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Abstract

We present a detailed analysis&fe within the Standard Model, taking into account the strong
enhancement through final-state interactions identified by Pallante and Pich in Phys. Rev. Lett. 84
(2000) 2568 and Nucl. Phys. B 592 (2000) 294. The relevant hadronic matrix elements are fixed
at leading order in the/IN¢- expansion, through a matching procedure between the effective short-
distance Lagrangian and its corresponding low-energy description in Chiral Perturbation Theory.
All large logarithms are summed up, both at short and long distances. Two different numerical
analyses are performed, using either the experimental or the theoretical vatuvithr compatible
results. We obtain Re’/¢) = (1.7 £ 0.9) x 1073, The error is dominated by the uncertainty in
the value of the strange quark mass and the estimated corrections from unkh§wrsappressed
local contributions. A better estimate of the strange quark mass would reduce the uncertainty to about
30%. The Standard Model prediction agrees with the present experimental world ave¢elge)Re
(1.93+0.24) x 10-3. 0 2001 Elsevier Science B.V. All rights reserved.

PACS:13.25.Es; 14.40.Aq

1. Introduction

The CP-violating ratioe’ /e constitutes a fundamental test for our understanding of
flavour-changing phenomena within the Standard Model framework. It represents a great
source of inspiration for physics research and has motivated in recent years a very
interesting scientific controversy, both on the experimental and theoretical sides.

The experimental status [3,4] has been clarified recently. The CERN NA48 Collabora-
tion [5] has announced a preliminary value

Re(e’/e) = (1.40+ 0.43) x 1073, (1)

E-mail addressscimemi@bhal.ific.uv.es (I. Scimemi).
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A larger result was obtained by the Fermilab KTeV Collaboration [6],

Re(e’/e) = (2.80+ 0.41) x 1073, 2)
The present world average [5],

Re(e’/e) = (1.93+ 0.24) x 1073, ©)

provides clear evidence for a non-zero value and, therefore, direct CP violation phenomena.

The theoretical status is more involved and not very satisfactory. There is no universal
agreement on th€ /¢ value predicted by the Standard Model, since different groups, using
different models or approximations, obtain different results [7—16]. Nevertheless, it has
been often claimed that the Standard Model predicts a too small valug gffailing
to reproduce its experimental world average by at least a factor of two. This claim has
generated a very intense theoretical activity, searching for new sources of CP violation
beyond the Standard Model framework [17].

It has been pointed out [1] that the theoretical short-distance evaluation§ «f
had overlooked the important role of final-state interactions (FSI in> 7 decays.
Although it has been known for more than a decade that the rescattering of the two final
pions induces a large correction to the isospin-zero decay amplitude, this effect was not
taken properly into account in the theoretical predictiéigom the measured—r phase
shifts one can easily infer that FSI generate a strong enhancement of the pretjicted
value, by roughly the needed factor of two [1,2]. A detailed analysis of the corrections
induced by FSI has been already given in Ref. [2], where the low-energy (infrared) physics
involved has been investigated and the size of the FSI enhancement and the associated
uncertainties have been quantified.

In this paper, we present a complete reevaluatiar af within the Standard Model. We
will show that with our present understanding of the different inputs, it is possible to pin
down the prediction of this important parameter with a theoretical accuracy of about 50%.
In order to achieve this goal, one needs to identify the most important corrections and find
appropriate expansion parameters to perform a perturbative approach with well-defined
power counting.

The largeN¢ expansion [18,19], witiN¢ the number of QCD colours, turns out to be a
very useful tool to organize the calculation. It is a unique non-perturbative approach, with
a clear meaning within the usual perturbative expansion in powers of the QCD coupling.
At leading (non-trivial) order in AN it is possible to compute all needed ingredients
and, what is even more important, the matching between short- and long-distance physics
can be done exactly. Moreover, FSI are zero at leading ordefAfz 1this allows a clear
separation of these corrections, avoiding any possible ambiguity or double-counting.

SinceN¢ = 3 in the real world, the natural size to be expected for theksuppressed
contributions is 30%. Actually, there is a quite compelling phenomenological evidence that

1Some pion rescattering corrections have been included in Refs. [9-11]. Although computed in a model-
dependent way, those effects push thgjie predictions to the correct 16 range, explaining the numerical
discrepancies with the estimates done in Refs. [7,8,16] where FSI are totally ignored.



E. Pallante et al. / Nuclear Physics B 617 (2001) 441-474 443

those corrections are usually smaller. For this to be true, however, one needs to make sure
that the ¥ N¢ expansion does not involve large logarithms [20]; i.e., one should expand in
powers of ¥ N¢ and not in powers ouj\,l—c In(M/m), with M > m two widely separated
scales. Large logarithms are in fact the main source of complications in low-energy flavour-
changing processes, because the electroweak 3¢glavhere the short-distance quark
transition takes place is much larger than the long-distance hadronic scale.

The large short-distance logarithms can be summed up with the use of the Operator
Product Expansion (OPE) [21] and the renormalization group [22]. The proper way to
proceed makes use of modern Effective Field Theory techniques [23]. One starts above
the electroweak scale where the flavour-changing process, in terms of quarks, leptons and
gauge bosons, can be analyzed within the usual gauge-coupling perturbative expansion in
a rather straightforward way. The renormalization group is used to evolve down in energy
from the scaleMz, where the top quark and tieand W+ bosons are integrated out. That
means that one changes to a different Effective Theory where those heavy particles are
no longer explicit degrees of freedom. The new Lagrangian contains a tower of operators
constructed with the light fields only, which scale as powers/d21. The information
on the heavy fields is hidden in the (Wilson) coefficients of those operators, which are
fixed by “matching” the high- and low-energy theories at the ppiat M. One follows
the evolution further to lower energies, using the Effective Theory renormalization group
equations, until a new particle threshold is encountered. Then, the whole procedure of
integrating the new heavy scale and matching to another Effective Field Theory starts
again. In this way, one proceeds down to scalesm,.

In this picture, the physics is described by a chain of different Effective Field
Theories, with different particle content, which match each other at the corresponding
boundary (heavy threshold). This procedure permits to perform an explicit summation
of large logarithms = In(M/m), whereM andm refer to any scales appearing in the
evolution. One gets finally an effectiveS = 1 Lagrangian, defined in the three-flavour
theory [24-27],

_ Gr
AS=1
L™ =— NG Vua Vs

which is a sum of local four-fermion operatogs, constructed with the light degrees of
freedom,

> G Qi(w), 4

01 = GSqup)v-a(gds)v-A,
Q2 = (5u)y_a(id)y_a.
Q35=Gd)v-A Y _(Gq)vzA.
q

Oa6= GSadpg)v-a Z(éﬂqa)v;A,
q

3 _ _
Q79= E(Sd)va ; eq(qqIv+A,
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3 _ _
0g10= > (5adp)v-n Xq: eq(Gaqa)VEA, (%)

modulated by Wilson coefficients; (i) which are functions of the heavy masses. Here
B denote colour indices ang are the quark charges,(= 2/3, ¢ = ¢; = —1/3). Colour
indices for the colour singlet operators are omitted. The lapéls A) refer to the Dirac
structuresy/, (1 £ ys).

We have explicitly factored out the Fermi coupligy- and the Cabibbo—Kobayashi—
Maskawa (CKM) matrix element¥;; containing the usual Cabibbo suppressionkof
decays. The unitarity of the CKM matrix allows to write the Wilson coefficients in the
form

Ci(w) =zi () + 1 yi (), (6)

wherer = -V, ,V;5/V, V.
components.

The overall renormalization scale separates the shortM( > 1) and long- (n < )
distance contributions, which are containeddniu) and Q;, respectively. The physical
amplitudes are independent of thus, the explicit scale (and scheme) dependence of the
Wilson coefficients should cancel exactly with the corresponding dependence ©f the
matrix elements between on-shell states.

Our knowledge ofA S = 1 transitions has improved qualitatively in recent years, thanks
to the completion of the next-to-leading logarithmic-order calculation of the Wilson
coefficients [28,29]. All gluonic corrections 61(«/ ") andO(a?”t”) are already known.
Moreover the fullm,/My dependence (to first order iy, and«) has been taken into
account at the electroweak scale. We will fully use this information up to sgales
O(1 GeV), without making any unnecessary expansion in powerg 8l

In order to predict physical amplitudes one is still confronted with the calculation of
hadronic matrix elements of quark operators. This is a very difficult problem, which so
far remains unsolved. As indicated in Fig. 1, below the resonance region one can use
global symmetry considerations to define another Effective Field Theory in terms of the
QCD Goldstone bosonsr( K, n). The Chiral Perturbation Theory PT) formulation
of the Standard Model [30-34] is an ideal framework to describe the pseudoscalar-
octet dynamics, through a perturbative expansion in powers of momenta and light quark
masses over the chiral symmetry breaking scalg ¢ 1 GeV). Chiral symmetry fixes
the allowedy PT operators, at a given order in momenta. The only remaining problem
is then the calculation of the corresponding chiral couplings from the effective short-
distance Lagrangian; this requires to perform the matching between the two Effective Field
Theories.

