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1. Introduction

The abelian Born-Infeld action provides us with an effective theory, which reproduces to

all orders in α′ the tree level scattering amplitudes of massless modes of open strings that
end on a single D-brane, with the assumption that the fields vary slowly [1]. As was

recently shown in [2], this assumption implies that gravitational effects are large. Small

derivatives imply that the fields stay large over a vast region, and an estimate of the

total energy and the corresponding volume indicates that under gravitational forces such

a system would collapse to a black hole. To avoid this, fields have to fall off over a short

distance, making derivatives large. Physically it is hard to make sense of the Born-Infeld

action in string theory, where gravitational forces are implied by the presence of closed

strings.

When n D-branes coincide, the gauge group is enhanced to U(n) [3], making the task

of writing an effective action much more complicated. Now there is an additional, practical,

argument for including derivative terms. A constant field strength is not a gauge-invariant

concept, and one has to take into account that [D,D]F = [F,F ]. So, if we were to neglect
derivatives of fields, we would also have to neglect commutators of field strengths, which

amounts to going back to the abelian situation.

In the abelian case the complete supersymmetric action for slowly varying fields is

known [4]. According to the argument of [2], this does not mean that derivative terms

are necessarily small. Contributions to the abelian action involving derivatives have been
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obtained in [5, 6] from string amplitude calculations. Under supersymmetry these terms

should form an invariant, which is independent of the Born-Infeld action. In the nonabelian

case these invariants are no longer independent because of [D,D]F = [F,F ]. A straight-
forward approach to the Yang-Mills case is then to compute tree-level string scattering

amplitudes and calculate the corresponding effective action. This method has been applied

to the string four-point function (see [7] and references therein) and has yielded complete

results for orders α′ 2 [8], and partial results for order α′ 3 and α′ 4 [2]. For instance, at
order α′ 3 terms of the form (DF )2F 2 and FDFχγDDχ (plus terms that are quartic in χ,
which we will not deal with in this paper) have been computed in this way. This leaves

the F 5 and F 3χγDχ terms to be determined.
Another approach consists in calculating the deformations allowed by supersymme-

try of the d = 10 super Yang-Mills theory. In [9, 10] this idea is put to the test up

to order α′ 2. One finds that α′ terms can be eliminated via field redefinitions, and the
α′ 2 terms match string theory predictions. In the calculation of [9] a significant sim-
plification is reached by the assumption that only symmetric traces of the Yang-Mills

generators appear. A superspace calculation by [10] yields a result to all orders in the

fermions, where all Yang-Mills indices enter symmetrically. At α′ 3 a symmetric single
trace is not possible, since the symmetric trace of F 5 vanishes. However, the string the-

oretical calculations performed in [11] show that terms of the form F 5 and (DF )2F 2 are
needed.

Recently, two calculations of the bosonic α′ 3 terms have been performed. In [12]
the one-loop five-point amplitude is calculated in N = 4 super-Yang-Mills theory in four

dimensions. This leads to an effective α′ 3 action that reproduces this amplitude, and,
assuming that supersymmetry uniquely determines such an action, this N = 4, d = 4

result should then correspond (although not uniquely) to the ten-dimensional effective

action. In [13] deformations of the d = 10 Yang-Mills theory that preserve a BPS solution

to the equations of motion are studied. This method also yields an effective action at α′ 3,
now directly in d = 10. Although [12] and [13] find the same (DF )2F 2 terms, they disagree
on the F 5 contributions.

We obtain in this paper the α′ 3 terms in the effective action, including the terms
bilinear in the fermions, by imposing supersymmetry to order α′ 3. The result agrees
with [2, 11, 12, 13] for the bosonic terms with derivatives, and with [13] for the bosonic

F 5 terms. The group structure of the action and transformation rules that we obtain

can be expressed completely in terms of the structure constants. This implies that the

result vanishes in the abelian case, and also that it is trivially invariant under non-

linear supersymmetry transformations, which act only on a U(1) factor in the gauge

group.

This paper is organized as follows. In section 2 we explain our calculational method,

showing, as an example, that no effective action at order α′ is needed. The result at order
α′ 3 is presented in section 3. In section 4 we construct the α′-expansion of the string four-
point function, and discuss consequences of this expansion for the effective action at higher

orders in α′. In particular, we will argue that al all odd orders in α′ a new, independent,
superinvariant begins. We present our conclusions in section 5.
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2. Constructing the order α′ 3 action

First we review the d = 10, N = 1 supersymmetric Yang-Mills theory in order to set the

stage for our calculations. The lagrangian is given by:1

LYM = − 1
g2
Tr

{
−1
4
FabFab +

1

2
χ̄D/χ

}
. (2.1)

g is the Yang-Mills coupling constant; it has mass dimension −3. The gauge field Aa and
the derivatives D and ∂ have dimension +1, the gaugino χ dimension +3/2. From now
on we will drop the factor of 1/g2 for notational clarity, the dimension of the remaining

lagrangian then equals +4.

