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We present results of numerical simulations of the kinetics of exciton–exciton annihilation of
weakly localized one-dimensional Frenkel excitons at low temperatures. We find that the kinetics is
represented by two well-distinguished components: a fast short-time decay and a very slow
long-time tail. The former arises from excitons that initially reside in states belonging to the same
localization segment of the chain, while the slow component is caused by excitons created on
different localization segments. We show that the usual bimolecular theory fails in the description
of the behavior found. We also present a qualitative analytical explanation of the nonexponential
behavior observed in both the short- and the long-time decay components. Finally, it is shown that
our theoretical estimate for the annihilation time of the fast component is in good agreement with
data obtained from transient absorption experiments onJ-aggregates of pseudoisocyanine. ©2001
American Institute of Physics.@DOI: 10.1063/1.1352080#

I. INTRODUCTION

Exciton–exciton annihilation is an important process
that strongly influences the optical and optoelectronic prop-
erties of materials at high excitation densities. In particular,
exciton–exciton annihilation affects the nonlinear and lasing
properties of organic systems, such asJ-aggregates and poly-
mer films.1 Though the importance of this process is well-
recognized, the microscopic understanding of the annihila-
tion kinetics is still rather poor. This holds especially under
the conditions of strong exciton delocalization and~or! low
temperature, where the usual bimolecular theory of exciton–
exciton annihilation is expected to break down. The aim of
this paper is to study the annihilation kinetics in weakly dis-
ordered one-dimensional Frenkel exciton systems, where the
exciton coherence size can be considerable~tens of lattice
units!. This study is of relevance to the optical properties and
exciton dynamics inJ-aggregates and molecular antenna sys-
tems.

The standard approach to describe the kinetics of
exciton–exciton annihilation relies on the bimolecular rate
equation, in which it is assumed that the effective annihila-
tion rate is proportional to the exciton density. This equation
reads2–6

ṅ52gn2an2, ~1!

wheren represents the average exciton density, understood
here as the number of excitations per molecule,g is the
single-excitation~radiative and nonradiative! relaxation rate,
anda is the co-called annihilation constant having here the
dimension of 1/time. The effective rate of exciton–exciton

annihilation in the system is then indeed proportional to the
average exciton densityn and is given byan. The solution
to Eq. ~1! reads

n5
gn0

gegt1an0~egt21!
, ~2!

wheren0 is the initial population of excitations. If the anni-
hilation dominates the single-exciton relaxation (an0@g)
the excitation population decreases according to a hyperbolic
~nonexponential! law,

n5
n0

11an0t
. ~3!

The typical picture that one commonly has in mind when
modeling the annihilation process as is done in Eq.~1!, is as
follows. First, it is usually understood that, as a result of
strong disorder and~or! high temperature, the Frenkel exci-
tons represent, in fact, molecular excitations.2–6 Next, it is
assumed that the excitations~diffusively! move over the sys-
tem. If the diffusion rate is large compared to the rate of
nearest-neighbor annihilation, denoted byw0 , two excita-
tions annihilate each other~by fusing into one high-lying
molecular excitation that quickly loses its energy by vibra-
tional relaxation! when they have reached neighboring mol-
ecules. In this casea5w0 . On the other hand, ifw0 domi-
nates the diffusion rate, the annihilation event may occur at a
distance large compared to the the nearest-neighbor separa-
tion. In this case, the annihilation constant is determined by a
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convolution of the annihilation rate with the pair correlation
function of two excitations,7 and may in principle depend on
time.

The bimolecular rate description has limitations, which
become rather important at low temperatures. Obviously, the
bimolecular approach does not account for the fact that the
excitons inJ-aggregates are generally quite strongly spread,
with typical coherence lengths of several tens of
molecules.8–14 Even at room temperature, this length is of
the order of 10 molecules,15–17 owing to the large intermo-
lecular excitation transfer interaction in these systems. It is
an open and interesting question whether this finite length
may be accounted for by interpretinga in Eq. ~1! as an
effective annihilation constant. In this paper, we will address
this question for low-temperature exciton systems.

