

K

4(M2
K −M2

π)M
2
π

[(
2+ 15

M2
π

M2
K

− 21
M4

π

M4
K

)
νπ

(C.1)+ 2
M2

π

M2
K

(
3+ M2

π

M2
K

)
νK +

(
−2+ 3

M2
π

M2
K

− 5
M4

π

M4
K

)
νη

]}
,

∆LA(ew)
0 =

{
−1

2

(
2M2

K −M2
π

)
B
(
M2

π ,M
2
π ,M

2
K

)+ 3M2
K

8
B
(
M2

K,M2
K,M2

K

)
+ 1

4

M2
K

M2
π

(
M2

K − 4M2
π

)
B
(
M2

K,M2
π ,M

2
π

)+ M4
K

8M2
π

B
(
M2

K,M2
η ,M

2
π

)

(C.2)

+ 1

4

(
17+ 2

M2
K

M2
π

)
νπ + 1

4

(
4+ M2

K

M2
π

)
νK + 3

4

(
1− M2

K

M2
π

)
νη

}
,

for the octet isoscalar amplitude,

∆LA(27)
0 =

{
−1

2

(
2M2

K −M2
π

)
B
(
M2

π ,M
2
π ,M

2
K

)+ 1

2
M2

πB
(
M2

η ,M
2
η ,M

2
K

)
+ 1

4

M2
K

M2
π

(
M2

K − 4M2
π

)
B
(
M2

K,M2
π ,M

2
π

)− 1

3

M4
K

M2
π

B
(
M2

K,M2
η ,M

2
π

)
+ M4

K

4(M2
K −M2

π)M
2
π

[(
2+ 15

M2
π

M2
K

− 21
M4

π

M4
K

)
νπ

(C.3)

−
(

10+ 4
M2

π

M2
K

− 22
M4

π

M4
K

)
νK +

(
8− 27

M2
π

M2
K

+ 15
M4

π

M4
K

)
νη

]}
,
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for the 27-plet isoscalar amplitude and

∆LA(27)
2 =

{
1

2

(
M2

K − 2M2
π

)
B
(
M2

π ,M
2
π ,M

2
K

)
+ 5

8

M2
K

M2
π

(
M2

K − 8

5
M2

π

)
B
(
M2

K,M2
π ,M

2
π

)
+ 1

24

M4
K

M2
π

B
(
M2

K,M2
η ,M

2
π

)
+ M4

K

4(M2
K −M2

π)M
2
π

[(
5− 18

M2
π

M2
K

+ 21
M4

π

M4
K

)
νπ

(C.4)−
(

4− 2
M2

π

M2
K

+ 2
M4

π

M4
K

)
νK −

(
1+ 3

M4
π

M4
K

)
νη

]}
,

∆LAew
2 =

{
1

2

(
M2

K − 2M2
π

)
B
(
M2

π ,M
2
π ,M

2
K

)
+ 5

8

M2
K

M2
π

(
M2

K − 8

5
M2

π

)
B
(
M2

K,M2
π ,M

2
π

)+ M4
K

8M2
π

B
(
M2

K,M2
η ,M

2
π

)

(C.5)

+ 5

4

(
M2

K

M2
π

+ 11

5

)
νπ − 1

2

(
M2

K

M2
π

− 5

)
νK − 3

4

(
M2

K

M2
π

− 1

)
νη

}
,

for theI = 2 amplitude.

Appendix D. Resummation of higher-order corrections

In this appendix we provide some details on the Omnès procedure for calculating the
isospin amplitudes. The resummed loop corrections are contained in the factorsC(R)

I , as
defined in Eq. (56). AtO(p4) in the chiral expansion, these quantities should reproduce the
one-loopχPT results in (54); this determines the factorsC(R)

I (s0), with s0 the subtraction
point, up to higher-order local contributions:

(D.1)C(R)
I (s0) = C(R)

I

[
1− δΩI

(
M2

K, s0
)]≈ 1+∆LA(R)

I − δΩI

(
M2

K, s0
)
.