Variation of this action gives δLYM = −Tr {(DaFab − χ̄γbχ)δAb + δχ̄D/χ}, from which
one obtains the equations of motion:

0 = DaFAab −
1

2
fABC χ̄Bγbχ

C , (2.2)

0 = D/χA . (2.3)

LYM is invariant under the following supersymmetry transformations:
δεAa = ε̄γaχ , (2.4)

δεχ =
1

2
Fabγab ε , (2.5)

where ε is a constant Majorana-Weyl spinor of dimension +1/2. As is well known, the

supersymmetry algebra only closes on-shell and involves a field-dependent gauge transfor-

mation:

[δε1 , δε2 ]Aa = 2ε̄1∂/ε2Aa −Da (2ε̄1A/ ε2) ,
[δε1 , δε2 ]χ = 2ε̄1D/ ε2χ−

(
7

8
ε̄1γaε2γa − 1

5!16
ε̄1γa1···a5ε2γa1···a5

)
D/χ . (2.6)

Before moving on to the actual α′ 3 corrections to (2.1) we will first discuss our method.
Consider a general lagrangian L0[φ] that possesses a symmetry, with infinitesimal

transformations δ0φ. If L = L0 + λL1, where λ is some expansion parameter, then the
variation of L1 due to δ0φ generically yields terms that, to preserve the symmetry, should
be cancelled by an λ variation of φ in L0. Cancellation occurs if and only if the variation of
L1 is proportional to the order λ0 equations of motion. The lagrangian L one obtains in this
way is uniquely defined up to total derivatives and field redefinitions. A field redefinition

φ→ φ+ λδφ gives rise to order λ terms of the form

λδφ
δL0
δφi
, (2.7)

i.e., is proportional to the order λ0 equations of motion. Therefore, any term in L1 of the
form (2.7) can be eliminated by a field redefinition. We will choose our α′ 3 action such
that no explicit terms of the form (2.7) appear.

1Our conventions for the γ-matrices follow [14]. For the gauge fields, they are presented in Appendix A.

We will always write spacetime indices as lower indices.
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Let us illustrate how this works by considering order α′ 1. From this point on we discard
any terms of higher than quadratic order in the fermions. Since α′ has mass dimension
−2 we can write down terms that have dimension +6. These terms must be Lorentz and
gauge invariant. We also take only terms with a single trace over the generators TA since

we want to make contact with a string theory tree level effective action. Possible terms

are:

(1) Tr TATBTC Fab
AFbc

BFca
C ,

(2) Tr TATBTC DaFabA χ̄BγbχC ,
(3) Tr TATBTC DaFbcA χ̄BγabcχC ,
(4) Tr TA[TB , TC ] Fab

A χ̄BγaDbχC ,
(5) Tr TA{TB , TC} FabA χ̄BγaDbχC ,
(6) Tr TA[TB , TC ] Fab

A χ̄BγabD/χC ,
(7) Tr TA{TB , TC} FabA χ̄BγabD/χC .

In choosing these terms we put no restriction on the group structure other than the cyclic

property of the trace. We do not need to take terms with more than one derivative: it is

not difficult to convince oneself that such terms always contain [D,D] and/or lowest order
equations of motion. We see that (3) vanishes due to the Bianchi identity. Furthermore,

(2), (6) and (7) are proportional to the order α′ 0 field equations, so we do not allow them
in the lagrangian. Since L is only defined up to total derivatives we also consider all of
these:

Tr TATBTC∂a
(
Fab
A χ̄Bγbχ

C
)
= (2) − (4),

Tr TATBTC∂a
(
Fbc
A χ̄Bγabcχ

C
)
= (3) + (7)− 2× (5) .

So we see that we also need not include (4) and (5) since they can be rewritten as a total

derivative and terms that can be cancelled by a field redefinition. This analysis leaves only

the term (1).

We now show that the remaining term fABCFab
AFbc

BFca
C is not allowed by super-

symmetry. Varying this term with the transformation rule (2.4) gives:

6fABCFac
AFcb

B ε̄γaDbχC .

We adopt the rule that any derivative on χ in a variation is partially integrated to act on

the bosonic fields—except in the situation where this derivative takes on the form of the

order α′ 0 equation of motion D/χA. This rule leads to

3fABCDaFbcAFbcB ε̄γaχC + 6fABCDaFabAFbcB ε̄γcχC . (2.8)

The second term in (2.8) contains the Aa equation of motion, and can therefore be cancelled

by an order α′ transformation, while the first term cannot. Therefore term (1) does not
allow supersymmetrization; the only terms allowed by supersymmetry at order α′ can be
eliminated by a field redefinition.

