7%
university of 59/,
groningen L

i

University Medical Center Groningen

University of Groningen

Inclusion of the Férster-rate orientation factor into the theory of concentration self-quenching
by statistical traps

Knoester, Jasper; Himbergen, J.E. Van

Published in:
Journal of Chemical Physics

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1987

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Knoester, J., & Himbergen, J. E. V. (1987). Inclusion of the Forster-rate orientation factor into the theory of
concentration self-quenching by statistical traps. Journal of Chemical Physics, 86(8), [4438].

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018


https://www.rug.nl/research/portal/en/publications/inclusion-of-the-foersterrate-orientation-factor-into-the-theory-of-concentration-selfquenching-by-statistical-traps(46e0fc9a-47c0-4744-8206-55975c53e8b0).html

Inclusion of the Forster-rate orientation factor into the theory
of concentration self-quenching by statistical traps
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The Netherlands

(Received 2 December 1986; accepted 31 December 1986)

The incorporation is studied of the orientation factor occurring in the complete Forster rate of
incoherent energy transfer, into the theory of concentration self-quenching by statistical pairs
of luminescent molecules. Within Burshtein’s theory of hopping transport, exact results for the
steady state donor fluorescence yield and emission anisotropy are obtained for three-
dimensional systems. Two opposite limits to treat the orientations of the molecular transition
dipoles within statistical pairs are considered, and it appears that in both cases the fluorescence
yield is substantially influenced by inclusion of the orientation factor into the transfer kinetics.

I. INTRODUCTION

Within the field of incoherent transfer of excitation en-
ergy the 1/r5-Forster rate! plays an important role, because
of its frequent occurrence in nature. The complete form of
this dipole—dipole transfer rate contains the complicated ori-
entation factor «%, which introduces additional degrees of
freedom and imposes extra difficulties on the theoretical der-
ivation of the fluorescence quantities of interest from the
microscopic transfer kinetics.”® Therefore, one mostly, ta-
citly, preaverages this rate over all orientations, so that an
isotropic form for the rate is obtained. Even in this approxi-
mation it is difficult to obtain rigorous practical results for
the observables in disordered sytems, especially if both mi-
gration (between donors) and quenching (due to traps) oc-
curs and (or) if high densities of the interacting molecules
are involved. One thus has to fall back on approximate mod-
els to solve the transfer kinetics and perform the necessary
configurational averages.

In this paper, we consider the fluorescence quantum
yield and the emission anisotropy for systems which exhibit
fluorescence self-quenching due to statistical trap formation,
a phenomenon that may, e.g., occur in solutions of chloro-
phyll.’® We recently showed,!!®-!'®™® by comparison to
Monte Carlo calculations, that such a system can be de-
scribed very well by a suitable application of Burshtein’s the-
ory of hopping transport.'? In these communications, how-
ever, only isotropic transfer rates have been considered.
Because of the importance of the Forster rate, we now rede-
rive the results of the hopping theory with the complete form
of this rate, including the orientation factor. For three-di-
mensional isotropic systems this can be done in an exact way,
and it is shown that substantial corrections to the quantum
yield are caused by the orientation factor.

IIl. THEORY

Before formulating the theory, we first give a brief de-
scription of the system and quantities studied. For a more
detailed formulation of the problem we refer to Ref. 11(a).
We consider a system with a random distribution of lumines-
cent molecules with density p, between which incoherent
transfer of excitation energy occurs with the Forster rate
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(2.1)

Here r; is the distance between the molecules i and j in-
volved, 7, is the intrinsic radiative lifetime of the excited
state of interest, and R, determines the strength of the trans-
fer. The orientation factor has the complicated form

¥ =3[ee; — 3(e%e;) (e ey) ] (2.2)

with e; and e; unit vectors parallel to the transition dipoles of
the molecules / and j, and e; =r;/r,. We assume that the
orientations Q; of the individual transition dipoles are fixed
on the time scale of the transfer phenomena (static limit),
and that they are distributed in an isotropic way. Concentra-
tion self-quenching is modeled in this system, by supposing
that two molecules which are closer to one another than a
fixed distance R, (statistical trap radius) act as perfect traps
for excitations, i.e., they can accept an excitation through
Eq. (2.1), but they cannot pass it on to other molecules, e.g.,
because of extremely fast decay channels in the close pair.!?
Molecules that are not in a statistical pair (or even larger
cluster) are hereafter called donors.