It is here where the /INc expansion proves to be useful. At leading order jivg,
the matching between the 3-flavour quark theory @RI can be done exactly. We will
determine the needed chiral couplings in the laigelimit, in a quite straightforward way.

The scale and scheme dependences of the short-distance Wilson coefficients are of course
completely removed in the matching process, at leading ordey My 1LAny remaining

The CP-violating decay amplitudes are proportional toyjthe
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Fig. 1. Evolution fromMy, to Mg .

dependences are higher-order in the&vd expansion and, thus, numerically suppressed;
they are included in our estimated theoretical uncertainty.

There is still an important source of large logarithms that needs to be identified and kept
under control. The FSI of the pseudo-Goldstone pions generate large infrared logarithms,
involving the light pion mass, which are next-to-leading jiNt. These chiral logarithms
can be computed within the effectiygePT framework. Moreover, as shown in Refs. [1,2]
they can be exponentiated to all orders in the momentum expansion. Since thigNg a 1
suppressed (but numerically large) effect, it generates an important correction, notincluded
in the previous leading-order determination of chiral couplings.

The paper is organized as follows. The usual isospin formalisnKfes 7 decays
and the relevant formulae faf /¢ are collected in Section 2. Section 3 presents the low-
energy x PT description. The matching between the short- and long-distance effective
theories is performed in Section 4, at leading order ivd. Section 5 summarizes the
large-N¢ predictions for the different isospin amplitudes. The one-loop chiral corrections
are discussed in Section 6. Section 7 incorporates higher-order corrections induced by
FSI, within the chiral framework. The Standard Model prediction £t is worked
out in Section 8, where two different numerical analyses are presented. The first one
incorporates the experimental valuesgfvhile in the second one its theoretical prediction
is used instead. Both analyses give compatible results. Our conclusions are finally given in
Section 9. We have collected in several appendices the analytical results from the one-loop
chiral calculation of the differel — =7 amplitudes.
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2. K —» nxr amplitudes
We adopt the usual isospin decomposition:

A[KO — 7r+71_] =Ap+ % Aa,

A[K® = 7%7% = Ao — V2 A, (7
The complete amplituded; = A; exp{i8{} include the strong phase shifi§ The S-wave

— scattering generates a large phase-shift difference betweénrtileand/ = 2 partial
waves [35]:

(89— 85) (M%) = 45> +6°. 8)

There is a corresponding dispersive FSI effect in the moduli of the isospin amplitudes,
because the real and imaginary parts are related by analyticity and unitarity. The presence
of such a large phase-shift difference clearly signals an important FSI contributign to

In terms of theK — 77 isospin amplitudes,

¢ .o o [IMm(A2) Im(Ag)
—=¢ - . 9)
& V2|¢| LRe(A2)  Re(Ag)
Owing to the well-known AT = 1/2 rule”, ¢’ /¢ is suppressed by the ratio
o =Re(A2)/ Re(Ag) ~ 1/22. (10)
The phases of ande turn out to be nearly equal:
O ~sf =38+ 7 ~0, (11)

The CP-conserving amplitudes ®g), their ratiow and |¢| are usually set to their
experimentally determined values. A theoretical calculation is then only needed for
Im(A)).

Using the short-distance Lagrangian (4), the CP-violating eatiocan be written as [7]

g ; GF w 1

— =Im(V Vig)e'® -———— | PO1-25) - =P?|, 12

- (ViiVia)e 2e] |Re(Ao)|[ ( 1B) ” (12)
where the quantities

PO =" yi((rm)11QilK) (13)

contain the contributions from hadronic matrix elements with isog@nd
_ 1im(A2)iB
" Im(Ap)
parameterizes isospin breaking corrections. The fagi@rehhances the relative weight of
thel =2 contributions.

The hadronic matrix element§z);|Q;|K) are usually parameterized in terms of
the so-called bag parameteBs, which measure them in units of their vacuum insertion

B (14)



E. Pallante et al. / Nuclear Physics B 617 (2001) 441-474 447

approximation values. In the Standard Mode{? and P turn out to be dominated by
the contributions from the QCD penguin operaty and the electroweak penguin operator
Qs, respectively [9]. Thus, to a very good approximatigiis can be written (up to global
factors) as [7]

I
~[BHP (1 - @) - 0.4B5?). (15)

The isospin-breaking correction coming franf—; mixing was originally estimated
to bef.?f,’ao'7 = 0.25 [36,37]. Together with the usual ansd#z~ 1, this produces a large
numerical cancellation in Eq. (15) leading to low values'gt around 7x 10—, A recent
improved calculation of: >~ mixing atO(p*) in x PT has found the result [38]

T —0.16+ 0.03. (16)

This smaller number, slightly increases the naive estimaté/ef

3. Chiral Perturbation Theory description

In the limit m,,, my, ms — 0, the QCD Lagrangian for light quarks hassé(3); ®
SUB)r symmetry, which is spontaneously broken3b(3)y. The lightest particles of
the hadronic spectrum, the pseudoscalar octetK, 1), can be identified with the
corresponding Goldstone bosons. Their low-energy interactions can be analyzed within
x PT [30-34], which is an expansion in terms of momenta and meson (quark) masses. The
Goldstone fields are parameterized as

\/gn0+\/%n Tt Kt

&= - _ 1n0+[n ko |. 17)
0

o

and appear in the Lagrangian via the exponential representatioexp(~/2i ® /1), with

f ~ fr= =924 MeV the pion decay constant at lowest order. Under a chiral transformation
g= (gL, gr) € SUR) L ® SUI)g, the matrixU changes a8/ — gRUgIt.

The effect of strangeness-changing non-leptonic weak interactions Atke= 1 is
incorporated [39] in the low-energy chiral theory as a perturbation to the strong effective
Lagrangian. At lowest order, the most general effective bosonic Lagrangian, with the same
SUR). ® SUR)r transformation properties and quantum numbers as the short-distance
Lagrangian (4), contains three terms:

K~ K

£AS = a (\;/i Vud usf {g8[<)\LﬂLM> + ezfzgem’()LUTQUﬂ

2
+ g27<Lu23L/1L1 + §Lu21L/1L3> } (18)
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where the matrix.,, = —iU'D, U represents the octet &f — A currents, at lowest order
in derivatives Q = diag(3, —3, —3) is the quark charge matrix,= (1% —i1")/2 projects
onto thes — d transition p;; = 6;36 ;2] and (A) denotes the flavour trace of A.

The chiral couplinggs and go7 measure the strength of the two parts of the effective
Lagrangian (4) transforming &8, 1) and(27;, 1g), respectively, under chiral rotations.
Chiral symmetry forces the lowest-order Lagrangian to contain at least two derivatives
(Goldstone bosons are free particles at zero momenta). In the presence of electroweak
interactions, however, the explicit breaking of chiral symmetry generated by the quark
charge matrix@ induces the?(p°) operator{(xUTQU) [40,41], transforming a&3; , 8z)
under the chiral group. In the usual chiral countirfg~ O(p?) and, therefore, thgew
term appears at the same order in the derivative expansioryghemd go7. One additional
term [42] proportional to the quark mass matrix, which transforméaslr), has not
been written in the lowest-order Lagrangian (18), since it does not contfibmighysical
K — 7 matrix elements [43—-45].

The tree-levek — 7 amplitudes generated by tii&p?) x PT Lagrangian (18) are:

G 1 2
Ao=—"LV,q V;}\/Ef{ (gs + —g27) (MZ — M?) - §f2€2g8gew},

V2 9
AZ — _ﬁvud Lngf{5g27(M]2( — Mg) — 3f2€2g8gew}- (19)
2 9

The strong phase shifts are zero at lowest order. Taking the measured phase shifts into
account, the moduli ofs andg>7 can be extracted from the CP-conservig> 27 decay

rates. A lowest-order phenomenological analysis [46], negledtthg tiny electroweak
corrections proportional te?gew, gives:

g8l ~5.1,  |ga7l ~0.29. (20)

The huge difference between these two couplings shows the well-known enhancement of
octet|AI| = 1/2 transitions.