In the present case we can see by inspection that the first term in (2.8) cannot be

rewritten as a total derivative plus terms containing equations of motion. In a more
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complicated situation one would parametrize all possible total derivatives, which lead to

the same structures as those in (2.8) to verify this fact.

So our method comes down to the following: first we write down an action involving

all possible terms that are independent up to partial integrations. To this we add all

possible total derivatives, and use these to reduce the starting point to a minimal number

of terms. This results in the Ansatz for the effective action, in which each term gets an

arbitrary coefficient to be determined later on. We then vary the Ansatz with the lowest

order variations of A and χ.

To this variation we add all possible total derivatives, which lead to contributions

having the same structure as the variations. These also have arbitrary coefficients. All

terms proportional to lowest order equations of motion of A and χ are saved for later use

in determining the new transformation rules. After eliminating all remaining derivatives

on χ by partial integrations, the rest has to vanish, and this gives rise to linear equations

between the unknown coefficients. Note that the fact that all variations are ultimately

written without derivatives on χ implies that the total derivatives that we add to the

variation must give rise to a lowest order fermion equation of motion—otherwise the partial

integration away from χ just reproduces the original total derivative, and the term does not

influence the calculation. An important part of the calculation is to rewrite the remaining

terms such that the minimal number of independent structures is left. This is done by

using Bianchi identities for DF , DDF , etc., and by ordering the field strengths. Each
independent structure gives rise to an equation between the coefficients. If these equations

have non-trivial solutions then these correspond to supersymmetric actions.

In the case of the α′ 3 modification to the Yang-Mills action the number of terms
at intermediate stages of the calculation reaches 104. Therefore, the required algebraic

manipulations, such as obtaining the variation of the Ansatz, working out products of

γ-matrices, partial integrations, the use of Bianchi identities, are all done by computer.

3. SYM at order α′ 3

We saw that at order α′ there are no non-trivial modifications to the supersymmetric ac-
tion (2.1). At order α′ 2 there are non-trivial corrections to the super Yang-Mills lagrangian
and supersymmetry transformation rules [9, 10]. However, in the iterative procedure these

terms cannot contribute to the order α′ 3 variations, precisely because there are no order α′

terms in the transformation rules. This means that at α′ 3 the analysis follows the outline
given in the previous section.

However, there is one complication. At order α′ 3 we have to go through a two-step
procedure, since in the Ansatz we have not only terms with five fields, i.e., F 5 and the

corresponding terms involving fermions, but also terms with four fields, such as (DF )2F 2
with fermionic partners. In this case the analysis, both in determining the Ansatz and in

cancelling the variation, has to start at the higher-derivative terms. The reason is that the

higher-derivative terms produce terms with less derivatives because of [D,D]F = [F,F ]
and [D,D]χ = [F,χ]. It is easily seen that all terms with four derivatives and two F ’s, and
their fermionic partners, can be eliminated by field redefinitions.

– 5 –
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The leading terms in this analysis are therefore the higher-derivative terms (DF )2F 2
and partners. As we mentioned before, the Ansatz is not unique. We found that the

bosonic part of the Ansatz must contain 13 terms (in agreement with [13]), and one may

choose for instance to have only (DF )2F 2 terms and no F 5 terms [15]. However, for the
terms involving fermions the partners of F 5 cannot all be eliminated. We have chosen for

the bosonic part of our Ansatz the 13 terms in the starting point of [13]. Our Ansatz then

contains 13 bosonic terms, and 110 terms involving fermions: 7 + 18 terms of the form

(DF )2F 2 and fermionic partners, and 6 + 92 of type F 5 with partners.
After simplifying the resulting variations there remain 128 linear equations from the

sector with four fields, and 320 equations from the sector with five fields. These equa-

tions must be solved for the 123 coefficients from the Ansatz and the 182 coefficients that

parametrize total derivatives having the same structure as the variations (see section 2).