Here,∆LA(R)
I is the one-loopχPT result andδΩI (M

2
K, s0) is obtained by taking the chiral

prediction for the phase shiftδI0(z) in ΩI (M
2
K, s0) and expandingΩI (M

2
K, s0) to O(p2),

(D.2)ΩI

(
M2

K, s0
)= 1+ δΩI

(
M2

K, s0
)+O

(
p4).

The explicit expressions for∆LA(R)
I are listed in Appendix C. The once-subtracted Omnès

exponential

(D.3)ΩI

(
M2

K, s0
)= exp

{
(M2

K − s0)

π

z̄∫
4M2

π

dz

(z − s0)

δI0(z)

(z −M2
K − iε)

}
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contains the integral over the experimentally determined phase shiftδI0(z) with I = 0 or 2.
The upper edge of the integralz̄ should correspond to the first inelastic threshold in the
given isospin channel. The corresponding expansion factor,

(D.4)δΩI

(
M2

K, s0
)= (M2

K − s0)

π

z̄∫
4M2

π

dz

(z − s0)

δI0(z)

(z −M2
K − iε)

,

contains the same dispersive integral, but with the phase shiftδI0(z) determined atO(p2)

in χPT. The explicit expressions forδΩI (M
2
K, s0) with I = 0 and 2 are as follows:

δΩ0
(
M2

K, s0
)= 1

32π2f 2
π

{(
2M2

K −M2
π

)
σ
(
M2

K

)
ln

[
σ(M2

K)− σ(z̄)

σ (M2
K)+ σ(z̄)

]
− (2s0 −M2

π

)
σ(s0) ln

[
σ(s0)− σ(z̄)

σ (s0)+ σ(z̄)

]
− 2
(
M2

K − s0
)
ln

[
1− σ(z̄)

1+ σ(z̄)

]}
,

δΩ2
(
M2

K, s0
)= 1

32π2f 2
π

{(
2M2

π −M2
K

)
σ
(
M2

K

)
ln

[
σ(M2

K)− σ(z̄)

σ (M2
K)+ σ(z̄)

]
− (2M2

π − s0
)
σ(s0) ln

[
σ(s0)− σ(z̄)

σ (s0)+ σ(z̄)

]
(D.5)+ (M2

K − s0
)
ln

[
1− σ(z̄)

1+ σ(z̄)

]}
,

where for convenience we have definedσ(s) ≡√1− 4M2
π/s.

In the following numerical analysis we have varied the subtraction point betweens0 = 0
and s0 = 3M2

π , together with the upper edge of the Omnès integralz̄, to estimate the
sensitivity of our predictions to these parameters. We have fixed theχPT renormalization
scale atν = Mρ . In Tables 2 and 3 the dispersive part of the Omnès factors and
δΩI (M

2
K, s0) are reported as functions ofs0, for z̄ = 1 GeV2 andz̄ = 2 GeV2, respectively.

The corresponding moduli of the correctionsC(R)
I , derived according to Eq. (62), are given

in Tables 4 and 5. The residual tiny dependence of|C(R)
I | on the subtraction points0 should

be cancelled by missingO(p6) contributions toC(R)
I (s0), since the local ambiguity of the

Table 2
Thes0 dependence of the once-subtracted Omnès parameters forz̄ = 1 GeV2

s0 !0 δΩ0 !2 δΩ2

0 1.45 0.32+ 0.46i 0.94 −0.16− 0.20i
M2

π 1.40 0.29+ 0.46i 0.95 −0.15− 0.20i

2M2
π 1.33 0.25+ 0.46i 0.96 −0.13− 0.20i

3M2
π 1.26 0.21+ 0.46i 0.97 −0.12− 0.20i
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Table 3
Thes0 dependence of the once-subtracted Omnès parameters forz̄ = 2 GeV2

s0 !0 δΩ0 !2 δΩ2

0 1.58 0.47+ 0.46i 0.92 −0.24− 0.20i
M2

π 1.51 0.43+ 0.46i 0.93 −0.22− 0.20i

2M2
π 1.44 0.39+ 0.46i 0.94 −0.20− 0.20i

3M2
π 1.35 0.33+ 0.46i 0.95 −0.17− 0.20i

Table 4
Resummed loop corrections with one subtraction andz̄ = 1 GeV2

s0
∣∣C(8)