The isospin amplituded,; have been computed up to next-to-leading order in the chiral
expansion [44,45,47-50]. Decomposing the isoscalar amplitudes in their octet and 27-plet
components agly = Agg) + A(()ZY), the results of those calculations can be written in the
form:

G
AéS) = _7; Vud VLTs\/EfJTgS{ (MIZ( - MJ%)[]' + AL‘ASS) + AC'ASS)]

2
— 3 P gen(1+ ALATY) + AcAgeW>]} (21)

2The contributions of this term t& — w7 amplitudes vanish ab(p2), while at O(p?) they can be
reabsorbed through a redefinition of the lo€lp#) AS = 1 chiral couplings [43-45].

3A general analysis of isospin breaking and electromagnetic correctiokis-torr 7 transitions is presented
in Refs. [47-49].
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for the octet isoscalar amplitude,

G V2
AFD =T VuaVi g Frsn (MG~ M) [1+ 40 AST + AcAT] (@2
for the 27-pletisoscalar amplitude and
G
Ap=— é Via Vi gf,, {5g27(MK M2)[1+ ALAF? + Ac AT

36 f2gelgen(1+ ALATY) + AcATV]] (29)

for the I = 2 amplitude. The electroweak penguin contributions have been also included.
These formulae contain chiral loop correctiangAER), coming from the lowest-order
Lagrangian (18) and its strong counterpart. Loop corrections are always subleading in the
1/N¢ expansion, so that they do not enter the laidgematching procedure outlined in the
introduction. One-loop corrections 16 — 7w have been extensively analyzed in Ref. [2],
with the aim of identifying and resum FSI effects. Those effects, subleadingNga but
numerically relevant, will be taken into account in Sections 6 and 7.

At next-to-leading order in the chiral expansion, i@(G r p*) and O(G re?p?), the
complete Lagrangian which mediates non-leptonic weak interactionswfits 1 can be
written as follows [44,45,47-51]:

Gr
Ly5= 1——3 wd Vs f (gBZEiOls+8272Di0i27+g832f222i01!£w>-
i i i

(24)
For the octet and 27-plet weak operatér$ and 07’ the basis constructed in Ref. [45]
has been adoptetiFor the electroweak operatcxﬂ:,EW we use the basfsof Ref. [47]. We
refer to those references for the explicit form of the operators.
The O(p*) andO(e?p?) tree-level contributions to th& — w7 amplitudes are easily
computed with the Lagrangian (24) and its strong counterpart. The complete expressions
can also be obtained from Refs. [45] and [47]:

® 2M2
AcAy’ = Ac + f—(Elo —2E13+ E15)

2M§
f2
2

~ M
AcAG" = Ac + =5-(Da = Ds = 90D +4D7)

T

(—2E1—4E2 — 2E3+ 2E10+ E11+ 4E13), (25)

2M2
f2 T (—6D1— 2Dy + 2D4 + 6Dg + D7), (26)

4 For the octet operators one can use either the basis of Ref. [45] or the basis of Ref. [50]. For completeness
we provide the transformation rules between the two bases in Appendix A.
Sour operatorsOiEW are denoted withD; in Ref. [47] and their couplingsg is related to ourgg via the

identity Gg = —(G p/v2) Vg Vi g8
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2M?2 M?
AcAEY = oA + fZK (Z1+2Z2) + f—§(421 +2Z>— Zs)

b4 T
M2 — M2
— & 57823 — 2424+ 975+ 627 — 3Zg — 3Z9
6f°
— 2710+ 2711+ 2Z1)), (27)
@7 M2 2
AcAy " = =Ac+ —(D4 - 2” (—2D2 + 2Dy + D7), (28)
7T
(ew) jew 2M;
AcAy™ = gewAr f (221 +4Z; - 72 - (2Z1+ Z2)
g
M2 — M2
+ 7K3f2 T (—4Z3+ 1274 —3Zg — 3Zg — 2Z10+ 2Z11+ 2Z12),
s
(29)
where
<AL 16L
Ac=—"2(M2 +3M2) — 2 (2M% + M2),
fn f?‘[
s ALsg 241
AR = T2 (ME +5M2) - T2 (2ME + M2). (30)
Ve f2

There are seven8., 1g) operatorsOl.8 (i =1231011 13 15), six (27, 1)
operators0?’ (i = 1,2,4,5,6,7) and twelve electroweak operatad§™V (i =1, ..., 12)
contributing toK — wr matrix elements [45,47]. The practical limitation of a systematic
xPT evaluation of thek — 7z isospin amplitudes is in the fact that the counterterms
which appear at next-to-leading order are not fully known and their determination would
require the experimental knowledge of a large set of we&k= 1 processes.

In addition, there are contributions involving the lowest-orde$ = 1 Lagrangian
(18) combined with theD(p*) strong chiral operators with couplings;, introduced
in Ref. [31]. In previous analyses [44,45,48,49] these corrections, shown in Egs. (30),
were factorized as global factors in front of the corresponding amplitudesAt =
FA(f2fx) ~ 065, 1+ AW = £6/(f5fx) ~ 0.58. A factor f3/(f2fx) arises from
wave-function renormal|zat|on while the remaining powerg of; are needed to rewrite
in terms of the physical pion decay constant the explicit dependences of the tree-level
amplitudes (19) on the chiral Lagrangian couplifigThis procedure induces a sizeable
suppression which is finally compensated by large and positive corrections frai e
weak counterterms. We prefer to keep@Ilp*) local contributions together and perform
a consistent largé¥¢ calculation of their global size.

4. Large-N¢ matching

In the largeN¢ limit the T-product of two colour-singlet quark currents factorizes:

(J~J)=(J)<J){l+(9<%)}. (31)
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In other words, colour exchanges between the two currai® I/ Nc suppressed and in

this limit the factorization of four-quark operators is exact. Since quark currents have well-

known realizations iy PT [31-33], the hadronization of the weak operat@fscan then

be done in a quite straightforward way. Thus, at laigethe matching between the short-

distance Lagrangian (4) and its long-distaid®T realization can be explicitly performed.
The chiral couplings of the lowest-order Lagrangian (18) have the following I&gge-

values:

2 3 79)@ (W) \?
6 =~ 2CL00 + 2Ca) + Ca(p) - 16@{%) Co(i),
o 3
837 =g[Crm) + C2(w],
V(2 2
(38e%gew)™ = —%%3(“)) Ca(iu). (32)

Together with the®(p?) amplitudes in Egs. (19), these results are equivalent to the
standard largeVc evaluation of the usual bag parametéts In particular, fore'/s,
where only the imaginary part of thg couplings matter [i.e., IfC;)], Egs. (32) amount
to Bé3/2) ~ Bél/z) = 1. Therefore, up to minor variations on some input parameters,
the corresponding’/e prediction, obtained at lowest order in both theVk and x PT
expansions, reproduces the published results of the Munich [7] and Rome [8] groups.

The largeN¢ limit has been only applied to the matching between the 3-flavour quark
theory andy PT, as indicated in Fig. 1. The evolution from the electroweak scale down to
u < m¢ has to be done without any unnecessary expansion in poweyVif, btherwise,
one would miss large corrections of the forﬁfcr In(M/m), with M > m two widely
separated scales [20]. Thus, the Wilson coefficients contain the fl#ipendence.

The operators); (i # 6, 8) factorize into products of left- and right-handed vector
currents, which are renormalization-invariant quantities. The matrix element of each
single current represents a physical observable which can be directly measupd®T its
realization just provides a low-energy expansion in powers of masses and momenta. Thus,
the largeN ¢ factorization of these operators does not generate any scale dependence. Since
the anomalous dimensions ¢; (i # 6, 8) vanish whenV¢e — oo [20], a very important
ingredient is lost in this limit [52]. To achieve a reliable expansion in powerg &1 one
needs to go to the next order where this physics is captured [52,53]. This is the reason why
the study of theA7 = 1/2 rule has proved to be so difficult. Fortunately, these operators
are numerically suppressed in tHi¢s prediction.