We will study the kinetics of exciton–exciton annihila-
tion of one-dimensional excitons that are weakly localized
by static disorder. We will use the same framework as was
done in Refs. 18 and 19 to calculate annihilation rates. The
new element of the present paper is to use these rates to
follow the kinetics of annihilation. An important step in de-
scribing the annihilation of extended excitons, is to distin-
guish between inter- and intrasegment annihilation.18,19 The
rationale for this distinction is as follows. As appears from
numerical simulations of disordered exciton chains, the ex-
citon states residing close to the bottom of the exciton band
~the region that dominates the optical response! can be clas-
sified into groups of a few~two or three! states. The states
within each separate group are all localized on the same seg-
ment of the aggregate, with a typical sizeN* ~often referred
to as the number of coherently bound molecules!, while the
segments corresponding to different groups do not overlap.
In fact, it turns out that the two or three exciton states within
each such group are very similar in structure and energy to
the lowest two or three states that exists on an ordered chain
of length N* .20–23 In particular, the lowest state of such a
group has a wave function spread over the segment without
nodes and can be interpreted as the local ground state. The
next higher lying state of the group has a well-defined node
and looks like a first local excited state, etc. The energy
difference of the local ground and first excited states agrees
well with that of a perfect chain of lengthN* .

Obviously, to describe exciton–exciton annihilation, one
should consider at least the two-exciton states. As is well
known, one-dimensional Frenkel excitons are weakly inter-
acting fermions~see Refs. 24–28!. Thus, the wave functions
of states with two excitons can be composed of Slater deter-
minants of two one-exciton wave functions. Under the con-
dition of weak localization, two different types of two-
exciton states then appear:~i! those with two excitons
belonging to the same localization segment, and~ii ! those
with the two excitons localized on different segments. This
immediately leads to the distinction of intrasegment and in-
tersegment annihilation as fundamentally different annihila-
tion channel.18,19

This paper is organized as follows: In Sec. II, we present
our microscopic model of annihilation, express the annihila-
tion rate in terms of the basic interactions and wave func-
tions, and make the formal step towards the annihilation ki-

netics at low temperatures, where the diffusive motion of
excitons towards each other may be neglected. In Sec. III we
use the distinction between inter- and intrasegment annihila-
tion to derive qualitatively analytical expressions for the
low-temperature annihilation kinetics. A more detailed study
is presented in Sec. IV, where we basically exactly solve the
kinetics, formally defined in Sec. II, through numerical simu-
lations. In Sec. V we summarize our findings and discuss the
relevance to experimental low-temperature annihilation data.

II. TWO-EXCITON ANNIHILATION MODEL

A. Motivation

Under usual experimental conditions, only a small part
of the localization segments on molecular aggregates are ex-
cited. For example, the authors of Refs. 12 and 14 estimated
that in their experiments, one hundred molecules per aggre-
gate were produced at the highest excitation power applied
(0.98 GW/cm2). As a physical aggregate normally consists
of ;104 molecules,3,5 while the typical localization segment
in their particular case counted 20 molecules, these authors
concluded that less than one exciton was created per segment
of localization~on average, one exciton per five segments!.
A simple consideration based on the Poisson distribution for
the probability of finding an integer number of excitons per
segment, shows that on the physical aggregate about 80 out
of 500 segments are expected to be singly excited, while
only 8 are doubly excited. Triply~and more! excited seg-
ments are almost absent. Bearing in mind that excitons, cre-
ated on the same segment of an aggregate or on closely
spaced separate segments, will annihilate first, we conclude
that a two-exciton model of annihilation seems to be quite
reasonable as a first step.

B. Rate of two-exciton annihilation

As a working model, we adopt a linear chain ofN three-
level molecules as depicted in Fig. 1.2,18,19 The two lower

FIG. 1. Schematic representation of all interactions contributing to the
exciton–exciton annihilation process. The interactionHex , indicated by the
dashed lines, forms excitonic states in the subspace of the molecular states
‘‘0’’ and ‘‘1.’’ Excitons annihilate through a high-lying electronic-
vibrational molecular term ‘‘2’’ (v10'v21). The first step of the annihila-
tion process results from the intermolecular interactionHa , which induces
simultaneous transitions of the moleculem to the ground state and molecule
n to the high-lying term. The second step results from fast vibrational re-
laxation within high-lying electronic-vibrational sublevels towards the
ground vibrational state characterized by a rateG@Ha .
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molecular states, denoted ‘‘0’’ and ‘‘1,’’ are assumed to
form an exciton band, as a result of a sufficiently strong
resonant dipole–dipole intermolecular coupling. The corre-
sponding exciton Hamiltonian, taken in the nearest-neighbor
approximation, reads