0

∣∣ ∣∣C(27)
0

∣∣ ∣∣C(ew)
0

∣∣ ∣∣C(27)
2

∣∣ ∣∣C(ew)
2

∣∣
0 1.37 2.47 1.38 1.06 0.62

M2
π 1.36 2.42 1.37 1.05 0.61

2M2
π 1.35 2.36 1.36 1.05 0.60

3M2
π 1.33 2.28 1.34 1.04 0.59

Table 5
Resummed loop corrections with one subtraction andz̄ = 2 GeV2

s0
∣∣C(8)

0

∣∣ ∣∣C(27)
0

∣∣ ∣∣C(ew)
0

∣∣ ∣∣C(27)
2

∣∣ ∣∣C(ew)
2

∣∣
0 1.26 2.45 1.27 1.10 0.68

M2
π 1.27 2.41 1.27 1.10 0.67

2M2
π 1.27 2.36 1.28 1.09 0.65

3M2
π 1.26 2.28 1.27 1.08 0.64

Omnès procedure has been only solved toO(p4) in the chiral expansion. From Tables 4
and 5 one can also verify that the once-subtracted result is sensitively dependent onz̄.

As it was noticed in Ref. [2], the sensitivity to the higher energy region of the dispersive
integral (i.e., the numerical dependence on the upper edgez̄) is reduced by performing
more subtractions. However, a better knowledge of the theory is required in this case.
Indeed, the sensitivity to unknown higher-order corrections in the chiral expansion will
increase with the number of subtractions, so that the resulting amplitudes can only be
trusted at the lowest values of the subtraction point (s0 ∼ 0), whereχPT corrections
are moderate. We have checked these statements using the twice-subtracted Omnès



470 E. Pallante et al. / Nuclear Physics B 617 (2001) 441–474

Table 6
The z̄ dependence of the twice-subtracted Omnès parameters fors0 = 0

z̄ (GeV2) !0 δΩ0 !2 δΩ2

1 1.44 0.40+ 0.46i 0.86 −0.20− 0.20i
2 1.46 0.42+ 0.46i 0.85 −0.21− 0.20i

Table 7
Resummed loop corrections with two subtractions ands0 = 0

z̄ (GeV2)
∣∣C(8)

0

∣∣ ∣∣C(27)
0

∣∣ ∣∣C(ew)
0

∣∣ ∣∣C(27)
2

∣∣ ∣∣C(ew)
2

∣∣
1 1.25 2.34 1.26 1.00 0.60
2 1.23 2.34 1.24 1.00 0.61

exponential [2]:

ΩI

(
M2

K, s0
)= exp

{(
M2

K − s0
) g′

I (s0)

1+ gI (s0)

(D.6)+ (M2
K − s0)

2

π

z̄∫
4M2

π

dz

(z − s0)2

δI0(z)

(z −M2
K − iε)

}
,

where the functionsgI (s) (and their first derivativesg′
I (s)) are the one-loop contributions

(and their derivatives) to the isospin amplitudes due to the elasticππ rescattering:

g0(s) = −1

2

(
2s −M2

π

)
B
(
M2

π ,M
2
π , s

)
,

(D.7)g2(s) = 1

2

(
s − 2M2

π

)
B
(
M2

π ,M
2
π , s

)
.

The expansion ofΩI(M
2
K, s0) atO(p2) defines

(D.8)

δΩI

(
M2

K, s0
)= (M2

K − s0
)
g′
I (s0)+ (M2

K − s0)
2

π

z̄∫
4M2

π

dz

(z − s0)2

δI (z)

(z −M2
K − iε)

,

where the phase shiftδI0(z) is taken atO(p2) in χPT. The numerical results obtained at
s0 = 0, with the twice-subtracted Omnès procedure, are reported in Tables 6 and 7.

The final results for the moduli of the correction factorsC(R)
I , quoted in Eq. (62), take

into account the sensitivity tos0 and z̄ of the once-subtracted solution and the values
obtained ats0 = 0 with two subtractions.
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