In a typical steady state experiment,’ donors are ran-
domly excited by a constant laser beam incident along the y
axis and polarized along the z axis of the lab frame. Two
interesting observables are the total donor fluorescence yield
and the donor emission anisotropy observed along the x axis.
The yield is defined by the rate at which excitations are radi-
ated by donors divided by the constant rate of laser induced
creation of donor excitations. The (emission) anisotropy is
defined by

_L—1
I +2I,

with /; and 1, the observed intensities of components paral-
lel and perpendicular to the laser beam polarization, respec-
tively.

In Refs. 11(a) and 11 (b), we showed that these steady
state observables, in the case of an isotropic transfer rate, can
be described very well in a semiquantitative way (i) by con-
sidering the system as if it contained independently distrib-
uted donors and traps with suitable densities, thus neglecting

2.3)
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their common underlying distribution of luminescent mole-
cules and (ii) by applying to this system Burshtein’s theory
of hopping transport,’? with the cosh-backtransfer correc-
tion, proposed by Huber et al.,'* built in. In this cosh-hop-
ping model, one derives the following expression for the

yield:
_ T~ F(rY
Q/QO— 1 _E‘IS(T_"I') ’

where 7 < 7, is the total intrinsic lifetime of the molecular
excited state and Q, = 7/7, is the yield in very dilute sys-
tems. F and ® are the Laplace transforms of the time-depen-
dent functions

(24)

F(t) = < [e ™ cosh(woy?) ] He‘"’°‘”’> (2.5)
d #0 F3 ¢
and
d — wogt — Wppt
o (1) =<_E[M [ cosh(wMt)]]I;[e o >
(2.6)

Here d runs over all donors, except the central excited one,
labeled O, and p over the traps. (- - ), stands for the average
over all possible configurations of donors and traps, which is
an average over the positions and orientations of all mole-
cules. Through omission of the cosh factor, one recovers the
no backtransfer (nbt) hopping model.!’®® For an isotropic
orientational distribution, the anisotropy is given by'!®
i

A/Ag=1—d(r Y, (2.7)

where 4, = 0.4 is the anisotropy in very dilute systems. This
expression only takes into account contributions of mole-
cules that were excited by the laser beam. It is thus assumed
that all memory of the laser polarization is already lost after
the first transfer step. This is true for isotropic transfer rates;
for the complete Forster rate, however, additional contribu-
tions to the anisotropy are to be expected. Since it has been
argued, however, that relative corrections due to these con-
tributions do not exceed 3% in pure donor systems,>>!> we
do not try to take them into account. Both observables of
interest are thus fully determined by F(¢) and P (¢).

Since donors and traps are considered as independently
distributed species, the average in Eqgs. (2.5) and (2.6) can
be written as

e = (Do
Here (---), denotes the average over the configurations of
donors surrounding donor 0, and (-*-), analogously for
traps. Finally, (---), is the average over the orientation £,
of the central donor. For an isotropic three-dimensional me-
dium with an isotropic orientational distribution, the results
of (+*+), and (), will not depend on €2, so that the aver-
age over this orientation is trivial and can be left out. Since
this makes it possible to derive exact expressions for Fand P,
we will confine ourselves to this case of general importance.
Only the important steps in the calculations will be given,
from which the details can be filled in by the reader.

The donor and trap averages are worked out as follows:
First they are split into averages over the individual mole-
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cules; then the average over the distance to donor 0 is per-
formed in the standard way in which one derives Forster-like
decay functions. In the case of isotropic transfer rates this
completes the calculations, ' but for an anisotropic rate,
one is left with additional averages involving the orientation
factor. To clarify this we give the result for the donor part of
Eq. (2.5). The suitable donor density is chosen to be
p exp ( — pv, ), where p = 47R }p/3 is the reduced density
and v, = (R,/R,)*."'® The Forster decay now reads