Hex52U (
n51

N21

~b1n
1 b1,n111b1,n11

1 b1n!1 (
n51

N
E1nb1n

1 b1n ,

~4!

where2U,0 is the nearest-neighbor hopping integral cho-
sen to be negative, as is the case forJ-aggregates, and
b1n

1 (b1n) denotes the Pauli creation~annihilation! operator of
the first excited state of moleculen ~the state with all the
molecules in their ground states serves as the vacuum state
u0& and has zero energy!. The second term in Eq.~4! repre-
sents the Hamiltonian of noninteracting molecules, in which
E1n5E11Dn is the energy of the first excited state of mol-
eculen with E1 andDn being, respectively, the mean value
of the energy and a static random offset. The latter simulates
on-site~diagonal! disorder and results in localization of the
excitonic states. Fluctuations of the nearest-neighbor cou-
pling are neglected. It will be assumed thatDn is distributed
uniformly within the interval@2D,D#, so that the typical
magnitude of the disorder is given by the standard deviation
s5D/). Fors!U the exciton eigenfunctions are localized
within rather large segments of the chain, 1!N*
!N.20–23,29,30Throughout this paper, we will assume that
this condition holds.

The high-lying electronic-vibrational molecular term,
depicted as ‘‘2’’ in Fig. 1, serves as the intermediate state
through which annihilation occurs.2,18,19We consider one of
the electronic-vibrational levels to be resonant with the two-
exciton optical states and to undergo an efficient phonon-
assisted relaxation to the ground vibronic state~see Fig. 1!.
The annihilation process itself consists of transferring the
energy of two excitons to the high-lying molecular term.
Assuming this step to occur due to the resonant dipole–
dipole intermolecular interaction, we may write the corre-
sponding Hamiltonian as follows:

Ha5
1

2 (
m,n51

N
V

un2mu3
b1nb1m~b2n

1 1b2m
1 !1h.c., ~5!

whereV is the matrix element of the annihilation operator
for nearest neighbors andb2n

1 (b2n) denotes the Pauli creation
~annihilation! operator of the high-lying state of moleculen.
The operator~5! annihilates the two excitations occupying
moleculesm andn and excites one of these molecules in the
high-lying state. The implication ofHa for third-order non-
linear optics ofJ-aggregates has been studied in Ref. 31.

In accordance with our arguments in Sec. II A, we will
assume that not more than two excitons are created by the
pump per linear chain. Moreover, we will assume thatuVu is
small compared to the rate,G, of phonon-assisted relaxation
in the high-lying molecular state. We may then use pertur-
bation theory to calculate the rate of annihilation. Moreover,
the back process~exciton fission! can then be neglected. The
resulting expression for the rate of exciton–exciton annihila-

tion starting from the two exciton eigenstateumn& (1<m
,n<N) is simply given by the ‘‘Golden Rule,’’

wa
mn5

2p

\
r~Ef ! (

n51

N
u^2nuHaumn&u2, ~6!

wherer(Ef) is the density of final states~hereafter replaced
by 1/G!. Because of the fermionic nature of one-dimensional
Frenkel excitons, one can compose the two-exciton eigen-
functions as Slater determinants of the one-exciton eigen-
functions,

umn&5 (
m51

N

(
n,m

N
cmm;nnu1m,1n&, ~7a!

cmm;nn5wmmwnn2wmnwnm , ~7b!

where$wnn% are the eigenfunctions of the one-exciton prob-
lem,

(
m51

N
Hex

nmwnm5Enwnn . ~8!

Here,Hex
nm5^1nuHexu1m& and En is the eigenenergy of the

one-exciton staten. Substituting Eq.~7b! into Eq. ~6! one
obtains19

wa
mn5

2pV2

\G (
m51

N F (
n51

N
8

cmm;nn

~m2n!3G 2

, ~9!

where the prime denotes thatnÞm. In particular, for a dimer
(N52) only one two-exciton state exists and its annihilation
rate is given by

wa
125w05

4pV2

\G
. ~10!

In order to arrive at Eq.~9! we used the fact that Frenkel
excitons are noninteracting fermions whenever the nearest-
neighbor approximation is used for the hopping integrals.
They become interacting quasiparticles when including the
coupling to far neighbors. The importance of the latter can be
estimated through the changes which the long-range terms
produce in the density of exciton states. It is known that in
one-dimensional aggregates, the long-range dipole–dipole
interactions shift the exciton band bottom by approximately
20% compared to the nearest-neighbor model.21,29 The
smallness of this shift suggests the corrections due to long-
range interactions to be of a perturbative nature. Indeed, for
few-particle states, Frenkel excitons are weakly interacting
~well-defined! fermions, despite the long-range coupling.