The result is that there is one unique deformation of d = 10, N = 1 supersymmetric

Yang-Mills theory at order α′ 3, up to a single multiplicative constant, which according to
string theory equals ζ(3)/2. In one particular parametrization, the result is:

L3 =
= fXY ZfVWZ

[
2Fab

XFcd
WDeFbcVDeFadY − 2FabXFacWDdFbeVDdFceY +

+ Fab
XFcd

WDeFabVDeFcdY − 4FabWDcFbdY χ̄XγaDdDcχV −
− 4FabWDcFbdY χ̄XγdDaDcχV + 2FabWDcFdeY χ̄XγadeDbDcχV +
+ 2Fab

WDcFdeY χ̄xγabdDeDcχV
]
+

+fXY ZfUVW fTUX
[
4Fab

Y Fcd
ZFac

V Fbe
WFde

T + 2Fab
Y Fcd

ZFab
V Fce

WFde
T −

− 11FabY FcdZFcdV χ̄TγaDbχW + 22FabY FcdZFacV χ̄TγbDdχW +
+ 18Fab

Y Fcd
V Fac

W χ̄TγbDdχZ + 12FabTFcdY FacV χ̄ZγbDdχW +
+ 28Fab

TFcd
Y Fac

V χ̄W γbDdχZ − 24FabY FcdV FacT χ̄W γbDdχZ +
+ 8Fab

TFcd
Y Fac

Zχ̄V γbDdχW − 12FabTFacYDbFcdV χ̄Zγdχ̄W −
− 8FabY FacTDbFcdV χ̄Zγdχ̄W + 22FabV FacYDbFcdT χ̄Zγdχ̄W −
− 4FabY FcdTDeFacV χ̄Zγbdeχ̄W + 4FabY FacTDcFdeV χ̄Zγbdeχ̄W +
+ 4Fab

TFcd
Y Fce

V χ̄ZγabdDeχW − 8FabY FcdTFceV χ̄ZγabdDeχW +
+ 6Fab

V Fcd
Y Fce

W χ̄ZγabdDeχT + 5FabV FcdWFceY χ̄ZγabdDeχT +
+ 6Fab

Y Fac
TFde

V χ̄ZγbcdDeχW − 2FabY FacTFdeZ χ̄V γbcdDeχW +
+ 4Fab

Y Fac
V Fde

Z χ̄WγbcdDeχT + 4FabTFcdV FceY χ̄ZγabdDeχW −
− 4FabY FcdV FceW χ̄ZγabdDeχT+1

2
Fab
Y Fcd

TFef
V χ̄ZγabcdeDfχW+

+
1

2
Fab
Y Fcd

TFef
Zχ̄V γabcdeDfχW

]
. (3.1)
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All authors [2, 11, 12, 13] agree on the the bosonic terms (DF )2F 2. Our bosonic terms F 5
agree with [13], but are given here in a different parametrization. The higher derivative

terms with fermions agree with [2].

Note that the group structure is completely specified in terms of structure constants.

This was not assumed at the start of our calculation. In fact, the Ansatz was given in terms

of traces of four and five generators, for which only the cyclic property was used. In [2] it

is shown that all terms with four fields can be written in terms of structure constants. We

now find that all terms with five fields allow such a formulation as well.

The implication of this is that if the group contains a U(1) factor, the corresponding

U(1) fields, which are certainly present at order α′ 0 and α′ 2, do not occur in the α′ 3 action.
It also implies that the action (3.1) is trivially invariant under the nonlinear supersymmetry

present at order α′ 0 and α′ 2. The nonlinear transformation acts at order α′ 0 only on χ (at
order α′ 2 there are modifications [10]) as

δχA = ηA , (3.2)

where η is a constant spinor, satisfying fABCηC = 0. This implies that η commutes with

all group generators, and must therefore be in a U(1) factor. The invariance of (3.1)

under (3.2) is then obvious.

The required α′ 3 modifications to the transformation rules for the Yang-Mills vector
and fermions are presented in Appendix B. We only show supersymmetry transformations

that may modify the supersymmetry algebra with additional field dependent gauge trans-

formations. That leaves many supersymmetry transformations that are proportional to

the lowest order equations of motion. Those will modify the on-shell terms in the algebra,

but play no role in the closure. Since we do not consider quartic fermions in the action

we cannot say anything about terms bilinear in χ in the transformation rules, nor about

closure of the algebra on χ. On A we have checked that the algebra closes, and obtain the

following new gauge transformations in addition to those of order α′ 0 (2.6) and α′ 2 [10]:

[δε1 , δε2 ]Aa
Z = 2ε̄1∂/ε2Aa

Z −Da
(
2ε̄1γbε2Ab

Z
)
+

+ fXY ZfVWXDa
(−16DbFcdV FbeY FcdW ε̄1γeε2+
+ S8DbFcdV FbeWFcdY ε̄1γeε2 −
− 16DbFcdV FbeWFceY ε̄1γdε2 −
− 2DbFcdV Fef Y FbgW ε̄1γcdefgε2

)
. (3.3)

4. String theory and higher orders in α′

In [2] the relation between the tree-level open string four-point function and the effective

action was explored to order α′ 4. In this section we will discuss the relation between this
four-point function and supersymmetric invariants in the effective action, also at higher

orders in α′ . The string theory four-point function takes on the following form:

A4 = −8ig2K(1, 2, 3, 4)
(
TABCD1 G(s, u) + TABCD2 G(s, t) + TABCD3 G(t, u)

)
, (4.1)
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where

TABCD1 = Tr TATBTCTD +Tr TDTCTBTA ,

TABCD2 = Tr TATBTDTC +Tr TCTDTBTA ,

TABCD3 = Tr TATCTBTD +Tr TDTBTCTA , (4.2)

g is the Yang-Mills coupling constant and s, t and u are the standard Mandelstam variables

satisfying s + t + u = 0. K contains the polarization and wave-functions of the external

lines, where the different permutations have to be taken into account. The last factor in

A4 can always be written as a sum of terms that are proportional to T1 + T2 + T3 (which

is the symmetric trace) and Ti − Tj (which can be written in terms of structure constants
only):

1

3
(T1 − T2)(G(s, u) +G(t, u)− 2G(s, t)) +

+
1

3
(T1 − T3)(G(s, u) +G(s, t) − 2G(t, u)) +

+
1

3
(T1 + T3 + T3)(G(s, u) +G(t, u) +G(s, t)) . (4.3)

The Veneziano amplitude G contains the α′ dependence:

G(s, t) =
1

st

Γ(1− α′s)Γ(1− α′t)
Γ(1− α′(s+ t)) , (4.4)

and can be expanded in orders of α′.
A4 has to be reproduced by the effective action. At order α

′ 0 the standard Yang-Mills
action gives, from the (Aa

A)4 vertex and from a reducible diagram involving three-point

vertices, the correct four-point function. At higher orders in α′ it is always the irreducible
four-point vertex α′ pD2p−4F 4, where the derivatives have to be distributed in agreement
with the kinematic factors in A4, which yields the string four-point function. Therefore we

can read off from the string four-point function what the coefficients of the terms in the

effective action will be.

Using the Taylor expansion for log Γ(1 + z),

log Γ(1 + z) = −γz +
∞∑
m=2

(−1)mζ(m)z
m

m
, (4.5)

we obtain the following expression for G:

G(s, t) =
1

st
exp

{ ∞∑
m=2

α′m
ζ(m)

m
(sm + tm − (s + t)m)

}
. (4.6)

ζ(n) is the Riemann zeta-function, γ the Euler-Mascheroni constant. The expansion of the

– 8 –
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exponential gives the required result in orders of α′, of which the first few terms read:

G(s, t) = +α′ 0
1

st
− α′ 2 1

6
π2 − α′ 3 (s+ t)ζ(3)− α′ 4 1

360
π4
(
4s2 + st+ 4t2

)
+

+α′ 5
(
1

6
π2st(s+ t)ζ(3)− (s+ t)(s2 + st+ t2)ζ(5)

)
−

−α′ 6
(
1

15120
π6(16s4 + 12s3t+ 23s2t2 + 12st3 + 16t4)− 1

2
st(s+ t)2ζ(3)2

)
+

+α′ 7
(
1

360
π4st(s+ t)(4s2 + st+ 4t2)ζ(3) +

1

6
π2st(s2 + st+ t2)ζ(5)

− (s2 + st+ t2)2ζ(7)
)
+ · · · . (4.7)

In this way we understand that the series at even p involving only powers of π and no ζ-

functions corresponds to the supersymmetric invariant that starts at order α′ 2. Similarly,
the series of terms with ζ(3)k at order p = 3k, k = 1, 2, . . . is the invariant that starts at

order p = 3. We see now that necessarily a new invariant starts at every odd power of α′.
For instance, the term with ζ(5) at order p = 5 can only be part of the p = 3 invariant if

there were a relation with rational coefficients between π2ζ(3) and ζ(5). To our knowledge,

no such relation between the ζ(2n + 1) for different n exist, and new invariants therefore

appear at all odd orders of α′.
The leading term with α′ nζ(n) is proportional to (sn + tn − (s + t)n)/st. For n odd

this is of the form

(s+ t)P (s, t), with P (s, t) = −s
n + tn + un

stu
. (4.8)

Now in (4.3) the symmetric trace is proportional to G(s, t) + G(s, u) + G(t, u), which for

the leading term with α′nζ(n), n odd, gives a factor:

(s+ t)P (s, t) + (s+ u)P (s, u) + (t+ u)P (t, u) = 2(s + t+ u)P (s, t) = 0 . (4.9)

Therefore, all new invariants starting at α′ n for n odd can be expressed in terms of structure
constants only, and thus vanish in the abelian limit.

