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1. Introduction

While the abelian tree-level effective action for Dp-branes is known through all orders in

α′, at least in the limit of slowly varying fields, this is not so in the non-abelian case. In

leading order the effective action for n coinciding Dp-branes is the ten-dimensional N = 1

supersymmetric U(n) Yang-Mills theory dimensionally reduced to p+1 dimensions. There

are no O(α′) corrections. The bosonic O(α′2) were first obtained in [1] and [2] while the

fermionic terms were obtained in [3] and [4]. In [3] supersymmetry fixed the correction

while in [4] a direct calculation starting from four-point open superstring amplitudes was

used. Requiring the existence of certain BPS configurations allowed for the determination

of the bosonic O(α′3) terms in the effective action [5]. Just recently, in [6], supersymmetry

was used not only to confirm the results of [5] but to construct the terms quadratic in the

gauginos through this order as well.

Lacking direct string theoretic calculations, checks of these results are called for. In [7],

further developed in [8] and [9], such a test was proposed. One starts from two D2p-branes

wrapped around a p-dimensional torus. When switching on constant magnetic background

fields this yields, upon T-dualizing, two intersecting Dp-branes. String theory allows for the

calculation of the spectrum of strings stretching between different branes [10, 11]. In the

context of the effective action, the spectrum should be reproduced by the mass spectrum

of the off-diagonal field fluctuations. In [12] it was shown that the bosonic terms through

O(α′3) correctly reproduce the spectrum of the gauge fields. In the present paper we will

extend this analysis to the terms quadratic in the gauginos. Throughout the paper we will

put 2πα′ = 1 and we will follow the conventions of [6].
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2. The spectrum from string theory

We consider a constant magnetic background on two coincident D2p-branes,

F2a−1 2a = i

(

fa 0

0 −fa

)

. (2.1)

with a ∈ {1, 2, . . . , p} and fa ∈ R, fa > 0. We choose a gauge such that A2a−1 = 0, ∀a,
and T-dualize in the 2, 4, . . . , 2p directions. We end up with two intersecting Dp-branes.

We want to calculate the spectrum of open strings stretching between the two branes. We

take the first brane located along the 1, 3, . . . , 2p−1 directions. The other brane has been

rotated with respect to the first one over an angle θ1 in the 12 plane, over an angle θ2 in

the 34 plane, . . . , over an angle θp in the 2p − 1 2p plane. The angles are determined by

the magnetic fields,

θa = 2arctan fa , ∀a ∈ {1, 2, . . . , p}. (2.2)

Inspired by [11], we introduce,

X̂2a−1 = cos θaX
2a−1 + sin θaX

2a , X̂2a = − sin θaX
2a−1 + cos θaX

2a ,

ψ̂2a−1
± = cos θaψ

2a−1
± + sin θaψ

2a
± , ψ̂2a

± = − sin θaψ
2a−1
± + cos θaψ

2a
± , (2.3)

we impose the boundary conditions,

at σ = 0 : ∂σX
2a−1 = 0 , ∂τX

2a = 0 ,

ψ2a−1
+ = ψ2a−1

− , ψ2a
+ = −ψ2a

− ;

at σ = π : ∂σX̂
2a−1 = 0 , ∂τ X̂

2a = 0 ,

ψ̂2a−1
+ = ηψ̂2a−1

− , ψ̂2a
+ = −ηψ̂2a

− , (2.4)

where η = +1 or η = −1 in the Ramond and the Neveu-Schwarz sector resp. Upon solving

the equations of motion and implementing the boundary conditions we get the following

expansion for the bosons,

X2a−1 =
i√
2π

∑

n∈Z

(

αn+a

n+a
e−in+aτ cosn+aσ +

αn−a

n−a
e−in−aτ cosn−aσ

)

,

X2a =
i√
2π

∑

n∈Z

(

αn+a

n+a
e−in+aτ sinn+aσ −

αn−a

n−a
e−in−aτ sinn−aσ

)

, (2.5)

where we introduced

εa ≡
θa
π
, n±a ≡ n± εa with n ∈ Z . (2.6)

In the Ramond sector (we do not need the Neveu-Schwarz sector for this paper), we get

ψ2a−1
± =

1

2

∑

n∈Z

(

dn+ae
−in+a(τ±σ) + dn−ae

−in−a(τ±σ)
)