Furthermore, as follows from the results of both numeri-
cal simulations29 and theoretical estimates21 of the linear op-
tical properties of disordered Frenkel chains, the oscillator
strengths of the optical transitions near the lower band edge
grow by approximately a factor of 2.5 due to the long-range
dipole–dipole interactions. This results from a larger exten-
sion of the optically active exciton states in the exact dipole–
dipole model compared to the nearest-neighbor model~at a
fixed disorder strength!. In principle, this effect is not of a
perturbative nature. It can, however, be included into the
final formulas for the annihilation rates~see below! by res-
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caling the number of coherently bound moleculesN* . The
above arguments justify the nearest-neighbor framework as a
reasonable approach to describe Frenkel excitons.

It is worth stressing, though, that the dipole–dipole in-
teraction in the annihilation channel (Ha) can generally not
be taken in the nearest-neighbor approximation, because the
annihilation of two excitons localized on separate localiza-
tion segments is determined by the coupling to far neighbors.

C. Low-temperature annihilation kinetics

As in the present paper we are mainly interested in the
annihilation kinetics itself, we will neglect any other possible
channel of population relaxation, such as the radiative tran-
sitions from two-exciton to one-exciton states~also acting
towards lowering the exciton population!, as well as a pos-
sible multiphonon relaxation from the high-lying term to the
one-exciton states~acting, on the contrary, towards raising
again the exciton population!. To calculate the kinetics of the
exciton–exciton annihilation, we will assume that excitons
are created by a resonant laser pulse, that is short compared
to the inverse of theJ-band width. Under these conditions,
the initial populations of the two-exciton stateumn& is pro-
portional to the corresponding oscillator strengthFmn given
by

Fmn5u^mnuD2u0&u25S (
m,n51

N
cmm;nnD 2

, ~11!

where D5(n51
N (b1n

1 1b1n) is the chain’s dipole operator
~the chain length is assumed to be smaller than the emission
wavelength!.

After the initial creation process, excitons may in prin-
ciple move over the chain, At low temperature, however, the
possibility to move is very restricted and the optically ex-
cited localized Frenkel excitons are practically immobile.18

The reason is that at low temperature~T< width of J-band!,
an exciton created in one of the local ground states may
move to an other similar state only when the latter has an
energy lower than the former. The typical energy offset be-
tween the local ground states is of the order of the width of
their energy distribution~i.e., the width of theJ-band!.
Therefore, after one jump the exciton typically resides in the
tail of this distribution. The number of states with still lower
energy then drastically reduces, giving rise to a strong in-
crease of the mean distance to such lower energy states. In
fact, already after one jump the exciton has a strongly sup-
pressed chance to jump further, i.e., such a type of the spa-
tioenergetic diffusion ~towards lowering the energy! is
stopped rapidly and does not yield a sufficient possibility for
two excitons to approach each other and annihilate. It is
worth noting that experiments also indicate the absence of
such a diffusion, which would manifest itself in a redshift of
the exciton emission spectrum relative to the absorption
spectrum. The experimental data show that such a Stokes
shift is either absent or has a small magnitude.8,9,13A similar
situation occurs in glasses doped with rare-earth ions.32

Following the above arguments, we will assume that two
excitons annihilate from the positions where they have been

created. Then, the time dependence of the population of the
excited two-exciton states is given by

Pa~ t !52K (
mn

f mn exp~2wa
mnt !L , ~12!

wheref mn5Fmn /(mnFmn and angular brackets denote an av-
erage over the disorder realizations. Note that we have nor-
malized the population such that it equals 2 att50. Formula
~12! will be the basis of our further analysis of the low-
temperature annihilation kinetics.

