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Introduction & Scope of the thesis

INTRODUCTION

1. MicroRNAs

MicroRNAs (miRNAs) are single-stranded RNA molecules of ~22nt (Bartel, 2004)
that belong to the larger family of non-coding RNAs. MiRNAs inhibit expression
of genes by repressing their translation or stability (Filipowicz et al., 2008). The
first miRNA, lin-4, was discovered in Caenorhabditis elegans (C. elegans) in
1993 (Lee et al., 1993). However, only after the second miRNA, let-7, was
discovered in 2000 (Reinhart et al., 2000), more attention was paid to miRNAs.
Since then a substantial number of miRNAs has been identified with, at present,
more than 25,000 miRNAs in the miRBase database, including over 2,000
human miRNAs (miRbase Release 19, Kozomara and Griffiths-Jones, 2011).
MiRNAs have been found in a total number of 193 species, including viruses,
plants and animals. Approximately 55% of the C. elegans miRNAs have
homologues in humans indicating that there is high degree of conservation
during animal evolution (Ibanez-Ventoso et al., 2008). This high degree of

conservation indicates the importance of miRNAs in cellular functioning.

Biogenesis of miRNAs

Genomic locations of miRNAs include introns and exons of protein-coding or
noncoding genes as well as intergenic regions (Fig.1) (Kim and Nam, 2006). The
majority of the miRNAs are located in introns of protein-coding genes. MiRNAs
are transcribed together with their host gene as longer primary miRNA
transcripts (pri-miRNA) (Cai et al., 2004). The canonical miRNA biogenesis
pathway consists of two enzymatic steps (Fig. 2). Transcription of pri-miRNAs
generally involves polymerase II and occasionally polymerase III (Borchert et
al., 2006; Lee et al., 2004). The pri-miRNA transcripts contain one or more
hairpin structures. Different miRNAs that are transcribed from one primary
transcript with multiple hairpin structures are denoted as miRNA clusters (Lee et
al., 2002). MiRNA clusters are not a rare finding. In fact, miRNA clusters
constitute ~40% of all human miRNAs (Altuvia et al., 2005; Hertel et al., 2006).

11
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FIGURE 1. Genomic localization of miRNAs. (A) MiRNAs can be localized in introns of
protein-coding or noncoding genes (intronic miRNAs). As an example the miR-31 primary
transcript with the stem-loop in the intron of the noncoding MIR31HG gene is shown. (B)
MiRNAs localized in exons of noncoding genes (exonic miRNAs). The location of the miR-
155 stem-loop in exon 3 of the BIC noncoding gene. (C) MiRNAs that have their own
promoter (intergenic miRNAs), as an example the miR-21 gene is shown.

Biogenesis of miRNAs is tightly regulated resulting in specific miRNA
expression patterns in certain tissues or at specific developmental stages.
Hairpin structures are processed by the Microprocessor complex that consists of
DiGeorge syndrome critical region 8 (DGCR8) and the RNase III endonuclease
Drosha (Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Landthaler et
al.,, 2004; Lee et al., 2003). DGCRS8 recognizes the hairpin structure by
interacting with the ssRNA segments flanking the stem-loop structure and
mediates cleavage of the hairpin structure by Drosha (Han et al., 2006; Zeng
and Cullen, 2005). The resulting 60-70nt precursor miRNA (pre-miRNA) is
exported to the cytoplasm by the Exportin 5 - RanGTP complex to be further
processed by the RNase III endonuclease Dicer to a double stranded ~22nt
miRNA/miRNA* duplex (Bohnsack et al., 2004; Grishok et al., 2001; Hutvagner
et al., 2001; Lund et al., 2004; Yi et al., 2003). One strand, denoted as the
miRNA, is incorporated into the RNA-induced silencing complex (RISC) while the
other strand, denoted as the miRNA*, is often degraded (Eulalio et al., 2008;
Filipowicz et al., 2008). Selection of the miRNA that will be retained in the RISC
complex is thought to depend on the stability of the 5’ends of the
miRNA/miRNA* duplex (Khvorova et al., 2003; Schwarz et al., 2003). Each of

12



Introduction & Scope of the thesis

the two strands of the duplex can be incorporated into the RISC complex.

Therefore, miRNA-5p and -3p nomenclature is now more commonly used.

CHAPTER 1
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FIGURE 2. Canonical biogenesis of miRNAs. MicroRNAs are transcribed as long
primary transcripts (pri-miRNA) that are processed by the Drosha-DGCR8 complex to
precursor miRNA (pre-miRNA). These precursors are exported to the cytoplasm by
Exportin-5 and further processed by Dicer to a miRNA/miRNA* duplex. The mature miRNA
is incorporated into the RNA-induced silencing complex (RISC) and this complex binds to
the 3'UTR of its target genes and inhibits the translation.

Function of miRNAs

RISC is a multiprotein complex that includes a miRNA and one of the four
Argonaute proteins (Gregory et al., 2005; Hutvagner and Zamore, 2002;
Mourelatos et al., 2002). The miRNA guides the RISC to its target transcripts
based on partial complementarity between the mRNA and miRNA (Fig. 2). A high
degree of complementarity of nucleotides 2-7 of the miRNA is the most
important factor for effective targeting of the mRNA (Bartel, 2009). This region

13



Introduction & Scope of the thesis

is referred to as the “seed sequence”. The degree of homology for the remaining
part of the miRNA may be lower and thus adds to the promiscuous nature of
single miRNAs that target different mRNAs (Doench and Sharp, 2004). MiRNAs
that share “seed sequences” belong to the same miRNA seed family and may, at
least in part, target the same set of genes. MiRNAs usually bind to the 3'UTR of
the target gene and less frequent to the coding sequence or 5'UTR (Chi et al.,
2009). MiRNA binding affects either mRNA translation or its stability (Pillai et al.,
2007). Both target gene prediction programs and biochemical approaches have
been widely applied to identify miRNA target genes and they indicated that each
miRNA can target multiple mRNAs and each mRNA can be targeted by multiple
miRNAs. It is estimated that more than one third of the genes can be regulated
by miRNAs (Lewis et al., 2005). This suggests that miRNAs play a role in a large
variety of cellular processes. Functional studies have indeed indicated that
miRNAs are involved in virtually all biological processes including programmed
cell death, proliferation, cell differentiation and metabolic control. In addition,
miRNAs have been causally linked to many pathological conditions including
diabetes, cardiovascular disease, autoimmune disorders and, most thoroughly
investigated, cancer. A substantial number of human miRNAs are located in the
cancer-associated genomic locations (Calin et al., 2004) and there are numerous
studies that show altered miRNA levels in various cancer types (Lu et al., 2005;
Sassen et al., 2008). Alteration of miRNA levels in cancer can be caused by
genetic aberrations, deregulation of transcription and epigenetic factors,

alterations in miRNA processing and/or miRNA stability.

2. B-cell lymphoma

The most common B-cell lymphoma subtypes include diffuse large B-cell
lymphoma (DLBCL), Hodgkin lymphoma (HL), follicular lymphoma (FL), chronic
lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), marginal zone
lymphoma (MZL) and Burkitt lymphoma (BL) (Kuppers, 2005). All these
malignancies display distinct clinical, histological and immunophenotypic

features, and vary greatly in short-term and long-term response to treatment.
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A large proportion of the B-cell lymphomas are derived from B cells at the
germinal center (GC) stage of maturation (Kuppers et al., 1999). GCs arise from
foci of mature naive B cells upon B-cell antigen receptor (BcR) stimulation in
combination with co-stimulatory signals from T cells (MacLennan, 1994). GCs
are characterized by proliferating B cells that have an active somatic
hypermutation (SHM) machinery (Kuppers et al., 1993). During SHM, a high
rate of mutations is introduced into the functionally rearranged immunoglobulin
(Ig) genes, affecting their affinity. Fractions of these GC B cells undergo class-
switch recombination, which is mediated by double-strand DNA breaks (Liu et
al., 1996). These cells may undergo second rounds of affinity maturation and
selection, after which they may differentiate into memory or plasma cells. Both
processes are essential for successful antigen-driven maturation of B cells, but
they also represent important risk factors for malignant transformation.
Accordingly, an established hallmark of many types of B-cell lymphomas are
reciprocal translocations involving one of the Ig gene loci (heavy and light chain
genes) and a proto-oncogene. The result is uncontrolled constitutive expression
of the translocated gene. Examples of such GC-derived translocations are BCL6-
Ig in DLBCL, MYC-Ig in BL and DLBCL and BCL2-Ig in FL (Baron et al., 1993;
Dalla-Favera et al., 1983; Ladanyi et al., 1991; Taub et al., 1982; Ye et al.,
1993). The involvement of non-Ig gene loci is partially caused by the somatic

hypermutation machinery which can also target many non-Ig genes.

3. MicroRNAs in B-cell lymphoma

Several miRNAs have been shown to have tumor suppressive or oncogenic
activity in B-cell lymphoma. Tumor suppressive miRNAs may target oncogenes,
and loss of such miRNAs leads to enhanced levels of oncogenic proteins. Tumor
suppressive miR-15a and miR-16-1 are frequently deleted or downregulated in
CLL (Calin et al., 2002; Calin et al., 2005). Mice with deletion of the genomic loci
containing this miRNA locus developed CLL-like disease (Klein et al., 2010). The
tumor suppressive role of miR-15a and miR-16-1 in CLL has been reported to
involve inhibition of the anti-apoptotic oncogene Bcl-2 (Cimmino et al., 2005).

Let-7a inhibits proliferation of BL cells through inhibition of the MYC oncogene

15
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(Mayr et al., 2007; Sampson et al., 2007). Oncogenic miRNAs may target tumor
suppressor genes, and enhanced expression of these oncogenic miRNAs may, as
such, result in reduced levels of tumor suppressor proteins. For example, miR-
21 is upregulated in most cancer types (Buscaglia and Li, 2011). Conditional
overexpression of miR-21 in mice resulted in formation of tumors with pre-B cell
malignant lymphoid-like phenotype that regressed completely when miR-21 was
inactivated (Medina et al., 2010). This indicates that miR-21 is a genuine
oncogene that plays a key role in tumor growth. Other oncogenic miRNAs
strongly associated with both B-cell functioning and B-cell lymphoma are miR-
155 and the miR-17~92 cluster (Hayashita et al., 2005; Kluiver et al., 2005;
Kluiver et al., 2006).

MiR-155

MiR-155 is processed from the transcript of a noncoding gene called B-cell
integration cluster (BIC) (Lagos-Quintana et al., 2002). Several studies have
shown that BIC and miR-155 play a crucial role in the immune response
(O'Connell et al., 2009; Rodriguez et al., 2007; Thai et al., 2007). BIC
expression levels are highly induced in B cells upon stimulation via the B cell
receptor (van den Berg et al., 2003). BIC and miR-155 are highly expressed in
normal tonsillar GC B cells indicating a role in B-cell maturation (Kluiver et al.,
2007). This was indeed demonstrated in BIC/miR-155-deficient mice (Rodriguez
et al., 2007; Thai et al., 2007). These mice showed reduced numbers of
germinal center B cells and diminished high-affinity IgG1 antibody production.
Also, in vitro activated miR-155-deficient T cells showed increased tendency to
differentiate into Th2-type cells (Rodriguez et al., 2007).

BIC/miR-155 was one of the first oncogenic miRNAs shown to be
associated with B-cell lymphoma. Elevated miR-155 levels were observed in
several B-cell lymphomas, such as HL, DLBCL and PMBL (Eis et al., 2005;
Kluiver et al., 2005). Further evidence for an oncogenic role for miR-155 came
from a study demonstrating that Ep-miR-155 transgenic mice developed
polyclonal pre-B-cell proliferations leading to B-cell malignancies at later stages
(Costinean et al., 2006). Myeloproliferative disorders were induced by

16
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overexpression of miR-155 in hematopoietic stem cells in a mouse model
(O'Connell et al., 2008). Recently, Babar et al. showed that induction of miR-155
caused disseminated lymphoma in mice, characterized by clonal and
transplantable neoplastic pre-B cells (Babar et al., 2012). Tumor cells were
shown to be addicted to miR-155, as miR-155 withdrawal lead to rapid tumor
regression due to increased apoptosis of the malignant cells. These studies
suggest that inhibition of miR-155 can be used as a therapeutic strategy for
miR-155-expressing lymphomas.

In contrast, to other GC B-cell-derived lymphomas, miR-155 is expressed
at very low levels in Burkitt lymphoma suggesting that miR-155 may also have a
tumor suppressive function (Kluiver et al., 2006). Consistent with this putative
tumor suppressor function, miR-155 has been shown to target activation-
induced cytidine deaminase (AID) (Dorsett et al., 2008). AID promotes
immunoglobulin gene diversification in normal B cells, but thereby enhances the
risk of chromosomal translocations involving the immunoglobulin loci (Dorsett et
al., 2007; Liu et al., 2008; Ramiro et al., 2004). Translocations involving the
MYC locus and one of the immunoglobulin gene loci are a hallmark of Burkitt
lymphoma (Taub et al., 1982). Thus, these data indicate that downregulation of
miR-155 may contribute to the initiation phase of Burkitt lymphoma by

enhancing the formation of MYC translocations.

The miR-17~92 cluster

The miR-17~92 cluster consists of 6 miRNAs that are processed from a single
primary transcript, CI30RF25 (Figure 3). This miRNA cluster has two paralogs,
i.e. the miR-106a~363 and miR-106b~25 clusters that share multiple seed
family members and also some identical miRNAs (Tanzer and Stadler, 2004).
C130RF25 is located in the 13931 region, which is often amplified in B-cell
lymphoma (Ota et al., 2004; Rinaldi et al., 2007). Mice deficient for miR-17~92
have a block in pro-B to pre-B-cell development, indicating an important role of

this miRNA cluster in B-cell development (Ventura et al., 2008). Overexpression

17
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FIGURE 3. Schematic representation of the miR-17~92 cluster. Each dominant
miRNA which is derived from the strand -3p or 5p is indicated in red.

of miR-17~92 in the Ep-MYC mouse B-cell lymphoma model resulted in
accelerated B-cell lymphoma development (He et al., 2005). More recently, miR-
19a and miR-19b have been identified as the key oncogenic components
necessary and sufficient for promoting MYC-induced lymphomagenesis by
repressing apoptosis (Mu et al., 2009; Olive et al., 2009). Several individual
members of this miRNA cluster play important roles in proliferation, tumor
angiogenesis and suppression of apoptosis (Dews et al., 2006; Hayashita et al.,
2005; Li et al., 2012; Matsumura et al., 2003).

SCOPE OF THE THESIS

Altered miRNA levels are observed in almost all types of cancer including B-cell
lymphoma. The aim of this thesis is to investigate possible causes of altered
miRNA levels and the specific consequences of altered miRNA-155 levels in B-
cell lymphoma.

MiRNA levels are regulated at the level of transcription of the primary
transcripts, miRNA processing and miRNA stability. In this thesis, we focus on
the regulation of miRNA processing and the consequences of altered miR-155
levels. In chapter 2, we present an overview of established mechanisms to
regulate miRNA processing. This chapter serves as an introduction to the
experimental work described in chapters 3 and 4. In chapter 3, we present our
results on processing of exonic miRNAs. It is still unclear whether exonic miRNAs
are processed from unspliced or spliced pri-miRNA transcripts. To study this, we

assessed the levels and cellular localization of unspliced and spliced pri-miRNA
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transcripts of miR-155, miR-146a and miR-22. In addition, we overexpressed
miR-155 using constructs containing pre-miR-155 and either exonic or intronic
5’ upstream flanking sequence to determine if these upstream sequences
affected the processing efficiency to miR-155. In chapter 4, we describe our
study on processing of the miR-17~92 cluster. We assessed levels of the
primary miR-17~92 transcript and the six mature miRNAs in normal B cells, 117
non-Hodgkin lymphoma (NHL) cases and in 21 NHL cell lines. We assessed the
correlation between the levels of primary miR-17~92 transcripts with each of
the six mature miRNAs in each NHL subtype. We also compared the levels of the
individual miR-17~92 cluster members in NHL to the levels in their normal B-cell
counterparts to identify which miRNAs are induced in NHL.

To determine the consequences of altered miRNA expression levels, it is
crucial to effectively inhibit miRNAs. In chapter 5, we describe a straight-
forward method to inhibit miRNAs using miRNA sponges. We showed how to
generate retroviral miRNA sponges with variable numbers of miRNA binding
sites. We confirmed their effectiveness and showed applications for loss-of-
function studies. In chapter 6, we describe the consequence of altered miR-155
expression in B-cell lymphoma. To this end, we overexpressed miR-155 in
Burkitt lymphoma cells with very low endogenous levels and determined the
effect of miR-155 induction on cell growth. We next identified genes that are
targeted by miR-155 using Ago2-RIP-Chip. We validated six selected genes by
luciferase reporter assay and assessed whether their inhibition by shRNAs could
phenocopy the effect of miR-155 induction on the growth of Burkitt lymphoma
cells. We used a miR-155 sponge to determine whether the six selected targets
are also regulated by endogenous miR-155 in Hodgkin lymphoma cells with high
endogenous miR-155 level. Finally, in chapter 7, we summarize and discuss

results presented in this thesis and discuss possible future perspectives.

19

CHAPTER 1



Introduction & Scope of the thesis

REFERENCES

Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J.,
Tuschl, T. and Margalit, H. 2005. Clustering and conservation patterns of human
microRNAs. Nucleic Acids Res. 33: 2697-2706.

Babar, I.A., Cheng, C.J., Booth, C.]J., Liang, X., Weidhaas, J.B., Saltzman, W.M. and Slack,
F.J. 2012. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent
mouse model of lymphoma. Proc. Natl. Acad. Sci. U. S. A. 109: E1695-704.

Baron, B.W., Nucifora, G., McCabe, N., Espinosa, R.,3rd, Le Beau, M.M. and McKeithan,
T.W. 1993. Identification of the gene associated with the recurring chromosomal
translocations t(3;14)(gq27;q932) and t(3;22)(g27;g911) in B-cell lymphomas. Proc. Natl.
Acad. Sci. U. S. A. 90: 5262-5266.

Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:
281-297.

Bartel, D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215-
233.

Bohnsack, M.T., Czaplinski, K. and Gorlich, D. 2004. Exportin 5 is a RanGTP-dependent
dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10: 185-191.

Borchert, G.M., Lanier, W. and Davidson, B.L. 2006. RNA polymerase III transcribes
human microRNAs. Nat. Struct. Mol. Biol. 13: 1097-1101.

Buscaglia, L.E. and Li, Y. 2011. Apoptosis and the target genes of microRNA-21. Chin. J.
Cancer. 30: 371-380.

Cai, X., Hagedorn, C.H. and Cullen, B.R. 2004. Human microRNAs are processed from
capped, polyadenylated transcripts that can also function as mRNAs. RNA 10: 1957-1966.

Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan,
S., Keating, M., Rai, K. et al. 2002. Frequent deletions and down-regulation of micro- RNA
genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci.
U. S. A. 99: 15524-15529.

Calin, G.A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S.E., Iorio, M.V.,
Visone, R., Sever, N.I., Fabbri, M. et al. 2005. A MicroRNA signature associated with
prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353: 1793-
1801.

Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu,
M., Rattan, S., Bullrich, F., Negrini, M. et al. 2004. Human microRNA genes are frequently
located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. U. S.
A. 101: 2999-3004.

20



Introduction & Scope of the thesis

Chi, S.W., Zang, J].B., Mele, A. and Darnell, R.B. 2009. Argonaute HITS-CLIP decodes
microRNA-mRNA interaction maps. Nature 460: 479-486.

Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E.,
Ageilan, R.I., Zupo, S., Dono, M. et al. 2005. miR-15 and miR-16 induce apoptosis by
targeting BCL2. Proc. Natl. Acad. Sci. U. S. A. 102: 13944-13949.

Costinean, S., Zanesi, N., Pekarsky, Y., Tili, E., Volinia, S., Heerema, N. and Croce, C.M.
2006. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-
miR155 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 103: 7024-7029.

Dalla-Favera, R., Martinotti, S., Gallo, R.C., Erikson, J. and Croce, C.M. 1983.
Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated
B-cell lymphomas. Science 219: 963-967.

Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. and Hannon, G.]. 2004. Processing of
primary microRNAs by the Microprocessor complex. Nature 432: 231-235.

Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., Furth, E.E., Lee,
W.M., Enders, G.H., Mendell, J.T. et al. 2006. Augmentation of tumor angiogenesis by a
Myc-activated microRNA cluster. Nat. Genet. 38: 1060-1065.

Doench, J.G. and Sharp, P.A. 2004. Specificity of microRNA target selection in translational
repression. Genes Dev. 18: 504-511.

Dorsett, Y., McBride, K.M., Jankovic, M., Gazumyan, A., Thai, T.H., Robbiani, D.F., Di
Virgilio, M., Reina San-Martin, B., Heidkamp, G., Schwickert, T.A. et al. 2008. MicroRNA-
155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation.
Immunity 28: 630-638.

Dorsett, Y., Robbiani, D.F., Jankovic, M., Reina-San-Martin, B., Eisenreich, T.R. and
Nussenzweig, M.C. 2007. A role for AID in chromosome translocations between c-myc and
the IgH variable region. J. Exp. Med. 204: 2225-2232.

Eis, P.S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M.F., Lund, E. and Dahlberg, J.E.
2005. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl.
Acad. Sci. U. S. A. 102: 3627-3632.

Eulalio, A., Huntzinger, E. and Izaurralde, E. 2008. Getting to the root of miRNA-mediated
gene silencing. Cell 132: 9-14.

Filipowicz, W., Bhattacharyya, S.N. and Sonenberg, N. 2008. Mechanisms of post-
transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9:
102-114.

Gregory, R.I., Chendrimada, T.P., Cooch, N. and Shiekhattar, R. 2005. Human RISC
couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123: 631-640.

21

CHAPTER 1



Introduction & Scope of the thesis

Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N. and
Shiekhattar, R. 2004. The Microprocessor complex mediates the genesis of microRNAs.
Nature 432: 235-240.

Grishok, A., Pasquinelli, A.E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D.L., Fire, A.,
Ruvkun, G. and Mello, C.C. 2001. Genes and mechanisms related to RNA interference
regulate expression of the small temporal RNAs that control C. elegans developmental
timing. Cell 106: 23-34.

Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H. and Kim, V.N. 2004. The Drosha-DGCRS8
complex in primary microRNA processing. Genes Dev. 18: 3016-3027.

Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang,
B.T. and Kim, V.N. 2006. Molecular basis for the recognition of primary microRNAs by the
Drosha-DGCR8 complex. Cell 125: 887-901.

Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe,
Y., Kawahara, K., Sekido, Y. and Takahashi, T. 2005. A polycistronic microRNA cluster,
miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation.
Cancer Res. 65: 9628-9632.

He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers,
S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J. et al. 2005. A microRNA polycistron as a
potential human oncogene. Nature 435: 828-833.

Hertel, J., Lindemeyer, M., Missal, K., Fried, C., Tanzer, A., Flamm, C., Hofacker, I.L.,
Stadler, P.F. and Students of Bioinformatics Computer Labs 2004 and 2005. 2006. The
expansion of the metazoan microRNA repertoire. BMC Genomics 7: 25.

Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T. and Zamore, P.D.
2001. A cellular function for the RNA-interference enzyme Dicer in the maturation of the
let-7 small temporal RNA. Science 293: 834-838.

Hutvagner, G. and Zamore, P.D. 2002. A microRNA in a multiple-turnover RNAi enzyme
complex. Science 297: 2056-2060.

Ibanez-Ventoso, C., Vora, M. and Driscoll, M. 2008. Sequence relationships among C.
elegans, D. melanogaster and human microRNAs highlight the extensive conservation of
microRNAs in biology. PLoS One 3: e2818.

Khvorova, A., Reynolds, A. and Jayasena, S.D. 2003. Functional siRNAs and miRNAs
exhibit strand bias. Cell 115: 209-216.

Kim, V.N. and Nam, J.W. 2006. Genomics of microRNA. Trends Genet. 22: 165-173.

Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., Ambesi-Impiombato, A.,
Califano, A., Migliazza, A., Bhagat, G. et al. 2010. The DLEU2/miR-15a/16-1 cluster

22



Introduction & Scope of the thesis

controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer.
Cell. 17: 28-40.

Kluiver, J., Haralambieva, E., de Jong, D., Blokzijl, T., Jacobs, S., Kroesen, B.]., Poppema,
S. and van den Berg, A. 2006. Lack of BIC and microRNA miR-155 expression in primary
cases of Burkitt lymphoma. Genes Chromosomes Cancer 45: 147-153.

Kluiver, J., Poppema, S., de Jong, D., Blokzijl, T., Harms, G., Jacobs, S., Kroesen, B.]. and
van den Berg, A. 2005. BIC and miR-155 are highly expressed in Hodgkin, primary
mediastinal and diffuse large B cell lymphomas. J. Pathol. 207: 243-249.

Kluiver, J., van den Berg, A., de Jong, D., Blokzijl, T., Harms, G., Bouwman, E., Jacobs, S.,
Poppema, S. and Kroesen, B.]J. 2007. Regulation of pri-microRNA BIC transcription and
processing in Burkitt lymphoma. Oncogene 26: 3769-3776.

Kozomara, A. and Griffiths-Jones, S. 2011. miRBase: integrating microRNA annotation and
deep-sequencing data. Nucleic Acids Res. 39: D152-7.

Kuppers, R. 2005. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer. 5:
251-262.

Kuppers, R., Klein, U., Hansmann, M.L. and Rajewsky, K. 1999. Cellular origin of human
B-cell lymphomas. N. Engl. J. Med. 341: 1520-1529.

Kuppers, R., Zhao, M., Hansmann, M.L. and Rajewsky, K. 1993. Tracing B cell
development in human germinal centres by molecular analysis of single cells picked from
histological sections. EMBO J. 12: 4955-4967.

Ladanyi, M., Offit, K., Jhanwar, S.C., Filippa, D.A. and Chaganti, R.S. 1991. MYC
rearrangement and translocations involving band 8g24 in diffuse large cell lymphomas.
Blood 77: 1057-1063.

Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W. and Tuschl, T. 2002.
Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12: 735-739.

Landthaler, M., Yalcin, A. and Tuschl, T. 2004. The human DiGeorge syndrome critical
region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr.
Biol. 14: 2162-2167.

Lee, R.C., Feinbaum, R.L. and Ambros, V. 1993. The C. elegans heterochronic gene lin-4
encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854.

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim,
S. et al. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425:
415-4109.

Lee, Y., Jeon, K., Lee, J.T., Kim, S. and Kim, V.N. 2002. MicroRNA maturation: stepwise
processing and subcellular localization. EMBO J. 21: 4663-4670.

23

CHAPTER 1



Introduction & Scope of the thesis

Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. 2004. MicroRNA
genes are transcribed by RNA polymerase 1I. EMBO J. 23: 4051-4060.

Lewis, B.P., Burge, C.B. and Bartel, D.P. 2005. Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-
20.

Li, Y., Vecchiarelli-Federico, L.M., Li, Y.J., Egan, S.E., Spaner, D., Hough, M.R. and Ben-
David, Y. 2012. The miR-17-92 cluster expands multipotent hematopoietic progenitors
whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in
mice. Blood 119: 4486-4498.

Liu, M., Duke, J.L., Richter, D.]J., Vinuesa, C.G., Goodnow, C.C., Kleinstein, S.H. and
Schatz, D.G. 2008. Two levels of protection for the B cell genome during somatic
hypermutation. Nature 451: 841-845.

Liu, Y.J., Arpin, C., de Bouteiller, O., Guret, C., Banchereau, J., Martinez-Valdez, H. and
Lebecque, S. 1996. Sequential triggering of apoptosis, somatic mutation and isotype
switch during germinal center development. Semin. Immunol. 8: 169-177.

Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A.,
Ebert, B.L., Mak, R.H., Ferrando, A.A. et al. 2005. MicroRNA expression profiles classify
human cancers. Nature 435: 834-838.

Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. and Kutay, U. 2004. Nuclear export of
microRNA precursors. Science 303: 95-98.