,

ψ2a
± = ± i

2

∑

n∈Z

(

dn+ae
−in+a(τ±σ) − dn−ae

−in−a(τ±σ)
)

. (2.7)
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The non-vanishing (anti-)commutation relations are

[αm+a , αn−b
] = m+aδm+nδab ,

{dm+a , dn−b
} = δm+nδab . (2.8)

Both X2a−1 and X2a contribute to the vacuum energy (in units where 2πα′ = 1) by

−π/12 + πεa(1 − εa)/2 which is precisely cancelled by the contribution of the Ramond

fermions. So just as for the case without magnetic fields, the vacuum energy vanishes in

the Ramond sector. The (light-cone) states which in the absence of magnetic fields reduce

to the gauginos are of the form

p
∏

a=1

(α−εa)
ma(d−εa)

la |0〉 , (2.9)

where ma ∈ N and la ∈ {0, 1}, ∀a ∈ {1, . . . , p} and |0〉 carries a chiral spinor representation

of Spin(8− 2p). Their masses are given by

M2 =

p
∑

a=1

2 (ma + la) θa . (2.10)

3. The spectrum from the effective action

3.1 The leading term

To set the stage we will first review some of the results of [13] and [14]. Our starting point

is the U(2) d = 10 N = 1 supersymmetric Yang-Mills theory,1

L0 = −
1

g2
Tr

{

−1

4
FabFab +

1

2
χ̄D/χ

}

. (3.1)

For simplicity we will put g = 1 throughout this paper. Compactifying 2p dimensions

on a torus, we introduce complex coordinates for the compact directions, zα = (x2α−1 +

ix2α)/
√
2, z̄ᾱ = (zα)∗, α ∈ {1, . . . , p}. We switch on constant magnetic background fields

in the compact directions Fαβ = Fᾱβ̄ = 0, Fαβ̄ = 0 for α 6= β and2

Fαᾱ = i

(

fα 0

0 −fα

)

, (3.2)

where the fα, α ∈ {1, . . . , p} are imaginary constants such that ifα > 0. We only consider

the off-diagonal components of the fermions,

χ = i

(

0 χ+

χ− 0

)

, (3.3)

1The calculation of the spectrum only probes U(2) sub-sectors of the full U(n) theory [14]. Note that

we always write spacetime indices as lower indices.
2We do not sum over repeated indices corresponding to complex coordinates, unless indicated otherwise.
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as the diagonal fluctuations probe the abelian part of the action. Using the previous

choices, we can rewrite the second term in eq. (3.1) as,

Lfermion = χ̄− (∂/NC +D/)χ+, (3.4)

where subindex NC denotes operators acting in the non-compact directions only and D ≡
∂ + 2iA, with A the background gauge fields. The covariant derivatives satisfy

[Dα,Dβ̄ ] = 2iδαβfα . (3.5)

The equations of motion readily follow from eq. (3.4),

(∂/NC +D/)χ+ = 0 . (3.6)

Squaring the kinetic operator in eq. (3.6) and using eq. (3.5), we get,

(

¤NC + 2

p
∑

α=1

{DαDᾱ − ifα − ifαγαᾱ}
)

χ+ = 0 , (3.7)

where γαᾱ ≡ (γαγᾱ − γᾱγα)/2, (γαᾱ)
2 = 1. Once a complete set of eigenfunctions is

constructed for the second part in eq. (3.7), we can bring the relation above in the

form (¤ −M 2)χ = 0 and read off the mass M . Such eigenfunctions are obtained from

a spinor |0〉 satisfying Dᾱ|0〉 = 0, ∀α, which has been explicitly constructed in [13]

and [14]. We now introduce the complete set of functions |{(m1, n1), (m2, n2), . . . (mp, np)}〉,
m1,m2, . . . ,mp ∈ N and n1, n2, . . . np ∈ {−1,+1} by

|{(m1, n1), (m2, n2), . . . , (mp, np)}〉 ≡
1

2
(1 + n1γ11̄)

1

2
(1 + n2γ22̄) · · ·

1

2
(1 + npγpp̄)×

×Dm1
1 Dm2

2 · · · Dmp
p |0〉 . (3.8)

Expanding the fermion,

χ+(y, z, z̄) =
∑

{(m,n)}

χ+{(m,n)}(y)|{(m,n)}〉 , (3.9)

where {(m,n)} ≡ {(m1, n1), (m2, n2), . . . (mp, np)} and y collectively denotes the non-

compact coordinates. Using this, one gets from eq. (3.5) and eq. (3.7) that the mass

of χ+{(m,n)}(y) is given by

M2 = 2i

p
∑

α=1

(2mα + 1 + nα) fα . (3.10)