III. QUALITATIVE PICTURE

Before carrying out numerical simulations, we first pro-
vide a qualitative analysis of Eq.~12!. Following the argu-
ments concerning the nature of the low-energy weakly local-
ized one-dimensional states, we separate the summation in
Eq. ~12! into two parts:Pa(t)5Pa

intra(t)1Pa
inter(t). The first

part, Pa
intra(t), includes all those terms$mn%, where the one-

exciton statesm andn are localized on the same chain seg-
ment ~doubly excited segments!. The second part,Pa

inter(t),
contains those terms wherem andn reside on different seg-
ments. The fact that this distinction can only be made for
low-energy states is no restriction, as anyhow these states are
the ones that dominate the ground state to one-exciton and
the one-to-two-exciton absorption spectrum. Using the pic-
ture of exciton states on a chain of effective lengthN* , one
arrives at the intrasegment annihilation rate,18,19

wa
intra5

5p6

18~N* 11!3
w0 , ~13!

wherew0 is given by Eq.~10! and the factor 5p6/18'270.
The second term,Pa

inter(t), governs the annihilation of
two excitons created on different localization segments and
is characterized by the rate19

wa
inter5

N* 11

R6
w0 , ~14!

whereR is the distance between the two excited segments.
Note that the rate of the intersegment annihilation scales lin-
early with N* 11. As the wave functions of both segments
enter the expression forwa

inter, one might intuitively expect a
quadratic dependence onN* 11. However, only one of the
two excited segments, namely the one that passes to the
ground stateu0& in the annihilation process, coherently con-
tributes towa

inter giving the factorN* 11 ~so-called super-
radiant transition!. The transition within the other excited
segment occurs to the high-lying molecular state of each
molecule. It is important to note that the latter events are
summed incoherently, as is evident from Eq.~9!, thus pre-
venting the appearance of an extra power ofN* 11.

Keeping in mind thatR>N* as well as that the numeri-
cal factor in Eq.~13! is fairly large, one immediately deduces
from Eqs.~13! and~14! thatwa

intra@wa
inter provided thatN* is

of the order of or larger than several units, which is the
condition we will focus on in the simulations. From this, one
expects that the kinetics of the exciton–exciton annihilation
will consist of two distinct parts: a very fast short-time de-
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cay, described byPa
intra(t), and a very slow long-time tail for

which Pa
inter(t) is responsible. In order to estimate the rela-

tive weight of these two components, we will take into ac-
count the fact that the oscillator strengths of double excita-
tion of a particular localization segment and excitation of
two different segments are of the same order. Then, statisti-
cal arguments based on the Poisson distribution seem to be
sufficient for making estimates. If the initial density of exci-
tations equalsn0 ~in our case,n052/N!, the probability of
finding a typical localization segment~of length N* ! to be
k-fold excited reads

p~k!5
~n0N* !k

k!
e2n0N* . ~15!

Therefore, the probabilities of double excitation of a typical
localization segment and of excitation of two different seg-
ments are given by 0.5(n0N* )2e2n0N* and 2n0N* e2n0N* ,
respectively. Thus, the relative contribution of the shorter
component inPa(t) is of the order of 0.25n0N* , which
drops upon increasing the disorder strengths ~or upon a
corresponding decrease ofN* ! and grows with increasing
the density of excitationsn0 .

Now, we turn to a discussion of the character of the
annihilation kinetics. We recall that in the bimolecular
model, the decay is nonexponential, as a result of the non-
linearity of the driving equation~1!. We will argue that in
our case, the kinetics is also nonexponential, which, how-
ever, does not result from a nonlinearity. Let us consider first
the intrasegment channel of annihilation. Here, according to
Eq. ~12!, the nonexponentiality is expected even in the ab-
sence of disorder~i.e., for a regular chain!, because the an-
nihilation rate wa

mn obviously depends on which exciton
states are involved in the annihilation process~see Sec. IV!.
In the presence of disorder, there is an additional source for
the nonexponential behavior of annihilation through the in-
trasegment channel. It originates from the fluctuations in the
sizes of the localization segments,N. Equation~13! gives the
typical magnitude of the intrasegment annihilation rate. In
reality, N* in Eq. ~13! should be replaced by a fluctuating
valueN. Consequently, the sum over the overlapping states
in Eq. ~12! can be approximately substituted by an average
over a distribution ofN, G(N). One then obtains

Pa
intra~ t !'2E dNG~N!exp@2wa

intra~N!t#. ~16!

As follows from numerical simulations,21,22,29,33the standard
deviation ofN, @*dNG(N)(N2N̄)2#1/2, is of the order of
the mean,N̄5*dNG(N)N, i.e., the distributionG(N) is
rather broad. Due to this fact, the resulting nonexponentiality
is expected to be considerable. The numerical simulations
presented in Sec. IV confirm this picture.