MacLennan, I.C. 1994. Germinal centers. Annu. Rev. Immunol. 12: 117-139.

Matsumura, I., Tanaka, H. and Kanakura, Y. 2003. E2F1 and c-Myc in cell growth and
death. Cell. Cycle 2: 333-338.

Mayr, C., Hemann, M.T. and Bartel, D.P. 2007. Disrupting the pairing between let-7 and
Hmga2 enhances oncogenic transformation. Science 315: 1576-1579.

Medina, P.P., Nolde, M. and Slack, F.]J. 2010. OncomiR addiction in an in vivo model of
microRNA-21-induced pre-B-cell lymphoma. Nature 467: 86-90.

Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J.,
Mann, M. and Dreyfuss, G. 2002. miRNPs: a novel class of ribonucleoproteins containing
numerous microRNAs. Genes Dev. 16: 720-728.

Mu, P., Han, Y.C., Betel, D., Yao, E., Squatrito, M., Ogrodowski, P., de Stanchina, E.,
D'Andrea, A., Sander, C. and Ventura, A. 2009. Genetic dissection of the miR-17~92
cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 23: 2806-2811.

O'Connell, R.M., Chaudhuri, A.A., Rao, D.S. and Baltimore, D. 2009. Inositol phosphatase
SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. U. S. A. 106: 7113-7118.

24



Introduction & Scope of the thesis

O'Connell, R.M., Rao, D.S., Chaudhuri, A.A., Boldin, M.P., Taganov, K.D., Nicoll, J.,
Paquette, R.L. and Baltimore, D. 2008. Sustained expression of microRNA-155 in
hematopoietic stem cells causes a myeloproliferative disorder. J. Exp. Med. 205: 585-594.

Olive, V., Bennett, M.J., Walker, J.C., Ma, C., Jiang, 1., Cordon-Cardo, C., Li, Q.]., Lowe,
S.W., Hannon, G.J. and He, L. 2009. miR-19 is a key oncogenic component of mir-17-92.
Genes Dev. 23: 2839-2849.

Ota, A., Tagawa, H., Karnan, S., Tsuzuki, S., Karpas, A., Kira, S., Yoshida, Y. and Seto, M.
2004. Identification and characterization of a novel gene, C130rf25, as a target for 13q31-
g32 amplification in malignant lymphoma. Cancer Res. 64: 3087-3095.

Pillai, R.S., Bhattacharyya, S.N. and Filipowicz, W. 2007. Repression of protein synthesis
by miRNAs: how many mechanisms? Trends Cell Biol. 17: 118-126.

Ramiro, A.R., Jankovic, M., Eisenreich, T., Difilippantonio, S., Chen-Kiang, S., Muramatsu,
M., Honjo, T., Nussenzweig, A. and Nussenzweig, M.C. 2004. AID is required for c-
myc/IgH chromosome translocations in vivo. Cell 118: 431-438.

Reinhart, B.J., Slack, F.]., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E.,
Horvitz, H.R. and Ruvkun, G. 2000. The 21-nucleotide let-7 RNA regulates developmental
timing in Caenorhabditis elegans. Nature 403: 901-906.

Rinaldi, A., Poretti, G., Kwee, I., Zucca, E., Catapano, C.V., Tibiletti, M.G. and Bertoni, F.
2007. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in
human mantle cell ymphoma. Leuk. Lymphoma 48: 410-412.

Rodriguez, A., Vigorito, E., Clare, S., Warren, M.V., Couttet, P., Soond, D.R., van Dongen,
S., Grocock, R.J., Das, P.P., Miska, E.A. et al. 2007. Requirement of bic/microRNA-155 for
normal immune function. Science 316: 608-611.

Sampson, V.B., Rong, N.H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., Petrelli, N.]J.,
Dunn, S.P. and Krueger, L.J. 2007. MicroRNA let-7a down-regulates MYC and reverts MYC-
induced growth in Burkitt lymphoma cells. Cancer Res. 67: 9762-9770.

Sander, S., Calado, D.P., Srinivasan, L., Kochert, K., Zhang, B., Rosolowski, M., Rodig,
S.J., Holzmann, K., Stilgenbauer, S., Siebert, R. et al. 2012. Synergy between PI3K
Signaling and MYC in Burkitt Lymphomagenesis. Cancer. Cell. 22: 167-179.

Sassen, S., Miska, E.A. and Caldas, C. 2008. MicroRNA: implications for cancer. Virchows
Arch. 452: 1-10.

Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. and Zamore, P.D. 2003.
Asymmetry in the assembly of the RNAi enzyme complex. Cell 115: 199-208.

Tanzer, A. and Stadler, P.F. 2004. Molecular evolution of a microRNA cluster. J. Mol. Biol.
339: 327-335.

25

CHAPTER 1



Introduction & Scope of the thesis

Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aaronson, S. and Leder,
P. 1982. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in
human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl. Acad. Sci. U. S. A.
79: 7837-7841.

Thai, T.H., Calado, D.P., Casola, S., Ansel, K.M., Xiao, C., Xue, Y., Murphy, A., Frendewey,
D., Valenzuela, D., Kutok, J.L. et al. 2007. Regulation of the germinal center response by
microRNA-155. Science 316: 604-608.

van den Berg, A., Kroesen, B.]., Kooistra, K., de Jong, D., Briggs, J., Blokzijl, T., Jacobs,
S., Kluiver, J., Diepstra, A., Maggio, E. et al. 2003. High expression of B-cell receptor
inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37:
20-28.

Ventura, A., Young, A.G., Winslow, M.M., Lintault, L., Meissner, A., Erkeland, S.J.,
Newman, J., Bronson, R.T., Crowley, D., Stone, J.R. et al. 2008. Targeted deletion reveals
essential and overlapping functions of the miR-17 through 92 family of miRNA clusters.
Cell 132: 875-886.

Ye, B.H., Rao, P.H., Chaganti, R.S. and Dalla-Favera, R. 1993. Cloning of bcl-6, the locus
involved in chromosome translocations affecting band 3927 in B-cell lymphoma. Cancer
Res. 53: 2732-2735.

Yi, R., Qin, Y., Macara, I.G. and Cullen, B.R. 2003. Exportin-5 mediates the nuclear export
of pre-microRNAs and short hairpin RNAs. Genes Dev. 17: 3011-3016.

Zeng, Y. and Cullen, B.R. 2005. Efficient processing of primary microRNA hairpins by
Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem. 280: 27595-27603.

26



CHAPTER 2

MicroRNAs, macrocontrol:
Regulation of miRNA processing

Izabella Slezak-Prochazka, Selvi Durmus,
Bart-Jan Kroesen and Anke van den Berg

RNA. 2010 Jun;16(6):1087-95



MicroRNAs, macrocontrol: Regulation of miRNA processing

ABSTRACT

MicroRNAs (miRNAs) are a set of small, non-protein-coding RNAs that regulate
gene expression at the post-transcriptional level. Maturation of miRNAs
comprises several regulated steps resulting in ~22-nucleotide single-stranded
mature miRNAs. Regulation of miRNA expression can occur both at the
transcriptional level and at the post-transcriptional level during miRNA
processing. Recent studies have elucidated specific aspects of the well-regulated
nature of miRNA processing involving various regulatory proteins, editing of
miRNA transcripts, and cellular location. In addition, single nucleotide
polymorphisms in miRNA genes can also affect the processing efficiency of
primary miRNA transcripts. In this review we present an overview of the
currently known regulatory pathways of miRNA processing and provide a basis
to understand how aberrant miRNA processing may arise and may be involved in
pathophysiological conditions such as cancer.
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INTRODUCTION

MicroRNAs (miRNAs) are small (22-nucleotide [nt]) noncoding RNA molecules
that are single-stranded in the functional form (Bartel 2004). Unlike their small
size, they play an important role in the regulation of gene expression at the
post-transcriptional level. After their discovery in Caenorhabditis elegans (Lee et
al. 1993; Wightman et al. 1993), there have been a large number of studies
identifying miRNAs in animals, plants, and viruses. Their importance was
confirmed in several cellular processes like development, cell fate determination,
proliferation, and apoptosis. Moreover, altered miRNA expression profiles have
been demonstrated in a large number of pathological conditions, such as cancer,
suggesting that miRNAs are involved in disordered cellular function, such as
malignant transformation.

MiRNAs are located within introns and exons of protein coding genes or in
intergenic regions (Kim and Nam 2006). They are transcribed as long primary
miRNA (pri-miRNA) transcripts containing one or more hairpin structures. Each
hairpin structure consists of a double-stranded stem and a terminal loop. In the
nucleus, the primary miRNA is cleaved by the Microprocessor complex, which
consists of Drosha and DGCR8 (Lee et al. 2003; Denli et al. 2004; Gregory et al.
2004; Han et al. 2004; Landthaler et al. 2004). This cleavage step results in an
~65-nt precursor miRNA (pre-miRNA), which is exported from the nucleus to the
cytoplasm in association with Exportin-5 and RanGTP (Yi et al. 2003; Bohnsack
et al. 2004; Lund et al. 2004) and cleaved by Dicer to an ~22-nt miRNA duplex
(Grishok et al. 2001; Hutvagner et al. 2001). One of the two strands is
assembled into the RNA-induced silencing complex (RISC) together with one of
the Argonaute (Ago) proteins. RISC can bind to the 3’-untranslated region (UTR)
of the target mRNA based on a partial miRNA-mRNA complementarity. This
binding causes a translational inhibition and/or degradation of the target mRNA
(Eulalio et al. 2008; Filipowicz et al. 2008). However, not all miRNAs are
processed by this so-called canonical biogenesis pathway. Alternatively, miRNAs
can be generated from short intronic hairpins called mirtrons that are spliced
and debranched to mimic pre-miRNA (Okamura et al. 2007; Ruby et al. 2007).
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Mirtrons bypass cleavage by Drosha, but nuclear export and further processing
are common with the canonical miRNA processing pathway (Okamura et al.
2007; Ruby et al. 2007).

Biogenesis of miRNAs is tightly regulated resulting in characteristic miRNA
expression patterns for different organisms, tissues, cell types, and
developmental stages. It is known that transcription of miRNA genes can be
regulated by epigenetic factors (Scott et al. 2006; Lehmann et al. 2007;
Lujambio et al. 2007) or transcription factors (Xi et al. 2006; He et al. 2007;
mature miRNA expression levels clearly indicate that the level of mature miRNAs
can also be regulated at the level of miRNA processing. This review focuses on
the mechanisms and factors that regulate miRNA processing, for example,

regulatory proteins, cellular localization, and genetic variation.

MECHANISMS FOR REGULATING MICRORNA PROCESSING

Processing of miRNAs can be regulated at multiple steps and leads to either
elevated or decreased miRNA levels. Altered miRNA levels may be caused by
regulatory proteins that influence miRNA processing, acquired variations in the
miRNA transcript, and by changes in the nuclear export efficiency. In addition to
these regulatory mechanisms, single nucleotide polymorphisms (SNPs) can also

have a pronounced effect on the efficiency of the miRNA processing machinery.

Regulatory proteins

Recently, a number of proteins that regulate miRNA processing have been
described as key elements in defining the unique expression patterns of miRNAs
in different cell types, tissues, or in pathological conditions. These proteins can
be subdivided into three groups, i.e., Drosha binding/associated proteins, Dicer
binding proteins, and proteins that bind to the terminal loop of the pri- and/or

pre-miRNAs.
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Drosha binding/associated proteins

The Microprocessor complex consisting of Drosha and DGCRS8 is sufficient to
process pri-miRNA to pre-miRNA (Fig. 1A). However, Drosha was shown to be a
component of a larger complex containing DEAD-box RNA helicases p68 (DDX5),
p72 (DDX17), nuclear factor (NF) 90, and NF45 (Gregory et al. 2004). The
p68/p72 and NF90/NF45 complexes have been shown to alter the miRNA
processing efficiency for specific miRNAs (Fukuda et al. 2007; Davis et al. 2008;
Sakamoto et al. 2009; Suzuki et al. 2009; Yamagata et al. 2009). Specifically, it
has been shown that endogenous p68/p72 facilitate Drosha processing of a
subset of pri-miRNAs based on reduced mature miRNA levels in both p72- and
p68-helicase-deficient mouse embryos (Fukuda et al. 2007). Several studies
showed that interaction of p68/p72 with other proteins also alters processing of
specific primary miRNAs. Interaction of p68 with SMAD facilitates the processing
of pri-miR-21 (Fig. 1B; Davis et al. 2008). The interaction of p68 with SMAD was
induced by transforming growth factor B (TGF-B) and bone morphogenetic
proteins (BMPs). Similarly, wild-type p53 has been shown to associate with p68
and enhance processing of several primary miRNAs by Drosha, including pri-
miRNA of miR-16-1, miR-143, and miR-145, in response to DNA damage (Fig.
1C; Suzuki et al. 2009). Moreover, wild-type p53 positively regulates Drosha-
mediated processing by promoting recruitment of Drosha complex to the target
pri-miRNAs, whereas mutant p53 hinders assembly of the Drosha complex
(Suzuki et al. 2009). Drosha-mediated processing can be inhibited by p68/p72-
dependent mechanisms upon stimulation of estrogen receptor alpha (ERa) (Fig.
1D; Yamagata et al. 2009). This mechanism caused obstructed processing of a
set of pri-miRNAs including miR-16, miR-125a, miR-143, miR-145, and miR-195
(Yamagata et al. 2009). Together these studies show that the p68/p72 complex
is an important mediator of miRNA processing regulation and can direct Drosha
toward either reduced or enhanced processing of specific miRNAs. The result of
the interaction between Drosha, p68, and the target pri-miRNA depends on
proteins interacting with p68 like SMAD, p53, or ERa. This indicates that the
p68/p72-dependent mechanism is sensitive to cellular context.
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FIGURE 1. MicroRNA processing regulation by Drosha binding or Drosha-
associated proteins. (A) Primary miRNA transcript (Pri-miRNA) is processed by
Drosha/DGCR8 complex to precursor miRNA (Pre-miRNA). (B) SMAD associates with pri-
miR-21, p68, and Drosha/DGCR8 complex to enhance pri-miR-21 processing. (C)
Association of p53 with pri-miR-16-1 and pri-miR-143, p68, and Drosha/DGCR8 enhances
pri-miR-16-1 and pri-miR-143 processing. (D) p68/p72 complex mediates inhibition of pri-
miR-16, pri-miR-125a, pri-miR-143, pri-miR-145, and pri-miR-195 upon stimulation of
estrogen receptor a (ERa) by estradiol (E2). (E) Nuclear factor (NF) 90/45 complex inhibits
Drosha/DGCR8 processing by binding to stem/loop fragment of pri-miR-21, pri-miR-
15~16-1, and pri-let-7a-1.

Two other members of the large Drosha-containing complex identified by
Gregory et al. (2004), i.e., NF90 and NF45, were also shown to be involved in
the regulation of miRNA processing (Fig. 1E). However, the interaction between
Drosha and NF90/NF45 has not been confirmed for the endogenous Drosha-
DGCR8 complex (Sakamoto et al. 2009). Nevertheless, overexpression of
NF90/NF45 in 293T cells caused accumulation of pri-let-7a-1, pri-miR-21, and
pri-miR-15a~16-1, without affecting the mature miRNA levels (Sakamoto et al.
2009). This suggests that the decreased processing efficiency induced by
NF90/NF45 was compensated by other factors. Depletion of NF90 resulted in
decreased pri-let-7a-1 levels and increased mature let-7a levels (Sakamoto et
al. 2009). The higher binding affinity of NFOO/NF45 to pri-let-7a-1, as compared
to DGCRS in vitro, suggested that the reduced miRNA processing efficiency was
caused by reducing the accessibility for Drosha-DGCR8 (Sakamoto et al. 2009).

Current literature shows that regulatory proteins are a dominant factor in
the regulation of Drosha-mediated pri-miRNA processing. Moreover, various
signaling pathways enhance or reduce the efficiency of this step. It is likely that

more Drosha-associated proteins regulate miRNA processing, and, as such, the
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balance between positive and negative regulators may determine the efficiency

of miRNA processing.

Dicer binding proteins

Dicer interacts with Tar RNA binding protein (TRBP) and protein activator of PKR
(PACT) and one of the Ago (1-4) proteins, mainly Ago2 (Chendrimada et al.
2005; Haase et al. 2005; Lee et al. 2006). TRBP and PACT facilitate RISC
assembly, and they are not essential for miRNA processing (Haase et al. 2005;
Lee et al. 2006). However, phosphorylated TRBP stabilized the Dicer-containing
complex (Paroo et al. 2009). Expression of phospho-mimic TRBP resulted in
increased levels of growth-promoting miRNAs like miR-17, miR-20a, and miR-92
and decreased the level of the growth-inhibitory miRNA let-7a (Paroo et al.
2009). However, let-7a level is affected indirectly via a mechanism that may
involve other proteins like Lin28 (Paroo et al. 2009). TRBP phosphorylation was
mediated by the mitogen-activated protein kinase (MAPK) signaling pathway.
Therefore, alteration of miRNA processing by ERK may result in a pro-growth
phenotype.

Ago proteins are important for proper miRNA function. However, they can
also influence miRNA expression. Ectopically expressed Ago proteins (Agol-4)
enhanced expression of some miRNAs including miR-215, miR-17-5p, miR-23b,
and miR-92 (Diederichs and Haber 2007). Additionally, Ago2, which has intrinsic
endonuclease activity in mammals (Song et al. 2004), induced cleavage of pre-
miRNAs leading to an alternative processing intermediate with cleaved arms of
the hairpin (Diederichs and Haber 2007). This intermediate did not change
processing to mature miRNA, but may facilitate miRNA duplex dissociation and
formation of RISC complex. Dicer-associated proteins, especially TRBP, clearly
play a role in the regulation of miRNA processing. However, the mechanisms and

specificity of this regulation remain unknown.

Terminal loop binding proteins

Processing of primary and precursor miRNAs (Fig. 2A) can be regulated by
terminal loop binding proteins resulting in either reduced or enhanced
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processing efficiency. Members of the let-7 family were shown to be post-
transcriptionally regulated during differentiation of human embryonic stem cells
(Suh et al. 2004), development of mice (Thomson et al. 2006), and neural
differentiation of embryocarcinoma cells (Wulczyn et al. 2007). In all cases,
Lin28, the developmentally regulated RNA binding protein, was shown to inhibit
pri-let-7 processing (Fig. 2B; Newman et al. 2008; Piskounova et al. 2008;
Rybak et al. 2008; Viswanathan et al. 2008). Lin28 interacted with the terminal
loop region via a conserved sequence, inhibiting processing of pri- and pre-
miRNA (Newman et al. 2008; Piskounova et al. 2008; Rybak et al. 2008;
Viswanathan et al. 2008). Suppression of let-7 in neural stem cells led to
upregulation of Lin28 and failure of pre-let-7 processing (Rybak et al. 2008).
These results suggest a feedback loop between let-7 and Lin28. Lin28 causes
terminal uridylation of pre-let-7 in the cytoplasm (Heo et al. 2008) leading to
inhibition of Dicer processing and inducing guidance of pre-let-7 to a
degradation pathway (Fig. 2B). A terminal uridylyl transferase 4 (TUTase 4,
TUT4) has been shown to be responsible for the pre-let-7 uridylation (Hagan et
al. 2009; Heo et al. 2009; Lehrbach et al. 2009). Binding of TUT4 to pre-let-7 is
dependent on the presence of Lin28, confirming that Lin28 is necessary for
recruiting TUT4.

The RNA binding protein heterogeneous nuclear ribonucleoprotein Al
(hnRNP A1) has been reported to facilitate processing of miR-18a, a member of
the miR17~92 cluster (Fig. 2C; Guil and Caceres 2007). Knockdown of hnRNP
Al resulted in inhibition of pri- to pre-miR-18a processing, but did not affect
other members of this cluster. This might in part explain variations in levels of
the individual mature miRNA members of this cluster (Yu et al. 2006; Lu et al.
2007; Mendell 2008). hnRNP A1l binds to both the terminal loop and a region in
the stem of pri-miR-18a (Michlewski et al. 2008), causing relaxation of the stem
and facilitating Drosha/DGCR8 processing. The possible effect of hnRNP Al
binding on the Dicer processing step has not been investigated for miR-18a.
hnRNP Al also binds to the terminal loops of pri-let-7a-1 and pri-miR-101-1,
indicating that this protein might also regulate processing of other pri-miRNAs.
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This is consistent with the more general RNA binding properties of hnRNP Al
(Mayeda and Krainer 1992; Martinez-Contreras et al. 2006).

Another RNA binding protein proven to be involved in miRNA processing is
the KH-type splicing regulatory protein (KSRP). KSRP is known as a key
mediator of AU-rich element (ARE)-directed mRNA decay that facilitates
recruitment of the degradation machinery to ARE-containing mRNAs (Gherzi et
al. 2004; Garcia-Mayoral et al. 2007). KSRP was shown to be a component of
both Drosha and Dicer complexes and promoted biogenesis of a cohort of
miRNAs including let-7a, miR-21, and miR-16 (Fig. 2D; Trabucchi et al. 2009).
KSRP binds to the terminal loop of its target primary and/or precursor miRNAs
and induces processing by Drosha and Dicer complexes through protein—protein

interactions (Trabucchi et al. 2009). Moreover, KSRP mediates induction of miR-
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FIGURE 2. MicroRNA processing regulation by terminal loop binding proteins. (A)
Primary miRNA transcript (pri-miRNA) is processed by Drosha/DGCR8 complex to
precursor miRNA (pre-miRNA) and by Dicer to mature miRNA. Stem and terminal loop (TL)
regions are assigned within pri-miRNA. (B) Lin28 protein binds to the terminal loop of pri-
and pre-miRNAs from the let-7 family and impairs processing by reducing Drosha and
Dicer cleavage and causing uridylation of pre-miR by terminal uridylyl transferase 4
(TUT4) leading to degradation of pre-miR by an unidentified nuclease. (C) Heterogeneous
nuclear ribonucleoprotein (hnRNP) A1l binds to the terminal loop and stem of pri-miR-18a
and facilitates its processing by Drosha. (D) KH-type splicing regulatory protein (KSRP)
binds to the terminal loop of a set of pri- and pre-miRNAs including let-7a, miR-20, miR-
26b, miR-106a, miR-21, miR-16, and enhances both Drosha/DGCR8 and Dicer processing.

35

CHAPTER 2



MicroRNAs, macrocontrol: Regulation of miRNA processing

155 processing in murine macrophages upon LPS stimulation that is also
achieved by binding to the terminal loop (Ruggiero et al. 2009).

Conservation of terminal loop sequences across vertebrate species can be
found in ~14% (74 out of 533) of the miRNAs indicating that the loops of these
miRNAs are functionally important (Michlewski et al. 2008). To analyze the
relevance of these conserved terminal loop sequences, Michlewski et al. (2008)
showed that oligonucleotides complementary to the sequence of conserved
terminal loops abolished the in vitro processing of pri-miR-18a, pri-miR-31, pri-
miR-101-1, pri-miR-379, and pri-let-7a-1. Pri-miRNAs without conserved loops
(pri-miR-16-1, pri-miR-27a) were not affected by antisense loop oligo’s
(Michlewski et al. 2008).

These studies clearly demonstrate that terminal loop binding proteins play
an important role in the regulation of miRNA processing. Therefore, it is highly
likely that other RNA binding proteins may also be involved in the regulation of

processing of individual miRNAs.

Cellular location

Exportin-5 mediates the nuclear export of pre-miRNAs to the cytoplasm and
protects pre-miRNAs from digestion (Bohnsack et al. 2004; Lund et al. 2004).
The length of the double-stranded stem and presence of 3’ overhangs but not
the sequence or the loop structure are important for proper recognition of pre-
miRNAs by Exportin-5 (Lund et al. 2004; Zeng and Cullen 2004).

A blockade in the transport of pre-miRNAs from nucleus to cytoplasm was
suggested to explain the high levels of precursor and lack of mature miR-128a,
miR-105, and miR-31 in some cancer cell lines. This was supported by the
predominant nuclear localization of primary/precursors detected by in situ RT-
PCR (Lee et al. 2008). A debatable example for premature nuclear export is BIC
(pri-miR-155) (van den Berg et al. 2003; Eis et al. 2005; Kluiver et al. 2005).
RNA in situ hybridization (ISH) using a probe complementary to the 3’ part of
exon 3 revealed a strong nuclear staining in various lymphoma subtypes and in
normal B-cells. This exon contains the stem-loop region of miR-155, indicating
an appropriate location. Eis at al. (2005) showed a cytoplasmic location of
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spliced BIC transcripts and a nuclear location of the unspliced BIC transcript in
two lymphoma cell lines by RT-PCR of RNA isolated from purified nuclear and
cytoplasmic fractions. These data might indicate that the unspliced BIC
transcript serves as a source for miR-155. However, this does not explain the
specific nuclear localization for BIC using RNA-ISH. Since both cell lines tested
by Eis at al. (2005) showed a high level of miR-155, it remains unclear if
premature export of spliced BIC transcripts explains the low miR-155 levels
observed in Burkitt lymphoma cell lines after induction of BIC (Kluiver et al.
2007). Based on current literature, the importance of nuclear export in miRNA

processing regulation remains uncertain.

Sequence alterations in DNA/RNA

Alteration of miRNA processing can be caused not only by changes in the
processing machinery, but also due to sequence alterations in the miRNA genes
or RNA transcripts. In 15% of patients with chronic lymphocytic leukemia (CLL),
but not in healthy controls, mutations were found in five of 42 analyzed miRNA
genes (Calin et al. 2005). Moreover, a germline mutation located in the miR-
15a~16-1 genomic DNA, 7 bp downstream from pre-miR-16-1, resulted in lower
levels of the mature miRNAs (Calin et al. 2005). However, it remains to be
established whether this effect is caused by aberrant transcription or processing.

Besides mutations, alterations at the miRNA transcript level caused by
RNA editing can affect miRNA processing (Fig. 3). RNA editing is conducted by
adenosine deaminases acting on RNA (ADARs) that convert adenosine (A) to
inosine (I) in dsRNA structures (Bass 2002; Maas et al. 2003; Amariglio and
Rechavi 2007). The primary transcript of miR-22 was the first miRNA shown to
undergo A-to-I editing at positions that surround the Drosha cleavage site
(Luciano et al. 2004). However, the physiological role of miR-22 editing has not
been revealed yet. Another primary miRNA found to be edited by ADAR1 and
ADAR?2 isoforms in vitro is pri-miR-142 (Yang et al. 2006b). A-to-I editing of pri-
miR-142 resulted in reduced Drosha processing in HEK293 cells. However, no
accumulation of edited pri-miR-142 was observed in the nucleus. Edited pri-miR-
142 was shown to be cleaved in vitro by Tudor-SN (Yang et al. 2006b), a
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component of RISC, with ribonuclease activity specific to inosine-containing
dsRNAs (Scadden 2005). However, the relevance of Tudor-SN for in vivo
degradation of edited pri-miRNAs is still uncertain. ADAR editing of the pri-
miRNA can also inhibit Dicer cleavage (Kawahara et al. 2007a). Editing of pri-
miR-151 by ADAR1 did not affect pri-miRNA to pre-miRNA processing but caused
inhibition of pre- to mature miR-151 processing as proven by accumulation of
edited pre-miR-151. The inhibition at the Dicer cleavage step was investigated
using synthetic pre-miR-151 in vitro. Although there was efficient binding of the
Dicer-TRBP complex to pre-miR-151, the cleavage of pre- and release of mature
form was blocked. Analysis of editing sites revealed that only a small proportion
of the pri-miR-151 transcripts were edited at a specific site. Moreover, high
frequency of pre-miR-151 editing has been shown in vitro. Therefore, A-to-I
editing may occur also after processing of pri- to pre-miR-151 (Kawahara et al.
2007a). Moreover, ADAR editing may interfere with miRNA function by changing

the “seed” region, which is crucial for target gene binding. The edited isoform of
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FIGURE 3. Regulation of miRNA processing by ADAR editing. Adenosine deaminases
acting on RNA (ADARSs) can convert adenosine to inosine in pri-miRNA; conversion of pre-
miRNA is also possible, but has not been proven. ADAR editing can lead to blockade in
Drosha cleavage of pri-miR-142 and degradation of edited pri-miR-142 by a ribonuclease
Tudor-SN. ADAR editing can also block Dicer processing of pri-miR-151 causing
accumulation of edited pre-miR-151.
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miR-376 inhibited a different set of genes than the normal form supporting this
concept (Kawahara et al. 2007b).