The conclusion must be that supersymmetry by itself cannot be sufficient to determine

the open string effective action. The effective action is a sum of an infinite number of

superinvariants, of which the relative coefficients can be determined from string theory,

but not from supersymmetry alone. Our argument does not exclude the possiblity that

additional invariants, which do not contribute to the four-point function, appear in the

effective action.

In the abelian case A4 simplifies to

A4 = −8ig2K(1, 2, 3, 4) (G(s, u) +G(s, t) +G(t, u)) . (4.10)

The expansion in α′ now reads

G(s, u) +G(s, t) +G(t, u) =−α′ 2 1
2
π2 − α′ 4 1

24
π4(s2 + st+ t2) + α′ 5

1

2
π2st(s+ t)ζ(3)−
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−α′ 6 1
240
π6(s2 + st+ t2)2 +

+α′ 7
1

48
π2st(s3 + 2s2t+ 2st2 + t3)(2π2ζ(3) + 24ζ(5)) +

+ · · · , (4.11)

where we have used s+ t+ u = 0. Of course there is now no order α′ 0 term, also the term
at order α′ 3 vanishes. However, at order α′ 4 there is a four-point function, which in the
effective action must be represented by a term α′ 4∂4F 4. Such terms can indeed be found
in the analysis of [5, 6]. Since the terms at order α′ 4 without derivatives on F belong to
the Born-Infeld superinvariant, these higher derivatives must be invariant by themselves.

The expansion (4.11) shows terms proportional to π2ζ(2k + 1) at odd orders α′ 2k+3.
These also appear in the expansion ofG(s, t) that we presented for the nonabelian case (4.7).

There it would be tempting to interpret these terms as an “interference” between the α′ 2

invariant and the α′ 2k+1 invariant proportional to ζ(2k + 1). In that case they would be
required to cancel the α′ 2 variation of the ζ(2k + 1)-invariant and the α′ 2k+1 variation of
the α′ 2 invariant. However, if that interpretation were correct, these terms should vanish
in the abelian case, because the α′ 2k+1 invariant does. A closer look at (4.3) shows that
in the nonabelian case these terms contain only the symmetric trace contribution, and

not the terms Ti − Tj, proportional to structure constants. Therefore, they correspond to
independent invariants in the nonabelian case, which survive the abelian limit.

5. Discussion

In this paper we have obtained the contribution to the open superstring effective action

at order α′ 3, with the exception of terms quartic in the fermions. We assume that the
nonabelian structure is given by a single trace of group generators, in agreement with what

one would expect from tree level string theory. The result is then unique, up to total

derivatives and field redefinitions. In the sectors that allow comparison with previous work

we agree with [2, 13]. We disagree with the result of [12], which is an effective action in

four dimensions. That does not imply that the action of [12] is not supersymmetric - it

may well be that more invariants can be found in four than in ten dimensions.

The traces over group generators turn out to give products of structure constants only.

It was known that the nonabelian result should vanish in the abelian limit, but that is a

much weaker statement than structure constants only. It implies that fields in U(1) factors

of the gauge group are absent from this part of the effective action, and that therefore the

nonlinear supersymmetry is trivial.

Although our procedure works for an arbitrary gauge group at order α′ 3, we do not
expect this to hold at higher orders. Continuing the iteration to order α′ 4 would give two
kinds of contributions. In the first place there are terms that come from the variation of

the order α′ 4 Ansatz with the α′ 0 transformation rules. If we still assume the Ansatz to be
proportional to a single trace, these terms are proportional to Tr(TATBTCTDTETF ).

In the second place there are contributions from the variation of the α′ 2 action with
the α′ 2 transformation rules. Such terms are proportional to a product of two traces,
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Tr(TATBTCTG)Tr(TDTETFTG). These different terms can only communicate with each

other if the generators T satisfy requirements which are analogous to the unitarity condi-

tions on Chan-Paton factors. We therefore expect that at higher orders supersymmetry

requires the generators to be in the fundamental representation of U(n), SO(n) or USp(n).

We have argued that the α′ 3 invariant is just the first of an infinite number of invariants
appearing at all odd orders α′ 2p+1 in the effective action, with a coefficient proportional
to ζ(2p + 1). This sheds new light on efforts [16] to obtain the effective action through κ-

symmetry, a method, which was extremely successfull in the abelian situation. κ-symmetry

with parameters in the adjoint representation of the gauge group turns out not to work [8],

κ-symmetry that only transforms fields in the U(1) direction of the group will not see the

α′ 3 effective action we have just obtained. The most likely scenario, if κ-symmetry works
at all in the nonabelian context, is that it gives the part of the action generated by the α′ 2

terms, i.e., the terms that are not proportional to ζ-functions.