The origin of the nonexponential behavior of the inter-
segment annihilation is twofold. First, the corresponding an-
nihilation rate, as in the previous case, depends on the size of
the localization segmentN @see Eq.~14!#. Thus, fluctuations
of the latter will affect the annihilation kinetics even for a
fixed distance between excited segments. However, the char-
acter of the intersegment annihilation is determined mostly

by the strong dependence of the annihilation rate~14! on the
distance between two excited segments,R. The annihilation
kinetics caused by the fluctuations ofR is simply given by an
average of the pair kinetics 2 exp@2wa

inter(R)t# over all real-
izations ofR. In order to obtain an analytical estimate, let us
assume that the density of excited segments is low~as is in
our case!, so thatR can be treated as a continuous stochastic
variable. Then the annihilation kinetics is given by an inte-
gral similar to that in Eq.~16! with G(N) replaced by a
suitableR-distribution function,G(R). We will adopt a uni-
form distribution for R, G(R)5N* /N, assuming that the
probability of finding a segment to be excited is equal to the
inverse of the number of segments in the chain,N/N* . In
evaluating the integral, we will extend the integration over
the entire positive axes, neglecting thus the minimal distance
between two adjacent segments as well as the finiteness of
the chain. Both approximations are justified at a low density
of excitations. One thus arrives at

Pa
intra~ t !'2F12

N*

N E
0

`

dR~12e2wa
inter(R)t!G

'2F12GS 5

6D N*

N ~N11!1/6~w0t !1/6G , ~17!

whereG(x) is the Gamma-function. Equation~17! is correct
provided that the second term on the right-hand side is less
than unity. This holds in a very large time interval, deter-
mined by the inequalityG(5/6)N* (N11)1/6(w0t)1/6,N. It
follows from the stretched exponential behavior of Eq.~17!
that further averaging ofPa

intra(t) over theN-distribution will
not change the character of the kinetics and results, in fact, in
replacingN by N* .

To conclude this section, we note that the~‘‘artificial’’ !
quantity Pa(t) can be simply rescaled to the measurable
magnitude—the density of excitonsn(t)5Pa(t)/N. Intro-
ducing the initial exciton densityn052/N, we obtain

nintra~ t !'n0F12
1

2
GS 5

6Dn0N* ~N* 11!1/6~w0t !1/6G .
~18!

IV. NUMERICAL SIMULATIONS AND DISCUSSION

To study the annihilation kinetics in more detail, we
have carried out numerical simulations for a chain of length
N5200. For such a length, the mean initial density of exci-
tations is n050.01. We calculated the one-exciton eigen-
functions wnn by diagonalizing numerically the Frenkel
Hamiltonian~4! for a particular realization of disorder, and
then composed two-exciton eigenfunctions according to Eq.
~7!. Using further Eq.~9! and Eq.~11!, we computed the rate
of annihilation,wa

mn , and the oscillator strength,Fmn , for
any two-exciton stateumn&. Then Eq. ~12! was used to
evaluate the annihilation kinetics. The resulting kinetics was
obtained by averaging over 20 realizations of disorder. An
increase of this number did not lead to considerable changes
in the calculated curves. As a time unit, we usedw0

21. The
results of the simulations for different values ofD/U are
depicted in Figs. 2–5 by thick solid lines.
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Figure 2 represents the annihilation kinetics for a perfect
chain (D50), as well as a least-square fit by means of an
exponential 2 exp(2w0t/a) ~thin solid line!, achieved ata
51.63•104. The fit clearly demonstrates that the calculated
curve cannot be matched by a single exponential. This un-
ambiguously means that not only the states withm51 and
n52, having the largest oscillator strengths, contribute to the
sum in Eq.~12!, but the other states contribute a comparable
amount. The time scale of the kinetics depicted in Fig. 2
qualitatively corresponds to that calculated by using Eq.~13!

with N* replaced byN: at N5200, one obtainswa
intra;3

31025w0 .
We also tried to fit the numerical curve in Fig. 2 by

means of the bimolecular equation~3! taken in the form
2/(11bw0t). The best fit was achieved atb51.07•1024 and
is plotted in Fig. 2 by the dashed line. At first glance, it
seems that the latter almost matches the numerical data ex-
cept, maybe, at the initial stage. However, the fitting constant
b, carrying, in fact, the meaning of the density of excitations
~see the discussion presented in the Introduction!, underesti-
mates the real valuen050.01 by two orders of magnitude.