Since ADARs are predominantly nuclear enzymes, their targets are most
likely pri-miRNAs and pre-miRNAs before nuclear export. However, some ADAR
isoforms shuttle in and out of the nucleus (Desterro et al. 2003) and may edit
pre-miRNA in the cytoplasm (Kawahara et al. 2007a). Although it is obvious that
ADAR editing is a regulated event, there is not much known about the relevance
of ADAR editing and the fate of edited miRNAs.

Single nucleotide polymorphisms

Polymorphisms in @ miRNA gene may alter miRNA processing by changing the
stem-loop structure. Although this is not an active processing regulation
mechanism, it is evident that SNPs do alter the processing efficiency (Fig. 4).
The first study that identified SNPs in miRNA precursors was performed by Iwai
and Naraba (2005). However, no effect was observed for the processing
efficiency of the two alleles of pre-miR-30c-2. The other nine SNPs that were
identified in this study have not been tested (Iwai and Naraba 2005). Duan et al.
(2007) systematically identified 323 SNPs that were associated with 227 human
miRNA genes. Twelve of these SNPs were found in miRNA precursor sequences,
and one SNP was located in the miR-125a seed sequence. Transfection of 293T
cells with vectors expressing one of the two miR-125a precursor variants
revealed that only one of the variants could be processed into mature miRNA.
The blockade of the other allele occurred at the pri- to pre-miR-125a processing
step (Duan et al. 2007). Difference in Drosha/DGCR8 processing was also
proven for the two alleles of miR-146a (rs2910164), miR-502, miR-510, miR-
890, and miR-892b (Jazdzewski et al. 2008; Sun et al. 2009). Possibly, the SNP
affects the binding efficiency of the Drosha/DGCR8 complex. The T/G SNP in
miR-934 altered processing efficiency, strand preference, and the mature miRNA
sequence (Sun et al. 2009). In human lung cancer tissue, similar pre-miR-196a
levels were observed for both alleles of the C/T SNP (rs11614913), whereas a
marked difference was observed for the mature miR-196a levels, indicating an
alteration in the pre- to mature miRNA processing step (Hu et al. 2008). This

39

CHAPTER 2



MicroRNAs, macrocontrol: Regulation of miRNA processing

suggests interference with the nuclear export or the Dicer processing step of
pre-miR-196a by the SNP. Together, these studies demonstrate that SNPs in
miRNA genes can significantly affect miRNA processing and in some cases also

miRNA function.
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FIGURE 4. Influence of SNPs on miRNA processing. SNP variants of miR-125a, miR-
146a, miR-510, miR-196a, and miR-934 are processed differently due to changes in a
stem structure or processing sites. Major alleles are situated on the left side; minor alleles
on the right.
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CONCLUDING REMARKS

Recent studies have shown that miRNA biogenesis involves a number of tightly
regulated processing steps that provide an important regulatory mechanism to
define cellular levels of specific miRNAs. Therefore, biogenesis of miRNAs should
not be regarded as a linear, unified mechanism. Based on current studies,
Drosha, Dicer, and terminal loop binding proteins are the main factors involved
in miRNA processing regulation. Cellular localization and ADAR editing influence
processing of certain miRNAs, but their overall impact seems to be limited.

It is evident that proteins known to regulate transcription (p53, SMADSs) or
mRNA stability (KSRP) can also influence miRNA processing efficiency and
therefore have the ability to control cellular levels of miRNAs. In some cases,
complex networks have been reported to regulate processing of specific miRNAs;
i.e., processing of miR-16, miR-143, and miR-145 is facilitated by p53 and
inhibited by ERa in a p68/p72-dependent mechanism, and let-7 processing is
negatively regulated by Lin28 and positively by KSRP. The terminal loop was
shown to be an important target structure for regulation of miRNA expression by
binding to activators and/or inhibitors of the miRNA processing machinery. This
form of regulation may facilitate a much faster response to cellular changes as
compared to the transcriptional control of miRNA genes. Moreover, the change
in expression of one miRNA leads to differential expression of many miRNA
target genes and may provide not only a quick but also a broad response to
various stimuli.

Although knowledge about regulatory proteins is expanding rapidly, future
studies should focus on identifying additional regulatory proteins. Human
homologs of proteins regulating miRNA processing in plants, i.e., SERRATE and
cap binding proteins CBP80/CBP20 (Lobbes et al. 2006; Yang et al. 2006a; Kim
et al. 2008; Laubinger et al. 2008) need to be studied to define possible parallel
regulatory functions in the processing of miRNA.

It is evident that several mechanisms regulate efficiency of miRNA
processing. Nevertheless, for some miRNAs, inconsistencies between primary,

precursor, and mature miRNA have been observed in certain normal or cancer
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cells. The mechanisms for these inconsistencies (Table 1) are still unknown. For
instance, no specific mechanism has been related to the tissue-specific
expression levels of mature, but not precursor, miR-138 or miR-128 (Table 1;
Obernosterer et al. 2006; Lee et al. 2008). An overall decrease of miRNA
expression has been observed in many types of cancer as compared to their
normal counterparts, and the underlying mechanisms remain unknown (Lu et al.
2005; Chen and Stallings 2007; Ozen et al. 2008). Inconsistencies between pri-
and mature miRNAs are most obvious for the so-called polycistronic or miRNA
clusters and indicate a miRNA-specific regulation. Based on current knowledge,
it seems likely that the currently known mechanisms that regulate miRNA
processing are, at least partially, involved in the deregulated miRNA expression
levels in cancer. However, detailed comparisons between the regulations of
miRNA processing in cancer cells as compared to their normal counterparts have
not been performed. Elucidation of putative differences between normal and
cancer cells and manipulation of these regulatory processes might provide a
novel approach to restore a normal miRNA profile in cancer cells.

TABLE 1. miRNAs that may undergo processing regulation by a currently unknown mechanism

Altered miRNA® Compared tissues or cells Inconsistency between Reference
miR-7| Glioblastoma/normal brain Primary/precursor and mature Kefas et al. 2008
miR-1281 Brain, skeletal muscle/other tissues Primary, precursor/mature Lee et al. 2008
miR-1381 Brain, neuroblastoma/other tissues Precursor/mature Obernosterer et al. 2006
miR-143 | miR-145] Colorectal adenocarcinoma/normal mucosa Precursor/mature Michael et al. 2003
miR-155] Burkitt lymphoma with elevated Primary/mature Kluiver et al. 2007
pri-miR-155/other cells
miR-206 | Mouse myoblast cells with elevated Primary/mature Sato et al. 2009

pri-miR-206/other cells

*Arrows indicate difference in miRNA levels between compared tissues or cells.

Undoubtedly, many factors regulating the cellular miRNA levels are still
unknown. Further unraveling of the mechanisms responsible for regulation of the
miRNA processing machinery will be an important step in elucidating the
pathophysiological significance of miRNAs in malignancies and open up new

venues for treatment.
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Cellular localization and processing of primary transcripts of exonic micoRNAs

ABSTRACT

Processing of miRNAs occurs simultaneous with the transcription and splicing of
their primary transcripts. For the small subset of exonic miRNAs it is unclear if
the unspliced and/or spliced transcripts are used for miRNA biogenesis. We
assessed endogenous levels and cellular location of primary transcripts of three
exonic miRNAs. The ratio between unspliced and spliced transcripts varied
markedly, i.e. >1 for BIC, <1 for pri-miR-146a and variable for pri-miR-22.
Endogenous unspliced transcripts were located almost exclusively in the nucleus
and thus were available for miRNA processing for all three miRNAs. Endogenous
spliced pri-miRNA transcripts were present both in the nucleus and in the
cytoplasm and thus were only partly available for miRNA processing.
Overexpression of constructs containing the 5’ upstream exonic or intronic
sequence flanking pre-miR-155 resulted in strongly enhanced miR-155 levels,
indicating that the flanking sequence does not affect processing efficiency.
Exogenously overexpressed full-length spliced BIC transcripts were present both
in the nucleus and in the cytoplasm and resulted in enhanced miR-155 levels.
We conclude that both unspliced and spliced transcripts of exonic miRNAs can be
used for pre-miRNA cleavage. Splicing and cytoplasmic transport of spliced

transcripts may present a mechanism to regulate exonic microRNAs levels.
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INTRODUCTION

MicroRNAs (miRNAs) are small (~22nt) noncoding RNA molecules that
negatively regulate gene expression by binding to the 3’untranslated region
(3'UTR) of their target mRNAs (Bartel, 2004). MiRNAs play an important role in
cellular processes like apoptosis, proliferation and differentiation. Altered miRNA
expression profiles have been associated with various diseases including most, if
not all, types of cancer (Calin et al., 2004). This suggests that regulation of
miRNA levels is important for normal cellular functioning. Regulation of the
miRNA levels may include any of the regulatory mechanisms involved in normal
gene expression, such as transcriptional or epigenetic control of transcription.
Additionally, miRNA biogenesis is also regulated at the post-transcriptional level
(reviewed in Slezak-Prochazka et al., 2010).

The first step in mMiRNA processing, i.e. cleavage of the primary
transcript (pri-miRNA) by the Drosha/DGCR8 complex, is restricted to the
nucleus (Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Landthaler et
al., 2004). The miRNA stem-loop structures can be located in introns of protein-
coding or noncoding RNA genes, in exons of noncoding genes or in intergenic
regions (Kim and Nam, 2006). The vast majority of the human miRNAs are
located in introns. Approximately 10% of the miRNAs, including miR-155, miR-
146a, miR-22, miR-137, miR-34c and let-7b, reside within exons of noncoding
genes (Kim and Kim, 2007; Rodriguez et al., 2007; Saini et al., 2008). Current
knowledge about processing of pri-miRNAs has been obtained mainly for intronic
or intergenic miRNAs (Ballarino et al., 2009; Janas et al., 2011; Kataoka et al.,
2009; Kim and Kim, 2007; Morlando et al., 2008; Pawlicki and Steitz, 2008).
Processing of intronic miRNAs occurs co-transcriptionally in cooperation with
splicing of the primary transcript (Janas et al., 2011; Kataoka et al., 2009; Kim
and Kim, 2007; Morlando et al., 2008; Pawlicki and Steitz, 2008). The
Microprocessor complex and the spliccosome are associated in one complex, and
co-produce precursor miRNAs (pre-miRNAs) and spliced transcripts from the
unspliced pri-mRNA (Kataoka et al., 2009). Splicing is not required for pri-

miRNA processing (Kim and Kim, 2007), but splicecosome assembly may

51

CHAPTER 3



Cellular localization and processing of primary transcripts of exonic micoRNAs

promote release of the pre-miRNA from introns of pri-miRNA (Kataoka et al.,
2009). For exonic miRNAs, pre-miRNA release will disrupt the exon of the pri-
miRNA and affect formation of spliced transcripts. Therefore, it is more likely
that unspliced pri-miRNA transcripts of exonic miRNAs produce either pre-
miRNAs or spliced transcripts. The processing of exonic miRNAs has not yet
been studied in detail.

One well-known exonic miRNA, miR-155, is processed from the transcript
of the B-cell integration cluster (BIC) gene, also known as the MIR155 host gene
(MIR155HG) (Lagos-Quintana et al., 2002). The BIC gene consists of three
exons separated by long (7.6 and 4kb) introns with the stem-loop pre-miR-155
sequence located in the third exon (Tam, 2001). MiR-155 is crucial for B-cell
development and regulation of the immune response (Rodriguez et al., 2007;
Thai et al., 2007; Vigorito et al., 2007). High miR-155 levels are observed in
many types of cancer, including B-cell malignancies like Hodgkin, primary
mediastinal and diffuse large B-cell lymphomas (Kluiver et al., 2005; van den
Berg et al., 2003). In contrast, very low levels of miR-155 were observed in B
cell-derived Burkitt lymphoma (Kluiver et al., 2006). Eis et al. showed that
unspliced BIC is located in the nucleus, whereas spliced BIC is located mainly in
the cytoplasm in two B-cell lymphoma cell lines that both show high miR-155
levels (Eis et al., 2005). RNA in situ hybridization in primary cases of Hodgkin
lymphoma and non-Hodgkin lymphoma with high miR-155 levels revealed a
strong nuclear staining of BIC and no staining in the cytoplasm (Kluiver et al.,
2006; van den Berg et al., 2003).

In this study, we investigated processing of exonic miRNAs, with a main
focus on miR-155. We determined the levels of endogenous unspliced and
spliced BIC, pri-miR-22 and pri-miR-146a transcripts. We assessed cellular
localization of endogenous unspliced and spliced BIC, pri-miR-22 and pri-miR-
146a and showed that unspliced transcripts are located predominantly in the
nucleus while spliced transcripts are partly transported to the cytoplasm. We
also showed that the 5’ exonic or intronic flanking sequence of pre-miR-155
does not alter processing efficiency of exogenous BIC transcripts and that upon
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overexpression also spliced transcripts are efficiently processed to mature miR-
155.

RESULTS

The unspliced/spliced transcript ratio is miRNA-specific in B-cell

lymphoma

For exonic miRNAs, such as miR-155, miR-22 and miR-146a, both unspliced and
spliced transcripts include the complete stem-loop pre-miRNA sequence and
may serve as the primary miRNA template. To discriminate between unspliced
and spliced transcripts we designed gqRT-PCR primer sets specific for unspliced or
spliced transcripts as indicated in Fig. 1A. We compared the levels of
endogenous unspliced and spliced transcripts in twenty B-cell lymphoma cell
lines with variable miRNA levels.

Endogenous miR-155 levels were highly variable in B-cell lymphoma cell
lines. The difference between the cell line with the lowest (ST486) and the
highest (OCI-Ly3) miR-155 level was ~500 fold (Fig. 1B). In general, cell lines
with low miR-155 levels also showed low BIC transcript levels. The levels of
endogenous unspliced BIC transcripts were 1,5 to 73 fold higher than the levels
of spliced BIC transcripts in 17 out of 20 cell lines irrespective of the miR-155
levels (Fig. 1B). In two cell lines, the levels of unspliced and spliced BIC
transcripts were equal. In L540 cells, the spliced BIC transcript levels were 1,5
fold higher than the levels of the unspliced BIC transcripts. In the two cells lines
with the lowest miR-155 levels, i.e. ST486 and Ramos, only the unspliced BIC
transcript was present. Both unspliced and spliced BIC transcript levels showed
significant correlation with miR-155 levels resulting in R? of 0.53. The difference
observed in levels of unspliced and spliced BIC transcripts did not result in a
significant difference in the slope of the regression lines.

MiR-22 levels were low in all analyzed B-cell lymphoma cell lines (Fig. 1C).
Pri-miR-22 has four alternative splice variants. Transcript variant 3 was almost
exclusively detected in our panel of B-cell ymphoma cell lines (data not shown).

We therefore restricted our subsequent analysis to this splice variant. Spliced
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pri-miR-22 transcript levels were higher than unspliced pri-miR-22 transcript
levels in 9, similar in 9 and lower in 2 of the analyzed cell lines (Fig. 1C). The
spliced/unspliced pri-miR-22 transcript ratio varied from 0.2 in UHO1 to 8 in
L540 cells. In SU-DHL-4 cells, only spliced pri-miR-22 transcript was present. No
significant correlation was observed for either spliced or unspliced pri-miR-22
transcript levels with mature miR-22 levels. This might be caused by marked
differences in the efficiency of the pri-miR-22 transcript to miR-22 processing,
differences in the miR-22 stability, factors regulating the level of mature miR-22
or limiting amounts of factors involved in the biogenesis of miRNAs.

A
BIC Pri-miR-22
/) L Unspliced Unspliced
1 N E y
fl-exBIC Spliced Spliced
—
g = §  PremiRNA
? s-exBIC = )
K QRT-PCR products: Pri-miR-146a
‘:’2 Unspliced transcript
-intBIC Unspliced
Ak I Spliced transcript
[ Total transcript
Spliced
B
*] 2 mir1ss 541 mm 8IC unspiced 157+~ BIC unspliced R?=0.53, p=0.0002
% % 0sa] O3 BIC spiiced - BIC spiced  R?=0.53, p=0.0003
10
g ' [P ‘]h o 2 "
§ £ o1 i
2: 10 2 o @ i Z1ns
k-] = : .
X il 2 i
nl ﬂﬂ 0.00- 0.04 LS
5 10 15 20 25
S A AE UL TR o % '&5 qu N ",g & ARG E TR SN w’”" §q S P ;
a‘e‘){;@ '\gﬁb g;;f’ ‘Q.Q‘)o ::}i“{; :;,4‘ °€“§3}" < "09*“ “ii‘p*a;p' Ve :‘:°+‘Ys‘*°$ S LR \f’\z;:" miR-155
X &
&
Cc
Y &R 0167 pri-miR-22 unspiiced 0161~ pri-miR-22 unspiced, R°=0.15, ns
5 0003 % 010 03 pri-miR-22 spiced ﬂ o o -4 pr-miR-22 spliced,  R%=0.14, ns
§ oo § oo b & |I| € e f
H HE L %
5 o001 3 & oo
e § o _] ns
oy o %0 0dr ooz oom 000
D R T R D A 000 o ot o
Q,«.,«js‘go\*‘)«;r%gp\*\"'i"°¢%*@ P Qféy‘*;ﬁ«;’s%’g\*ﬁ’ RS S mR22
& 98 s g F T &
& &
& «
D
R 0907w pri-miR-146a unspiced 097 pri-miR-146a unspliced, R2=0.67, p<0.0001
s g 051] O3 pri-miR-146a spiced -4~ pri-miR-146a spliced, R°=0.70, p<0.0001
B @ i " ol g
8 g o1 L} ) b
012
e | 2 £
3 3 o0s a
& &
o 000

2 4
PRSI WO WA miR-146a
& Y o7 N &

54



Cellular localization and processing of primary transcripts of exonic micoRNAs

FIGURE 1. The unspliced/spliced ratio of pri-miRNA transcripts is miRNA-specific
in B-cell lymphoma cell lines. (A) Schematic overview of the unspliced and spliced BIC,
pri-miR-22 and pri-miR-146a transcripts and location of the PCR amplicons specific for
unspliced, spliced transcripts and total (only for BIC) transcripts. Constructs used for miR-
155 overexpression are also denoted. Short constructs, s-exBIC and s-intBIC, constitute of
pre-miR-155, ~150nt 3’ flanking sequence from exon 3 and 5’ flanking sequence derived
from exon 2 (s-exBIC) or intron 2 (s-intBIC) of BIC transcript, fl-exBIC covers full-length
spliced BIC transcript. Figures are not drawn to scale. (B) The endogenous levels of miR-
155, unspliced and spliced BIC transcripts. In 17 out of 20 cell lines the level of unspliced
BIC transcript was higher than the level of spliced BIC transcripts. Both spliced and
unspliced BIC showed a similar significant correlation with miR-155 levels. (C) The
endogenous levels of miR-22, unspliced and spliced pri-miR-22 transcripts. The
unspliced/spliced transcript ratio is variable between cell lines and neither of the two
transcripts shows a significant correlation with the miR-22 levels. (D) The endogenous
levels of miR-146a, unspliced and spliced pri-miR-146a transcripts. In all tested cell lines,
levels of spliced pri-miR-146a were much higher than unspliced pri-miR-146a transcripts.
Both unspliced and spliced pri-miR-146a levels significantly correlate with the miR-146a
levels. However, the slope of the regression line is significantly higher for spliced pri-miR-
146a. Levels of BIC, pri-miR-22 and pri-miR-146a were normalized to HPRT and levels of
miR-155, miR-22 and miR-146a were normalized to RNU48.

MiR-146a levels varied over a 1000-fold range between B-cell lymphoma
cell lines with the lowest levels being observed in L540 and the highest levels in
KARPAS-1106P (Fig. 1D). The levels of spliced pri-miR-146a transcripts were
higher than unspliced pri-miR-146a transcripts for all cell lines. The
spliced/unspliced pri-miR-146a transcript ratio varied from 14 to 72 fold. In
L540 cells only the spliced pri-miR-146a transcript was present. Both unspliced
and spliced pri-miR-146a transcript levels significantly correlated with miR-146a,
showing R2 of 0.67 and 0.7, respectively. However, the slopes of the curves
differ significantly (p<0.0001), due to lower unspliced pri-miR-146a transcript
levels.

Thus, for all three exonic miRNAs, both unspliced and spliced primary
transcripts are present albeit at a variable ratio. For BIC, the unspliced primary
transcript is predominant, for pri-miR-146a the spliced primary transcripts is
predominant, whereas for pri-miR-22 the unspliced/spliced transcript ratio varies
between cell lines. Levels of the mature miRNAs correlated with the levels of
both unspliced and spliced pri-miRNA transcripts for miR-155 and miR-146a, but
not for miR-22.
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Spliced pri-miRNA transcripts are partly transported to the cytoplasm

To further examine whether unspliced or spliced pri-miRNA transcripts are
available for miRNA processing, we determined the subcellular localization of
unspliced and spliced transcripts of BIC, pri-miR-22 and pri-miR-146a by qRT-
PCR of nuclear and cytoplasmic fractions relative to the total fraction (Fig. 2).
The pri-miRNA transcript levels in the cytoplasm were normalized to tRNA-Lys,
which showed similar levels in total and cytoplasmic fraction. The pri-miRNA
transcript levels in the nucleus were normalized to U3, which showed similar
levels in total and nuclear fraction. To asses subcellular localization of unspliced
and spliced BIC transcripts, we selected cell lines with low (L428), intermediate
(Jiyoye) or high (L540) miR-155 levels (Fig. 1A). The same cell lines were used
for subcellular localization of pri-miR-22 and pri-miR-146a to allow comparison
between subcellular distributions of pri-miRNA transcripts.

Endogenous unspliced BIC transcripts were located exclusively in the
nuclear fraction (more than 99%) in all three cell lines (Fig. 2). The fraction of
spliced BIC transcripts located in the nucleus varied from 74% in L428 to 17% in
Jiyoye cells and 47% in L540. The levels of the spliced and unspliced transcripts
in cytoplasm and nucleus relative to their levels in the total fraction are shown in
Supplementary Fig. 1. The highly abundant unspliced BIC transcripts most likely
serve as the main endogenous primary miR-155 transcript. The spliced BIC
transcripts that are located in the cytoplasm are not available for processing to
miR-155 and the functional role of these cytoplasmic spliced BIC transcripts
remains unclear.

Localization of unspliced pri-miR-22 transcripts was predominantly, but
not exclusively, nuclear in all three cell lines (Fig. 2 and Supplementary Fig. 1).
88% in L428, 91% in Jiyoye and 97% in L540 of unspliced pri-miR-22
transcripts were present in the nucleus. The fraction of spliced pri-miR-22
transcripts that was present in the nucleus was 81% for L428, 53% for Jiyoye,
and 50% for L540 cells.
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FIGURE 2. Cellular localization of unspliced and spliced pri-miRNA transcripts.
The percentages of spliced and unspliced transcripts of BIC, pri-miR-22 and pri-miR-146a
were shown in cytoplasmic and nuclear fractions of L428, Jiyoye and L540 cells. For all cell
lines unspliced transcripts were located almost completely in the nucleus, whereas spliced
transcripts were also detected in the cytoplasm. Pri-miR-146a was not detectable in L540.
Transcript levels in the cytoplasm and in the nucleus were calculated relative to the total
fractions. Average of three independent experiments was presented. P values were
determined by a Student’s t-test (* p<0.05, ** p<0.01, *** p<0.001, ****p<0.0001, ns
- not significant).

Localization of unspliced pri-miR-146a transcripts was exclusively nuclear
(above 99%) for both L428 and Jiyoye cells (Fig. 2 and Supplementary Fig. 1).
In L540 cells, both mature and primary miR-146a transcripts were hardly
detected, therefore it was not possible to determine the subcellular localization.
91% of spliced pri-miR-146a transcripts were present in the nucleus in L428 and
68% in Jiyoye cells.
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Thus, part of the spliced BIC, pri-miR-22 and, to a lesser degree, pri-miR-
146a transcripts are transported to the cytoplasm and as such unavailable for
processing. Unspliced transcripts show an almost exclusive nuclear localization
for BIC, pri-miR-22 and pri-miR-146a. Since the levels of spliced pri-miR-22 in
L540 and Jiyoye cells and pri-miR-146a in Jiyoye and L428 were higher than the
unspliced transcript levels in these cell lines (Fig. 1C and 1D), spliced pri-miR-22
and pri-miR-146a may still be the predominant miRNA substrate.

Exogenous spliced BIC can be processed to miR-155.

For further analysis we focused on miR-155, because previous studies have
shown conflicting data concerning BIC to miR-155 processing (Kluiver et al.,
2007; Zhang et al., 2008). The upstream pre-miR-155 flanking sequence is
different in spliced and unspliced BIC transcripts. To determine if this upstream
sequence affects the processing efficiency, we assessed the levels of miR-155
induction upon overexpression of BIC from two short fragments of BIC
containing the stem-loop region, ~150nt 3’ flanking sequence from exon 3 and
~150nt 5’ flanking sequence derived either from intron 2 (s-intBIC) or from
exon 2 (s-exBIC) of the BIC transcript (Fig 1A). In addition, we also
overexpressed the full-length spliced BIC (fl-exBIC) transcript (Fig. 1A). We
transduced these three BIC constructs into ST486, Ramos and U-HO1, i.e. cells
that all have low endogenous miR-155 levels. A high expression of BIC was
induced using either of the constructs (Fig. 3A), albeit at variable levels.
Transduction with the short exon spanning BIC construct resulted in the highest
increase and the full-length spliced BIC construct resulted in the lowest increase
in total BIC transcript levels (Fig. 3A). Interestingly, the level of miR-155
induction was similar for all three constructs (Fig. 3B), despite the marked
differences in total BIC levels. These data indicate that the upstream pre-miR-
155 flanking sequence does not modify processing efficiency and suggest that at
a certain level of primary miRNA transcript, other factors become limiting or
regulate the level of mature miR-155.