In [15] the result of [13] was tested by calculating the spectrum of the deformed Yang-

Mills theory in a constant magnetic background. By T-duality the constant magnetic field

corresponds to D-branes at angles, and in this context string theory allows an alternative

calculation of the spectrum [17]. This test uses configurations of Yang-Mills fields in the

Cartan subalgebra of the gauge group. It would be interesting to find a true nonabelian

generalization of the method of [17], also including fermions.

Terms with derivatives in the field strength F are inevitably present in the nonabelian

effective action, and also in the abelian case there is no reason to assume that such terms are

small in general. In section 4 we have discussed such terms in the context of the open string

four-point function. From the plethora of supersymmetric invariants that are indicated

by the four-point function, it is clear that the construction of the complete open string

effective action, in both the abelian and the nonabelian cases, requires perhaps additional

symmetries beyond supersymmetry, but certainly new insights. One may conclude that the

real surprise in this field is still the apparent simplicity of the abelian Born-Infeld action,

which disappears completely as soon as one deviates from the context of slowly varying

abelian fields.
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A. Conventions

We consider a compact gauge group G and parametrize elements g that are connected to

the identity by g = exp Λ · T . The generators TA satisfy the orthonormality condition
Tr TATB = −δAB and the algebra[

TA, TB
]
= fABCTC , (A.1)
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where the fABC are completely antisymmetric real structure constants. No further restric-

tions are imposed on the generators. We freely raise and lower indices on the structure con-

stants. All fields in this paper transform in the adjoint representation, (TAadj)
BC = −fABC .

For such fields we use the notation Φ ≡ Φ·T = ΦATA, where TA can be any representation.
Since under a gauge transformation Φ → gΦg−1, we can form gauge invariant objects by
tracing, e.g. Tr Φ1 · · ·Φn.
The infinitesimal gauge transformations of the nonabelian Yang-Mills multiplet (Aa, χ)

are

δAa = −DaΛ , (A.2)

δFab = [Λ, Fab] , (A.3)

δχ = [Λ, χ] . (A.4)

The covariant derivative and the field strength are defined by

DaΦ = ∂aΦ+ [Aa,Φ] , (A.5)

[Da,Db]Φ = [Fab,Φ] , (A.6)

so that

Fab = ∂aAb − ∂bAa + [Aa, Ab] . (A.7)

F satisfies a Bianchi identity: D[aFbc] ≡ 0 .

B. Transformation rules

We now present the supersymmetry transformation rules that leave the action (3.1) invari-

ant. The transformation rules of the fermions are:

δ3χ
Z = fXY ZfVWX

[
− 4DaFbcYDbFadV FcdW + 2DaFbcYDaFbdV FcdW +

+ 4DaFbcYDaFbdV FceW γde − 6DaFbcVDaFbdY FceW γde −
− 2DaFbcYDbFadV FceW γde − 2DaFbcYDbFdeV FadW γce +
+ 2DaFbcYDdFbeV FadW γce + 2DaFbcYDaFdeV FbdW γce −
− 3DaFbcYDaFdeV FbcW γde + 3

2
DaFbcVDaFdeY FbcW γde +

+
3

2
DaFbcYDaFbcV FdeW γde − DaDbFcdY FbeV FcdWγae −

− 4DaDbFcdV FaeY FbeW γcd + 3DaDbFcdV FaeWFbeY γcd −
− 3DaFbcYDaFdeV FdfW γbcef − DaFbcVDaFdeY FdfWγbcef +
+ 3DaFbcYDaFbdV FefWγcdef − DaFbcYDdFef V FadW γbcef +
+
1

4
DaFbcYDaFdeV FfgWγbcdefg

]
ε+

+ fWXY fTUV fTWZ
[
7Fab

XFac
UFde

V Fde
Y γbc − 2FabXFcdUFaeV FceY γbd −
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− 6FabXFcdUFaeY FceV γbd − 4FabXFcdUFefY FceV γabdf −
− 3
2
Fab
XFcd

UFef
V Feg

Y γabcdfg

]
ε+

+ fXY ZfUVW fTUX
[
2Fab

Y Fac
V Fde

WFde
Tγbc + 2Fab

V Fcd
WFae

Y Fce
Tγbd −

− 8FabV FcdTFaeY FceWγbd − 4FabY FcdV Fef TFceWγabdf +
+ Fab

Y Fcd
V Fef

WFef
Tγabcd +

+ Fab
V Fcd

TFef
WFeg

Y γabcdfg

]
ε . (B.1)

The transformation rules for the vector field are:

δ3A
Z
a = f

XY ZfVWX
[
+ 2DbFcdYDbFcdW ε̄ γaχV − DaDbFcdWFcdY ε̄ γbχV +

+ 5DaDbFcdWFcdV ε̄ γbχY + 4DbFacYDbFcdW ε̄ γdχV −
−DaFbcYDdFbcW ε̄ γdχV − 5DaFbcWDdFbcV ε̄ γdχY +
+ 2DbFacWDbFdeY ε̄ γcdeχV + DbFcdYDbFefW ε̄ γacdefχV +
+ 2DbFcdY FcdW ε̄ γaDbχV + 2DbFcdWFcdY ε̄ γaDbχV −
− 2DbFcdY FacW ε̄ γbDdχV − 2DbFcdWFcdY ε̄ γbDaχV +
+ 6DbFcdWFcdV ε̄ γbDaχY − 2DbFacY FbdW ε̄ γcDdχV +
+ 4DbFacWFbdY ε̄ γcDdχV − 8DaFbcY FbdW ε̄ γcDdχV −
− 2DaFbcWFbdV ε̄ γcDdχY + 4DbFcdWFacY ε̄ γdDbχV −
− 10DaFbcWFbdY ε̄ γdDcχV + 2DaFbcWFbdV ε̄ γdDcχY +
+ 2DbFcdY FbeW ε̄ γacdDeχV + 2DbFcdY FceW ε̄ γadeDbχV +
+ 2DbFacWFdeY ε̄ γbdeDcχV − 2DaFbcWFdeY ε̄ γbceDdχV +
+ 2DaFbcWFdeV ε̄ γbceDdχY + DbFacY FdeW ε̄ γcdeDbχV −
− 2DbFacWFdeY ε̄ γcdeDbχV + DbFcdY FaeW ε̄ γcdeDbχV −
− 1
2
DbFcdY FefW ε̄ γacdefDbχV + DbFcdWFef Y ε̄ γacdefDbχV +

+ 10Fbc
Y Fbd

W ε̄ γaDcDdχV − 8FbcWFbdY ε̄ γaDcDdχV −
− 2FabY FcdW ε̄ γdDbDcχV + 2FabWFcdY ε̄ γdDbDcχV −
− 8FbcWFbdY ε̄ γdDcDaχV − 2FbcY FdeW ε̄ γcdeDaDbχV −
− 2FbcWFdeV ε̄ γcdeDaDbχY

]
+

+ fXY ZfUVW fTUX
[
+ 13Fab

WFcd
Y Fcd

V ε̄ γbχ
T − 3FabWFcdY FcdT ε̄ γbχV −

− 5FabWFcdV FcdT ε̄ γbχY − 20FbcWFadY FbdV ε̄ γcχT +
+ 22Fbc

WFad
TFbd

V ε̄ γcχ
Y − 6FbcTFadY FbdW ε̄ γcχV +

+ 34Fbc
WFad

TFbd
Y ε̄ γcχ

V + 2Fbc
TFde

Y Fbd
W ε̄ γaceχ

V −
− 4FbcY FdeWFbdV ε̄ γaceχT + 4FbcWFdeY FdeV ε̄ γabcχT −
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− 7
2
Fbc
WFde

Y Fde
T ε̄ γabcχ

V − FbcWFdeV FdeT ε̄ γabcχY +
+ 42FWab Fcd

Y Fce
V ε̄ γbdeχ

T + 6F TabFcd
Y Fce

W ε̄ γbdeχ
V +

+
1

2
Fcd
Y Fef

V ε̄ γbcdefχ
T +
7

2
Fab
WFcd

Y Fef
T ε̄ γbcdefχ

V −

− 5
2
Fab
WFcd

V Fef
T ε̄ γbcdefχ

Y + 3Fbc
WFde

Y Fad
V ε̄ γbceχ

T −
− 6FbcWFdeV FadT ε̄ γbceχY + 2FbcWFdeTFadV ε̄ γbceχY +
+ Fbc

TFde
Y Fad

W ε̄ γbceχ
V − 3FbcWFdeTFadY ε̄ γbceχV −

− 5FbcWFdeY Fdf V ε̄ γabcefχT − FbcTFdeY FdfW ε̄ γabcefχV +
+
1

4
Fbc
Y Fde

WFfg
T ε̄ γabcdefgχ

V

]
+

+ fWXY fTUV fTWZ
[
+ 8Fbc

Y Fad
XFbd

V ε̄ γcχ
U + 2Fbc

Y Fde
V Fbd

X ε̄ γaceχ
U −

− 14FabY FcdXFceV ε̄ γbdeχU − 4FbcY FdeXFadV ε̄ γbceχU +
+ 7Fbc

Y Fde
XFdf

V ε̄ γabcefχ
U

]
. (B.2)
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