The only anomalous dimensions which survive wi\gn— oo are the ones correspond-
ing to Qs and Qg [20,37]. One can then expect that the matrix elements of these two
operators are well approximated by this lifhif52—-54]. These operators factorize into

6some insight on these matrix elements can be obtained from the two-point funcﬁp(@z) =
ifd“xe“”(T(Qi (x)Q; ™), since their absorptive parts correspond to an inclusive sum of hadronic matrix
elements squared. The knowWM«,) results [52—-54] show that the lar@é- limit provides an excellent approx-
imation to¥gg, but an incorrect description @f5.
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colour-singlet scalar and pseudoscalar currents, which aependent. Since the products
mqq(1, ys)g, are physical observables, the scalar and pseudoscalar currents depend on
like the inverse of a quark mass. Conversely, the Wilson coefficients of the opegafors
and Qg scale withu like the square of a quark mass in the largedimit.
The x PT evaluation of the scalar and pseudoscalar currents provides, of course, the right
u dependence, since only physical observables can be realized in the low-energy theory.
What one actually finds is the chiral realization of the renormalization-invariant products
mqq (1, ys)g. This generates the factongs | = m, =my]
@0)®w __Bo __Bofr
VA & fx f

M? 4L 2M2 + M2
— n [1 T2 4 4K T T 31, 4Lg)

=———|1+ +
qu(ﬂ)fn f;? g f;-?
M? 1
— 8f—;2r(2L3 —Lg) —3v; —vg — :—gv,,i|
M2 4Ls ,  2M2 + M?
(mg +mq)(ﬂ)f71 fn fn
M2 2
— f—g(ZLg—L5)—2vn — Vg — év,,],

(33)
in Egs. (32), which exactly cancel thedependence afs (1) at largeN¢ [20,37,51-54].
It remains a dependence at next-to-leading order. The paramBetés a low-energy
coupling of theO(p?) strong chiral Lagrangian, which accounts for the vacuum quark
condensate at lowest order in the momentum expansion. The one-loop corregt{ghs:
7, K, n), defined in Appendix B, are identically zero in the limig — oo.

While the real part ogs gets its main contribution fror@2, Im(gs) and Im(gggew) are
governed byCg and Cs, respectively. Thus, the analyses of the CP-conserving and CP-
violating amplitudes are very different. There are larg&/d corrections to R&;) [52—

54], which are needed to understand the observed enhancement8f tig) coupling.
However, the largeV¢ limit can be expected to give a good estimate ofgm

Contrary to the othep; operators, the leading-order contribution @§ involves the
coupling Ls of the O(p*) strong chiral Lagrangian. The largé- value of this chiral
coupling can be estimated from the ratio of the kaon and pion decay constants:

2
LY = 42]07"2(—’( - 1) =21x10"2. (34)
(M]( - M]'[) fn
The Qg contribution dominates the numerical value of(ggr). In the largeN¢ limit, the
combined effect of all other operators only amounts to a 5% correction.
The O(p*) corrections introduce dependences on three additional strong chiral cou-
plings. At largeN¢,

LY=L =0. (35)
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To determind_g, we impose the stronger requirement of lowest-meson dominance [55,56]
and assume that the scalar form factors vanish at infinite momentum transfer. This implies
the relation [57]

(2Lg — L5)*® =0, (36)

which is well satisfied by the phenomenological determinations of those constants [31,58].
The operatorg)s and Qs start to contribute af(p*), while the electroweak penguin
operatorsQ7, Q9 and Q1o give their first contributions at)(¢2p?). The largeN¢
matching at the next-to-leading chiral order fixes the coupligsd); andZ; of the long-
distance chiral Lagrangian (24). We only quote the values of those couplings contributing
to K — . amplitudes.
For theO(p*) couplings, one gets:

N 2

(g0 ED)™ = —48X19<<qq>f#) Col(k),

(q9)® ()
f2

= 1\ (2) 2
(88F3)® = —16x31<<qq)f¥) Co(i0),

2
(g8E2)>* = —32X20< ) Ce(1),

2 3
(g8E100>° =2 LS[—gCl(H) + gcz(lt) + C4(M)}

(Gq)@ ()
f2

2 3
(g8E1D)™ = 4L5[—5C1(M) + §C2(M) + C4(M)]

2
—8(2X14+ 2X15+X38)< ) Co(u),

= V@ () 2
—16(X15+2X17 — X3g) <W> Ce(w),
F0)@ 2
(88E13)™ = 8(X15 — 4X16) <<qq>f#> Ce(n),
ga)@ 2
(g8E15)™ = 8(— X34+ X3p) (W) Co(h),

(27D4)>° =4 Lsg5s. (37)

All other (27, 1g) couplings contributing t& — w7 (D1, D2, Ds, Dg and D7) are zero
at largeNc¢.

The O(p*) contributions from the operatade have been computed using thi p®)
Lagrangian of Ref. [59]; the couplings; refer to the list of?(p®) SU(3) operators given
in that reference. These couplings however are unknown, so in practigg ttentribution
is missing in Eqgs. (37). The remaining terms are in agreement with the results obtained in
Ref. [50].
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The non-zera@ (¢ p?) couplings relevant fok — o are:

V(2 2
—24<7<‘”>fg(“)) LsCa(w),

(g8¢?21)™ =
(gsezzs)oo = C10(n),

a9V 2
—%W) LsCa(u),

o 3
(gsezzs) = E[Cg(u) + C1o(w)],

(g8e®Z6)™ =

o0 3
(g8¢°29)™ = —5C7(w). (38)

5. Isospin amplitudes at leading order in 1/N¢

Combining the results of the previous sections, one gets the predicted nx
amplitudes at leading order iry ¥¢. The different contributions to the isospin amplitudes
take the following form:

2 3
g[1+ AcAP]™ = { ~£C1(1) + £C2(w) + Ca(u)

— 16L5Ce( )[M—’%]z}fK”(Mz) 39
SO G F oy | Jlo W) 39)

3
881+ AcAT"]™ = g5 [1+ AcAP]™ = Z[Catw) + Co(w)] £ (M13).

(40)
2 2
- el g g
e“gg’[gew+ Ac Ay ] 3Cs(w) (ms +mq)(1L) fx
M2 _
__[C7—C9—|—C10](M) K 0" (M), (4D
2 OO[ LA A(ew)]oo__3c( )|:M—12<1|2|:1+ﬁM2
e“gg’[gew+ Ac Ay = s ) () fr 7T
2 2

—[c7 — Cg— Crol(W)—E—Z (&7 (M2). (42)

f2
For the operator®); (i # 6, 8), which are products of colour-singlet vector and axial-
vector currents, these are exact lafge+results to all orders in the chiral expansion, as can
be easily seen factorizing the operators at the quark level yRieframework discussed
before reproduces these results in a perturbative way, through the momentum expansion of
the K = scalar form factor a®(p*):
M? 4Ls

fer(mM2) = f”(M§)+7M ”szK”(MZ) 1+IM2+ (43)
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Table 1
Numerical values of the weak chiral couplings in the lafgedimit

e [1+ AcAPT® (1.340.24+0.1) + 7(1.12+ 008949
391+ AcAP ] (0.47+0.01+0.0)

25 [gew+ Ac AT ™ —(0.085+£0.085"9.93%) — (233 0.077 383
?5°[gew+ Ac AT ] —(0.07+0.07t3%3) — 7(1.34+0.03t285)

The form factorsfX ™ (¢) are defined through the matrix element of the vector current,

(m|5y"q|K) = Cxx{(Pk + k)" fE7 (1) + (Pk — k)" fX7 (1)}
(¢ =u,d), (44)

wherer = (P — kz)?, Cxoy0 = —Cgsn0 =1/4/2 andCyo, - = Cgip+ = —1.

The wave-function renormalization correctiodg [Eq. (30)] have been cancelled by
weakO(p*) contributions, as it should since we are dealing with conserved currents. Once
the O(p?) results are written in terms of the physical pion decay congtartiigher-order
chiral contributions only introduce the small correction fagf§ﬁ’(M§) ~ 1.02.

The hadronic matrix elements of the operat@rs and Qg factorize into products of
scalar and pseudoscalar currents, which cannot be directly measuregPThredictions
are then needed to determine those hadronic currents. The electroweak penguin matrix
elements are known 10 (p*). Again, one observes that the contributions from local weak
terms (Z1 and Zg) cancel the negative contribution froﬁﬁw) and reverse the sign of the
O(p*) correction. The contribution of the penguin operafy is only known atO(p?).

For Qs we cannot just include tha ¢ correction, because the corresponding wéak*)
counterterms are unknown and large cancellations can be expected. In Eg. (39) we have
taken a global correction factq?oK”(Mﬁ) for the octet amplitude. This is a reasonable
assumptiorY, since nearly all known pieces have this common correction. Qp#yo gets

a different (and larger) correction.

The scalar and pseudoscalar currents introduce a quadratic dependence on quark
masses in the contributions from the operat@esand Qg. At present, the most reliable
determinations of the light quark masses givg1l GeV) = (1504 25) MeV [60—-65] and
(my, +mg)(1 GeV) = (128 + 2.5) MeV [66], at the scale. = 1 GeV. We then take:

(ms +my)(1 GeV) = (156 25) MeV. (45)

Table 1 shows the resulting numerical predictions for the weak chiral couplings. The
central values have been obtaineduat 1 GeV. The first errors indicate the sensitivity
to changes of the short-distance renormalization scale in the fpge 1 < m. and to
the choice ofys scheme in the next-to-leading order calculation of the Wilson coefficients.
The second uncertainties correspond to the input values of the quark masses.