Replacing fα by arctanh(fα) in eq. (3.10) yields the stringy result, eq. (2.10). As expected,

we only get agreement for very small magnetic background fields. The higher order terms

in the effective action should add to this such that the string result gets reproduced. In

particular one notices from this that only even orders in α′ contribute to the spectrum.
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3.2 The O(α′2) contribution to the spectrum

Modulo field redefinitions and up to terms quartic in the fermions, the effective action

through O(α′2) is given by L = L0 + L2 where L0 was given in eq. (3.1) and L2 is given

by [1, 2, 3],

L2 = STr
(

x1FabFabFcdFcd + x2FabFbcFcdFda +

+ x3FabFacχ̄γbDcχ+ x4FabDaFcdχ̄γbcdχ
)

, (3.11)

where STr denotes the symmetrized trace and

x1 = − 1

32
, x2 =

1

8
, x3 = −1

4
, x4 = − 1

16
. (3.12)

Again we want to calculate the fermionic spectrum through this order. It is clear that, as

the background magnetic fields are (covariantly) constant, only the term proportional to

x3 will contribute. Following exactly the same strategy as above, we get the equations of

motion,

(

∂/NC +D/− 2x3
3

p
∑

α=1

f2α (γαDᾱ + γᾱDα)

)

χ+ = 0 . (3.13)

Again squaring the kinetic operator we get,

(

¤NC + 2

p
∑

α=1

(

1− 4x3
3
f2α

)

{DαDᾱ − ifα − ifαγαᾱ}
)

χ+ = 0 , (3.14)

where we ignored terms proportional to f 4 as they are of higher order in α′. However

such terms will be relevant for a test of the, as of yet still unknown, O(α′4) terms in the

effective action. It is clear that this gives the same spectrum as in eq. (3.10), but with fα
replaced by,

fα → fα −
4x3
3
f2α . (3.15)

Consistency with the string spectrum requires that x3 = −1/4 which agrees with the

result based on supersymmetry arguments and the direct calculation from open superstring

amplitudes [3, 4].

In [9] it was shown that demanding that the spectrum of the gauge fields is correctly

reproduced, combined with the requirement that the abelian limit agrees with the known

result, completely fixes the bosonic part of the effective action through order α ′2. It is clear

from the above that this is not the case for the fermionic terms which already indicates

that the spectral test is indeed weaker for the terms containing fermions than for the purely

bosonic terms.

– 5 –
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3.3 Testing the O(α′3) terms

At order O(α′3) the effective action is given by L = L0 + L2 + L3, where L0 and L2 are

given in eq. (3.1) and eq. (3.11). The last term is given by [6],3 [5],

L3 = − ζ(3)

16π3
fXY ZfVWZ

[

2Fab
XFcd

WDeFbc
VDeFad

Y − 2Fab
XFac

WDdFbe
VDdFce

Y −

+ Fab
XFcd

WDeFab
VDeFcd

Y − 4Fab
WDcFbd

Y χ̄XγaDdDcχ
V −

− 4Fab
WDcFbd

Y χ̄XγdDaDcχ
V + 2Fab

WDcFde
Y χ̄XγadeDbDcχ

V+

+ 2Fab
WDcFde

Y χ̄XγabdDeDcχ
V
]

−

− ζ(3)