Next, we determined the subcellular localization of BIC transcripts in
Ramos cells transduced with fl-exBIC. In empty vector control cells, endogenous
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unspliced BIC transcripts showed a predominantly nuclear localization, whereas
the endogenous spliced BIC transcripts were not detectable (Fig. 3C). Thus, total
BIC levels can be completely attributed to the unspliced BIC transcript levels.
Localization of the overexpressed fl-exBIC was both cytoplasmic and nuclear
(32% versus 68%). Localization of endogenous unspliced BIC transcripts
remained predominantly nuclear, i.e. similar to the empty vector control.
Localization of total BIC resembled the pattern of spliced BIC, since the
exogenous spliced BIC levels were ~100 fold higher than the endogenous
unspliced BIC levels. Overexpression of fl-exBIC was followed by a strong
induction of miR-155 (Fig. 3B), indicating that upon overexpression nuclear

spliced BIC transcripts can also serve as the primary miR-155 transcript.
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FIGURE 3. Processing and cellular localization of exogenous BIC transcripts.
Levels of total BIC (A) and miR-155 (B) upon overexpression of the three constructs and
empty vector (EV) in ST486, Ramos and U-HO1 cells. For the three BIC overexpression
constructs, the increase in total BIC was variable and the highest levels were observed for
short BIC transcript containing exon 2 derived 5’ pre-miR-155 flanking sequence (s-
exBIC). However, miR-155 induction was similar for all BIC overexpression constructs. (C)
The percentages of spliced, unspliced and total BIC transcripts in nuclear and cytoplasmic
fractions of Ramos EV and Ramos full-length spliced BIC (fl-exBIC). For both Ramos EV
and fl-exBIC, unspliced BIC was located predominantly in the nucleus. Spliced BIC was not
detectable (ND) in Ramos EV. Upon overexpression of the fl-exBIC construct, spliced BIC
transcripts were partly exported to the cytoplasm. Localization of total BIC was similar to
the dominant transcript forms, i.e. unspliced BIC for Ramos EV and spliced BIC for Ramos
fl-exBIC. Transcript levels in the cytoplasm and the nucleus were calculated relative to the
total fraction. Average of three independent experiments was presented. P value was
determined by 1-way ANOVA and by a Student’s t-test for cytoplasmic versus nuclear
localization. For both tests, * p<0.05, ** p<0.01, *** p<0.001, ns - not significant.
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The unspliced/spliced ratio of BIC transcripts changes upon cellular

activation

To investigate whether the ratio between unspliced and spliced BIC transcripts is
altered upon induction of BIC, we activated three B-cell lymphoma cell lines
using PMA/Ionomycin. Activation of DG-75, L428 and KM-H2 cells resulted in 3-
to 13-fold increase in miR-155 levels (Fig. 4A). Induction of unspliced BIC
transcript levels showed a 1.6 to 5.5 fold increase, whereas spliced BIC
transcript levels showed a 5.4 to 31 fold increase compared to untreated cells
(Fig. 4B). Although the unspliced BIC transcript remained the predominant
transcript, the unspliced/spliced BIC transcript ratio significantly changed in
favour of the spliced BIC transcript (Fig. 4C). Thus, both processing of unspliced
BIC transcript to miR-155 and to spliced BIC transcripts are enhanced upon

activation-induced expression of BIC.
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FIGURE 4. Induction of unspliced and spliced BIC transcripts upon cellular
activation. Fold induction in miR-155 (A), unspliced BIC and spliced BIC transcript (B)
levels upon PMA/Ionomycin (P/I) treatment. Levels of miR-155 and BIC transcripts in
untreated cells were averaged and fold induction upon P/I treatment was calculated. In all
three cell lines, induction of spliced BIC was higher that of unspliced BIC transcripts. (C)
Unspliced BIC transcripts were predominant in both untreated and P/I-treated cells,
however unspliced/spliced BIC ratio significantly decreased upon P/I treatment. Sum of
spliced and unspliced BIC transcript levels was set as 100%. Average of three (DG-75 and
L428) or four (KM-H2) experiments was presented. P values were determined by a
Student’s t-test (* p<0.05, ** p<0.01, ns - not significant).
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DISCUSSION

Exonic miRNAs constitute a small group of the known human miRNAs. The vast
majority of exonic miRNAs are located in noncoding RNA genes of which the only
known function is being a miRNA host gene. In contrast to intronic miRNAs,
processing of the pri-miRNA transcripts of exonic miRNAs to pre-miRNAs
interferes with the normal splicing process of the transcript. Exonic miRNAs
regulate important physiological pathways, i.e. miR-155 and miR-146a are
crucial regulatory components of the immune response, hematopoiesis and
carcinogenesis (reviewed in Rusca and Monticelli, 2011; Tili et al., 2009) and
miR-22 plays a role in carcinogenesis (Alvarez-Diaz et al., 2012; Xu et al.,
2011).

In this study, we showed that unspliced pri-miRNA transcripts of exonic
miRNAs, i.e. miR-155, miR-22 and miR-146a, are located predominantly in the
nucleus. The spliced transcripts are present both in the nucleus and the
cytoplasm. Since the first processing step of pri-miRNAs takes place in the
nucleus (Lee et al., 2002; Yeom et al., 2006), both nuclear unspliced and spliced
transcripts can serve as pri-miRNA templates. Overexpression constructs
containing either the exonic 5’ flanking sequence or the intronic 5’ flanking
sequence of pre-miR-155 both resulted in a marked miR-155 induction.
Consistent with these findings we also observed a marked induction of miR-155
upon exogenously overexpressed full-length spliced BIC transcripts. These data
indicate that the Microprocessor complex can use spliced and unspliced BIC
transcripts for processing to pre-miR-155. Since the unspliced BIC transcripts
are much more abundant and are almost exclusively located in the nucleus, we
conclude that unspliced nuclear BIC transcripts are the primary template for
miR-155 processing in B-cell lymphoma. In contrast to pri-miR-155, the spliced
transcripts are the most abundant form of pri-miR-146a and, for part of the cell
lines of pri-miR-22. Unspliced pri-miR-146a showed very low levels in all cell
lines. This might indicate that the unspliced pri-miR-146 is directly used for
processing to pre-miR-146a or for splicing. The level of spliced pri-miR-146a

might thus represent the level of pri-miRNA that was not used for miRNA
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processing. Alternatively, despite the partial cytoplasmic location, the spliced
transcripts can still be the most important source for the biogenesis of mature
miR-146a. Overexpression of mMiRNAs from constructs that do not contain
introns show very effective processing to mature miRNAs, similar to our results
using the BIC constructs. This indicates that although splicing enhances
processing (Kataoka et al., 2009; Morlando et al., 2008), it is not required to
allow processing to mature miRNAs. Pawlicki et al. showed that overexpressed
pri-miRNAs that are artificially prematurely released from the transcription site
accumulate in the nucleoplasm and are not efficiently processed to pre-miRNA
(Pawlicki and Steitz, 2008; Pawlicki and Steitz, 2009). These studies implicate
that spliced pri-miRNA transcripts may be less efficient templates for the miRNA
processing machinery when released from the transcription site. In vitro
processing of radiolabeled pri-miRNAs using whole-cell extract or
immunoprecipitated Microprocessor (Han et al., 2004) indicates that presence at
the transcriptional start site is not required for release of the pre-miRNA.
Although we do not know if spliced exonic pri-miRNA transcripts are released
from the transcription start site before miRNA processing, our data show that
spliced transcripts can be used for miRNA processing.

We observed that induction of BIC using three different constructs was
variable. However, the induction of mature miR-155 was strikingly similar in the
three cell lines. Thus, induction of higher BIC transcripts levels did not result in
higher miR-155 levels. This suggests that the miR-155 levels are regulated in
these cell lines that are characterized by very low endogenous miR-155 levels.
Notably, the level of miR-155 obtained with these three constructs was still ~10
fold lower than the highest observed endogenous miR-155 levels (OCI-Ly3 cell
line). An alternative explanation could be that factors required for miRNA
biogenesis become limiting and preclude induction of higher levels.

For BIC, we demonstrated that part of the spliced transcripts are exported
to the cytoplasm and are thus not available for processing. Similarly, spliced pri-
miR-22 and to a lesser degree spliced pri-miR-146a are exported to the
cytoplasm. Alteration of the efficiency of splicing and nuclear export of spliced

pri-miRNA transcripts may rapidly change the amount of pri-miRNA available for
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miRNA processing and therefore serve as a mechanism to regulate mature
miRNA levels. Consistent with this hypothesis, we observed differences in the
ratio of unspliced to spliced BIC transcript levels upon PMA/Ionomycin
treatment. Cellular conditions and external stimuli may thus affect exonic miRNA
levels by inducing changes to the amount of unspliced pri-miRNA used for
miRNA processing at the expense of the amount of unspliced transcript available
for splicing.

Both unspliced and spliced exonic miRNA transcripts can be used as
template for miRNA processing. The level and ratio of spliced and unspliced
transcripts, their cellular location and the processing efficiency together
determine which form is the most likely endogenous pri-miRNA. For exonic
miRNA processing studies it is important to assess total transcript levels and not
only examine either spliced or unspliced transcripts. Conflicting data as
presented in the current literature concerning the processing efficiency of BIC
may, at least partially, be explained by differences in the analyzed transcripts
(Kluiver et al., 2007; Zhang et al., 2008).

Many proteins were reported to inhibit or promote miRNA processing by
binding to stem-loop of pri-miRNA and/or pre-miRNA (reviewed in Slezak-
Prochazka et al., 2010). These proteins have been identified to regulate both
intronic and exonic mMiRNA processing. KH-type splicing regulatory protein
(KSRP) was shown to enhance miR-155 processing in mouse activated
macrophages by binding to the terminal loop of both BIC transcript and pre-miR-
155 (Ruggiero et al., 2009). Moreover, monocyte chemoattractant protein
[MCP]-1-induced protein 1 (MCPIP1) was shown to suppress miRNA processing
of a panel of miRNAs, including miR-155 and miR-146a, by induction of pre-
miRNA terminal loops cleavage (Suzuki et al., 2011). Some of these proteins,
like KSRP or hnRNP A1, regulate both miRNA and mRNA processing (Gherzi et
al., 2010; Michlewski et al., 2008; Trabucchi et al., 2009). These, and possibly
other, regulatory proteins may thus regulate exonic miRNA levels by promoting

either pre-miRNA cleavage or splicing of exonic pri-miRNA transcripts.
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It is unclear whether cytoplasmic spliced transcripts have additional
functions in the cytoplasm. To date, the only known function of the three
noncoding genes studied in this paper is being the host gene for the miRNAs.
Splicing of the transcripts and the subsequent transport to the cytoplasm might
serve as a mechanism to prevent processing to pre-miRNA (Fig. 5). This is
supported by the finding that upon inhibition of DGCR8 with shRNA in L1236
cells we saw a marked induction of the spliced BIC transcript, which resulted in a
change of the unspliced/spliced BIC transcript ratio from 2.5 to 0.3 (data not
shown). This indicates that when pre-miRNA processing is inhibited, splicing of
the unspliced BIC transcript is enhanced. Another possible role of the
cytoplasmic spliced transcripts is that they may function as competing
endogenous RNA (ceRNA) transcripts for the mature miRNAs. MiR-155 and miR-
155* sequences are highly complementary and the BIC transcript (MIR155HG)
is a predicted miR-155 target by the miRanda-mirSVR and PITA algorithms
(http://www.microrna.org, Betel et al., 2010;
http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html, Kertesz et al.,
2007). Up to date, various transcripts were shown to function as ceRNA, e.g.
protein-coding transcripts, pseudogenes, and long noncoding RNAs (Cesana et
al., 2011; Poliseno et al., 2010; Tay et al., 2011). Spliced pri-miRNA transcripts
of exonic miRNAs could prevent binding of the mature miRNA to their
endogenous protein-coding target genes and thereby prevent efficient
knockdown of the target proteins. This would be a novel mechanism, by which
cytoplasmic pri-miRNA transcripts function in a negative feedback loop to
regulate miRNA function.

In conclusion, we showed that unspliced BIC, pri-miR-146a and pri-miR-
22 transcripts were predominantly localized in the nucleus, although they were
not always more abundant than the spliced BIC transcripts. We also showed that
spliced BIC, pri-miR-146a and pri-miR-22 transcripts are partly localized in the
cytoplasm and thus not fully available for processing to the mature miRNAs. Pre-
miRNAs and spliced transcripts appear to be two mutually exclusive products of
unspliced pri-miRNA transcripts of exonic miRNA. Splicing and transport to the
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cytoplasm may represent a novel mechanism to regulate cellular exonic miRNA

levels and function.
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FIGURE 5. Model of processing and function of exonic miRNA primary transcripts.
The classical miRNA processing and functioning pathway (indicated in dark colors) shows
that the main pri-miRNA, the unspliced nuclear transcript, is processed to pre-miRNA. Pre-
miRNA is transported to the cytoplasm and further processed to mature miRNA. Mature
miRNA guides the RNA-induced silencing complex (RISC) to protein-coding miRNA targets
and inhibits their expression. Unspliced transcripts can also be spliced instead of being
processed to pre-miRNA. The pre-miRNA stem-loop structure might also be processed
from the spliced transcripts. Spliced transcript can be transported to the cytoplasm. This
may represent a mechanism to prevent processing to pre-miRNA.

MATERIALS AND METHODS

Cell lines and treatment. Burkitt lymphoma cell lines (Ramos, DG-75,
NAMALWA, Raji, Jiyoye) were purchased from ATCC (ST486) and DSMZ (other
cell lines). Diffuse large B-cell lymphoma cell lines (OCI-Ly3, SU-DHL-4, SU-
DHL-6, VER) (Epstein et al., 1978; Tweeddale et al., 1987) were a kind gift of A.
Epstein (UCLA, CA) (SU-DHL-4 and SU-DHL-6) or were established in our
laboratory (VER). Hodgkin lymphoma cell lines (L540, L591, L1236, DEV, KM-
H2, HDLM-2, L428, U-HO1) (Diehl et al., 1982; Diehl et al., 1985; Drexler et al.,
1986; Kanzler et al., 1996; Mader et al., 2007; Schaadt et al., 1980) were
purchased from DSMZ (L540, KM-H2), were a kind gift of V. Diehl (University of
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Cologne, Germany) (L591, L1236, HDLM-2, L428) and P. Méller (University of
Ulm, Germany) (U-HO1) or were established in our laboratory (DEV). Primary
mediastinal B-cell lymphoma cell lines (KARPAS-1106P, MEDB-1) (Copie-
Bergman et al., 2003) were a kind gift of M. Dyer (University of Leicester, UK).
Cell lines were cultured at 37°C under an atmosphere containing 5% CO, in
Iscove's Modified Dulbecco's Medium (OCI-Ly3) or RPMI-1640 (other cell lines)
medium (Cambrex Biosciences, Walkersville, USA) supplemented with
ultraglutamine (2 mM), penicillin (100 U/ml), streptomycin (0.1 mg/ml;
Cambrex Biosciences), and 5% (L428), 20% (DEV, ST486, OCI-Ly3) or 10%
(other cell lines) fetal calf serum (Cambrex Biosciences). DG-75, L428 and KM-
H2 cells were treated for 24h with Phorbol 12-myristate 13-acetate
(PMA)/Ionomycin (both Sigma-Aldrich, Saint Louis, MO) as previously described
(Kluiver et al., 2007). The PMA/Ionomycin treatment was performed in triplicate
(DG-75 and L428) or quadruplicate (KM-H2).

BIC/miR-155 constructs. The pcDNA3.1(+) plasmid containing full-length
spliced BIC (fl-exBIC) was described previously (Kluiver et al., 2007). The MXW-
PGK-IRES-GFP vector was a kind gift from C-Z. Chen (Stanford University, CA).
The full-length spliced fl-exBIC insert was subcloned from the pcDNA3.1(+4)
vector to the MXW-PGK-IRES-GFP vector using Pmel (pcDNA3.1(+) vector) and
Hpal (MXW-PGK-IRES-GFP vector) restriction enzymes. The miR-155 stem-loop
and ~150nt flanking sequences were amplified from genomic DNA (s-intBIC) or
cDNA (s-exBIC) using Taq polymerase. Primer sequences used for PCR were as
follows, 5'-TGTCACCTCCAGCTTTATAACC-3’ (forward, s-intBIC), 5'-
AACCTACCAGAGACCTTACC-3' (forward, s-exBIC), 5'-
GGCTTTATCATTTTTCAATCT-3 (reverse, s-intBIC and s-exBIC). An Xhol

restriction site was added to the forward and an EcoRI site to the reverse primer

to allow efficient cloning. PCR products were cloned to the retroviral MXW-PGK-
IRES-GFP vector using standard laboratory procedures. The inserts were

sequenced to confirm the correct sequences.
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Retroviral transduction. To generate retroviral particles, Phoenix-Ampho
packaging cells (Swift et al., 2001) were CaPQ, transfected with 37,5ug of
MXW-PGK-IRES-GFP constructs (empty vector or vector containing one of the
BIC constructs) in T75 flasks. Viral particles were harvested after two days and
concentrated with Retro-X concentrator (Clontech, Saint-Germain-en-Laye,
France) according to the manufacturer’s protocol. Target cells were transduced
with the virus by spinning at 2,000rpm for 2hrs. Cells transduced with retroviral

vectors were sorted for GFP using MoFlo sorter (Dako cytomation).

RNA isolation from total, nuclear and cytoplasmic fractions. Nuclear and
cytoplasmic fractions were separated by adding 200ul of lysis buffer (140mM
NaCl, 1.5mM MgCl2, 10mM Tris-HCI pH8.0, 1mM DTT, 0.5% Nonidet P-40) to
pellets of ~4 million cells, followed by 5min incubation on ice and centrifugation
for 3min at 4°C and 100xg. The supernatant was harvested as the cytoplasmic
fraction. The pellet containing the nuclei was washed twice with lysis buffer. 1ml
of Qiazol (Qiagen, Carlsbad, USA) was added to the ~200ul of cytoplasmic
fraction, to the nuclear pellet and to the total cell pellet.

Quantitative RT-PCR. Total RNA was isolated using Trizol (Invitrogen,
Carlsbad, USA) according to the manufacturer’s protocol for the cell lines. RNA
samples were treated with DNase (Ambion, Foster City, CA). For RNA isolation
from cytoplamic/nuclear/total fractions, we used the miRNeasy kit (Qiagen)
including a DNase treatment (Qiagen). The RNA concentration was measured
with a NanoDropTM 1000 Spectrophotometer (Thermo Fisher Scientific Inc.,
Waltham, USA) and RNA integrity was evaluated by 1% agarose electrophoresis.
cDNA was synthesized using 500ng input RNA, SuperScript II and random
primers according to the manufacturers protocol (Invitrogen). The gqPCR reaction
contained SYBRgreen mix (Applied Biosystems, Foster City, USA), 300nM
primers, and 1ng of cDNA in a total volume of 10ul. Levels of spliced, unspliced
and total BIC as well as spliced and unspliced pri-miR-22, pri-miR-146a were
normalized to HPRT. Transcript levels in nuclear fraction were normalized to U3

and in cytoplasmic fraction to tRNA-Lys. Normalized pri-miRNA transcript levels
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in total fractions were set as 100% and percentage of pri-miRNA transcripts in
the cytoplasm and in the nucleus were calculated relative to the total fraction.
Percentages of each transcript in the cytoplasm and in the nucleus were added
and recalculated to sum up to 100%. For gRT-PCR, we used the following
primer sequences: for unspliced BIC, 5- AGCTTTATAACCGCATGTGCATAC-3'
(forward) and 5’- CAGATTTCCCCTTCCTGGTTT-3’ (reverse); for total BIC, 5'-
AAATTCTTTATGCCTCATCCTCTGA-3’ (forward) and 5'-
AGGCAAAAACCCCTATCACGAT-3" (reverse); for unspliced pri-miR-22, 5'-
CTGCTCAGATCTTTCCCATTTTC-3’ (forward) and 5-CCAGGTGAGGGCGTGAGA-3’
(reversed); for spliced pri-miR-22, 5’-GGGCTGATCACTGAACTCACATT-3’
(forward) and 5'-TGAGGGCGTGAGAGGAACA-3’ (reversed), for unspliced pri-

miR-146a, 5'-ATTTACCAGGCTTTTCACTCTTGTATT-3’ (forward) and
5'-GGCTTTTCAGAGATGGTGCAA-3" (reverse); for spliced pri-miR-146a,
5’-GACAGGAGACAGTAGCACAACGA-3’ (forward) and

5’-CAGCCAGCGAGCTCCTAAAA-3" (reverse); primers for spliced BIC, HPRT,
tRNA-Lys and U3 were described previously (Specht et al., 2001;Taft et al.,
2010;van den Berg et al., 2003). Localization of unspliced or spliced transcript-
specific QRT-PCR products are indicated in Fig. 2A. gRT-PCR for miR-155, miR-
22, miR-146a and RNU48 was performed using miRNA gRT-PCR assays (Applied
Biosystems, Foster City, USA) as described previously (Gibcus et al., 2009).
Reverse transcription (RT) primers specific for a miRNA and RNU48 (control)
were multiplexed in 15pl RT reactions containing 1pl of each RT primer. The
miRNA levels were normalized to the RNU48 levels. Mean cycle threshold (Ct)
values for all genes were quantified with the SDS software (version 2.1).

Relative expression levels were calculated as 2-ACt.
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SUPPLEMENTARY FIGURE 1. Levels of unspliced and spliced pri-miRNA
transcripts in the cytoplasm and in the nucleus. (A) Unspliced BIC transcripts showed
significantly higher levels in the nucleus than spliced BIC transcripts and lower levels in the
cytoplasm. (B) Unspliced pri-miR-22 transcripts were more abundant in the nucleus than
spliced pri-miR-22 and less abundant in the cytoplasm of Jiyoye and L540 cells. (C)
Unspliced pri-miR-146a transcripts showed significantly higher levels than spliced pri-miR-
146a in the nucleus for Jiyoye cells. In the cytoplasm lower levels of unspliced pri-miR-
146a were observed compared to levels of spliced transcript for both L428 and Jiyoye
cells. Levels of pri-miRNA transcripts in the nucleus or the cytoplasm were calculated
relative to their levels in the total fraction and corrected for the amount of RNA per cell.
Significance was calculated using 2-way ANOVA and Bonferroni posttest (* p<0.05, **
p<0.01, *** p<0.001, **** p<0.0001, ns - not significant).
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Differences in the miR-17~92 miRNA expression pattern in NH

ABSTRACT

The oncogenic miR-17~92 cluster contains six miRNAs (miR-17, miR-18a, miR-
19a, miR-20a, miR-19b and miR-92a) that are expressed at variable levels in
different normal and malignant cell types. We determined the level of the
primary miR-17~92 transcript, CI130RF25, and the expression pattern of the six
mature miRNAs in three B-cell subsets, 117 non-Hodgkin lymphoma (NHL) cases
and 21 NHL cell lines. Within the normal B-cell subsets, significantly higher
C130RF25 levels were observed for naive B cells compared to germinal center B
cells. In the NHL cases and cell lines, BL showed the highest C130RF25 levels.
Among mature miRNAs, miR-92a levels were most abundant in the B-cell
subsets, in the MCL, BL and CLL cases and all NHL cell lines. In DLBCL cases the
miR-19b levels were much higher than the miR-92a levels. Comparison of the
levels of the six mature miR-17~92 miRNAs between the NHL cases and their
normal B-cell counterparts indicated the highest induction of miR-19b in cases
and cell lines of the four NHL subtypes. We conclude that in normal B cells, CLL,
MCL and BL cases miR-92a is the most abundant miRNA of the Ci30RF25
transcript, whereas in DLBCL miR-19b showed the highest expression levels. The
highest induction in NHL was observed for miR-19b consistent with its known

oncogenic role.
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INTRODUCTION

MicroRNAs (miRNA) are a class of noncoding RNAs that are processed from
longer endogenous primary transcripts (pri-miRNA). Each mature miRNA can
target multiple protein-coding transcripts based on limited sequence homology,
which can lead to a block in translation or to mRNA degradation. Targeting
depends on the degree of sequence complementarity between the miRNA and
target gene. Especially the seed region, i.e. nucleotide 2-7 at the 5’end of the
miRNA, has been reported to be crucial for effective targeting. Several miRNAs
are organized into so-called polycistrons that contain multiple miRNA stem loop
structures in a single primary transcript. Individual miRNAs within such
polycistronic transcripts contain the same or highly similar seed sequences in a
proportion of miRNAs. Moreover, shared seed homology can also be observed
between miRNAs of different or related polycistronic miRNAs (Lewis et al.,
2005). These miRNA seed family members are thought to target overlapping
sets of genes.

Altered expression of miRNAs has been shown in many cancer types and
miRNAs are located within genomic regions that show recurrent chromosomal
aberrations in cancer (Klein et al., 2010). Moreover, several animal models
support a crucial role for miRNAs in tumorigenesis (Li et al., 2012). A rapidly
increasing number of miRNAs that are involved in many cancer related cellular
processes, e.g. cell growth, cell death and angiogenesis, have been identified
supporting a role for miRNAs in tumorigenesis (O'Donnell et al., 2005).

One well-known oncogenic polycistron is the miR-17~92 host gene, also
known as C130RF25 or Oncomir-1. CI30RF25 is located at 13q31-32 and
contains six miRNAs (miR-17, miR-18a, miR-19a, miR-20a, miR-19b and miR-
92a). Each of these miRNAs has one or more seed family member in the
C130RF25 gene or in one of the two other homologous miRNA clusters (Tanzer
and Stadler, 2004), i.e. the miR-106a~363 cluster on chromosome X and the
miR-106b~25 cluster on chromosome 7. Individual miRNAs from the miR-17~92
cluster have been shown to play a role in various cellular processes such as

proliferation (Hayashita et al., 2005) and angiogenesis (Dews et al., 2006) and
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indicate a role in cancer development. Several members of the miR-17~92
cluster are overexpressed in B-cell lymphoma (Humphreys et al., 2012;
Tsuchida et al., 2011) and miR-17~92 has been shown to be the target of the
13g31-32 amplification in diffuse large B-cell lymphoma (DLBCL) (Ota et al.,
2004) and mantle cell lymphoma (MCL) (Salaverria et al., 2007). Further proof
that members of the miR-17~92 cluster have oncogenic potential was obtained
from studies in a MYC mouse model in which expression of miR-17~92
accelerated lymphomagenesis (He et al., 2005). Besides overexpression induced
by amplification of the 13q31-32 region, C130RF25 was also shown to be
upregulated by MYC (Chang et al., 2008). E2F1, a well known MYC target
(Matsumura et al., 2003), was targeted by two of the CI30RF25 miRNAs, i.e.
miR-17-5p and miR-20a (O'Donnell et al., 2005). This indicated a complex
network between MYC, the E2F family, miR-17-5p and miR-20a (Ji et al., 2011).
MiR-19a and miR-19b have been shown to be the major oncogenic components
in the Ey-myc transgenic mouse model of B-cell lymphoma, this was at least
partly due to the repression of the tumor suppressor Phosphatase and tensin
homolog (PTEN) (Mu et al., 2009)

The expression of individual members of polycistrons, including
C130RF25, has been studied in leukemia cell lines (Yu et al., 2006) and
revealed marked differences between levels of miRNAs derived from the same
polycistrons, suggesting variation in processing and/or stability of the individual
miRNAs. Remarkably, in solid tumors (Li et al., 2012; Tsuchida et al., 2011) as
well as in lymphoma (Li et al., 2012; Venturini et al., 2007), often only a single
miRNA or a subset of the miRNAs of the miR-17~92 cluster are differentially
expressed.

In this study, we determined the relative abundance of the six miRNAs of
the C130RF25 polycistron in a NHL cohort (n=117) including Burkitt lymphoma
(BL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL) and
diffuse large B-cell lymphoma (DLBCL). The aim of this study is to analyze the
expression patterns and to determine possible differences in these patterns in B-
cell lymphoma in comparison to normal B-cell subsets and between NHL

subtypes.
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RESULTS

Levels of C130RF25 vary in B-cell NHL

C130RF25 levels were determined by gRT-PCR in normal B-cell subsets, in 117
B-cell NHL samples, including 20 MCL, 19 BL, 50 DLBCL and 28 CLL cases, and
in 21 B-cell NHL-derived cell lines. Within the normal B-cell subsets, a
significantly higher C130RF25 level was observed for naive B cells compared to
GC B cells (p<0.05) (Fig. 1A). C130RF25 expression within the 117 NHL
subtypes revealed marked differences between the four NHL subtypes (Fig. 1B).
The levels were the highest in BL and the lowest in CLL (9 fold difference) with
marked differences in expression levels between individual cases of each NHL
subtype. The BL cases showed a significantly higher C130RF25 level compared
to CLL (p<0.001) and MCL (p<0.01). We also observed a significant difference
between DLBCL and CLL (p<0.001). The overall pattern observed in the NHL cell
lines was similar to the NHL cases, but the differences between NHL subtypes
were not significant (Fig. 1C) probably due to smaller group sizes. The BL cell
lines showed the highest levels of C130RF25, followed by MCL and CLL cell lines,

whereas DLBCL cell lines had the lowest levels.