FIG. 2. Plot of the exciton–exciton annihilation kinetics obtained from nu-
merical simulations for a regular linear chain of 200 sites~thick solid line!.
The least-square fits by means of the exponential 2 exp(2w0t/a) with a
51.63•104 as well as by the bimolecular model~3!, taken in the form
2/(11bw0t) with b51.07•1024 are presented by the thin solid and dashed
lines, respectively. The time unit is chosen to bew0

21 @see Eq.~10!#.

FIG. 3. Plots of the exciton–exciton annihilation kinetics obtained from
numerical simulations~thick solid lines! for a linear chain of 200 sites at
different values of the degree of disorderD/U. Thin solid lines give the
least-square fits by means of the function 22ct1/6 at c50.21 (D/U50.2),
c50.17 (D/U50.4), andc50.14 (D/U50.8). Dashed lines give the best
fit using the bimolecular model~3!. The time unit is chosen to bew0

21.

FIG. 4. As Fig. 3, but now focused on the initial stage of the annihilation
process. For this time interval, the best fits by means of the function 2
2ct1/6 were achieved atc50.21 (D/U50.2), c50.18 (D/U50.4), andc
50.15 (D/U50.8).

FIG. 5. Log-plot of the exciton–exciton annihilation kinetics for a linear
chain of 200 sites atD/U50.2, demonstrating the nonexponential character
of the decay. The time unit is chosen to bew0

21.
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Figures 3 and 4 show the numerical results obtained for
disordered chains with different degrees of disorder,D/U. In
Fig. 3, we plotted the annihilation decay curves in a wide
time interval, while Fig. 4 presents the initial stages of the
annihilation process. From the numerical results presented in
Figs. 3 and 4 several conclusions can be deduced. First of all,
it is clearly seen that the entire kinetics indeed consists of
two well-distinguished components: a fast short-time decay,
becoming faster as the disorder is increased, and a very slow
long-time tail. The weight of the faster component is smaller
than that for the slower one and drops upon increasing the
disorder strengthD/U.

It is reasonable to relate these two components to the
intra- and intersegment channels of exciton–exciton annihi-
lation, respectively, in accordance with the qualitative pic-
ture discussed in the previous section. Indeed, let us use for
the typical sizeN* of a localization segment the well-known
estimate20,21,29,30

N* 115S 3p2
U

s D 2/3

. ~19!

Recall that in our cases5D/). Substituting Eq.~19! into
Eq. ~13!, one gets

wa
intra5

5p2

506 S D

U D 2

w0'0.1S D

U D 2

w0 . ~20!

Equation~20! gives us the disorder scaling of the intraseg-
ment annihilation rate. Accordingly, we arrive at the follow-
ing estimates: wa

intra;431023w0 , 231022w0 , and 6
31022w0 , respectively forD/U50.2, 0.4, and 0.8. Indeed,
these numbers qualitatively match the time scales of the fast
components~see Fig. 4!.

We also plotted in Figs. 3 and 4 the least square fits of
the numerical data by means of the function 22c(w0t)1/6

~thin solid line!. One observes that at higher degree of dis-
order (D/U50.8), when the weight of the faster component
is smallest, the fitting function fairly well follows the nu-
merical curve over almost the entire time interval of decay.
The value of the fitting constantc50.14– 0.15 is of the same
order as the one deduced from the theory, Eq.~17!, accord-
ing to which it must be 2G(5/6)(N* )7/6/N52G(5/6)
3(3)p2U/D)7/9/N'0.24 @The discrepancy probably
stems from neglectingN* as a minimal separation in Eq.
~17!.# This unambiguously means that the intersegment
channel dominates the long-time part of the annihilation ki-
netics. It should be especially stressed that the bimolecular
fits, shown in Figs. 3 and 4 by the dashed lines, fail abso-
lutely in the description of the numerical data.

In order to show the character of the decay~exponential
or nonexponential! in the case of disordered chains, we de-
picted in Fig. 5 the log-plot of the calculated annihilation
kinetics for D/U50.2. As can be seen, neither of the two
components shows an exponential behavior.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have studied the low-temperature kinet-
ics of exciton–exciton annihilation of weakly localized one-

dimensional Frenkel excitons using a two-exciton static
model~immobile quasiparticles! with diagonal disorder. Our
analysis leads to three main conclusions:

~i! The entire kinetics consists of two well-distinguished
components: a very slow long-time decay and a much
faster short-time drop. The latter component becomes
faster with higher degree of disorder. The weight of
the faster component is much smaller than that of the
slower one, and decreases with increasing disorder
strength.