7 In fact, the factorfOK T (M,%) already appears in the lowest-ord@g contribution togg, through theO(p“)
correction in Eq. (33).
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For historical reasons, the values of the short-distance Wilson coefficients are usually
given in terms of Agcp (in the three or four flavour theory). Nowadays, that is
experimentally known with rather good accuracy, it is unnecessary to introduce this
additional auxiliary parameter which only complicates the final expressions. Since the
most importanty, corrections appear at the lowest scale- O(1 GeV), we have fixed
the strong coupling at the mass, where it is known [67] with about a few percent level of
accuracy:

oy (M) = 0.345+ 0.020, (46)

The high-energy matching scale is chosen to be intermediate betwe#nltbson and the
top quark mass scale. We have performed the matching directly Ztbweson mass scale
whereq; is best known [68],

as(Mz) =0.1194 0.002 (47)

The measured values (46) and (47) are in perfect agreement, if one performs [69] a four-
loop evolution ofa; betweenM; and M., with the appropriate matching conditions at
the different thresholds [70]. The valuesaf at the other needed scales can be deduced
from (46). The numerical uncertainties associated with the present eregr lnave been
included in our results, but they are negligible in comparison with the uncertainties from
other sources.

The dominance o0 and Qg in the CP-odd amplitudes (the ones proportional to the
CKM factor 7) is apparent in Table 1, where those pieces show a very strong dependence
on quark masses (second error bars). In comparison, the short-distance uncertainties are
much smaller. The opposite behaviour is observed in the CP-conserving coupliiags Re
and Ré&g27), which are dominated b@1 and Q. The 27-plet coupling, which does not
get any penguin contribution, satisfies(ip;) = 0 for all practical purposes.

Taking Szl’,’;” =0.16, Im(V,* V;4) = 1.2 x 10~% and the central values in Table 1 for the
CP-odd amplitudes, one gets the lafge-prediction Rés’/s) ~ 0.8 x 10-3. Although
numerically suppressed, the operatQrs Q» andQ4, which are not well approximated by
the larged ¢ limit, provide also small corrections to kAp). In Refs. [7,28] the measured
CP-conserving rates are used to estimate those contributions. This amounts to multiply the
corrections from these operators by a faétor 4.9, to compensate for the underestimated
coupling Regg). Adopting this prescription, one gets R&/s) ~ 0.5 x 103, in agreement
with the findings of Refs. [7,8].

6. Chiral loop corrections

The previous tree-level amplitudes do not contain any strong pt&és@:hose phases
originate in the final rescattering of the two pions and, therefore, are generated by
chiral loops which are of higher order in th¢ N¢ expansion. Analyticity and unitarity
require the presence of a corresponding dispersive FSI effect in the moduli of the isospin
amplitudes. Since the strong phases are quite large, specially in the isospin-zero case,
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one should expect large higher-order unitarity corrections. Intuitively, the behaviour of
thel = 0 andl = 2 S-wave phase shifts as a function of the total invariant mass of the two
pions suggests a large enhancement offtke0 amplitude and a small suppression of the

I = 2 amplitude.

The size of the FSI effect can be estimated at one loggHi. The dominant one-loop
correction to the octet amplitude comes indeed from the elastic soft rescattering of the
two pions in the final state. The existing one-loop analyses [44,45] show that pion loop
diagrams provide an important enhancement ofAh@amplitude by about 40%, implying
a sizeable reduction of the phenomenologically fitted valuggfin Eq. (20).

The complete formulae for the one-loop correctiQn§A§R) are compiled in the
appendices. The usual one-loop funct®2, M2, p?) is defined in Appendix B, while
appendix Appendix C contains explicit results for the different isospin amplitudes. The
contributions proportional t8(M3, M3, M2), with P =, K, 1, arise from intermediate
nw, KK and ny states. Ats = (pr, + pz,)? = M%, the only possible absorptive
contribution comes from the elasticr rescattering:

AL A = %(ZM,% — M2)B(M2, M2, M%) + -, (48)
1
ALASP = Z(M,% —2M2)B(M2, M2, M%) + - --, (49)
where

B(M2, M2, M2) = (471fn)2{ [In(ifii)—i] In(ﬂt{i)—l} (50)

with v the chiral loop renormalization scale and

4M?2

1-—
>
MK

(51)

Ox

Thus, all isoscalar amplitudes get the same absorptive contribution, as it should, since
they have identical strong phase shifts. The same is true for the two amplitudgs=wi2h
The one-loop absorptive contributions reproduce the leagiRg values of the strong
rescattering phaség, with 7 =0, 2:

. 1
tansy 2(M%z) = =0z (2M% — M2; 2M? — M%). (52)
321 f2

The numerical values of)>(M2) predicted byxPT at leading orderd(M2) = 25°

and 3§(M,2() = —12°, are significantly lower than their experimental values, implying

that higher-order rescattering contributions are numerically relevant. The phase-shift

differenceﬁg — 35 = 37°, is slightly less sensitive to higher-order chiral corrections [35].
The 2t intermediate state induces a large one-loop correction té ta@® amplitudes.

Atv=M,, the 2t contribution to the isoscalar amphtudesA@A(R) |z7 = 0.434+ 0.461,

while ALAZ lz= = —(0.19+4 0.20i); i.e., the expected enhancement (suppression) of the

1 =0 (I = 2) amplitudes. The contributions from other one-loop diagrams, not related to

FSI, are different for the different amplitudgéR).
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Let us write our isospin amplitudes in the form
AP = A% P, (53)

whereA(,R)oo are the largeV¢ results obtained in the previous section. The correction

factorsC}R) contain the chiral loop contributions we are interested in. At the one-loop
level, they take the following numerical values:

C¥ ~ 1+ ALAY =1.27+0.05+ 0.46i,
C" ~ 1+ ALAY" =20+ 0.7+ 0.46i,
Ce" ~ 1+ ALAS" =1.2740.05+ 0.46i,
C" ~ 1+ AL AFY =0.96:+ 0.05— 0.20i,
e ~ 1+ AL APY = 0.50+ 0.24— 0.20i. (54)

The central values have been evaluated at the chiral renormalizationvseald,. To
estimate the corresponding uncertainties we have allowed theistalehange between

0.6 and 1 GeV. The scale dependence is only present in the dispersive contributions and
should cancel with the correspondinglependence of the local counterterms. However,
this dependence is next-to-leading ifNe and, therefore, is not included in our large-

Nc estimate of the&)(p*) andO(e?p?) chiral couplings. The dependence of the chiral
loops would be cancelled by the unknowpN-suppressed correctionscAf,R)(v) —

Ac AP that we are neglecting in the facto?s®. The numerical sensitivity of our
results to the scale gives then a good estimate of those missing contributions.

The absorptive contribution induces a large one-loop correction tb +h6 amplitudes.

The dispersive correction mLA((f?) is even larger, but it has a smaller phenomenological
impact because the isoscakir— 7 amplitude is dominated by its octet component; this
27-plet correction has a strong dependence and, therefore, a rather large uncertainty.
Although the one-loop correction to the= 2 (27, , 1g) amplitude is rather moderate, the
electroweakl = 2 amplitude gets a large dispersive correction with negative sign. This
induces a corresponding suppressiowv")| by about 46%.

The numerical corrections to the 27-plet amplitudes do not have much phenomenolo-
gical interest for CP-violating observables, becausédm = 0. Remember that the CP-
conserving amplitudes Re ;) are set to their experimentally determined values. What is
relevant for thes’ /¢ prediction is the 35% enhancement of the isoscalar octet amplitude
Im[AéS)] and the 46% reduction of Imt[(zew)]. Just looking to the simplified formula (15),
one realizes immediately the obvious impact of these one-loop chiral corrections, which
destroy the accidental lowest-order cancellation betweehh® and/ = 2 contributions,
generating a sizeable enhancement’ ¢f.

A completeO(p*) calculation [38,47] of the isospin-breaking parame®g is not
yet available. The value 0.16 quoted in Eq. (16) only accounts for the contribution from
7%y mixing [38] and should be corrected by the effect of chiral loops. Slﬂ§2¢57)| ~
0.98+ 0.05, one does not expect any large correction ofAp g, while we know that
Im[AéS)] gets enhanced by a factor 1.35. Taking this into account, one gets the corrected
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(27
2

5| =0.12+0.05, (55)
c®
0

where the quoted error is an educated theoretical guess. This value agrees with the result
213 = 0.084+ 0.05+ 0.01, obtained in Ref. [71] by using three different models [9,50,53,
55,72,73] to estimate the relevafit p*) chiral couplings.