Different levels of the miR-17~92 cluster members in B-cell NHL

We next studied the levels of the six individual members of the C130RF25
cluster, i.e. miR-17, miR-18a, miR-19a, miR-20a, miR-19b and miR-92a. Each
B-cell subset showed a similar pattern with the highest level observed for miR-
92a (up to 60% of the total of all miR-17~92 members together) and the lowest
levels for miR-18a and miR-19b (less than 1%) (Fig. 2A). In all three B-cell
subsets miR-92a levels were significantly higher than the levels of the other
miRNAs (p< 0.01). The NHL cases also had significant differences in the levels of
each of the six miR-17~92 cluster members. For MCL, BL and CLL, miR-92a was
the most abundant miRNA (60-80%) followed by miR-19b (10-30%). In DLBCL,
miR-19b was most abundant (~60%), whereas miR-92a levels were much lower

(<20%), in the same range as miR-20a and miR-19a.
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FIGURE 1. Expression levels of CI30RF25 in normal and malignant B cells. (A) The
normal B-cell subsets showed a significant difference in the primary miR-17~92 transcript
levels only between naive and GC B-cell subsets. (B) The B-cell malignancies showed
significantly different CI30RF25 levels that were the highest in BL and the lowest in CLL.
C130RF25 levels were normalized to an external common calibrator using a comparative
threshold cycle method to allow comparison of the levels between the four B-cell
malignancies. (C) In the BL cell lines, the levels of C130RF25 were significantly higher
compared to the DLBCL cell lines. P values were determined using a Kruskal-Wallis test.
(*p<0.05, **p<0.01, ***p<0.001)
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FIGURE 2. Expression patterns of miR-17~92 miRNAs in B cells and NHL. (A) In
the normal B-cell subsets miR-92a levels are significantly higher as compared to the levels
of the five other miRNAs. (B) The B-cell malignancies MCL, BL and CLL showed the highest
levels of miR-92a, whereas in DLBCL a higher level was observed for miR-19b. (C) The cell
lines also showed significant differences within the miR-17~92 cluster with the highest
levels for miR-92a. P values were determined using a Kruskal-Wallis test.
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The cell lines derived from the four NHL subsets showed similar expression
patterns, with miR-92a being the most abundant cluster member (45-73%).
MiR-19b was the second most abundant in BL and DLBCL (~21%). In MCL, miR-
19b and miR-20a levels were similar (~22%) and were the second/third most
abundant miRNAs in MCL. In CLL, four of the five remaining miRNAs showed
similar low levels (3-8%).

We next studied the correlation between the levels of the six mature
miRNAs and the C130RF25 levels for all NHL cases and cell lines. In the NHL
cases (Fig. 3A), BL cases showed a significant correlation for five of the six
miRNAs, i.e. miR-18a (r=0.50, p=0.03), miR-19a (r=0.50, p=0.03), miR-20a
(r=0.55, p=0.01), miR-19b (r=0,92; p<0.0001) and miR-92a (r=0.70,
p=0.0008). Correlations for the other NHL subtypes were less pronounced, with
a significant association observed for miR-92a in MCL, miR-20a in DLBCL, miR-
17 and miR-19a in CLL. In the NHL cell lines (Fig. 3B) only two significant
associations were observed, which is probably due to the lower number of cell
lines studied. Both significant associations were observed in BL cell lines, i.e.
miR-19b (r=0.93, p=0.007) and miR-92a (r=0.82, p=0.003).

A possible explanation for the marked differences in expression of
individual cluster members might be caused by differences in efficiency of the
gRT-PCR procedure. Therefore, we tested the efficiency of the Tagman miRNA
assays on serial dilutions of cDNA from the BL-derived CA46 cell line that had a
relative high expression level of all six cluster members. The efficiency ranged
from 103% to 109% (Supplementary Fig. 1), with the highest efficiency for miR-
17 and the lowest efficiency for both miR-18a and miR-92a. Thus, based on
these efficiencies it is highly unlikely that the high miR-92a levels are caused by
efficiency differences in the gRT-PCR.

A second explanation for the observed differences might be a high or
variable expression of the homologous pri-miR-106a~363 transcript that
contains two precursor sequences that are highly homologous to the C130RF25
precursors of miR-92a and miR-19b and result in identical mature miR-92a and
miR-19b. To compare both transcripts, qRT-PCR was performed on 7 MCL, 7 BL,
7 DLBCL and 5 CLL cases. In comparison to the high expression levels of
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C130RF25, the levels of pri-miR-106a~363 were much lower (range 4 to 20
fold) (Supplementary Fig. 2). This indicates that it is unlikely that the high levels
of miR-92a and miR-19b in comparison to the other members of the C130RF25
cluster can be explained by expression of the homologous pri-miR-106~363

cluster.
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FIGURE 3. Correlation of C130RF25 levels with the levels of the six individual
miRNAs. (A) In the NHL cases correlations were seen in each of the four NHL subtypes. In
MCL and DLBCL, miR-92a showed a significant correlation with C130RF25 levels. In BL a
significant correlation was seen for five out of the six miRNAs whereas in CLL miR-17 and
miR-19a levels showed significant correlations with C130RF25 levels. (B) In the NHL cell
lines only two significant correlations were observed, i.e. for miR-19b and miR-92a in the
BL cell lines. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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A third possibility is that factors influencing the processing efficiency or
stability of the individual miRNAs cause differences in mature miRNA levels. KH-
type splicing regulatory protein (KSRP) and the RNA binding protein
heterogeneous nuclear ribonucleoprotein A1 (HnRNP Al) have been reported to
regulate processing of miR-20a and miR-18a, respectively. To identify a possible
relation between KSRP levels and the levels of miR-20a, we performed qRT-PCR
on 3 MCL, 12 DLBCL, 6 BL, 9 CLL. No relation was observed between KSRP
levels and the mature miR-20a levels (data not shown). Immunohistochemical
staining of HNRNP A1l in NHL cases showed no difference in expression between

tumors with high or low miR-18a levels (data not shown).

Fold induction levels in NHL subtypes

To determine whether the levels of the members of the miR-17~92 cluster are
deregulated in NHL we studied the fold induction of the miR-17~92 cluster
members for each NHL subtype in relation to their normal B-cell counterparts
(Fig. 4). The levels of all miR-17~92 cluster members were increased compared
to their normal counter parts albeit at variable levels. The strongest fold
increases were observed for miR-19b in all four NHL subtypes. For NHL cases
the fold induction for miR-19b ranged from 10-fold for CLL compared to memory
B cells to 415-fold for MCL compared to naive B cells. For the cell lines the fold
increase ranged from 746-fold for CLL compared to memory B cells, to 1344-fold
for DLBCL compared to GC B cells. For the five other members of the miR-
17~92 cluster the fold increase in comparison to normal B cells ranged from 1 to
21 fold for the NHL cases and from 5 to 643 fold for the cell lines. Despite the
marked high levels of miR-92a, there was no apparent fold increase as
compared to normal B cell subsets. Thus, miR-19b is the most pronounced

upregulated member of the miR-17~92 cluster in NHL.
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FIGURE 4. Fold induction levels in NHL subtypes. Levels of the mature miRNAs in the
NHL cases are given relative to the levels of the mature miRNAs in their bormal B-cell
counterparts. The cases all showed a significant fold increase in the expression levels of
miR-19b (p<0.001). The cell lines also showed a significant fold increase in the expression
of miR-19b (p<0.05). P values were determined using a Kruskal-Wallis test.

DISCUSSION

In this study we analyzed the expression pattern of the 6 miRNAs that are
processed from the noncoding C130RF25 transcript in NHL. We showed that
normal B cells and each of the four NHL subtypes have a distinct expression
pattern for the six miRNAs. MiR-92a was the most abundant miRNA in the
normal B-cell subsets and three of the four NHL subtypes, whereas miR-19b was
the most abundant cluster member in DLBCL. In comparison to their normal B
cell counterparts, all NHL subtypes showed the strongest fold increase for the
oncogenic miR-19b.

MYC and 13g31-32 amplification are two well known mechanisms to
induce C130RF25 in NHL (Navarro et al., 2009; O'Donnell et al., 2005; Ota et
al., 2004; Tagawa et al., 2007). We observed significantly different CI130RF25
levels in each of the four NHL subtypes. BL cases showed the highest C130RF25
levels, which is consistent with the genetic hallmark of BL; a translocation of the
MYC locus to one of the immunoglobulin loci. The variations in CI30RF25 levels

observed between and within each NHL subtype are most likely caused by
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differences in MYC levels and/or the presence of 13q31-32 amplifications in
individual cases.

The most abundant miR-17~92 cluster members in B cells and NHL were
miR-92a and miR-19b. The miR-106a~363 cluster contains miRNAs that are
identical to miR-19b and miR-92a derived from the miR-17~92 cluster (Landais
et al., 2007). In the NHL cases the level of C130RF25 was always much higher
than the level of pri-miR-106a~363. Thus, despite the presence of a homologue
cluster that also contains miR-19b and miR-92a, it is unlikely that the higher
miR-92a and miR-19b levels in comparison to the four other C130RF25
members can be explained by co-expression of the pri-miR-106a~363 cluster.
We next examined the correlation between the primary miRNA transcript and
the mature miRNAs to assess possible differences in the biogenesis or stability of
individual miRNAs. BL showed a good correlation between C130RF25 and five of
the six cluster members, in the other NHL subtypes the correlation was less
obvious. A poor correlation between primary transcript and mature miRNAs has
been reported for miR-138 in murine brain and murine neuroblastoma cell line
N2A (Obernosterer et al., 2006), let-7 in neural cell specification (Wulczyn et al.,
2007) and miR-143 and miR-145 in colorectal adenocarcionoma (Michael et al.,
2003). These studies indicate that the levels of primary transcripts do not
necessarily correlate with the levels of mature miRNAs.

Two RNA binding proteins, i.e. KSRP and hnRNP A1, have been shown to
be involved in biogenesis of certain members of the miR-17~92 cluster. HhRRNP
Al facilitates processing of miRNA-18a (Guil and Caceres, 2007) and KSRP
enhances biogenesis of a group of miRNAs including miR-20a and miR-106a
(Garcia-Mayoral et al., 2007; Trabucchi et al., 2009). We observed no difference
in hnRNP A1l staining intensity between tumors with high and low miR-18a
levels, indicating that differences in miR-18a levels are not likely due to
differences in hnRNP A1l expression. This might in part be caused by the overall
low miR-18a levels observed in NHL. Since there was no antibody available that
showed a good staining pattern on FFPE tissue sections, we analyzed KRSP by
gRT-PCR. KRSP levels showed no relationship to miR-20a expression on a

selection of the NHL cases with variable miR-20a levels. There are currently no
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known factors that affect biogenesis of miR-19a, miR-19b or miR-92a. Chaulk et
al. showed that the tertiary structure of the miR-17~92 transcript in vitro is
organized in such a way that the miR-92a and miR-19b stem-loops are
internalized making them less accessible and thus less efficiently processed
(Chaulk et al., 2011). It would be interesting to analyze the structure of this
primary transcript in B cells or in NHL cell lines to establish if in this cell type the
miR-92a and miR-19b stem-loops are more accessible for processing. Moreover,
it may be speculated that despite lower pri-miR-106a~363 levels, accessibility of
miR-19b and miR-92a is much better in this transcript, and that a substantial
proportion of the mature miR-19b and miR-92a miRNAs are derived from this
transcript despite its lower levels.

We observed that miR-92a was the most abundant miRNA in the B-cell
subsets, the MCL, BL and CLL cases and in the NHL cell lines. MiR-19b usually
was the second most abundant miRNA in the NHL cases and cell lines. In
contrast to the MCL, BL and CLL cases, the DLBCL cases showed the highest
levels for miR-19b. Analysis of the individual DLBCL cases showed that in 49 of
the 50 cases the miR-19b levels were indeed higher than the miR-92a levels
(Supplementary Fig. 3). MiR-92a has been shown to be involved in
carcinogenesis by suppression of angiogenesis by targeting Integrin a5 (ITGA5)
(Bonauer et al., 2009) and by affecting cellular proliferation in colon and
hepatocellular carcinoma cell lines (Tsuchida et al., 2011). MiR-92a is
overexpressed in a wide variety of cancers, but a role in B-cell ymphomagenesis
is less evident. MiR-92a is usually not among the consistently overexpressed
miRNAs in profiling studies in NHL (Lawrie et al., 2009; Malumbres et al., 2009;
Roehle et al., 2008). He et al. demonstrated that overexpression of a truncated
miR-17~19b cluster, thus without miR-92a, cooperates with MYC to promote
lymphomagenesis in mouse models (He et al., 2005). This indicates that miR-
92a is not essential for the oncogenic effect of the miR-17~92 cluster. We
observed no specific induction of miR-92a in comparison to their normal B cell
counterparts, despite the high miR-92a levels observed in the majority of the
NHL cases. Thus, it is unlikely that miR-92a plays a main role in NHL

lymphomagenesis.
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Finally, we assessed the putative oncogenic changes of the mature miRNA
levels in relation to their normal counterparts. For all four NHL subtypes, miR-
19b showed the highest fold increase ranging from 10- to ~1300-fold. It is
unclear why only miR-19b and not the closely related miR-19a is induced in the
NHL cases and cell lines. This might indicate that targets specific for miR-19b
play a role in lymphomagenesis. MiR-19b, together with miR-19a, accelerated
the MYC-induced lymphomagenesis in transgenic mice models (Mu et al., 2009;
Olive et al., 2009). MiR-19a and miR-19b have also been shown to be
significantly upregulated in Cyclin D1-positive MCL patients (Igbal et al., 2012).
Proven targets of miR-19b include protein kinase, AMP-activated, alpha 1
catalytic subunit (Prkaal), protein phosphatase 2 (PP2a), Bcl-2-like protein 11
(Bim) (Mavrakis et al., 2010), pro-angiogenic protein FGFR2 (Yin et al., 2012)
and the tumor suppressor gene PTEN (Takakura et al., 2008). PTEN negatively
regulates the phosphatidylinosiol-3-kinase (PI3K) pathway (Takakura et al.,
2008) and activation of the PI3K pathway is a key element for the malignant
transformation of MYC expressing germinal center B cells in a BL mouse model
(Sander et al., 2012). Overall, there is strong evidence that miR-19a and miR-
19b are important oncogenic miRNAs in NHL pathogenesis. The mechanism of
specific upregulation of miR-19b and not the other members of the miR-17-92
cluster in NHL compared to normal B cells is not yet known. It is possible that
miR-19b processing is regulated by an unknown regulatory protein that is
differential expressed in NHL in comparison to B cells.

In conclusion, we showed that miR-92a is the most abundant miRNA of
the miR-17~92 cluster, in normal B cells, CLL, MCL and BL cases. In DLBCL,
miR-19b showed the highest levels, and miR-92a was the second most abundant
miRNA. Despite high miR-92a levels, we observed the highest fold induction for
miR-19b in all four NHL subtypes in comparison to their normal B-cell

counterparts, consistent with its known oncogenic role.

MATERIALS AND METHODS

B-cell subsets. B cells were purified from human tonsils obtained from children

undergoing routine tonsillectomy as previously described (Koopman et al.,
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1994). Briefly, mononuclear cells were isolated by Ficoll-Isopaque density
gradient centrifugation. Monocytes and T cells were depleted by plastic
adherence and sheep red blood cell (SRBC) rosetting, respectively. The total B
cell subset was >97% pure as determined by FACS analyses. To sort the
different B cell sub populations (naive B cells, memory B cells and GC B cells),
cells were stained with FITC-conjugated anti-human IgD, PE-conjugated anti-
human CD20, and allophycocyanin-conjugated anti-CD38 and sorted using a
FACS aria (BD Biosciences): naive B cells (CD20+IgD+,CD38-), germinal center
B cells (CD20+IgD-CD38+) and memory B cells (CD20+IgD-CD38-).

Patient samples. Formaldehyde Fixed-Paraffin Embedded (FFPE) tissue was
obtained from 20 cases of MCL, 19 cases of BL, 50 cases of primary stage I and
I nodal and extranodal DLBCL and 28 cases of CLL from the tissue bank at the
Department of Pathology, University Medical Center Groningen and the tissue
bank at the Department of Pathology, The Netherlands Cancer Institute,
Amsterdam (a gift from Dr. D. de Jong). Each case history was reviewed by a
hematopathologist and diagnoses were established according to the criteria of
the World Health Organization classification. Only cases containing a tumor cell
percentage of >80% were used for RNA isolation and qRT-PCR. All protocols for
obtaining and studying human tissues and cells were approved by the

institution’s review board for human subject research.

Cell lines. 21 cell lines were used for the analysis, including 4 MCL cell lines
(HBL-2, JEKO-1, GRANTA-519 and UPN-1), 7 BL cell lines (Raji, CA46, BL65,
NAMALWA, DG75, Jiyoye and Ramos), 6 DLBCL cell lines (ROSE, VER, SUDHLS,
SUDHL4, OCI-Ly3 and SCHI) and 4 CLL cell lines (EHEB, MEC-1, MEC-2 and
JVM3). The mantle cell lines UPN-1 and HBL-2 were obtained from Dr. W.
Klapper (Kiel, Germany); JEKO-1, Granta-519 and CLL cell lines JVM-3, MEC-1
and MEC-2 were obtained from Deutsche Sammlung von Mikroorganismen und
Zellkulturen GmbH (DSMZ, Branschweig, Germany). The Burkitt cell lines DG75
and CA46 were obtained from the American type culture collection (ATCC) (LGC
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standards, Middlesex, UK). The DLBCL cell lines SU-DHL-4 and SU-DHL-6 were
obtained from A. Epstein (UCLA, Los Angeles, CA).

Cell lines were propagated in DMEM medium containing 10% FBS (Granta-
519), IMDM medium containing 20% (OCI-Ly3) or 10% (MEC-1, MEC-2) FBS or
RPMI-1640 medium containing 10% FBS (other cell lines) (Cambrex Biosciences,
Walkersville, USA) supplemented with ultraglutamine (2mM), penicillin
(100U/ml), streptomycin (0.1 mg/ml; Cambrex Biosciences). Cell lines were

cultured at 37°C under an atmosphere containing 5% CO2.

Quantitative RT-PCR. RNA isolation from FFPE material of DLBCL, CLL, BL and
MCL cases was performed as described previously (Robertus et al., 2009). All
samples were DNAse treated using Turbo DNA free kit (Ambion, USA) according
to the manufacturer’s instructions. Efficiency of the DNase procedure was
checked using a multiplex PCR with 5 primer sets specific for different genomic
DNA loci and subsequent analysis on a 1.5% agarose gel. No PCR products were
seen confirming the effectiveness of the DNAse treatment. RNA concentrations
were measured on a NanoDrop® ND-1000 Spectrophotometer (Nano Drop
Technologies, Wilmington, Delaware, USA).

For miRNA-specific cDNA synthesis we used 5ng total RNA, the Tagman
MicroRNA Reverse Transcription Kit and Tagman miRNA assays for six mature
miRNAs of the C130RF25 cluster. The gPCR reaction was carried out on 0.44ng
cDNA using miRNA specific primers in accordance with the instructions supplied
by the manufacturer (Applied Biosystems, Foster City, CA, USA). The cDNA
synthesis for mRNA was primed with random hexamer primers using Superscript
IT (Invitrogen, USA) on 200ng of total RNA. SYBR green (Applied Biosystems)
was used for the relative quantification of CI30RF25, KSRP with 2ng of cDNA
input in a 20pl reaction. PCR reactions were performed in triplicate, positive and
negative controls were included in each run. Primer sequences used for PCR
were as follows, CI30RF25 forward primer 5-TGTGATGTTTTGTTGTGGGTTTG-3’;
reverse primer 5-AGTGCTTTCTTTCCAAATATAGGC-3’. Pri-miR-106~363 forward
primer 5'-CAGGGATGAATGGGCAGAG-3"; reverse primer 5’-
TGCTTCCTACGTCTGTGTGAACA-3". KSRP: forward primer 5'-
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CAGAATACGAATGTGGACAAA-3'; reverse primer; 5-TCACGTTCCCGGAGGATGT-
3’.  Quantification was performed using Tagman MicroRNA together with the
7900HT ABI Fast Real-Time PCR system (Applied Biosystems, USA).
Fluorescence was quantified with the sequence detection system software SDS
(version 2.1, Applied Biosystems, USA). Mean cycle threshold values (Ct) and
standard deviations (SD) were calculated for all miRNAs and genes. U6 was
selected as a housekeeping gene to normalize the mRNA and miRNA levels as it
showed a uniform expression level in all samples and a sufficiently low threshold
Ct value. Cases with a Ct value for U6 > 30 were regarded to have bad RNA
quality and therefore excluded from further analysis. The relative expression
levels were expressed as 22,

Given the large number of NHL samples (n=119), gqRT-PCR of the NHL
cases was performed in separate runs for each of the four subtypes. The
comparative threshold cycle method was applied using RNA isolated from a
pediatric tonsil obtained during routine tonsillectomy as endogenous reference
using the formula 222 (AACt = (Ct sample = Ct us sample) = (ACt Tonsii = ACE s Tonsi)-
To allow comparison of the levels of the individual members of the miR-17~92
cluster the sum of the 2" values were set at 100%.

To determine the efficiency of the miRNA gPCR, a 2x serial dilution of
cDNA of a cell line with relatively high expression of each of the miRNAs was
used in a gPCR reaction. The amplification efficiency was calculated based on the

dependence of the Ct value on the cDNA dilution using the following equation:
1

—1
Efficiency (%) = 2 *°** .100.

Immunohistochemistry. HhnRNP Al was stained using ab50492 (Abcam,
Cambridge, UK) with tris/EDTA pre-treatment and a 1:100 antibody dilution
followed by detection with labeled GaRPO followed by RaGPO and DAB substrate
chromagen solution. Slides were lightly counter-stained with hematoxylin before

imaging.

90



Differences in the miR-17~92 miRNA expression pattern in NHL

Data analysis. To determine significant differences in C130RF25 and individual
miRNAs levels within each NHL subtype a Kruskal-Wallis test was performed with
a Dunn’s Multiple Comparison Test and a p-value <0.05 was considered
significant (GraphPad Prism software, version 5.04). To determine the
association between the primary transcript and mature miRNA, Pearson and
Spearman’s rank correlations together with univariate linear regression were

used. A p-value <0.05 was considered significant.
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relative high levels of all six cluster members the PCR efficiency was determined. The
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SUPPLEMENTARY FIGURE 3. Expression levels of miR-19b and miR-92a in
individual DLBCL cases. To determine if the relative high expression of miR-19b in
contrast to miR-92a is due to extreme outliers, the levels of both miRNAs were compared
separately for each DLBCL case. Only one DLBCL case showed a higher level of miR-92a
compared to miR-19b.
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Generation of miRNA sponge constructs

ABSTRACT

MicroRNA (miRNA) sponges are RNA molecules with repeated miRNA antisense
sequences that can sequester miRNAs from their endogenous targets and thus
serve as a decoy. Stably expressed miRNA sponges are especially valuable for
long-term loss-of-function studies and can be used in vitro and in vivo. We
describe here a straightforward method to generate retroviral miRNA sponge
constructs using a single directional ligation reaction. This approach allows
generation of sponges containing more than 20 miRNA binding sites. We provide
a basis for the design of the sponge constructs with respect to the sequence of
the miRNA binding site and the sequences flanking the miRNA binding sites. In
silico validation approaches are presented to test the predicted efficiencies of the
sponges in comparison to known target genes. In addition, we describe in vitro
validation experiments to confirm the effectiveness of the miRNA sponges.
Finally, we describe how the described procedure can be adapted to easily
generate sponges that target multiple miRNAs simultaneously. In summary, our
approach allows rapid generation of single or combination miRNA sponges that

can be used for long-term miRNA loss-of-function studies.
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INTRODUCTION

Several approaches have been described to study the effect of miRNA loss-of-
function in a specific cell type of interest, e.g. using microRNA (miRNA)
antisense inhibitor oligonucleotides, knockout animal models and miRNA
sponges or decoys (Brown and Naldini, 2009; Ebert et al., 2007; Kloosterman et
al., 2007; Krutzfeldt et al., 2005; Park et al., 2010). Inhibitor oligonucleotides
are effective for short-term (24h - 72h) experiments. However, these synthetic
oligonucleotides are expensive and not very suitable for long-term experiments
due to degradation and dilution caused by cell proliferation. MiRNA knockout
animal models that are the method of choice for functional in vivo studies and
conditional models allow studying the effect of miRNA knockout in specific cell
types or at specific time points during development. An important disadvantage
is the time-consuming procedures and costs to generate knockout animals.
Moreover, generation of miRNA knockout animals may be technically challenging
as a large percentage of miRNAs are located within protein-coding genes, are
part of a miRNA cluster or have multiple copies on the genome. MiRNA sponges
or decoys are in vivo expressed transcripts that contain multiple high affinity
miRNA antisense binding sites (MBS). These transcripts can efficiently sequester
specific miRNAs and, thereby, prevent their binding to endogenous target genes
(Ebert and Sharp, 2010; Kumar et al., 2008; Papapetrou et al., 2010). The
experimental application of miRNA sponge technology has met increasing
interest for in vitro and in vivo applications, indicating that this approach can
greatly aid to the understanding of miRNA functioning (Chaudhuri et al., 2012;
Liu et al., 2012; Ma et al., 2011; Otaegi et al., 2011; Zhu et al., 2011).

Besides the strategy described by us, two different approaches have been
described for the generation of miRNA sponges with multiple MBS. The first
approach is based on the non-directional concatemerization of oligonucleotide
duplexes followed by a ligation of 5" and 3’ adapters and ligation into the vector
of choice (Ebert et al., 2007). This method is relatively inefficient due to the
non-directional cloning and multiple ligation steps. The second approach uses

long oligonucleotides with two (~50-mers) or four MBS (~100-mers) that are
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designed with appropriate restriction enzyme overhangs to allow direct
directional cloning into a vector (Brown et al., 2007; Papapetrou et al., 2010). A
disadvantage of this method is that only a limited nhumber of MBS can be cloned,
which may not be sufficient to sequester all endogenous miRNAs. We have
developed a novel approach that allows rapid and efficient generation of miRNA
sponges with varying sizes using a single ligation reaction (Kluiver et al., 2012).
Effectiveness of the sponges was shown by demonstrating effects on cell growth
in GFP proliferation assays, modulation of Iuciferase activity in luciferase
reporter assays and presence of the sponge transcripts in the Ago2
immunoprecipitation fraction of cell lines that overexpress the sponge
constructs. Here, we provide a detailed description of the design and cloning
strategy to generate miRNA sponge constructs and to validate their

effectiveness in vitro.

MATERIALS

MiRNA sponge design

Sense and antisense oligonucleotides containing two miRNA binding sites
separated by a short sequence (“spacer”) and 5'phosphates are ordered PAGE
purified at a 100nmol scale (IDT, Coralville, 10, USA). The oligonucleotide
duplexes are designed with overhangs that are compatible with the restriction
endonuclease SanDI (Fermentas, St. Leon-Rot, Germany) to enable directional
cloning of multiple oligonucleotide duplexes (Fig. 1a). As a negative control, a
sponge with a similar design but a scrambled seed sequence (i.e. nucleotide 2-
8) can be used. Combination sponges (combi-sponges) for the simultaneous
inhibition of multiple miRNAs of interest can be ordered as minigenes (IDT).
PITA (http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html, Kertesz et
al., 2007); and STarMir (http://sfold.wadsworth.org/cgi-bin/STarMir.pl, Long et
al., 2007) software applications are used to predict RNA folding and accessibility
of the miRNA binding site, as well as the specificity and binding capacity of the

sponge transcripts.
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MiRNA sponge cloning

For the construction of miRNA sponges starting with oligonucleotide duplexes,
we use the compatible ends of the interrupted palindromic SanDI restriction site.
To allow cloning and subsequent studies, we adapted the pMSCV-PIG vector
(Addgene, www.addgene.org, plasmid 21654) by inserting a SanDI restriction
site containing linker between the Xhol and EcoRI restriction sites yielding
pMSCV-PIG-sp (Fig. 1b).