16π3
fXY ZfUVW fTUX ×

×
[

4Fab
Y Fcd

ZFac
V Fbe

WFde
T + 2Fab

Y Fcd
ZFab

V Fce
WFde

T −

− 11Fab
Y Fcd

ZFcd
V χ̄TγaDbχ

W + 22Fab
Y Fcd

ZFac
V χ̄TγbDdχ

W +

+ 18Fab
Y Fcd

V Fac
W χ̄TγbDdχ

Z + 12Fab
TFcd

Y Fac
V χ̄ZγbDdχ

W +

+ 28Fab
TFcd

Y Fac
V χ̄WγbDdχ

Z − 24Fab
Y Fcd

V Fac
T χ̄WγbDdχ

Z +

+ 8Fab
TFcd

Y Fac
Zχ̄V γbDdχ

W − 12Fab
TFac

YDbFcd
V χ̄Zγd χ̄

W −
− 8Fab

Y Fac
TDbFcd

V χ̄Zγd χ̄
W + 22Fab

V Fac
YDbFcd

T χ̄Zγd χ̄
W −

− 4Fab
Y Fcd

TDeFac
V χ̄Zγbde χ̄

W + 4Fab
Y Fac

TDcFde
V χ̄Zγbde χ̄

W +

+ 4Fab
TFcd

Y Fce
V χ̄Zγabd Deχ

W − 8Fab
Y Fcd

TFce
V χ̄ZγabdDeχ

W +

+ 6Fab
V Fcd

Y Fce
W χ̄ZγabdDeχ

T + 5Fab
V Fcd

WFce
Y χ̄Zγabd Deχ

T +

+ 6Fab
Y Fac

TFde
V χ̄ZγbcdDeχ

W − 2Fab
Y Fac

TFde
Z χ̄V γbcdDeχ

W +

+ 4Fab
Y Fac

V Fde
Zχ̄WγbcdDeχ

T + 4Fab
TFcd

V Fce
Y χ̄ZγabdDeχ

W −

− 4Fab
Y Fcd

V Fce
W χ̄ZγabdDeχ

T +
1

2
Fab

Y Fcd
TFef

V χ̄ZγabcdeDfχ
W +

+
1

2
Fab

Y Fcd
TFef

Zχ̄V γabcdeDfχ
W

]

. (3.16)

The overall multiplicative constant can not be fixed by the methods used in either [5]

or [6]. It gets determined through comparison with the relevant higher order derivative

terms obtained in [15].

We now turn to the calculation of the spectrum. It is clear that terms involving

a derivative on the field-strength will not contribute as the field-strength is covariantly

constant. Furthermore, any term having two field-strengths contracted with a single f -

symbol can be ignored as well as we took the background field-strength in the Cartan

subalgebra of SU(2). Having discarded these terms we note that for the remaining terms

the group theoretical factors, for our particular choice of background, are such that the Lie

algebra indices on the gauginos are anti-symmetric when interchanging them. This implies

that all terms involving a single or five gamma-matrices will vanish (up to a total derivative)

3We took U(n) generators in the fundamental representation satisfying [tX , tY ] = fXY ZtZ where fXY Z

is completely anti-symmetric and Tr(tXtY ) = −δXY .
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as well. The only terms which can potentially contribute are now proportional to

x1 Fab
TFcd

Y Fce
V χ̄ZγabdDeχ

W + x2 Fab
Y Fcd

TFce
V χ̄Zγabd Deχ

W +

+x3 Fab
Y Fac

TFde
V χ̄ZγbcdDeχ

W + x4 Fab
TFcd

V Fce
Y χ̄ZγabdDeχ

W , (3.17)

where

x1 = +4 , x2 = −8 , x3 = +6 , x4 = +4 . (3.18)

Rewriting eq. (3.17) in terms of the background and the off-diagonal fermions we get a

result proportional to

(x1 + x2 + x4)

p
∑

α=1

p
∑

β=1

fβf
2
α

(

χ̄−γβ̄βαDᾱχ
+ + χ̄−γβ̄βᾱDαχ

+
)

, (3.19)

which indeed vanishes when using eq. (3.18).

4. Conclusions

Though the spectral test is not as restrictive for the fermionic terms as it was for the

purely bosonic terms, it is still gratifying to see that the fermionic terms pass it as well.

The present proposal for the effective action through O(α′3) and up to terms quartic in

the gauginos, is of the form,

L = L0 + L2 + L3 +O(α′4) , (4.1)

where L0, L2 and L3 are given in eqs. (3.1), (3.11) and (3.16). The purely bosonic part

of L3, which was obtained in [5], passed the spectral test in [12] while other proposals in

the literature for these terms failed to do so. A very strong test of the purely bosonic

terms was provided by the results in [6] where the supersymmetry invariant at order α ′3

was constructed. Its bosonic part precisely matches the one obtained in [5]. In addition,

the terms quadratic in the gauginos were obtained as well. The bosonic and fermionic

terms were tested in [6] by checking the closure of the commutator of two supersymmetry

transformations. Furthermore, as was shown in the present paper, the fermionic terms

correctly reproduce the gaugino spectrum in the presence of magnetic backgrounds.

So at this point there is no doubt left that we do have the correct description of the

non-abelian D-brane effective action through order α′3 and up to and including terms

quadratic in the gauginos.
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