The one-loop corrections increase the lafge-estimate frome’/e ~ 0.8 x 1072 to8
¢’ /e ~ 1.8 x 10-3. The contributions to Irt4 o) from the operatorg)1 2 4 can be corrected
phenomenologically, as advocated in Ref. [28]; this requires now a smaller §actd3.5,
which results i ¢’ /e ~ 1.5 x 1073,

7. Final stateinteractionsat higher orders

Given the large size of the one-loop contributions, one should worry about higher-order
chiral corrections. The fact that the one-loop calculation still underestimates the observed
68 phase shift indicates that a further enhancement could be expected at higher orders.

The large one-loop FSI correction to the isoscalar amplitudes is generated by large
infrared chiral logarithms involving the light pion mass [2]. These logarithms are universal,
i.e., their contribution depends exclusively on the quantum numbers of the two pions in
the final state [2]. As a result, they give the same correction to all isoscalar amplitudes.
Identical logarithmic contributions appear in the scalar pion form factor [31], where they
completely dominate th€(p*) xPT correction.

Using analyticity and unitarity constraints [74], these logarithms can be exponentiated
to all orders in the chiral expansion [1,2]. The result can be written as:

P =c®(M2) = 2, (M2, 50)CS" (s0). (56)
The Omnés [74-76] exponentél

1

21(s. 50) Eei’sé(s)m[(s,so)zexp{ (s _SO)/ dz %@ } (57)
14 (z—s50) (z—s —i€)

provides an evolution df}R)(s) from an arbitrary low-energy poing to s = (pr, + pnz)2
= M,z(. The physical amplitudes are of course independent of the subtractionspoint
Intuitively, what the Omnés solution does is to correct a local wEak- 7 transition
with an infinite chain of pion-loop bubbles, incorporating the streng— 7 rescattering
to all orders iny PT. The Omnés exponential only sums a particular type of higher-order

Feynman diagrams, related to FSI. Therefore, Eq. (56) does not provide the complete

8 This number is obtained taking the experimental valuesfand IMViVig) =12 x 10~4. Using instead
the theoretical prediction far, one would get’/s ~ 2.2 x 103. See Section 8 for more details on this second
kind of numerical analysis.
9 Using the theoretical value of one findss’ /e ~ 1.8 x 10~3.
10 Equivalent expressions with an arbitrary number of subtractions for the dispersive integral can be written [2].
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result. Nevertheless, it allows us to perform a reliable estimate of higher-order effects
because it does sum the most important correctidridoreover, the Omneés exponential
enforces the decay amplitudes to have the right physical phases.

The Omnés resummation of chiral logarithms is uniquely determined up to a polynomial
(in s) ambiguity [2,74,77], which has been solved with the laigeamplitude.A'®™. The
exponential only sums the elastic rescattering of the final two pions, which is responsible
for the phase shift. Since the kaon mass is smaller than the inelastic threshold, the virtual
loop corrections from other intermediate statés- K, Kn, ny, KK — nx) can be
safely estimated at the one loop level; they are includeﬂzj"fﬁ(so).

Taking the chiral prediction foi} (z) and expanding2; (M2, so) to O(p?),

85(2)

=1+482;(M?2,s0),
MZ i 1 (M. 0)

(M2 — s0) dz
21 (M2, 50) ~ 1+ Kn /(Z—SO) =
(58)

one should reproduce the one-logT result. This determines the factﬁ}R)(so) to
O(p* in the chiral expansion:

C (s0) =CY0[1— 821 (MZ, 50)] ~ 1+ AL AR — 521 (M2, 50). (59)

It remains a local ambiguity at higher orders [2,74,77].

Eq. (56) allows us to improve the one-loop calculation, by takingpw enough that
the xPT corrections tCC;R)(so) are moderate and exponentiating the large logarithms
with the Omnés factor. Moreover, using the experimental phase shifts in the dispersive
integral one achieves an all-order resummation of FSI effects. The numerical accuracy of
this exponentiation has been successfully tested [2] through an analysis of the scalar pion
form factor, which has identical FSI thaty.

At so = 0, the dispersive parts of the experimentally determined Omnés exponentials
are [2]:

Ro(MZ,0)=1.55+0.10, 9 (MZ,0)=0.92+0.03. (60)

The quoted errors take into account uncertainties in the experimental phase-shifts data and
additional inelastic contributions above the first inelastic threshold. These numbers fit very
well with the findings of the chiral one-loop calculation discussed in the previous section.
The corrections induced by FSI in the moduli of the decay amplitudlegenerate an
enhancementofthAl =1/2to Al = 3/2 ratio [1],

Ro(MZ,0)/%(M%,0)=1.68+0.12 (61)

This factor multiplies the enhancement already found at short distances.

11 A more elaborated dispersive framework including “crossed-channel” contributions has been recently
discussed in Ref. [77]. The available non-perturbative information, needed to fix the corresponding subtraction
constants, does not allow an accurate calculation of those additional effects. Nevertheless, using the present
knowledge onr K scattering phase shifts [78], this dispersive analysis [77] corroborates that higheredéder
rescattering corrections are indeed negligible, as expected.
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At O(p*), the previous numbers should be corrected with the fa«‘iﬁﬂ‘(so), which
incorporate additional one-loop contributions not related to FSI. These factors compensate
the obviousso dependence of the Omnés exponentials, ugd@®) corrections. To
estimate the remaining sensitivity to this parameter, we have changed the subtraction point
betweensg = 0 andsg = 3M§ and have included the resulting fluctuations in the final
uncertainties. The detailed numerical analysis is given in Appendix D.-AtV,, we get
the following values for the resummed loop corrections:

c$P] = Ro(MZ, 50)C (s0) = 1.31+ 0.06,
€87 = Ro(MZ, 50)CE7 (s0) = 2.4+ 0.1,
5 | = Do(M2, 50)C S (s0) = 1.31+ 0.07,
C$7 | = %o (M2, 50)CS" (s0) = 1.05+ 0.05,
1CS | = 9t5(M2, 50)CE™ (s0) = 0.62: 0.05. (62)

These results agree within errors with the one-loop chiral calculation of the moduli of the
isospin amplitudes, indicating a good convergence of the chiral expansion.

To derive the Omnés representation, one makes use of Time-Reversal invariance, so that
it can be strictly applied only to CP-conserving amplitudes. Nevertheless, the procedure
can be directly extended to the CP-violating components relevant for the estimate.of
Working to first order in the Fermi coupling, the CP-odd phase is fully contained in the ratio
of CKM matrix elements which appears in the short-distance Wilson coefficients and,
therefore, in4{'>. Decomposing the isospin amplitudes4$” = A" + rAiR)CP,
the Omneés solution can be derived separately for the two amplimﬁﬁggp andAgR)CP
which respect Time-Reversal invariance.

8. Numerical analysis

The CP-violating ratia’ /¢ is proportional to the CKM factor lifV,% V;4). The standard
unitarity triangle analyses [79] have estimated this parameter to be in the range

IM(V,5Viq) = (1.2£0.2) x 1074, (63)

This determination is obtained combining the present information on various flavour-
changing processes; mainby, Bo—Bo mixing and the ratiol"(b — u)/I"(b — ¢). The
final number is sensitive to the input values adopted for several non-perturbative hadronic
parameters and, thus, there are large theoretical uncertainties [80] which are not easy to
quantify.

Since the Standard Electroweak Model has a unique source of CP violation, the
same combination of CKM factors appears in the theoretical prediction, fathich is
proportional to thek °—K© matrix element of the\ S = 2 operator:

— 4
(K°|Gryudr) (5Ly™dr)|K®) = gf,EM,%BK(m. (64)
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The factor Bx (1) parameterizes this hadronic matrix element in vacuum insertion
units. The corresponding Wilson coefficieik s—2(1) is known at the next-to-leading
logarithmic order [27,81]. Taking appropriate values for the different inputs one finds:

4 _
6= 5 Bi IM(V,3Via) (189 — 14.47), (65)

with p one of the two CKM parameters, in the Wolfenstein [82] parameterization, which
characterize the upper vertex of the unitarity triangle. The standard analyses [79] favour
the rangep = 0.2+ 0.1, implying

4
el = 5Bk Im(V{Via) (16.0:£1.4), (66)

whereEK = Cas=2(n) B (i) is the scale-invariant bag parameter. In the lakgelimit,
Bk = Bx (1) =3/4.

The numerical values of both I¢¥; V;;) andp depend on hadronic inputs. However,
is rather insensitive to the precise valueooit changes by less than 10% whgetis varied
within the previously quoted range.

Thus, we can make two different numerical analyses of.

1. The usual one, taking the experimental value ahd adopting the range (63) for the
relevant CKM factor.

2. Usinginstead the theoretical predictiorzan Eq. (66), the ratie’ /s does not depend
on Im(V;:V,4) [10]. The sensitivity of this CKM factor to different hadronic inputs
is then reduced to the explicit remaining dependencg;an

The second type of analysis is more suitable to a systemdfiG lapproach. The
theoretical prediction fot’ /e depends on ratios of hadronic matrix elements, Be/EK.