A
miR-1%a 3 AGUCAAAACGUAUCUAAACGUGU AGUCAAARACGUAUCUAAACGUGU 5
miR-1%b 3 AGUCAAAACGUACCUAAACGUGU AGUCAAAACGUACCUAAACGUGU 5
[RERRRRENE FEEEErrnd AEERRRERE [RARERREN
miR-18-sp S 5'Phos-GTCCCTCAGTTTTGCCECT-ATTTGCACRAATTTCAGTTTTGCCCT-ATTTGCACAGG 3r
AS 37 GGAGTCAARAACGGGA-TAAACGTGT TTAAAGTCAARACGGGA-TAAACGTGTCCCAG-Phos 5
L 1 L 1
MBS-1 MBS-2
B
Linker s 57 Phos-TCGAGCTGGTTAACGACGEGTCCCGACGTTTAARCGACG 3
AS 3* CGACCAATTGCTGCCCAGGGCTGCARATTTGCTGCTTAA-FPhos 5
L ] L | L ] L ] L ]
¥hol Hpal SanDI Pmel EcoRI

FIGURE 1. Example of a MBS oligonucleotide duplex design and a SanDI linker (A)
Oligonucleotide design used to generate a miR-19 bulged sponge. Shown are the sense
and antisense sequences of the miR-19 sponge and how the sense strand can bind to miR-
19a and miR-19b. SanDI compatible ends are depicted in bold, the grey box indicates the
bulge in the miRNA binding site, and the spacer sequence is depicted in italic. (B) The
linker design used to introduce a SanDI restriction enzyme recognition site in the pMSCV-
PIG vector. A 5’ Xho-I site and a 3’ EcoRI site were added to the ends of the linker for
efficient subcloning. Besides a SanDI site (bold) for the generation of miRNA sponges, two
other restriction sites were added to allow flexibility for potential further subcloning. Sp =
sponge, S = sense, AS = antisense, MBS = miRNA binding site and Phos = phosphate
group

The pMSCV-PIG-sp vector is prepared for oligonucleotide duplex ligation by
digestion with SanDI and dephosphorylation with CIAP (1 U/ul, Invitrogen,
Carlsbad, CA, USA). For ligation of minigenes, the vector should be restricted
with EcoRI and XhoI (NEB, Ipswich, MA, USA). Digested vectors are gel purified
using a DNA gel extraction kit (Zymoclean Gel DNA recovery kit, Zymo
Research, Irvine, CA, USA). For the ligation reaction, T4 DNA ligase is used
(Invitrogen). Additional material needed for transformation of the ligation
reaction and screening of colonies include competent E. coli cells, SOC medium,
waterbath, agar plates with appropriate antibiotic (ampicillin for pMSCV-PIG-sp),
incubator, PCR reagents (for colony PCR using pMSCV-PIG-sp: forward primer =
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5'-TTTATCCAGCCCTCACTCC-3', reverse primer = 5'-TTGTGTAGCGCCAAGTGCC-
3") and PCR machine to screen for insert-containing colonies and a plasmid

isolation kit.

In vitro validation of sponge efficiency

Luciferase assay

MicroRNA sponge sequences are subcloned into the 3'UTR of the Renilla
luciferase gene in the psiCHECK2 vector (Promega, Madison, USA). For
transfection of HEK293 cells, the Amaxa nucleofector I device (Amaxa,
Gaithersburg, USA) is used with solution V, program Q-01. MiRNA inhibitor
oligonucleotides are designed as previously described (Kluiver et al., 2012)
(Exigon, Vedbaek, Denmark). MiRNA precursors are purchased from Ambion
(Life technologies, Grand Island, NY, USA). For assessment of Renilla and Firefly
activity the Dual-luciferase Reporter assay (Promega) is used. Luciferase activity
is measured on a Luminoskan luminometer (Thermo scientific, Asheville, NC,
USA).

Ago2-IP

Ago2-IP procedure and material details were fully described previously (Tan et
al., 2009; Tan et al., 2011). The anti-Ago2 antibody clone 2E12-1C9 (Abnova,

Taipei, Taiwan) is used for the IP procedure.

METHODS

MiRNA sponge design

Oligonucleotide and minigenes composition

The method of choice for the generation of miRNA sponges may depend on
number of miRNAs that need to be targeted simultaneously with a single sponge
construct. For the generation of sponges that target one or two miRNAs, the

oligonucleotide duplex approach can be used. For the generation of sponges
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targeting more than two miRNAs, the minigene approach is more efficient (Fig.
2). As an appropriate negative control for both approaches, one may generate
the sponge sequence harboring a scrambled miRNA seed-binding region.

For the oligonucleotide duplex approach, oligonucleotides are designed
with two identical MBS, in case one miRNA is inhibited, or two different MBS, in
case two miRNAs are inhibited simultaneously (Fig. 1A). Each MBS is the
antisense sequence of the miRNA to be studied, with a central mismatch at
position 9-12 of the miRNA sequence (“bulge”). This bulge is created by deletion
of one nucleotide and changing the remaining three nucleotides in such a way
that chance of base paring (including G-U wobbling) is minimal. The two MBS
are separated by a short 4-6nt sequence (“spacer”). The 5’ and 3’ ends of the
oligonucleotide duplex consist of overhangs that are compatible with the SanDI
restriction endonuclease. This enzyme recognizes a 7-bp interrupted palindromic
sequence, i.e. 5'-GGGWCCC-3’ (W = A or T), and produces 3nt long 5’

protruding ends that will enable directional ligation of the oligonucleotide

duplexes.
wn
&
mIRNA (family): NSRRI [OEEAN [(wRe] [N [CmRe ] [ mec ] [mRD ] £
<
| | | :
o
homo-oligoduplex hetero-oligoduplex minigene
sponge design: = S EHNRT- [spmirD]
I
(=]
=
5
5
=
)
-
3
ng g
pMSCV-PIG-sp: [ 5LR |— SanDI linker H PGK [ Puromycin-IRES-GFP|H 3'LTR |

FIGURE 2. Scheme for the selection of the most appropriate cloning strategy for
generation of sponges with MBS for one, two, or more than two miRNAs. Sp =
sponge, LTR = long terminal repeat, PGK = phosphoglycerate kinase, IRES = internal
ribosome entry site, GFP = green fluorescent protein.
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For the cloning of minigenes, the same approach is applied. For directional
cloning, 5’-Xhol and 3’-EcoRI sites are added to the minigene design. A pre-
selected number of MBS for each miRNA can be included (see also hints section
4.4). Increase in the total number of MBS will increase the size and thus also the
cost of the minigene. Different spacers between MBS may be used and the order
of MBS can be shuffled. Testing the effects of these variations using in silico
validation will aid in maximizing the binding efficiency of the miRNA sponge to

each of the selected miRNAs (see next paragraph).

In silico validation of sponge specificity and binding efficiency

To optimize the sequence of the desired sponges, two published algorithms, i.e.
PITA (Kertesz et al., 2007) and STarMir are used with standard settings (Long et
al., 2007). For this in silico analysis, the full RNA transcript as generated from
the vector of interest plus the desired number of MBS is uploaded in the
program. For our pMSCV-PIG-sp vector this included the end of the psi
packaging signal up to the start of the PGK promoter resulting in a transcript of
466bp + the length of the sponge sequence. Based on different RNA folding
computations, both algorithms predict the effectiveness of the designed MBS in
the sponges by calculating the difference between the free energy gained by
binding of the miRNA to the MBS and the free energy lost by unwinding of the
MBS nucleotides (AAG (PITA) and AGiya (STarMiR)). The PITA algorithm also
provides information on all other miRNAs that can potentially bind to the sponge
sequence. The binding energy of the miRNA to the sponge transcript can be
compared with the binding energy of experimentally proven endogenous targets.
By varying sequences within the sponge, a design that has a high free energy
gain upon miRNA binding to most or all MBS and minimal off-target miRNA
binding can be generated. Variations that can be tested include nucleotide
composition, length of the spacer sequence and the nucleotide sequence in the
bulge region (position 9-12) of the MBS. In case the oligonucleotide duplex
approach is used, one can also vary the nucleotide in the middle of the SanDI
restriction site (A or T). Care should be taken to ensure the SanDI site in the
cloning vector is compatible with the A or T choice in the SanDI compatible
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overhangs of the oligonucleotide duplex. It is important to also test the
scrambled seed-binding control constructs to rule out the possibility of creation

of novel off-target effects.
MiRNA sponge cloning

Oligonucleotide duplex generation

Oligonucleotides are dissolved to 50uM in STE™ (100mM NaCl, 10mM Tris/HCI,
1mM EDTA, pH 8.0). Sense and antisense oligonucleotides are mixed at a 1:1
ratio resulting in a final concentration of 25uM for each oligonucleotide.
Oligonucleotide mixtures are placed in boiling water for 10 minutes and slowly
cooled to room temperature to allow annealing of the two oligonucleotides (let
boiling water slowly cool to room temperature in approx. 30 minutes). Store

oligonucleotide duplexes at -20°C.

Preparation of cloning vector

The pMSCV-PIG-sp vector is digested with SanDI according to the reaction
conditions recommended by the supplier. After completion of the restriction
enzyme reaction (check small aliquot on 0.7% agarose gel) add 1pl CIAP and
incubate for an additional 5 minutes at 37°C to dephosphorylate the sticky ends
of the vector. Enzymes are inactivated by incubation at 65°C for 10 minutes.
When cloning minigenes, the pMSCV-PIG-sp vector should be digested with
EcoRI and Xhol. Gel-purify the restricted and dephosphorylated vector using a
DNA gel extraction kit. After purification, the DNA concentration is measured on

a NanoDrop.

Ligation reaction

For ligation of sponge oligonucleotide duplexes into the vector, a vector/insert
ratio of 1:300 or 1:1000 is recommended. A higher ratio results in an average
longer insert size at the cost of a lower humber of clones. The humber of MBS
we obtained varied between 2-16 (average 6) for a ratio of 1:300 and 2-22
(average 7.5) for a ratio of 1:1000 (Table 1). To calculate the amount of vector
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and oligonucleotide duplexes required for the ligation the following formula is
used: ng insert = { (bp insert * ng vector) / bp vector } * ratio. For efficient
ligation, a minimum of 50-100ng of digested vector is recommended. Ligation
reactions are performed in 10pl with 1ul 5U/pl T4 DNA ligase in the buffer
supplied by the manufacturer. In addition, it is recommended to perform ligation
control reactions to be able to determine whether the prepared vector is
efficiently digested and dephosphorylated (see troubleshooting section, 5.1). For
the minigene cloning strategy, inserts with 5’Xhol - 3’EcoR1 overhangs are
ligated at a standard 1:3 ratio into the pMSCV-PIG-sp vector. The ligation
reaction is performed by incubation at room temperature for 30 minutes.
Approximately 10ng DNA (vector + insert) of the ligation reaction is used for
standard transformation to E. coli and at least two different amounts of the

transformed bacteria culture are plated on agar plates.

TABLE 1. Expected number of MBS per clone upon ligations with different vector/insert

ratios.
Ratio vectorfinsert # MBSfinsert Median # MBS/insert Mean # MBS/insert
1:3 2-8 2 3.2
1:100 2-10 5 5.5
1:300 2-16 6 6.0
1:1000 2-22 6 7.5

Check presence and length of insert

As a rapid screen to select clones with the desired number of MBS, a colony PCR
can be done. Mark the selected colonies and pick part of the colony with a sterile
toothpick and re-suspend the bacteria in 100ul water. Boil samples for 10
minutes, spin tubes and use 1lul of the supernatant as template DNA for an
insert PCR using primers that flank the multiple cloning site. Run PCR products
on an agarose gel. The size of the PCR product indicates the number of MBS
present in the selected clone (empty vector PCR product for pMSCV-PIG-sp is
144bp). Select the clones with the desired insert sizes, grow bacteria on a large

scale and isolate plasmid DNA (Qiagen, Venlo, the Netherlands). These clones

106



Generation of miRNA sponge constructs

are submitted for Sanger sequencing to confirm the insert sequence (LGC

genomics, Berlin, Germany).
In vitro validation of sponge efficiency

Luciferase assay

To validate the effectiveness of the sponge transcript to bind to the desired
miRNA, the entire sponge is subcloned into the 3'UTR of the Renilla luciferase
gene of the dual-luciferase reporter vector psiCHECK2 using Xhol and Pmel
restriction sites. HEK293 cells or other easy to transfect cells can be used for
these experiments. One million HEK293 cells are transfected with 2ug of each
construct with or without miRNA precursor (100nM) or inhibitor (20uM). Harvest
cells after 24 hours and make cell lysates for luciferase measurement according
to the manufacturer’s protocol. Renilla and Firefly activities are measured in
duplicate for each transfection and each transfection is performed at least in
triplicate to obtain robust results. A decreased Renilla to Firefly luciferase ratio is
expected upon transfection with the miRNA precursor, while transfection with
the miRNA inhibitor should lead to an increase in the Renilla to Firefly luciferase

ratio.

Ago2-IP

To confirm that the miRNA containing RISC complexes are bound to the miRNA
sponge transcripts, an Ago2 immunoprecipitation can be performed. Sponge
transcripts should be enriched in the IP fraction similar to endogenous miRNA
targets. The immunoprecipitation of Ago2-containing protein-RNA complexes is
described in detail elsewhere (Tan et al., 2011). In short, 15-30 million cells
that express the miRNA and the miRNA sponge of interest are lysed. The
cleared supernatant is incubated with sepharose beads coated with Ago2
or IgG control antibody at 4°C overnight. After washing, total, flow-
through and immunoprecipitated fractions are harvested for protein and

RNA isolation. Western blot is used to show that Ago2 is enriched in the
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IP fraction and thus confirm effectiveness of the IP procedure. QRT-PCR
of the sponge transcripts is performed to determine enrichment in the
Ago2 IP fraction as compared to the IgG control IP, the total cell lysate

and the IP flow-through fractions.

HINTS

Targeting seed-families

Several miRNAs have seed family members at different genomic loci that most
likely have a large overlap in their target genes and thus have similar functions.
In general, the miRNA sequences of these seed family members are highly
similar and oligonucleotides may be designed in such a way that all members
can be targeted simultaneously. If this is not possible, two slightly different MBS
can be made within the oligonucleotide to enable optimal binding of all individual
miRNA seed family members. The sponge approach thereby allows an effective

loss-of-function analysis of entire seed families.

Generation of combi-sponges

For the generation of combi-sponges that target two unrelated miRNAs, a
strategy similar to the single sponge procedure can be followed. The principle
difference is that the oligonucleotides contain two different miRNA binding sites.
For the generation of sponges with binding sites for multiple miRNAs, e.g. MBS
for all miRNAs of a specific miRNA cluster; it may be more convenient to use a
minigene approach. In this way the number of binding sites for each miRNA can
be easily selected. Also for these constructs, the binding efficiency and
availability of each binding site should be checked using the STarMir and/or PITA

software.

Bulged or perfect MBS sponges

Bulged miRNA sponges are reported to be more effective for the sequestration of

miRNAs than perfect antisense sponges (Ebert et al., 2007; Gentner et al.,
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2009; Haraguchi et al., 2009). Consistent with these findings we also showed
that miR-19 bulged MBS sponges are effective inhibitors of miR-19 driven
proliferation while miR-19 perfect MBS sponges are not (Kluiver et al., 2012).
This difference may be caused by degradation of the sponge transcripts due to
endonucleolytic cleavage activity of the Ago2 complex upon perfect binding of
the miRNA to its binding site. Thus, perfect MBS may be more suitable for the

induction of degradation of a transcript upon binding of the miRNA.

Number of MBS per sponge

Several factors may influence the number of MBS in a sponge needed for
maximal miRNA inhibition for a specific cell type, i.e. the miRNA expression
levels, the miRNA sponge transcript levels and the miRNA binding efficiency of
the MBS of endogenous targets. We showed that when comparing miR-19
sponges with 2, 6 or 12 MBS, 6 MBS appeared to be sufficient for maximal miR-
19 mediated inhibition of WEHI-231 cell growth (Kluiver et al., 2012). In a study
utilizing neuroblastoma cells, a miRNA sponge construct containing 12 miR-9
MBS was reported to be more effective than 6 or 24 miR-9 MBS (Otaegi et al.,
2011). Thus, for each experimental setting the optimal or minimal number of
MBS needed may vary and should be determined experimentally. The fact that
increasing the number of MBS in the sponge construct does not, by definition,
correlate with increased effectiveness of functional miRNA sequestration may be
explained by increased sponge transcript degradation caused by the high
number of MBS. In our experience sponges with 6-12 MBS are a good starting

point for testing functional effects of long-term miRNA inhibition.

TROUBLESHOOTING

Ineffective cloning results

If no or only a few colonies are obtained, vector preparation, ligation efficiency
or the transformation procedure might have failed. To check the efficiencies of
each of these steps the following negative and positive controls can be

performed. Transformation of digested non-ligated vector should yield no or only
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a very few colonies to confirm that the vector was efficiently digested. To test
the dephosphorylation step, a ligation reaction without insert can be performed
which again should yield no or only a few colonies upon transformation. To test
the T4-DNA-ligase, a ligation reaction with digested vector which has not been
dephosphorylated can be performed. After transformation a high number of
colonies (>500) should be obtained. To test transformation efficiency, a control
circular plasmid vector can be transformed and this should yield a high humber
of colonies (>1,000). For optimal transformation, an aliquot of the ligation
reaction containing a maximum of 10ng of DNA (plasmid and oligonucleotide
duplex) should be used (too much DNA input is toxic and will result in a lower
number of colonies). To increase the efficiency of the ligation reaction in
general, the vector concentration can be increased from 50ng to 200ng per 10ul
ligation reaction. To increase the number of colonies the vector/oligonucleotide
duplex ratio can be lowered to 1:100. However, this will result in a decrease of

the average insert size (Tablel).

Sponges have no (obvious) functional effect

When there is a known functional readout for the miRNA of interest and no or
little effect is observed upon overexpression of the sponge this may indicate
ineffective sequestration of the miRNAs by the sponge. A sponge containing
more MBS may be tested or a new sponge with an altered design of the
oligonucleotide duplexes can be tested. In addition, the expression level of the
sponge transcript may be checked in relation to the level of the endogenous
miRNA. In case the expression levels of the sponge are low and the levels of the
endogeneous miRNAs of interest are high, testing different promoters for the
sponge transcript may help to achieve an optimal balance between the
expression level of the sponge and the edogeneous miRNA. Suitable strong
promoters include PGK, EFla, MSCV, SFFV and CMV promoters (Hong et al.,
2007). Selection of the most optimal promoter depends on the cell type of
interest and the application.

In case the miRNA loss-of-function phenotype is not known, it may be
difficult to determine the effectiveness of the sponge. To ensure effective
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binding of the miRNAs to the sponge a luciferase reporter assay may be
performed or enrichment of the sponge transcripts in the Ago2-IP fraction

following Ago2 immunoprecipitation may be tested.

SUMMARY

We describe a method that allows straightforward generation of retroviral miRNA
sponges with a selected number of MBS that can target one or more miRNAs
simultaneously. We also provide in silico and in vitro approaches to verify the
(putative) effectiveness of miRNA binding to the miRNA sponges. The practical
guidelines to generate miRNA sponges described here will contribute to our

understanding of the role of miRNAs in diverse biological processes.
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Identification of miR-155 target genes in B-cell lymphoma

ABSTRACT

MiR-155 is an important regulator of B-cell development and deregulation of
miR-155 contributes to B-cell lymphomagenesis. High miR-155 levels are
observed in several types of lymphoma, including Hodgkin lymphoma. In
contrast, Burkitt lymphoma is characterized by very low miR-155 levels. To
determine the function of miR-155 in B-cell lymphoma, we studied the effect of
miR-155 induction on BL cell growth and identified miR-155 target genes in BL
and HL. Overexpression of miR-155 enhanced growth of ST486 BL cells but not
of Ramos BL cells in a GFP competition assay. Ago2-RIP-Chip in miR-155-
transduced or empty vector-transduced cells revealed 54 miR-155 target genes
in ST486 and 15 in Ramos cells. Besides the higher number of targets, also the
fold enrichments were much higher in miR-155-ST486 as compared to miR-155-
Ramos. In silico validation of the 54 genes identified in ST486 cells indicated
that 32% of the genes were predicted as miR-155 targets by TargetScan and
77% contained the 6-mer miR-155-binding motif in the 3’'UTR. We confirmed
miR-155 targeting for the 5 most enriched genes, i.e. DET1, TBRG1, TRIM32,
HOMEZ and PSIP1, and a known miR-155 target, JARID2, using luciferase
reporter assays in ST486 cells. Inhibition of miR-155 in KM-H2 HL cells using a
sponge construct revealed that DET1, TBRG1, TRIM32, HOMEZ and JARID2 are
also targeted by endogenous miR-155 in KM-H2 cells. To determine if the
identified miR-155 target genes were involved in the observed enhanced growth
of ST486 cells upon miR-155 overexpression, we inhibited the 6 selected genes
by shRNA constructs and showed that inhibition of TBRG1 enhanced growth of
ST486 cells. In conclusion, we identified novel miR-155 targets in BL and HL and
showed that miR-155 promotes growth of BL cells by targeting the TBRG1 gene.
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INTRODUCTION

MicroRNAs (miRNAs) constitute a subgroup of short (~22nt) single-stranded
RNAs that belong to the family of noncoding RNAs (Bartel, 2004). MiRNAs are
transcribed as longer primary transcripts (pri-miRNAs) that contain one or more
hairpin-structures which are processed by the Microprocessor complex in the
nucleus (Cai et al., 2004; Denli et al., 2004; Gregory et al., 2004). The resulting
precursor miRNAs (pre-miRNAs) are transported to the cytoplasm by Exportin-5
and further processed by Dicer to the mature miRNAs (Bohnsack et al., 2004;
Grishok et al., 2001; Hutvagner et al., 2001; Yi et al., 2003). Mature miRNAs
are bound by one of the Argonaute (Ago) proteins and incorporated into the
RNA-induced silencing complex (RISC) (Hutvagner and Zamore, 2002;
Mourelatos et al., 2002). The miRNA guides the RISC to protein-coding RNA
transcripts (mMRNAs) based on partial sequence homology and inhibits their
translation or induces RNA degradation (Eulalio et al., 2008; Filipowicz et al.,
2008). MiRNAs regulate expression of more than 30% of all human genes
(Bartel, 2009) including genes that play important roles in fundamental cell
biological processes like differentiation, proliferation and apoptosis. In line with
their obvious importance to regulate and maintain cellular and physiological
homeostasis, deregulation of miRNA levels has been linked to pathological
conditions such as development and progression of cancer.

The well-known oncogenic miR-155 is an important regulator of diverse
aspects of the immune response including B-cell development. MiR-155 is
processed from the transcript of the B-cell integration cluster (BIC) gene (Lagos-
Quintana et al., 2002). Most germinal center (GC) B cells express BIC and miR-
155 in the course of the GC response (Thai et al., 2007). The role of miR-155 for
normal B-cell development was demonstrated in miR-155-deficient mice that
have reduced numbers of germinal centre B cells, abolished antibody affinity
maturation and fail to generate memory B cells (Rodriguez et al., 2007; Thai et
al., 2007; Vigorito et al., 2007). Deregulation of miR-155 expression has been
shown to contribute to the pathogenesis of hematological malignancies by

different mechanisms. The oncogenic potential of miR-155 was shown in miR-
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155 transgenic mice in which overexpression of miR-155 driven by the B-cell-
specific Eg-enhancer induced pre-B-cell lymphoma (Costinean et al., 2006).
Recently, Babar et al. showed that induction of miR-155 in lymphoid tissues of
mice caused disseminated lymphoma characterized by a clonal, transplantable
pre-B-cell population (Babar et al., 2012). Withdrawal of miR-155 lead to tumor
regression, partly due to increased apoptosis of the malignant -cells,
demonstrating that the tumor cells were dependent on miR-155. MiR-155 levels
were shown to be high in GC B cell-derived lymphomas like Hodgkin lymphoma
(HL), primary mediastinal and diffuse large B-cell lymphomas (Kluiver et al.,
2005; van den Berg et al., 2003). In contrast, very low levels of miR-155 were
observed in GC B-cell derived Burkitt lymphoma (BL) (Kluiver et al., 2006)
suggesting a tumor suppressive function in this B-cell lymphoma subtype. This
was supported by the finding that miR-155 targeted activation-induced cytidine
deaminase (AID) and that miR-155 downregulation resulted in an increased
number of AID-mediated MYC translocations in B cells (Dorsett et al., 2007).
The hallmark of Burkitt lymphoma is the (8;14) translocation which involves the
MYC and one of the immunoglobulin gene loci (Taub et al., 1982). Thus, low
miR-155 levels may be required to drive AID-mediated formation of the MYC/Ig
translocations in BL. These findings demonstrate that both high and low miR-155
levels may be beneficial for lymphomagenesis depending on the target gene
repertoire and deregulation of miR-155 is a common feature in different
lymphoma subtypes.

To understand the function of miR-155 in B-cell lymphomas, it is crucial to
identify genes that are targeted by miR-155. In this study, we show that
overexpression of miR-155 in BL derived cell lines leads to enhanced growth of
the ST486 cells, whereas no effect was observed in Ramos cells. We
subsequently identified miR-155 target genes in both ST486 and Ramos cells
and found 54 targets in ST486 and 15 in Ramos. Six selected genes were
validated as miR-155 targets and five of them, i.e. DET1, TBRG1, TRIM32,
HOMEZ and JARID2, were shown to be targeted by endogenous miR-155 in
Hodgkin lymphoma cells. Inhibition of TBRG1, which is a miR-155 target in
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ST486 but not in Ramos, caused increased growth of ST486 cells similar to the

miR-155 overexpression phenotype.

RESULTS

MiR-155 confers growth advantage in ST486 Burkitt lymphoma cells

To determine the effect of miR-155 in BL cell lines, we overexpressed miR-155
in two EBV-negative BL-derived cell lines, i.e. ST486 and Ramos. These cell lines
were chosen based on their very low endogenous miR-155 levels and similar
response to anti-IgM treatment. Upon miR-155 overexpression, we observed a
200-400 fold increase in miR-155 levels in both miR-155-ST486 and miR-155-
Ramos compared to empty vector (EV)-transduced cells (Fig. 1A). These levels
were ~3 fold lower than the endogenous miR-155 levels observed in the
Hodgkin lymphoma cell line KM-H2 (Fig. 1A). Next, we determined the effect of
miR-155 overexpression on growth of ST486 and Ramos cells in a GFP
competition assay. We observed a growth advantage of GFP+ miR-155-ST486
cells compared to GFP- wild-type ST486 cells (Fig. 1B). In 3 weeks, the GFP+
miR-155-ST486 cell fraction increased ~2 fold over the GFP- wild-type cell

fraction. In contrast, overexpression of miR-155 did not result in any difference
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FIGURE 1. Overexpressed miR-155 enhanced growth of ST486 but not Ramos
cells. (A) Levels of miR-155 were strongly increased in miR-155-ST486 and miR-155-
Ramos cells compared to empty vector (EV) control. Endogenous miR-155 levels in KM-H2
HL cells were ~3 fold higher. (B) ST486 cells showed a 2 fold increase in the percentage of
GFP+ cells after 22 days in comparison to GFP- cells. (C) Ramos cells showed no difference
in cell growth. The GFP+ percentage in EV control remained stable in both cell lines.
Changes in the percentage of GFP+ cells were calculated as the fold increase/decrease
relative to the percentage of GFP+ cells at day 4. An average of three independent GFP
competition assay experiments was presented. P value was determined by linear
regression (**** p<0.0001).
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in growth between GFP+ and GFP- Ramos cells (Fig. 1C). Empty vector control did
not cause any difference in the percentage of GFP+ cells. Thus, these two Burkitt
lymphoma cell lines respond differently to overexpression of miR-155, despite the

similar high miR-155 levels.

High-throughput identification of endogenous miRNA targets

To determine the miRNAs target genes in ST486 and Ramos cells, we
characterized the miRNA targetome of ST486 and Ramos cells using the RIP-
Chip approach (Tan et al., 2009). We used an antibody against endogenous
Ago2 to immunoprecipitate (IP) RISC together with the miRNA target
transcripts. Enrichment of Ago2 in the Ago2-IP fraction and depletion of Ago2 in
the flowthrough (FT) fraction was confirmed in both cell lines by Western blot
(Supplementary Fig. 1A). In addition, we also showed efficiency of the IP
procedure by enrichment of miR-155 and miR-19b in the Ago2-IP fraction, but
not in the negative control IgG-IP fraction when compared to the total fraction
(Supplementary Fig. 1B). RNA samples isolated from the total and IP fractions of
ST486 and Ramos cells were analyzed on the Agilent microarray platform. The
miRNA-targetome was defined by the transcripts that were more than two fold
enriched in the IP fraction compared to the total fraction (Table 1). The miRNA
targetome included 12,5% and 16,5% of all analyzed probes in ST486 cells and

Ramos cells, respectively.