~ii ! Neither of these two components shows an exponen-
tial behavior.

~iii ! The usual bimolecular theory fails in the description
of the behavior found.

These findings are well-understood from the existence of two
competing options for two excitons to annihilate. The slower
component is driven by the annihilation of exciton states
localized on different segments of the chain, while the faster
one originates from the annihilation of doubly excited seg-
ments. Fluctuations of distances between two excitons and
sizes of the localization segments explain the nonexponential
nature of the slower and faster components, respectively.

It is worthwhile to estimate the typical rates of both an-
nihilation channels for existingJ-aggregates. In order to do
this, we need information concerning the parametersU, V,
and G. For J-aggregatesU;1000 cm21 is quite typi-
cal.8,10,13,28Less information consists concerning the annihi-
lation interactionV, but as we assumed it to be of dipolar
origin it seems not unreasonable to take a value similar toU.
This is, in fact, supported by semi-empirical calculations of
higher molecular singlet states of pseudoisocyanine~PIC!
molecules.34 These calculations indicate a molecularS1

→S2 transition that is similar in energy and oscillator
strength as theS0→S1 transition responsible for PIC’s well-
knownJ-band. We thus takeV;1000 cm21. Finally, we will
take G;3000 cm21, corresponding to a vibrational relax-
ation time in theS2 state of about 10 fs. Using these num-
bers, we arrive atwa

intra;331016N* 23 s21. The correspond-
ing estimate for the inter-segment annihilation rate taken for
adjacent segments (R5N* ) readswa

inter;1014N* 25 s21.
At low temperatures, the quantityN* is found to be of

the order of several tens.8,10–13 Letting N* 520, as was re-
ported in Refs. 12 and 14, we arrive atwa

intra;431012s21

andwa
inter;33107 s21. Note that the magnitude ofwa

inter ap-
pears to be even smaller than the spontaneous emission rate
of a single molecule, which typically is of a few times
108 s21. Certainlywa

inter is much smaller than the spontane-
ous emission rate for an exciton state. It is to be noted fur-
thermore that raisingN* by a factor of 2 will reducewa

inter by
almost two orders of magnitude. From the above, an impor-
tant conclusion can be deduced: the intersegment channel of
exciton–exciton annihilation is in fact ineffective at low tem-
peratures, because the radiative relaxation is much faster. On
the contrary, the intrasegment annihilation rate is fairly high
and should be viewed as the unique way for two weakly
localized excitons to annihilate at low temperature. However,
since this process occurs only for doubly excited localization
segments, it will affect the entire exciton population only if
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the number of doubly excited segments is high, i.e., at suffi-
ciently high laser intensities.

We note that the separation into intersegment and intra-
segment annihilation channels was in fact concluded from
transient absorption experiments on PICJ-aggregates at 20
K.12,14 The part of the observed annihilation kinetics with a
decay time of 200 fs may indeed be related to intrasegment
annihilation, as is clear from our estimate forwa

intra. Our
estimate forwa

inter shows, however, that it is unlikely that the
second component of the kinetics reported in Refs. 12 and
14, with a decay time of 1.5 ps, may indeed be ascribed to
intersegment annihilation~see also the discussion in Refs. 18
and 19!.

Our findings concerning the ineffectiveness of inter-
segment annihilation provide us with a way to control the
exciton–exciton annihilation at low temperature. Indeed, re-
call that the local ground and first excited states belonging to
the same localization segment are separated by the energy
offset E2* 2E1* 53p2U/(N* 11)2, which is of the order of
the J-band width.20 For typicalJ-aggregates, the exciton ra-
diative rateg, representing the unique relaxation constant at
low temperatures, is much smaller than this energy mis-
match. Hence one may get a large number of localization
segments to be singly excited by applying a field with Rabi
frequency smaller thanE2* 2E1* , but larger thang. At the
same time, none of the localization segments will be doubly
excited. Therefore, under such conditions, a fairly large ex-
citon population may be created inJ-aggregates, without be-
ing affected by exciton–exciton annihilation.
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