F,(t)=expl —gfa/2pe =Pt /1) V2]
with g a time-independent factor

172
g [ s [d0[3 1"
41 47 L2
which is an average over the orientation £, of the transition
dipole of donor 1, and over the orientation of ry,;. The fact
that inclusion of the orientation factor into the transfer ki-
netics only changes Forster-like decay by a time-indepen-
dent factor (g) in the exponential, as shown above, has been
reported many times, see, e.g., Refs. 2, 6, 8, and 9, and the
numerical value of g is well known to be

(2.8)

1 1 23+3
g=+3/2 [— + log[ ” ~0.8452. (2.9)
2 8f3 2y3-3

The decay due to the donors is thus slowed down by the
orientation factor. The traps are treated in the following
way. We assume, as in Ref. 11(a), that they predominantly
occur in pairs, and we take into account the necessary close-
ness of such a pair by considering it as one particle. Thus the
suitable density of traps is p, =1p[1 — exp( — pv,)]. We
now introduce two different ways to incorporate trap orien-
tations. In the first, the pair members are given exactly the
same orientations, which finds its physical motivation in a
possible alignment of close molecules. This view leads.to an
effective doubling of the transfer rate (2.1) in case thatjisa
trap, which amounts to the same procedure as the one fol-
lowed in Ref. 11(a). Then again, the inclusion of « is fully
described by inferring the same factor g in the exponent of
the trap decay. In the second approach, we consider the oth-
er limiting case, in which the orientations of the transition
dipoles within one pair are completely uncorrelated. Then
the transfer rate to a trap has to be altered by replacing in Eq.
(2.1) &, by k7, + k2 and each trap has to be assigned two
orientations. The extra factor in the exponential of the trap
part of the decay is now given by

F 12
d“'f ‘[%(Kélwfnr) :

4
(2.10)

~ 1 dQ
§=— 01

ﬁ 47

which, after working out the integrals, yields

F =g—2—[1 +—Liog tan(31r/8)] ~09146.  (2.11)
3 V2

By these and similar methods, F and ® can be calculated,
and, thanks to the time independence of g and g, their La-
place transforms, as in Ref. 11(a), can be expressed analyti-
cally in the complementary error function. One thus finds
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2
0/0, = [1—V7a exp(a?)erfc(a) ] (2.12)
[1—VmBexp(a®)erfc(a) ]
and
A /Ay =1—JmBexp(a®)erfc(a). (2.13)

These forms hold very generally, even in the nbt-hopping
model; only the functional dependence of @ and 8 on the
density depends on the precise model. For the six distinct
cases, a(p) and B(p) are listed in Table I.

lii. D!SCUSSION OF RESULTS

The yield and anisotropy were calculated as a function
of the density for the different cases listed in Table I, at
Qo = 1/3 and r, = 1/5. These parameters were chosen since
they were also used in the Monte Carlo calculations de-
scribed in Ref. 11(b). In Fig. 1, we present the yield for the
two different ways of including «? relative to the yield ob-
tained by neglecting the orientation factor, for the cosh-hop-
ping model. We note the following characteristics: (i) Both
ways of incorporating «* decrease the yield, which is easily
understood, since both g and g are smaller than 1, so that the
average decay of a donor excitation to both donors and traps
is always slowed down. Thus the transport of the excitations
from the set of donors to the traps is slowed down. (ii) In the
case of parallel pair members, the yield is larger than in the
case of “uncorrelated” pair members. This, too, is simply
understood by realizing that g > g: the decay to uncorrelated
pairs is faster than to parallel pairs. (iii) The additional con-
tributions generated by inclusion of «” are seen to amount to
up to 40% in the parallel case and 209%-30% in the uncorre-
lated case, so that one must conclude that the orientation
factor has an important effect on the yield in high density
systems. The three horizontal lines at g2, (gg) ~?, and g2
mark the behavior of the drawn ratios in the intermediate
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(Pv, <1, pQ ¢*> 1) and high (pv, > 1, 5Q ;> 1) density re-
gimes, which were introduced in Ref. 11 (b). The fact that
the constant ratio g=2 holds in the case of parallel pair
members over a large density interval, implies that the char-
acteristic slope of log Q-log p plots, which was discussed in
Ref. 11(b), is not affected by the orientation factor.