TABLE 1. Number of probes in miRNA targetome of ST486 and Ramos cells

Enrichment ST486 (n=14,468%) Ramos (n=11,928")
# probes IP/T>2 1,804 (12.5%) 1,969 (16.5%)
IP/IT>4 664 (4.6%) 743 (6.2%)
IP/T>8 239 (1.7%) 269 (2.3%)

*Number of probes that are flag present and show consistent signals for Cy3 and Cy5

To identify miRNAs that contribute to the targetome in ST486 and Ramos
cells, we performed a gene set enrichment analysis (GSEA) (Subramanian et al.,
2005) comparing gene abundance levels in IP and total fractions. The most
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enriched gene set for both cell lines was the miR-17 seed family binding motif
(Fig. 2A). This is consistent with the high abundance of the miR-17 seed family
members in ST486 and Ramos and the overall high percentage of miR-17
targets in the human genome as predicted by TargetScan. The 20 most enriched
gene sets in IP vs total fraction included 14 miRNA binding motifs in ST486 and
17 in Ramos cells (Supplementary Table 1).
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FIGURE 2. Enrichment of the miR-17 seed family and miR-155 binding motives in
the Ago2-IP fraction compared to the total fraction. (A) miR-17 family binding motif
was the most enriched gene set in the IP of ST486 and Ramos cells. (B) miR-155 binding
motif was the 13th most enriched gene sets in miR-155-ST486. In miR-155-Ramos and
the EV-transduced cells, the miR-155 binding motif was not among the top-20 most
enriched gene sets. FDR- false discovery rate.
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Identification of miR-155 target genes

To identify the genes that were targeted by miR-155 in miR-155-ST486 and
miR-155-Ramos cells, we compared the targetomes of miR-155 and EV-
transduced cells. Targetomes of miR-155-ST486 and miR-155-Ramos consisted
of a similar number of probes as compared to their EV-transduced controls
(Supplementary Table 2). The most enriched gene set in the IP fraction of miR-
155-ST486 and miR-155-Ramos was the miR-17 seed family binding motif (Fig.
2A). EV and miR-155 transduced cells shared 16 and 17 of the top-20 most
enriched gene sets in ST486 and Ramos, respectively (Supplementary Table 1).
In miR-155-ST486 the miR-155-binding motif was the 13th most enriched gene
set with a false discovery rate (FDR) <0.001 (Fig. 2B). In contrast, the miR-155-
binding motif was not within the 20 most enriched gene sets for EV-ST486 or
any of the transduced Ramos cell lines.

To identify the miR-155-specific targets we determined which probes are
more than two-fold stronger enriched in the IP fraction of miR-155 compared to
EV-transduced cells. We identified 64 probes that fulfilled this condition in ST486
and 18 probes in Ramos cells. Out of the 64 probes identified in ST486, 61
probes belonged to 54 genes and 3 probes did not correspond to any known
gene. The fold enrichment in the targetome of miR-155-ST486 compared to EV-
ST486 ranged from 2.0 to 12.6 fold. In silico validation indicated that 26 of the
54 identified genes (48%) contained an 8-mer miR-155 binding site
(AGCATTAA) and 43 genes (80%) contained a 6-mer miR-155 binding site
(GCATTA) in the 3'UTR. 18 of the 54 genes (33%) were predicted to be miR-155
targets by TargetScan (Supplementary Table 3). This percentage was strongly
increased as compared to the ~1.7% predicted miR-155 targets among all
expressed genes. For Ramos cells, 15 of the 18 probes were assigned to known
genes. The enrichment fold in the targetome of miR-155-Ramos compared to
EV-Ramos ranged from 2.0 to 2.6 fold. Two of the genes (13%) contained an 8-
mer and 9 genes (60%) contained a 6-mer miR-155 binding site
(Supplementary Table 4). Three of the 15 genes (20%) were predicted to be
miR-155 targets by TargetScan. Five of the miR-155 target genes are identified

in both ST486 and Ramos cells. Three of these genes showed similar fold
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enrichment in both cell lines, whereas the fold enrichment for De-etiolated-1
(DET1) and PC4 and SF2 interacting protein 1 (PSIP1) was much higher in
ST486 cells (Fig. 3A).

MiR-155 target genes validation

We selected six miR-155 target genes for validation, i.e. one known target gene,
Jumonji AT rich interactive domain 2 (JARID2), and the five genes that were
most enriched in the targetome of miR-155-ST486 cells, i.e. DET1, Transforming
growth factor beta regulator (TBRG1), Tripartite motif-32 (TRIM32), Homeobox
leucine zipper (HOMEZ) and PSIP1. Four of the six genes, TBRG1, TRIM32,
HOMEZ and JARID2, were ST486-specific miR-155 target genes and two genes,
DET1 and PSIP1, were found both in ST486 and in Ramos (Fig. 3A). We first
compared the endogenous levels of the six selected genes in wild-type ST486
and Ramos cells (Fig. 3B). The levels of TBRG1, HOMEZ, JARID2, DET1 and
PSIP1 were similar for ST486 and Ramos cells, whereas the TRIM32 level was
substantially lower in Ramos cells. Thus, the lack of TRIM32 enrichment in the IP
fraction of miR-155-Ramos cells can be explained by its very low expression
level.

We performed luciferase reporter assay in ST486 cells to validate the six
selected genes as miR-155 target genes. The 3'UTRs of TBRG1, TRIM32,
JARID2, DET1 and PSIP1 genes and the coding sequence of HOMEZ contained
miR-155 binding sites that were cloned into the psiCHECK2 luciferase vector
(Fig. 3C). Co-transfection of the resulting luciferase constructs with a miR-155
precursor to ST486 wt cells resulted in significantly decreased relative luciferase
levels, ranging from 15 to 53%, compared to co-transfection with negative
control precursors (Fig. 3D). Western blot analysis for the most enriched gene in
the targetome of miR-155-ST486 cells, i.e. DET1, revealed a 2 fold decrease in
DET1 protein level in miR-155-ST486 compared to EV-ST486 cells (Fig. 3E, F).
Thus, we confirmed that TBRG1, TRIM32, HOMEZ, JARID2, DET1 and PSIP1 are
valid miR-155 target genes in ST486 cells.

123

CHAPTER 6



Identification of miR-155 target genes in B-cell lymphoma

b
w

Bl ST486
0.5{ [ Ramos

011 iﬂ 'I'I
miR-155/EV [Fold] miR-155/EV [Fold] 0_02_-:
ST486 ST486  Ramos I| I 'Ij I| I | I||
TBRGL 54 DET1 126 26
0.00-

TRIM32 5.2 pPsiP 4.1 20

o
W
1

Relative expression

N a9 1 oo QN
HOMEZ 47 Q_G “{5 “f& 9 & 8
JARID2 30 &0 4\@ O )‘g' 9 Q
C D ST486
2 0 NC
TBRGA H
S 2 1004 B miR-155
TRIM32 F [d *x
: T 75 s |2 (13
rove: SN 3
o
ez - ———— it B
5001 .‘-" 25
e — o 3 o5
T = g-mer sit g
A NS A N
< <) > g L A {
& N W Y L S
& & & ¥ ?
E F ST486
1.5+

ST486

miR-155 EV
DETT o  —

GAPDH "

DET1

124



Identification of miR-155 target genes in B-cell lymphoma

FIGURE 3. Validation of miR-155 target genes. (A) Venn diagram showing the overlap
between miR-155 target genes in ST486 and Ramos cells upon overexpression of miR-155
as identified by AGO2-RIP-CHIP. Genes selected for validation are presented in the boxes.
Fold enrichment in IP/T ratio in miR-155 compared to EV cells is indicated. (B) Transcript
levels of TBRG1, TRIM32, HOMEZ, JARID2, DET1 and PSIP1 were measured by qRT-PCR in
wild-type ST486 and Ramos cells. TRIM32 levels were much lower in Ramos compared to
ST486 cells. (C) Schematic overview of 3’'UTR regions with the positions of the predicted
miR-155 binding sites indicated by the arrows (8-mer and 6-mer sites) in 3'UTRs. For
HOMEZ, no miR-155 binding sites were predicted in the 3’'UTR, but two putative sites were
observed in the coding region. For TBRG1 and PSIP1, the 3'UTR of the isoforms containing
the miR-155 binding sites are shown (ENST00000441174 and NM_021144, respectively).
(D) Luciferase reporter assay for six selected genes in ST486 cells revealed reduced
Renilla luciferase (RL) / Firefly luciferase (FL) ratios for all six genes. Thus, TBRG1,
TRIM32, HOMEZ, JARID2, DET1 and PSIP1 are validated miR-155 target genes in ST486
cells. Ratios were calculated for cells co-transfected with the psiCHECK2 construct and
either synthetic miR-155 precursor or a negative control (NC). Luciferase ratio for miR-155
precursor relative to negative control was calculated for each construct. P values were
calculated with Student’s t-test (*p<0.05, **p<0.001, ***p<0.01). (E) DET1 protein level
was decreased in miR-155-ST486 compared to EV-ST486. (F) Quantification of the
Western blot for DET1 relative to GAPDH. EV-ST486 was set as 1, the average of 2
experiments was shown.

TBRG1, TRIM32, HOMEZ, JARID2 and DET1 are targeted by endogenous
miR-155 in Hodgkin lymphoma

We next investigated whether the six validated miR-155 target genes are also
targeted by endogenous miR-155 in HL cells. We inhibited miR-155 using a
retroviral vector containing a miR-155 sponge with 14 binding sites (Kluiver et
al., 2012) in KM-H2 HL cells that have high endogenous miR-155 level (Fig. 1A).
We performed Ago2-RIP-Chip in KM-H2 cells transduced with EV (EV-KM-H2) or
miR-155 sponge (miR-155AS-KM-H2) to identify the miR-155 targets
(Supplementary Table 5). The IP/T ratio for TBRG1, TRIM32, HOMEZ, JARID2
and DET1 decreased in miR-155AS-KM-H2 cells, whereas there was no
difference in the IP/T ratios for PSIP1. These results indicate that TBRG1,
TRIM32, HOMEZ, JARID2 and DET1 are targeted by endogenous miR-155 in KM-
H2 cells. For comparison we also show the increase in IP/total ratio observed in
miR-155-ST486 compared to EV-ST486 cells (Fig. 4A, B).
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FIGURE 4. Five of the six validated miR-155 target genes are also targeted by
endogenous miR-155 in HL. (A) IP/T ratio of the six miR-155 target genes was
increased in miR-155-ST486 with compared to EV-ST486. (B) IP/T ratio of in five of the six
genes was decreased in miR-155AS-KM-H2 compared to EV-KM-H2. IP/T ratios were
calculated from expression levels as determined by the gene expression microarrays.

Inhibition of TBRG1 phenocopy miR-155 overexpression in ST486 cells

To show the relevance of these six validated miR-155 target genes we generated
12 shRNA constructs directed against these six genes. Effectiveness of the
shRNA constructs was determined by qRT-PCR (Supplementary Fig. 2).
Inhibition of TRIM32, HOMEZ, JARID2, DET1 and PSIP1 decreased growth of
ST486 cells during GFP competition assay for at least one of the two shRNA
constructs (Supplementary Fig. 2). For TBRG1, there are 11 transcript variants
in the Ensemble database (Supplementary Table 6). Only 3 of the 11 variants
contain the miR-155 binding site, i.e. ENST00000441174, ENST00000284290
and ENST00000529543 (Supplementary Table 6). Deng et al. assessed levels of
7 of the 11 transcripts and showed that isoforms ENST00000441174 and
ENST00000473629 were most abundant in the Burkitt lymphoma cell line Mutul
(Deng et al.,, 2011) (Fig. 5A). The Agilent platform contains two probes for
TBRG1, i.e. one probe that binds to both abundant isoforms (probe 1) and one
probe that is specific for the protein-coding isoform that contains the miR-155
binding site (probe 2). Consistent with the findings of Deng et al. (2011) we
observed that probe 1 showed much higher signals than probe 2 (Fig. 5B). Probe
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1 was not enriched in the IP, whereas probe 2 was 5.4 fold enriched in the IP
fraction. Thus, miR-155 binds specifically to the protein coding isoform. We used
three shRNAs to inhibit TBRG1, one was specific for the protein-coding isoform
and the other two were targeting most TBRG1 isoforms. Inhibition of the
protein-coding TBRG1 isoform resulted in enhanced growth of ST486 cells,
whereas inhibition of the other isoforms revealed no change or a decrease in
growth of ST486 cells (Fig. 5C). Thus, inhibition of the protein-coding isoform of
TBRG1 phenocopied the growth promoting effect of miR-155 overexpression in
ST486 cells.
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FIGURE 5. Specific inhibition of the protein-coding isoform of TBRG1 caused
increase of ST486 cell growth. (A) Schematic overview of two most abundant TBRG1
isoforms. Position of the miR-155 binding site (miR-155BS), the region targeted by the
shRNAs and the location of the two microarray probes were indicated. (B) Signal intensity
measured by probe 1 was much higher than the signal intensity measured by probe 2. The
protein-coding isoform detected specifically by probe 2 was strongly enriched in the
targetome of miR-155-ST486 cells, whereas the common probe was not enriched. (C)
shRNA-1 that specifically inhibits the protein-coding isoform induced a growth advantage
of ST486 cells in a GFP competition assay. shRNA-2 resulted in decreased cell growth and
shRNA-3 had no effect on cell growth of ST486 cells.
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DISCUSSION

MiR-155 and the miR-155 primary transcript, BIC, are among the most studied
miRNAs in B-cell lymphoma. Over the past few years many target genes
involved in functioning of normal hematopoietic cells have been identified. In the
context of B-cell lymphoma, it is frequently not clear which target genes are
relevant for the pathogenesis of a specific B-cell lymphoma subtype. In this
study we showed that upon overexpression of miR-155 in BL cells, growth of
ST486 cells was enhanced, whereas growth of Ramos cells was not affected.
Phenotype copy experiments revealed that TBRG1 is involved in the enhanced
growth observed upon miR-155 overexpression in ST486 cells.

We selected two commonly used BL cell lines for the functional studies
that have similar miRNA and gene expression profiles (data not shown) and both
show very low miR-155 levels. Nevertheless, ST486 and Ramos cells responded
differently to overexpression of miR-155 and Ago2-RIP-Chip analysis upon miR-
155 induction resulted in the identification of a larger and more enriched set of
miR-155 target genes in ST486 than in Ramos cells. The differences in targeting
were not caused by differences in endogenous expression levels of the target
genes, because the endogenous levels were similar for 5 out of 6 genes. For
TRIM32 we observed low expression levels in Ramos cells compared to ST486
cells which might explain the absence of TRIM32 in the IP fraction of Ramos
cells. Besides similar endogenous transcript levels, also the induced miR-155
levels were similar in both cell lines making it unlikely that the miR-155 levels
were insufficient to target these genes in Ramos cells. However, we did see a
slightly higher enrichment of miR-155 in the IP fraction of ST486 as compared to
Ramos cells (Supplementary Fig. 1), which might in part explain differences in
miR-155 targeting and phenotype.

We selected six miR-155 target genes for validation and confirmed
effective targeting in ST486 BL cells for all. One gene, JARID2, was a known
target, whereas TRIM32, DET1, HOMEZ, PSIP1 and TBRG1 were novel miR-155
targets. In contrast to the observed miR-155 effect on growth of ST486 cells,

inhibition of five of the target genes revealed either no or a growth inhibitory
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effect. Only inhibition of TBRG1 phenocopied the observed effect upon miR-155
overexpression in ST486 cells.

JARID2 was previously shown to inhibit apoptosis in chicken B-cell
lymphoma (Bolisetty et al., 2009) and cardiomyocyte proliferation by regulating
Cyclin D1, D2 and D3 (Jung et al., 2005). TRIM32 and DET1 have been shown to
be involved in the ubiquitinylation pathway and the subsequent degradation of
proteins. TRIM32 is a member of the ubiquitination-related tripartite motif
(TRIM) family and was shown to ubiquitinylate MYC, inhibit proliferation and
enhance differentiation of mouse neuronal progenitors (Schwamborn et al.,
2009). Overexpression of TRIM32 in mouse embryonic fibroblast cell line, NIH
3T3, resulted in accelerated proliferation (Kano et al., 2008). Another
established function of TRIM32 is enhancement of activity of certain miRNAs,
including the cell differentiation-promoting miRNA let-7a. DET1 is a component
of the E3 ubiquitin ligase DCX DET1-COP1 complex, which is involved in c-Jun
ubiquitination and degradation. Inhibition of DET1 induced apoptosis of human
osteosarcoma cells (Wertz et al., 2004). This is consistent with the growth
inhibition that we observed upon DET1 inhibition in ST486 cells. HOMEZ did not
have a miR-155 binding site in the 3'UTR, and consistent with this we observed
no effect in the luciferase reporter construct upon cloning of this 3'UTR region
(data not shown). However, the two putative miR-155 binding sites in the
coding region were validated by the luciferase reporter assay. In general, the
majority of the miRNA binding sites are found in the 3’'UTR and the remaining
binding sites are located in the 5’'UTR or in the coding region (Chi et al., 2009).
The cellular function of HOMEZ is not well characterized, but based on the
protein domains it is predicted to function as a transcription factor (Bayarsaihan
et al., 2003). Inhibition of HOMEZ decreased growth of ST486 cells, suggesting
that it may be involved in regulation of genes involved in growth of Burkitt
lymphoma cells. PSIP1 encodes two protein isoforms, i.e. p52 and p75, which
are generated by alternative splicing. Only the Psip1/p52 has a miR-155 binding
site in the 3’'UTR and consistent with this we indeed observed enrichment of the
probe that recognizes this isoform in the IP fraction, whereas the probe for the

other isoform was not enriched (data not shown). Psipl/p52 was shown to be
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involved in alternative splicing (Pradeepa et al., 2012). Tissue specific
expression patterns of Psipl/p52 and Psipl/p75 are consistent with different
regulation of these two proteins and support different cellular functions.

For TBRG1 only one probe detecting two out of eleven isoforms was
enriched in the IP fraction, which was consistent with the putative miR-155
binding site that was present in the 3'UTR of these isoforms. These isoforms are
not the dominant isoforms in our BL cells as was apparent from the lower probe
signals in the microarrays. In Mutul BL cells, Deng et al. showed that the
protein-coding isoform containing the miR-155 binding site constitutes only
~35% of all detected TBRG1 transcripts (Deng et al., 2011). In addition, the
authors showed that also for some other genes a non-dominant isoform is
targeted by miRNAs, which is consistent with our findings. Inhibition of the
protein-coding isoforms of TBRG1 using an shRNA construct phenocopied the
enhanced growth of ST486 cells as observed for miR-155 overexpression. The
two other shRNA constructs, targeting most isoforms, showed either no or a
growth inhibitory effect. This indicates that the protein-coding isoform of TBRG1
is involved in the growth stimulating effect of miR-155 in ST486 cells. This is
consistent with growth inhibitory role of TBRG1 protein described by Tomkins et
al. (Tompkins et al., 2007). They showed that TBRG1 was linked to ARF-MDM2-
p53 signaling in several ways. The level of TBRG1 protein was downregulated by
MDM2-mediated ubiquitination. TBRG1 in cooperation with alternative reading
frame (ARF) protein induced Gl-phase arrest in human osteosarcoma cells.
Moreover, both TBRG1 and ARF were shown to increase p53 activity (Tompkins
et al., 2007). Microarray studies indicated that TBRG1 was downregulated in
various types of cancer, including diffuse large B cell lymphoma and chronic
lymphocytic leukemia (Tompkins et al., 2007). This is consistent with the high
miR-155 levels found in many types of cancer and supports our findings
regarding to the role of TBRG1 in growth of ST486 cells.

Dorsett et al. showed that low miR-155 in B cells results in increased level
of the miR-155 target gene AID and this enhanced the frequency of MYC
translocations (Dorsett et al., 2008). Since MYC translocations are the hallmark

of BL, it might be anticipated that low miR-155 levels are especially crucial at
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the initiation step of the malignant transformation of the germinal center
precursor B cells. This might explain why we do see an oncogenic effect of high
miR-155 levels in an established Burkitt lymphoma cell lines. Our data show that
the effect of miR-155 modulation may be different even between similar cell
types such as ST486 and Ramos. It may be speculated that the balance between
the target gene transcript levels and the efficiency of regulation by miR-155 and
probably other miRNAs determines the final outcome of miR-155 modulation.

In conclusion, we identified six miR-155 target genes in BL cells with
overexpression of miR-155 and showed that five of these genes are also
targeted by endogenous miR-155 in HL cells. Induction of miR-155 enhances
growth of ST486 BL cells and this phenotype involves inhibition of the TBRG1

gene.

MATERIAL AND METHODS

Cell lines. The ST486 and Ramos BL cell lines and the KM-H2 HL cell line were
cultured at 37°C under an atmosphere containing 5% CO, in RPMI-1640 medium
(Cambrex Biosciences, Walkersville, USA) supplemented with ultraglutamine
(2mM), penicillin (100U/ml), streptomycin (0.1mg/ml; Cambrex Biosciences),
and 20% (ST486) or 10% (Ramos, KM-H2) fetal calf serum (Cambrex
Biosciences). Cell lines were purchased from ATCC (ST486) or DSMZ (Ramos,
KM-H2).

DNA constructs. To overexpress miR-155, the pre-miR-155 and
~150ntflanking sequences were amplified from genomic DNA using Taq
polymerase and primers listed in Supplementary Table 7. A Xhol restriction site
was added to the forward and an EcoRI site to the reverse primer to allow
directional cloning to the retroviral MXW-PGK-IRES-GFP vector (Mao and Chen,
2007) using standard laboratory procedures. The MXW-PGK-IRES-GFP vector
was a kind gift from C-Z. Chen (Stanford University, CA). To inhibit miR-155, a
miR-155 sponge construct was generated as previously described (Kluiver et al.,

2012). Briefly, we cloned 14 bulged miR-155 binding sites to the retroviral
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pMSCV-PIG vector (Addgene). The 3’ UTR of DET1, TRIM32, JARID2, PSIP1,
TBRG1 and the ~300nt fragment of HOMEZ in the coding sequence containing
the potential miR-155-binding sites were amplified from genomic DNA using the
primers listed in Supplementary Table 7. A Notl restriction site was added to the
forward and a SstlI to the reverse primers to enable cloning of the PCR products
in the psiCHECK2 vector (Promega, Madison, WI). To inhibit DET1, TRIM32,
JARIDZ2, PSIP1, TBRG1 and HOMEZ, shRNA sequences were selected from shRNA
library (TRC, Broad Institute, http://www.broadinstitute.org/rnai/trc/lib).
Sequences of the shRNA oligo’s are listed in Supplementary Table 8. XhoI and
EcoRI sites were added to enable cloning to the retroviral pMDH1-PGK-GFP 2.0
vector (Mao and Chen, 2007). The pMDH1-PGK-GFP 2.0 vector was a kind gift
from C-Z. Chen (Stanford University, CA). All inserts were verified by

sequencing.

Retroviral transductions. To generate retroviral particles, Phoenix-Ampho
packaging cells (Swift et al., 2001) were CaPO, transfected using 37,5ug of
retroviral vector in T75 flasks. Viral particles were harvested after two days and
concentrated with Retro-X concentrator (Clontech, Saint-Germain-en-Laye,
France) according to the manufacturer’s protocol. Target cells were transduced
with the virus by spinning at 2,000rpm for 2hrs. Cells transduced with retroviral

vectors were sorted for GFP+ cells using MoFlo sorter (Dako cytomation).

Quantitative RT-PCR. Total RNA from total, FT and IP fractions was isolated
using miRNeasy kit (Qiagen, Carlsbad, USA). Total RNA from other samples was
isolated using Trizol (Invitrogen, Carlsbad, USA) according to the manufacturer’s
protocol for the cell lines. The RNA concentration was measured with a
NanoDropTM 1000 Spectrophotometer (Thermo Fisher Scientific Inc., Waltham,
USA) and RNA integrity was evaluated by 1% agarose electrophoresis. gqRT-PCR
for miR-155, miR-19b and RNU48 (control) was performed using miRNA gRT-
PCR assays (Applied Biosystems, Foster City, USA) as described previously
(Gibcus et al., 2009). Reverse transcription (RT) primers specific for a miR-155,
miR-19b and RNU48 were multiplexed in 15ul RT reactions containing 1pul of
each RT primer. MiR-155 and miR-19b levels were normalized to the RNU48
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levels. To determine the levels of TBRG1, TRIM32, HOMEZ, JARID2, DET1,
PSIP1, cDNA was synthesized using 500ng input RNA, SuperScript II and
random primers according to the manufacturer’s protocol (Invitrogen). The gPCR
reaction contained a final concentration of 1x qPCR MasterMix Plus (Eurogentec,
Liege, Belgium), 1x Gene expression assay (Applied Biosystems, Foster City,
USA), and 1ng of cDNA in a total volume of 10ul. The following gene expression
assays were used: Hs00262345_m1 (TBRG1l), Hs00705875_s1 (TRIM32),
Hs01866743_s1 (HOMEZ), Hs01004460_m1 (JARID2), Hs00894490_m1 (DET1),
Hs01045711_g1 (PSIP1) (All Applied Biosystems). Gene expression levels were
normalized to HPRT levels. Mean cycle threshold (Ct) values were determined
with the SDS software (version 2.1). Relative expression levels were calculated

as 274¢,

Transfection of cell lines and luciferase assay. Luciferase assay was
performed using Promega Dual-Luciferase Reporter Assay System (Promega,
Madison, WI) as described previously (Gibcus et al., 2009). Briefly, two million
ST486 cells were transfected with 4ug of each psiCHECK2 construct and co-
transfected with 100nM miR-155 precursor (Ambion) or negative control #1
(Ambion) using Amaxa nucleofector device, program A23 (Amaxa, Gaithersburg,
MD). Cell lysates were made 24 hours after transfection. For each transfection,
the Renilla and Firefly luciferase activities were measured in duplicate, the
Renilla over Firefly (R/L) luciferase ratio for miR-155 precursor was calculated
and compared to negative control (set at 100%). Transfections were performed
in triplicate and standard deviations were calculated. To determine significance
of difference in the R/F ratio between miR-155 precursor and negative control

#1 a Student’s t-test was performed.

Western Blot. Cell lysates were prepared, separated on polyacrylamide gels
and transferred onto nitrocellulose membranes using standard protocols. Mouse
anti-DET1 antibody (clone 3G5, Genentech, San Francisco, CA) was diluted to a
concentration of 1pg/ml in 5% milk in Tris-buffered saline with Tween-20
(TBST). Immunoblots were incubated with primary anti-DET1 antibody at 4°C

overnight. Secondary rabbit anti-mouse antibody conjugated with horseradish
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peroxidase was used. Chemiluminescence was detected with the ChemiDoc MP
scanner and protein bands were visualized and quantified with Image Lab 4.0.1
software (both BioRad, Veenendaal, NL). To detect protein levels of TBRG1,
TRIM32 and JARID2, we tested the following antibodies: anti-TBRG1, clone
11E12, kindly provided by D. Quelle (The University of Iowa, Iowa) and clone
18951-1-AP purchased from Proteintech Manchester, UK; anti-TRIM32, clone
10326-1-AP (Proteintech); anti- JARID2, antibody was kindly provided by D.
Reinberg (NYU School of Medicine Smilow Research Center, NY). However, we

were not able to obtain reliable immunoblot results for these three proteins.

FACS analysis. For GFP competition assays, ST486 and Ramos cells were
transduced with the MXW-PGK-IRES-GFP empty vector or miR-155 containing
construct. For GFP competition assays with shRNAs, ST486 cells were
transduced with the pMDH1-PGK-GFP 2.0 empty vector of shRNA containing
construct (Supplementary Table 8). GFP expression was measured on a FACS
Calibur flow cytometer (BD PharMingen) at day 3 or 4 post-transduction and
monitored for three weeks tri-weekly. The percentage of GFP positive cells at

day 3 or 4 was set to 1 and a fold difference per measurement was calculated.