It is known [80] thatBx has sizeable largak [53,83,84] and chiral [85] corrections,
which are of opposite sign and could then cancel to some extent. Thus, one can expect the
limit N¢ — oo to provide a good starting point to analyze the relevant ra&?@éz)/ﬁK
andB§3/2)/§K.

We have performed the two types of numerical analysis, obtaining consistent results.
This allows us to estimate better the theoretical uncertainties, since the two analyses have
different sensitivity to hadronic inputs. The contributions to(#y) from the operators
01,24 have been estimated, following the strategy adopted in Ref. [28]; i.e., we have
corrected them with the factgg ~ 3.5.

As a first estimate, we can perform the calculatiorr9t to O(p?) in xPT, without
making any Omnés resummation of higher-order corrections. Once the large one-loop
corrections are taken into account, all important ingredients are already caught. We find,
for the two different types of analysis:

SIM(VE Vi)
1.2x 104

To quantify the uncertainties, we need to consider higher-order effects. Performing the
Omnés resummation, as indicated in Eq. (56), one finds:

Re(e’/e) =1.5x 10~ =1.8x 1073, (67)
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3IM(V,Via)
1.2 x 104
These numbers are quite close to the one-loop results (67), which indicates that the error
induced by the chiral loop calculation is not large.
From the previous numbers, we derive:

Re(e'/e) = 1.4 x 10° =1.6x 103, (68)

Re(e'/e) = (L.7+£0.2708 £0.5) x 1073, (69)

The first error indicates the sensitivity to the short-distance renormalization scale, which
we have taken in the randé, < u < m.. The uncertainty coming from varying the strange
quark mass in the interva:; +m,) (1 GeV) = 156+ 25 MeV [60-66] is indicated by the
second error. We have added a 30% uncertainty from unknown next-to-leadipgyin 1
local contributions (third error).

9. Discussion

The infrared effect of chiral loops generates an important enhancement of the isoscalar
K — 7 amplitude. This effect gets amplified in the predictiore0f, because at lowest
order (in both ¥ N¢ and the chiral expansion) there is an accidental numerical cancellation
between thd = 0 and/ = 2 contributions. Since the chiral loop corrections destroy this
cancellation, the final result far' /¢ is dominated by the isoscalar amplitude. Thus, the
Standard Model prediction far /¢ is finally governed by the matrix element of the gluonic
penguin operato@e.

There are three major ingredients in our theoretical analysis:

1. A short-distance calculation at the electroweak scale and its renormalization-group
evolution to the three-flavour theory (< m.), which sums the leading ultraviolet
logarithms.

2. The matching to thg PT description.

3. Chiral loop corrections, which induce large infrared logarithms related to FSI.

The first step is already known at the next-to-leading logarithmic order [28,29]. The
short-distance results are then very reliable.

We have tried to achieve an acceptable control of the large infrared chiral corrections,
which are fully known at the one-loop level. A complete two-IgoBT calculation is not
yet available. Nevertheless, since the leading one-loop corrections are generated by the
FSI of the two pions, we can use the Omnes resummation to get an idea about the size
to be expected for the unknown higher-order contributions. The Omnés exponential only
sums a particular type of higher-order Feynman diagrams, related to FSI. Although it does
not give the complete result, it allows us to estimate the theoretical uncertainty in a very
reliable way, because it does sum the most important corrections. The one-loop results
and the Omnes calculation agree within errors, indicating a good convergence of the chiral
expansion.

The most critical step is the matching between the short- and long-distance descriptions.
We have performed this matching at leading order in th€ expansion, where the result
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is exactly known ta?(p*) andO(e?p?) in xPT [O(p?) for Qg]. This can be expected to
provide a good approximation to the matrix elements of the lea@disignd Qg operators.
Since all ultraviolet and infrared logarithms have been resummed, our educated guess for
the theoretical uncertainty associated witiNt corrections is~ 30%.

As our final result we quote:

Re(e’/e) = (1.7+£0.9) x 1073, (70)

A better determination of the strange quark mass would allow to reduce the uncertainty
to the 30% level. In order to get a more accurate prediction, it would be necessary to
have a good analysis of next-to-leadingVk: corrections. This is a very difficult task, but
progress in this direction can be expected in the next few years [9,12,53,84,86,87].

Note added
After this paper was submitted for publication, new experimental results have been
announced both by NA48 [88] and KTeV [89]:

(1.53+0.26) x 10°3 [NA48],
(2.07+£0.28) x 10°2 [KTeV].
The new world average,

Re(e’/e) = {

Re(e’/e) = (1.72+0.18) x 1073,

is in excellent agreement with the Standard Model prediction in Eq. (70).

Acknowledgements

We have benefited from discussions with G. Colangelo, G. Ecker, M. Knecht, J. Portolés,
J. Prades and E. de Rafael. This work has been supported by the European Union TMR
Network “EURODAPHNE" (Contract No. ERBFMX-CT98-0169) and by DGESIC, Spain
(Grant No. PB97-1261).

Appendix A. Octet basistransformation rules
Following the same notation as the original references, one can change from the octet

basis}"; E; 08 of Ref. [45] to the one of Ref. [50[y_; N; W8, using either the following
identities for the operators,

8_ 8 8 8

Ws = O1o, Wio= 01,
1

8 8 8 8

We = 5012 Wi1= 03,

8_ 8 8 _ 8
W7 = 013, Wi, = 03,
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1
8 8 8 8 8 8 8
Wg =010+ O11— 5(012"' 013), Wiz= Oy,
ws = 0%, w8 = 0% - 08+ 08, (A1)
or the coefficient relations

N5 = Ej0— E13, Nio= E1 — Es,
Ng = E11+ 2E12, N11=Ep,

1
N7=-E11+ E13, Ni2= E3+ E5,

2
Ng = E11, Niz= Ea,
Ng = E1s, N3e = Es. (A.2)

Appendix B. One-loop functions

The one-loop functiomB(M2, M2, p?) is defined by the (dimensionally regularized)
basic scalar integral with two bosonic propagators:

dPq 1 2 2 Ag2 2 2
i = fZB(M7, M5, p©) + 2A(n*), (B.1)
/<2n>D (M2 —gDIM5—(p—q)2] " (M1, M3 ) + 2457
where
1 (puP? 1
Au?) = — “[ye —In(4n) —1]}. B.2
() = qga] =g + gle - mam - 1]} ©2)
It can be expressed in terms of the functia(p?) [31]:
_ 1 M? M? M?
F2B(MZ, M3, p?) = —J12(p?) + — <In —2+—21 I —é) (B.3)
T 167 v M;— M5 M5
with
. 1 1 MZ M2\  M? M? M?
) = g 1= (1 Sk = 2 Jin b+ Lt L
16 2 p M5  Mi—-M5; M3
11 253002 — (M2 — M2)2
- ——2In (P2+ )2 ( 12 22)2}’ (B.4)
2p (pe— 1> — (M{ — M5)
where
22 =22(p?, M2, M3) = [ p? — (M1 + M2)?|[p? — (M1 — M2)?]. (B.5)
For M1 = M2 = M one gets
. 1 M?
2 2 g2 2 2
fn,B(M,M,p):—J(p)+rG71_2<|n7+l>, (B.6)

whereJ (p?) is given by

_ 1 +1 4M?
J(pZ):W{Z—UIn<Z_1)}, o= 1- "5 (B.7)
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The one-loop amplitudes contain an additional logarithmic dependence on the chiral

renormalization scale, through the factorsk = n, K, n):
M2 M2

=L In—2L. B.8
P 32m2p2 2 B8

Appendix C. One-loop amplitudes

The one-loopK — mz amplitudes have been computed in Refs. [44,45], in the
absence of electroweak corrections. The electromagnetic contributions have been recently
calculated in Refs. [47-49]. The results take the form:

AL AP = {_%(21\4,2{ — MZ)B(MZ, M2, M%) — %MﬁB(Mg, M2, M2)

LML vz — am2)p(vi2, M2, m2) + 2 MK g2 a2, 2
+£_1M—§( k —4M7)B(Mg, My, )+1_2W (Mk. 1’ 7)
M4 M2 M4
+2—K[<2+15——21 ’;)
AMg — M2)M? Mz My
M?2 M2 MZ M
+2—2<3+ Z>UK+<—2+3—Z—5—Z>U,{|}, (C.1)
M MK MK MK
ap A =L Lomz — m2)p(mz. M2 m2 ME (M2, M2, 12
E( k = Mz)B(Mz. Mz M)+ 5 (Mk. M. M)
1M12< 2 2 2 Mli 2 2 2
+aa5 — 4M2)B(M%, M2, M )+8—B(MK,M,7,M7,)
e