We do not give graphs for the anisotropy in the different
cases, since the discrepancies between the curves are only
very small. This can be understood by realizing that the an-
isotropy is the quotient of the probability that a given excita-
tion is radiated by the donor on which it was created by the
laser beam [N,(7~')] and the yield,"'® and that these
quantities are both affected in the same sense by incorporat-
ing x*. We just mention that the anisotropy in the case of
uncorrelated pair members is always observed to be larger
than the anisotropy in the parallel case, and that this in turn
always exceeds the result when the orientation factor is ne-
glected. At high densities (past the minimum of the anisot-
ropy), we do not try to explain this, because the model is not
accurate there.!'™ At low density (< 5.0) the following
explanation may be given. The number of traps is still small
in this regime, so that only few excitations reach a trap dur-
ing their lifetime and the yield is still large ( 2 0.7). Then,
slowing down the hopping process will not have a large rela-
tive influence on the yield, since this quantity is only affected
by processes that end on traps. The influence on X’O(T_ Ly,
however, is much more direct, since this quantity involves
only one step. Therefore, the anisotropy is increased by in-
cluding x> It is largest in the case of uncorrelated pair
members, since then the final donor-trap step, if present at
all, is fastest, thus giving the lowest yield. This effect is very
small ( <2% for p % 5.0).

The observed effects for the nbt model are, even quanti-
tatively, very similar to the ones mentioned above, as could
already be expected from Table I. We will therefore not dis-
cuss them in further detail.

TABLE . The functions a(p) and B(p) for the nbt- and the cosh-hopping models, in the three different cases
(i) isotropic rate, (ii) inclusion of x* with parallel pair members, (iii) inclusion of «* with uncorrelated pair

members.
a(p) Bp) i
a(p)=§(7Q,)'"’p b(p)=4(7Qy) 3p e ?*
NBT
. 1 1
Isotropic [—+ [1 ——]e ""]a(p) b(p)
gl ”
17 -
Parallel g[—+ [ 1 ——]e ""]a( ) gb(p)
7 2 g ?
1 g 1 2] o
Uncorrelated g[——+[1———]e 4 ]a( ) gb(p)
Ae e p p
COSH
. 1 1
Isotropic —a(p) —b(p)
A i
1
Paraliel g—a(p) g—b(p)
B B
Uncorrelated g_l_ g+ [1 _g]e—f’"s]a(p) ng(p)
V2l & V2
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FIG. 1. Yields obtained upon inclusion of «* into the cosh-hopping model
for the two ways of treating the orientations within trap pairs: parallel (—)
and uncorrelated (---), relative to the yield for the isotropic Forster rate.

Qy=1/3andr, =0.2.

IV. SUMMARY AND REMARKS

We incorporate the orientation factor of the Forster rate
of energy transfer into the theory of concentration self-
quenching by statistical traps. This is done within the frame-
work of Burshtein’s hopping models, and for the case of a
three-dimensional isotropic system, with an isotropic orien-
tational distribution of the molecular transition dipoles, ex-
act analytic expressions are obtained for the quantum yield
and the emission anisotropy. Although, in view of earlier
studies, the way in which inclusion of the orientation factor
alters the time-dependent quantities is not really surprising,
we make the important observation from our calculations,
that, in two opposite limits of treating the orientations with-
in one trap pair, substantial corrections (20%—40% ) to the
quantum yield are generated by this inclusion. Moreover, we
believe that, in view of the good performance of the cosh-

hopping model for isotropic rates,'!® and of the exact treat-
ment of the orientation factor in the context of the hopping
models, the corrections reported here are good measures for
the corrections that would be observed in an exact solution.
This could be investigated by Monte Carlo simulations as
described in Ref. 11(b), but these would now be even more
time consuming, because (i) the orientational averages
would require a larger number of configurations to be sam-
pled and (ii) extra multiplications would have to be per-
formed for each configuration in order to calculate the orien-
tation factors.

We finally point out that exact analytic results, as given
here, are only obtainable in three dimensions. For molecules
with positions confined to a surface, even if they have a
three-dimensional isotropic orientational distribution, the
average over the orientation ) is not trivial. Therefore, a
time-independent g factor can only be defined in a lowest
order treatment with respect to time and (or) density.? In
our opinion, this point has not been fully recognized in sever-
al previous studies.”®
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