1 M2 1 M2 3 M2
+Z 17+2M—7¥ l)n 4+ M2 \)K+4 1 MZ

(C.2)
for the octet isoscalar amplitude,
@ _[ 1 2 2 012 g2\ 4 L2 2 g2 g2
ALA; 2(2MK M. )B(MH,MH,MK)+§MJTB(M,7,M,1,MK)
1M2 M2 2 2 2 o LMy 2 242
+zm( k —4M7)B(My, Mz, M3 )_§M—B(MK7M17’M71)
T
M4 M2 M4
+2—K22|:<2+15_72r_21_2>vn
AMZ — M2)M?2 M2 M3

M? M4 M? M4

—<10+4—’2’—22—Z>vk+<8 27— +15—% Z) ]}
MK MK MK MK

(C.3)
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for the 27-plet isoscalar amplitude and

AL AZD ={%(M,2< — 2M2)B(M2, M2, M2)

5M2 2 8 2 2 2 2
+ ——(MK - gM7,>B(MK,M7,,M,,)

M4 M?
+ K [(5 18—2 +21
AMg — M2)M? Mz

M? M
(4 2 Mz +z_) (
MK MK

ALASY = {:_ZL(M,% — 2M2)B(M2, M2, M%)

i)
B e

5Mg (. o 8 5 2 212 212 %
+§M—7%<MK_3MH B(Mg, Mz, My) 8M2

5/M2 11 1/ M2 3/ M2
e e e B O [ i S R I
+4<M§+ 5)”” 2<M2 KT\ mz )"

for theI =2 amplitude.

><4>:u>

(Mg, M7, M%)
(C.5)

Appendix D. Resummation of higher-order corrections

In this appendix we provide some details on the Omnés procedure for calculating the
isospin amplitudes. The resummed loop corrections are contained in the fﬁﬁbras
defined in Eq. (56). AO(p*) in the chiral expansion, these quantities should reproduce the
one-loopy PT results in (54); this determines the factdfg) (so), with sg the subtraction
point, up to higher-order local contributions:

C (s0) =C0[1— 821 (MZ, 50)] ~ 1+ AL AR — 521 (M2, 50). (D.1)

Here,ALA(,R) is the one-loogy PT result and £2; (M2, so) is obtained by taking the chiral
prediction for the phase shiff(z) in £2;(M2, so) and expanding2; (M2, so) to O(p?),

21(M%,50) = 148821 (M%, 50) + O(p*). (D.2)

The explicit expressions fQﬁL.A(,R) are listed in Appendix C. The once-subtracted Omnes
exponential

(M2 —s0) [ d 80(2)
Q[(M%,so)zeXp{ Kn i / @ _ZSO) (z—Ac/;,zj—ie) (D.3)
2
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contains the integral over the experimentally determined phaseﬁéhijtwith I=0o0r2.
The upper edge of the integralshould correspond to the first inelastic threshold in the
given isospin channel. The corresponding expansion factor,

85(2)

D.4
M%Z —ie)’ -4

K4
(M2 — s0) dz
821 (M2, s0) = —K /
1( K ) T (Z _ SO) (Z _
4M?2

contains the same dispersive integral, but with the phased%hfﬂ determined at(p?)
in xPT. The explicit expressions fé£2; (M,Z(, so) with I =0 and 2 are as follows:

5201 0) = 55572 (20F — WE)o () n | 28—
— (250 — M2)o (s0) In [%]
~2(M2 ~ s0)In E;—ZZ;]}

$22(M2. 50) Shlsz {(2M§ — M2)o(M2)In [%}

o o (s0) = o ()
(ZMH S())(T(So) In |:U(S0) n U(Z)]

+ (M2 —s0)In [Lizg“ (D.5)
where for convenience we have defined) = /1 — 4M2/s.

In the following numerical analysis we have varied the subtraction point betwee®
andsg = 3M§, together with the upper edge of the Omnes integrab estimate the
sensitivity of our predictions to these parameters. We have fixegd Biierenormalization
scale atv = M,. In Tables 2 and 3 the dispersive part of the Omnés factors and
882/(M2, s0) are reported as functions &f, for 7 = 1 Ge\? andz = 2 Ge\?, respectively.

The corresponding moduli of the correcticﬁfg), derived according to Eq. (62), are given
in Tables 4 and 5. The residual tiny dependenqé'ﬂ‘)f)| on the subtraction poin should

be cancelled by missin@(p®) contributions tcﬂ;R)(so), since the local ambiguity of the

Table 2
Thesp dependence of the once-subtracted Omnés parametérs=fbiGe\2

S0 No 8820 No 8820

0 1.45 032+ 0.46i 0.94 ~0.16 - 0.20i
M2 1.40 029+ 0.46i 0.95 —0.15- 0.20i
2Mm2 1.33 025+ 0.46i 0.96 ~0.13-0.20i

T

3M2 1.26 021+ 0.46i 0.97 —0.12—-0.20i

T
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Table 3
Thesg dependence of the once-subtracted Omnes paramete‘rs—fﬁlGeVZ

S0 No 3820 No 5820
0 1.58 047+ 0.46i 0.92 —0.24—0.20¢
MJ% 151 043+ 0.46i 0.93 —0.22—-0.20i
ZM% 1.44 039+ 0.46i 0.94 —0.20—0.20:
3M§ 1.35 033+ 0.46i 0.95 —0.17—-0.20i
Table 4

Resummed loop corrections with one subtraction aedl Ge\2

® 27 (ew) @7 (ew)
S0 |Co | {Co | {Co { |Cz { |Cz |
0 1.37 2.47 1.38 1.06 0.62
M2 1.36 2.42 1.37 1.05 0.61
2M?2 1.35 2.36 1.36 1.05 0.60
3m2 1.33 2.28 1.34 1.04 0.59
Table 5
Resummed loop corrections with one subtraction aed? Ge\?
® 27 (ew) @7 (ew)
50 Co | G| Co | c57" e
0 1.26 2.45 1.27 1.10 0.68
M2 1.27 241 1.27 1.10 0.67
2M?2 1.27 2.36 1.28 1.09 0.65
3M2 1.26 2.28 1.27 1.08 0.64

e

Omneés procedure has been only solve@igp?) in the chiral expansion. From Tables 4
and 5 one can also verify that the once-subtracted result is sensitively dependent on

As it was noticed in Ref. [2], the sensitivity to the higher energy region of the dispersive
integral (i.e., the numerical dependence on the upper efigeereduced by performing
more subtractions. However, a better knowledge of the theory is required in this case.
Indeed, the sensitivity to unknown higher-order corrections in the chiral expansion will
increase with the number of subtractions, so that the resulting amplitudes can only be
trusted at the lowest values of the subtraction poigt~ 0), where x PT corrections
are moderate. We have checked these statements using the twice-subtracted Omnés
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Table 6
Thez dependence of the twice-subtracted Omnés parametess 00

7 (GeV?) Ro 8820 Ro 5522
1 1.44 040+ 0.46i 0.86 —0.20—0.20i
2 1.46 042+ 0.46i 0.85 —0.21— 0.20i
Table 7

Resummed loop corrections with two subtractions ane 0

: (Ge?) |C(()8)| |C(()27)| |C(()ew)| |Cé27)| |Céew)|
1 1.25 2.34 1.26 1.00 0.60
2 1.23 2.34 1.24 1.00 0.61

exponential [2]:

2 _ 2 g}(SO)
21 (Mg, s0) = exp{ (Mg — s0) T+ 2160)
2 2 i I
+ Mg — 50 / e %@ | (D.6)
T (z—150)° (z — My —ie€)
M

where the functiong, (s) (and their first derivativeg) (s)) are the one-loop contributions
(and their derivatives) to the isospin amplitudes due to the elasticescattering:

1
go(s) = —E(zs — M2)B(M2, M2, 5),
1
g2(s) = é(s — 2M2)B(MZ2, M2,5). (D.7)

The expansion of2; (M2, sp) atO(p?) defines

31(2)
M2 —ie)’
(D.8)

where the phase shiﬁg(z) is taken at?(p?) in xPT. The numerical results obtained at
so = 0, with the twice-subtracted Omnés procedure, are reported in Tables 6 and 7.

The final results for the moduli of the correction factdt§§), quoted in Eq. (62), take
into account the sensitivity teg and z of the once-subtracted solution and the values
obtained akg = 0 with two subtractions.

Z
(M2 — 50)2 dz
521 (M2, 50) = (M2 — 50)g, . /
]( K> SO) ( K SO)gI(SO) + T (z— 50)2 (z—
am
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