Ago2-RIP-Chip procedure. Immunoprecipitation of Ago2-containing RISC
complexes was performed as described previously (Tan et al., 2009). Briefly,
cleared lysate of 10-20 million cells was incubated with protein G Sepharose
beads (GE Healthcare) coated with anti-Ago2 antibody (Clone 2E12-1C9,
Abnova, Taiwan) at 4°C overnight. Anti-IgG antibody was used as a negative
control (Millipore BV, Amsterdam, The Netherlands). After washing the beads,
RNA was harvested for microarray and gqRT-PCR analysis and protein lysates
were prepared for Western blot. Western blot for Ago2 was performed as
described previously (Tan et al., 2009). Total RNA was isolated with miRNeasy
Kit (Qiagen) according to manufacturer’s protocol. RNA from total and Ago2-IP
fractions of miR-155-ST486, EV-ST486, miR-155-Ramos, EV-Ramos, miR-
155AS-KMH2 and EV-KMH2 cells was used for microarray analysis. Labelling and
hybridization was performed using two-color Quick Amp Labeling Kit (ST486 and
Ramos) and Low Input Quick Amp Labeling Kit (KM-H2), according to
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manufacturer’s protocol (Agilent, Santa Clara, USA). Briefly, 60-100ng of RNA
from total and Ago2-IP samples was used for cDNA synthesis, followed by cRNA
amplification and Cy3 and Cy5 labelling. cRNA was purified with RNeasy Kit
(Qiagen) and quantified on NanoDropTM 1000 Spectrophotometer (Thermo
Fisher Scientific Inc.). Equal amounts of Cy3 and Cy5-labelled cRNA were
combined and hybridized at 65°C overnight on the 44k Human Whole Genome
Oligo Microarray. Next, slides were washed and scanned with GenePix 4000B
(Agilent). Scanned images were used for Agilent Feature Extraction software
version 10.5., converted into Linear and Lowess normalized data. Quality control
report was generated for each microarray. Using GeneSpring GX version 9.0
(Agilent), quantile normalization of the signals was performed separately for
Ramos, ST486 and KM-H2 samples. Next, probes not detected in more than half
of the samples and probes that were inconsistent (more than 2 fold different) in
Cy3 and Cy5 replicates of the same sample were filtered out. The averaged
signals for Cy3 and Cy5 replicates were used to calculate the IP/T ratio for each

sample.

Gene Set Enrichment Analysis. To determine which genes sets are
significantly enriched in the Ago2-IP in comparison to the total fraction in miR-
155-5T486, EV-ST486, miR-155-Ramos and EV-Ramos, we performed a Gene
Set Enrichment Analysis using The Molecular Signatures Database (GSEA;
http://www.broad.mit.edu/gsea, Subramanian et al., 2005). If more than one
probe was assigned for a certain gene, we selected the probe with the highest
fold enrichment in the IP/T ratio in miR-155-ST486 or miR-155-Ramos
compared to EV controls. This selection resulted in 9,047 genes submitted for

analysis for ST486 and 7,809 genes for Ramos.
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SUPPLEMENTARY DATA

SUPPLEMENTARY TABLE 1. 20 most enriched gene sets in EV-ST486, miR-155-ST486,
EV-Ramos and miR-155-Ramos
Position in GSEA

Gene set ST486 Ramos
EV miR-155 Ev MIR-155

GCACTTT,MIR-17-5P,MIR-20A,MIR-106A,MIR-106B,MIR-20B,MIR-519D 1 1 1 1
ACACTAC,MIR-142-3P 2 3 11 12
AGCACTT,MIR-93,MIR-302A, MIR-302B,MIR-302C,MIR-302D,MIR-372,MIR- 3 2 4 a
373 MIR-520E, MIR-520A, MIR-5268 MIR-520B, MIR-520C, MIR-520D
CTACTGT,MIR-199A 4 8 10 9
GTGCAAT MIR-25,MIR-32,MIR-92,MIR-363,MIR-367 5 4 3 3
TGAATGT,MIR-181A,MIR-181B,MIR-181C,MIR-181D 6 6 7 7
TTTGCAC,MIR-19A MIR-19B 7 7 5 5
AAGCACT,MIR-520F 8 10 16 15
ACTTTAT,MIR-142-5P 9 11 6 6
NAGASHIMA_NRG1_SIGNALING_UP 10 9
TGCACTT,MIR-519C,MIR-519B,MIR-519A 11 5 2 2
KIM_WT1_TARGETS_UP 12 14
TTGCCAAMIR-182 13
BONCI_TARGETS_OF_MIR15A_AND_MIR16_1 14
TGCACTG,MIR-148A MIR-152,MIR-148B 15 12 8 10
TGTTTAC,MIR-30A-5P,MIR-30C,MIR-30D,MIR-30B,MIR-30E-5P 16 20
PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_DN 17 18
ATAAGCT MIR-21 18
TACTTGA,MIR-26A,MIR-26B 19 15 18 18
AMIT_EGF_RESPONSE_40_HELA 20
AGCATTAMIR-155 13
NAGASHIMA_EGF_SIGNALING_UP 16
ACATATC,MIR-190 17
TONKS_TARGETS_OF_RUNX1_RUNX1T1_FUSION_HSC_UP 19
DAZARD_RESPONSE_TO_UV_NHEK_DN 9 8
TTGCACT,MIR-130A,MIR-301,MIR-130B 12 11
DACOSTA_UV_RESPONSE_VIA_ERCC3_COMMON_DN 13 16
CACTTTG,MIR-520G,MIR-520H 14
DACOSTA_UV_RESPONSE_VIA_ERCC3_DN 15 13
GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_TURQUOISE_UP 17
ATTACAT MIR-380-3P 19
TGCTGCT,MIR-15A, MIR-16,MIR-15B,MIR-195,MIR-424 MIR-497 20 19
ATGCTGC,MIR-103,MIR-107 14
GTACTGT,MIR-101 17
CTTTGCA MIR-527 20

140



Identification of miR-155 target genes in B-cell lymphoma

SUPPLEMENTARY TABLE 2. Similar numbers of probes were identified in the miRNA-
targetomes of EV and miR-155-transduced ST486 and Ramos cells.

ST486 (n=14,468%) Ramos (n=11,928")
i iR-155
Enrichment EV miR-155 EV mi
#probes  |P/T>2 1,804 (12.5%) 1,833 (12.7%) 1,969 (16.5%) 1,927 (16.2%)
IP/T>4 664 (4.6%) 701 (4.8%) 743 (6.2%) 751 (6.3%)
IP/T>8 239 (1.7%) 226 (1.6%) 269 (2.3%) 263 (2.2%)

*Number of probes that were flag present and showed consistent signals in Cy3 and Cy5
signals.

SUPPLEMENTARY TABLE 3. MiR-155 target genes in miR-155-ST486 cells identified with
Ago2-RIP-Chip.

Gene ProbeName  MiR-155 EV  miR155/ g1  #8-mer?in #6-mer’in
IPIT IPIT EV 3UTR 3UTR
DET1* NM_017996 A_23_P26184 17.5 1.4 12.6 + 1 3
TBRG1 NM_032811 A_23_P98463 11.6 2.2 5.4 + 1 2
TRIM32 NM_012210 A_23_P112311 2.1 0.4 5.2 1 1
HOMEZ NM_020834 A_23 P76829 5.1 1.1 4.7 o* o’
PSIP1* NM_021144 A_23_P256384 9.8 2.4 4.1 + 1 2
C1dorf159  BC009182 A_24_P58177 2.0 0.6 3.7 0 1
CCDC126  NM_138771 A_23_P168592 4.0 1.1 3.7 1 3
MAX NM_145114 A_23_P436138 2.1 0.6 3.7 0 0
PSKH1 NM_006742 A_23_P390596 11.7 3.3 35 1 1
BRWD1 NM_018963 A_24_P190541 35 1.1 3.3 + 0 2
ZNF578 NM_001099694  A_23_P339601 5.0 15 3.3 1 1
IER5 NM_016545 A_23_P86330 3.4 1.1 3.1 0 1
TCF4 NM_003199 A_23 P27332 3.1 1.0 3.1 + 2 4
SAR1A NM_020150 A_23 P127175 4.6 15 3.0 0 0
KLHL5 NM_015990 A_23_P121527 3.9 1.3 3.0 1 3
TBC1D14  NM_020773 A_24_P120352 2.3 0.8 3.0 1 1
JARID2 NM_004973 A_23 P214876 6.8 2.2 3.0 + 2 2
PRDM15  AY063456 A_32_P145989 2.8 1.0 3.0 1 2
ZNF845 NM_138374 A_32_P207428 6.2 2.1 2.9 1 2
USPL1* NM_005800 A_24_P338757 6.4 2.2 2.9 0 1
DPY19L1  NM_015283 A_23 P358628 3.4 1.2 2.8 1 3
ARRDC2  NM_001025604  A_23 P130965 2.1 0.7 2.8 0 1
FAM119A  NM_145280 A_23 P209337 2.6 1.0 2.7 0 0
PHKB NM_001031835  A_23 P206532 2.2 0.8 2.7 0 1
TAB2 NM_015093 A_23_P19702 7.1 2.7 2.6 + 1 2
ERI2 NM_080663 A_23_P129717 6.6 25 26 0 0
PICALM  NM_007166 A_23 P147995 2.2 0.9 2.6 0 4
ZFP36* NM_003407 A_23_P39237 19.4 7.6 2.6 0 1
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SUPPLEMENTARY TABLE 3 continued

VAMP3* NM_004781 A_24_P370887 20.2 7.9 25 0 3
CENPI NM_006733 A_23_P252292 2.1 0.8 2.5 0 0
BACH1 NM_206866 A_23_P211047 14.5 5.8 2.5 + 1 3
RHEB NM_005614 A_23_P134247 3.8 15 25 0 1
PHC2 NM_198040 A_23_P423864 2.6 1.1 2.4 1 1
ZNF320 NM_207333 A_32_P540407 6.1 2.5 2.4 1 2
PLEKHB2 NM_001100623  A_24_P873414 4.6 1.9 2.4 1 1
C5orf15 NM_020199 A_23_P81650 3.2 1.3 2.4 0 0
ARFIP1 NM_001025595  A_24_P166094 2.3 1.0 2.4 0 1
CLUAP1 NM_024793 A_23_P77714 2.6 11 2.3 1 1
RNF26 NM_032015 A_23_P64630 2.2 1.0 2.3 1 1
PPA2 NM_176869 A_24_P214625 3.0 1.3 2.2 0 0
PANK1 NM_148977 A_23_P127054 3.7 1.7 2.2 + 0 1
GALT NM_000155 A_24_P12865 2.4 1.1 2.1 1 1
TPD52 NM_001025252  A_23_P216257 2.6 1.2 2.1 0 1
ZNF137 NR_023311 A_23_P208238 3.1 15 2.1 0 0
CD58 NM_001779 A_23_P138308 3.8 1.9 2.1 0 2
CSRP2 NM_001321 A_23_P44724 10.8 5.2 2.0 1 2
LIN9 NM_173083 A_23_P301995 2.2 11 2.0 0 1
DCTN6 NM_006571 A_23_P43049 8.8 4.3 2.0 0 0
FGF7 NM_002009 A_23_P14612 10.7 5.3 2.0 + 1 2
KIAA1715  CR936742 A_32_P127248 2.6 1.3 2.0 + 0 2
MARK2 NM_004954 A_24_P914495 3.3 1.6 2.0 + 0 1
CSNK1G2  NM_001319 A_24_P99963 3.2 1.6 2.0 + 1 1
MFSD5 NM_032889 A_23_P72850 5.0 25 2.0 0 0
LNX2 NM_153371 A_23_P402287 3.4 1.7 2.0 + 1 1

*present on miR-155-Ramos miR-155 target list,"TS-miR-155 target predicted by TargetScan 6.2, 8-
mer sequence — AGCATTAA, *6-mer sequence — GCATTA, “8-mer and 6-mer in CDS
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SUPPLEMENTARY TABLE 4. MiR-155 target genes in miR-155-Ramos cells identified
with Ago2-RIP-Chip.

o o . H#6-mer
MCM3APAS  NR_002776 A_24_P117301 13.5 51 2.6 NA* NA
DET1* NM_017996 A_23 P26184 4.1 15 2.6 + 1 3
SLC23A2 NM_203327 A_24_P254278 3.3 13 2.6 0 0
VAMP3* NM_004781 A_24_P370887 9.0 3.6 2.5 0 3
USPL1* NM_005800 A_24 P338757 5.0 2.0 2.5 0 1
ZFP36* NM_003407 A_23 P39237 11.1 4.6 2.4 0 1
AKTIP NM_001012398  A_32_P224840 7.2 3.0 2.4 0 1
ZBTB4 NM_020899 A_23 P100654 34.4 151 2.3 0 0
SNAP23 NM_003825 A_23 P206177 3.3 15 2.2 0 0
SETD7 NM_030648 A_24_P251841 2.5 1.2 2.1 + 0 4
STK38 NM_007271 A_24_P63T27 2.8 14 2.0 0 1
FAM82A2 NM_018145 A 24 P296280 3.9 19 2.0 0 0
RC3H2 NM_018835 A_23_P94636 2.8 14 2.0 0 3
PSIP1* NM_021144 A_23_P256384 4.6 2.3 2.0 + 1 2
0AZ3 NM_016178 A_23 P432583 5.3 2.7 2.0 0 0

*present on MiR-155-ST486 miR-155 target list,"TS-miR-155 target predicted by TargetScan 6.2, ?8-mer
sequence — AGCATTAA, 6-mer sequence — GCATTA, “Antisense RNA

CHAPTER 6
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SUPPLEMENTARY TABLE 5. MiR-155 target genes in KM-H2 cells (Ago2-RIP-Chip).

miR-155 miR-155 # 8-mer? # 6-mer®
Gene Probe asier EYPT o agev ' inauR insutR
RICTOR NM_152756 A_32_P193322 7.2 17.0 0.42 + 1 3
OOEP NM_001080507  A_32_P14762 1.0 2.3 0.42 1 1
SMC4 NM_005496 A_23_P91900 1.4 31 0.47 0 0
ASPH NM_032466 A_24_P18105 5.3 10.9 0.49 0 2
TMTC3 NM_181783 A_24_P141804 4.9 9.9 0.49 0 1
EPG5 NM_020964 A_24_P392146 55 11.2 0.49 0 0
RBBP6 NM_032626 A_23_P342053 1.0 2.0 0.51 0 3
SLC25A25 NM_001006641  A_23_P9435 1.7 3.3 0.52 0 0
PDE4B NM_001037341  A_24_P325333 4.1 7.7 0.53 0 0
GCNT2 NM_001491 A_24_P397489 6.8 12.6 0.54 0 0
ISCA1 NM_030940 A_24_P387609 2.2 3.9 0.56 0 0
DNA2 NM_001080449  A_24_P366107 4.6 8.2 0.57 0 0
PKN2 NM_006256 A_24_P387869 40.3 70.0 0.58 + 1 1
JARID2* NM_004973 A_23_P214876 3.7 6.5 0.58 + 2 2
HIF1AN NM_017902 A_23_P46964 1.4 2.5 0.58 0 0
ZNF174 NM_003450 A_24_P193600 1.3 2.3 0.58 0 0
SETDS NM_020382 A_32_P82807 2.2 3.8 0.59 0 0
SLC30A1 U68494 A_24_P937095 35 5.8 0.60 0 1
TBRG1* NM_032811 A_23_P98463 3.7 6.2 0.60 + 1 2
AKAP11 NM_016248 A_23_P204929 11.3 18.7 0.60 0 0
ZNF776 AK095607 A_23_P378499 25 4.1 0.60 0 1
SYNJ1 NM_203446 A_23_P324718 9.5 15.6 0.61 0 1
FAM108C1  NM_021214 A_23_P369701 3.1 5.0 0.61 0 0
BET1 NM_005868 A_23_P59700 1.3 2.1 0.62 0 1
DET1* NM_017996 A_23_P26184 3.4 5.5 0.62 + 1 3
MORF4L1  NM_206839 A_32_P164314 1.5 2.4 0.62 0 0
PANK3 CR612518 A_24_P311845 14.5 23.1 0.63 0 1
SLC2A3 NM_006931 A_24_P81900 7.8 12.3 0.63 0 0
POLK NM_016218 A_23_P386450 2.9 4.7 0.63 0 0
HDAC4 NM_006037 A_23_P210048 2.1 3.3 0.63 + 1 2
C6orf204 NM_001042475  A_32_P49832 5.1 8.1 0.64 0 0
DCAFS8 NM_015726 A_23_P200143 1.5 2.3 0.64 0 0
BICD1 BC010091 A_24_P916586 1.3 2.0 0.64 0 0
ABCC5 NM_005688 A_23_P212665 7.7 11.9 0.64 0 0
RB1CC1 NM_014781 A_23_P9056 2.4 3.7 0.64 0 0
HOMEZ* NM_020834 A_23_P76829 1.6 2.5 0.64 0 0
BRWD1 NM_001007246  A_24_P861009 1.8 2.7 0.65 0 0
TCF7L2 NM_001198525  A_24_P921823 5.3 8.2 0.65 + 1 2
UBE2D1 NM_003338 A_24_P364025 2.7 4.2 0.65 0 0
ZNF729 NM_001242680  A_24_P161696 20.9 32.1 0.65 0 0
TMEM127 NM_017849 A_24_P80181 1.9 2.9 0.65 0 0
TBC1D20  NM_144628 A_23_P354193 2.6 4.0 0.65 0 1

*present on MiR-155-ST486 miR-155 target list,"TS-miR-155 target predicted by TargetScan 6.2, ?8-mer
sequence — AGCATTAA, ’6-mer sequence — GCATTA
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TBRG1 transcript isoforms deposited in the Ensemble

database.
Name Transcript ID Length Biotype miR-155BS  shRNA-1 shRNA-2  shRNA-3
TBRG1 ENST (bp) in 3UTR
001 00000441174* 4004 Protein coding Yes Yes Yes Yes
011 00000531667 552 Protein coding No No No Yes
201 00000375005 1483 Protein coding No No Yes Yes
003 00000284290 4461 N°”Se’:f:c$ed‘ated Yes No Yes Yes
004 00000452080 730 NO”Sezsjcged‘a‘ed No No Yes No
005 00000529543 2142 N°”se’;feecgedia‘ed Yes No No Yes
009 00000530731 1571 ~ \onsense mediated No No Yes Yes
decay
007 00000438907 842  Processed transcript No No Yes Yes
002 00000473629 1634 Retained intron No No Yes Yes
006 00000491010 2308 Retained intron No No No Yes
008 00000531033 1809 Retained intron No No No No
* CCDS8448

SUPPLEMENTARY TABLE 7. Primer sequences used for cloning.

Gene Forward primer (5°-3’) Reverse primer (5’-3’)
miR-155 TGTCACCTCCAGCTTTATAACC GGCTTTATCATTTTTCAATCT
DET1 GTGCCTCACCAGAGCCAGAT CACTTAGTTCTCCCAGGAACAG
TRIM32 GAGAAATTATCAGTTTCTTCTGC GTTCAACATCATTTTAATGACC
JARID2 AACGCCCGTGGTCGATTTAT TATTATTAAACCTTGTAGTACAAAC
TBRG1 ACAAGAAGGGATCAGATGCCACATCG  GAAAGAGGCCTTCAGTGTTTG
PSIP TTGGGCTCAAAGCATTAATC TTTGGTTACAGTTTCATTCTT
HOMEZ ATGGCATAGGTACTGCTTCC GAGTTATGCCGTAGCCCTTG
TBRG1 CTCCATGTTCCATGCAACTG GGGTAACTAAGGCATCCCAC
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SUPPLEMENTATY TABLE 8. shRNA sequences.

shRNA

Sequence (5'-3')

shTRIM32-1-S*
shTRIM32-1-AS*
shTRIM32-2-S
shTRIM32-2-AS
shHOMEZ-1-S
shHOMEZ-1-AS
shHOMEZ-2-S
shHOMEZ-2-AS
shJARID2-1-S
shJARID2-1-AS
shJARID2-2-S
shJARID2-2-AS
shDET1-1-S
shDET1-1-AS
shDET1-2-S
shDET1-2-AS
shPSIP1-1-S
shPSIP1-1-AS
shTBRG1-1-S
shTBRG1-1 -AS
shTBRG1-2-S
shTBRG1-2-AS
shTBRG1-3-S
shTBRG1-3-AS

TCGAGATAACTCCCTCAAGGTATATACTCGAGTATATACCTTGAGGGAGTTATTTTTTG
AATTCAAAAAATAACTCCCTCAAGGTATATACTCGAGTATATACCTTGAGGGAGTTATC
TCGAGGCCACTTCTTCTCGGAGAATGCTCGAGCATTCTCCGAGAAGAAGTGGCTTTTTG
AATTCAAAAAGCCACTTCTTCTCGGAGAATGCTCGAGCATTCTCCGAGAAGAAGTGGCC
TCGAGAGGCACCATGCCTCCTAATAACTCGAGTTATTAGGAGGCATGGTGCCTTTTTTG
AATTCAAAAAAGGCACCATGCCTCCTAATAACTCGAGTTATTAGGAGGCATGGTGCCTC
TCGAGTACCTCGGCCTGAGATCATTCCTCGAGGAATGATCTCAGGCCGAGGTATTTTTG
AATTCAAAAATACCTCGGCCTGAGATCATTCCTCGAGGAATGATCTCAGGCCGAGGTAC
TCGAGGAAACAGGTTTCTAAGGTAAACTCGAGTTTACCTTAGAAACCTGTTTCTTTTTG
AATTCAAAAAGAAACAGGTTTCTAAGGTAAACTCGAGTTTACCTTAGAAACCTGTTTCC
TCGAGGCCCAACAGCATGGTGTATTTCTCGAGAAATACACCATGCTGTTGGGCTTTTTG
AATTCAAAAAGCCCAACAGCATGGTGTATTTCTCGAGAAATACACCATGCTGTTGGGCC
TCGAGAACGTTGAAAAGCCTCCTTGTCTCGAGACAAGGAGGCTTTTCAACGTTTTTTTG
AATTCAAAAAAACGTTGAAAAGCCTCCTTGTCTCGAGACAAGGAGGCTTTTCAACGTTC
TCGAGAAGACTATTCCCTCCATATCACTCGAGTGATATGGAGGGAATAGTCTTTTTTTG
AATTCAAAAAAAGACTATTCCCTCCATATCACTCGAGTGATATGGAGGGAATAGTCTTC
TCGAGGCAGCAACTAAACAATCAAATCTCGAGATTTGATTGTTTAGTTGCTGCTTTTTG
AATTCAAAAAGCAGCAACTAAACAATCAAATCTCGAGATTTGATTGTTTAGTTGCTGCC
TCGAGACTGGAAGTTCTGAAGAAACTCGAGTTTCTTCAGAACTTCCAGTTTTTTG
AATTCAAAAAACTGGAAGTTCTGAAGAAACTCGAGTTTCTTCAGAACTTCCAGTC
TCGAGGAGAACAACAAACTGGAAGATCTCGAGATCTTCCAGTTTGTTGTTCTCTTTTTG
AATTCAAAAAGAGAACAACAAACTGGAAGATCTCGAGATCTTCCAGTTTGTTGTTCTCC
TCGAGCCAGACCAGAAGTGTCTATATCTCGAGATATAGACACTTCTGGTCTGGTTTTTG
AATTCAAAAACCAGACCAGAAGTGTCTATATCTCGAGATATAGACACTTCTGGTCTGGC

*S-sense strand, AS-antisense strand
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SUPPLEMENTARY FIGURE 1. Ago2, miR-19b and miR-155 are enriched in Ago2-IP
fraction in ST486 and Ramos cells. (A) Analysis of the IP efficiency by Western blotting
for Ago2 protein. Ago2 was pulled down when anti-Ago2 antibody was used and not when
IgG1l negative control antibody was used. (B) IP efficiency of the Ago2-RISC complex
analyzed by gRT-PCR for miR-19b and miR-155. Both miRNAs were pulled down with anti-
Ago2 antibody and not with IgG1 negative control antibody. MiRNA levels were normalized
to RNU48. MiR-155 levels could only be measured in miR-155-transduced samples, since
the levels in EV-transduced samples were not detectable.
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SUPPLEMENTARY FIGURE 2. GFP competition assay of cells transduced with
shRNAs against five validated miR-155 target genes. Percentage of GFP+ cells was
normalized to day 3 and fold increase or decrease within 21 days was shown. For TRIM32,
JARID and DET1, one shRNAs caused decrease in percentage of GFP+ ST486 cells,
whereas the other shRNA construct had no effect. For HOMEZ, both shRNAs showed an
growth inhibitory effect. For PSIP1 the shRNA construct also resulted in growth inhibition
of ST486 cells. The average of 2 or 3 experiments was presented. P value was determined
by linear regression (**p<0.01, **** p<(0.0001). Decrease in mMRNA level of selected
genes upon shRNA presented in a table as a ratio between mRNA level in GFP+ cells with
shRNA compared to GFP+ cells with EV. None of the shRNAs induced a phenotype similar
to that observed for miR-155.
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SUMMARY AND DISCUSSION

MiRNAs are effective gene expression regulators that play crucial roles in many
cellular processes, such as apoptosis, proliferation and differentiation.
Deregulated miRNA levels are observed in many diseases including cancer and
have been causatively implicated in the cancer pathogenesis. The mechanisms
causing altered miRNA levels or the genes affected by miRNA deregulation are
often unknown. The aim of the research project presented in this thesis was to
elucidate key aspects of the regulation of miRNA biogenesis (chapter 2-4) and

consequences of altered miR-155 levels (chapter 5-6) in B-cell lymphoma.

Regulation of miRNA biogenesis

MiRNA levels are regulated at the transcriptional and post-transcriptional level.
At the transcriptional level, the regulation of expression is often similar to that of
protein-coding genes and includes regulation of expression by transcription
factors, methylation, etc. A very important additional step in the regulation of
miRNA expression is the processing from the primary transcript to the mature
miRNA. In chapter 2, we discuss currently known mechanisms involved in
regulation of miRNAs processing and we indicate that most regulatory factors
are specific for individual miRNAs or for a subgroup of the miRNAs. Several
tissue-specific mechanisms have been identified that result in either enhanced or
inhibited miRNA processing. Regulatory mechanisms, as currently known from
the literature, are described for a group of ~30 miRNAs. We speculate that in
addition to the miRNAs specifically addressed in this chapter, many more
miRNAs are being regulated during processing.

MiR-155 is one of the most studied oncogenic miRNAs that has a
presumed regulated processing in B-cell lymphoma, although no regulating
factors have been identified so far. MiR-155 belongs to a small group of exonic
miRNAs that are characterized by location of the stem-loop structure in exons of
non-protein-coding genes. Processing of miR-155 and two additional exonic
miRNAs was investigated in chapter 3.
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We assessed levels and subcellular localization of unspliced and spliced primary
transcripts in B-cell lymphoma cell lines. We showed that unspliced transcripts
are predominantly nuclear, whereas spliced transcripts are partly transported to
the cytoplasm and are, as such, unavailable for processing by the
Microprocessor complex. These results indicate that splicing and nuclear export
can serve as a mechanism to prevent processing of exonic miRNAs. Upon
stimulation of B-cell lymphoma cells the unspliced/spliced transcript ratio of BIC
(pri-miR-155) decreased, indicating that external stimuli may affect the
efficiency of pri-miRNA splicing and nuclear export, and thereby regulate the
levels of exonic miRNAs.

A second oncogenic miRNA cluster that is frequently deregulated in B-cell
lymphoma is the miR-17~92 cluster that consists of six miRNAs, i.e. miR-17,
miR-18a, miR-19a, miR-20a, miR-19b and miR-92a. In chapter 4, we
investigated the expression pattern of these six miRNAs in 117 non-Hodgkin
lymphoma (NHL) cases and in 21 NHL cell lines. We show that miR-92a is the
most abundant miRNA in three of the four subtypes of the NHL cases, all NHL
cell lines and in the normal B-cell subsets. Only in diffuse large B-cell lymphoma,
miR-19b levels were higher than the miR-92a levels. Comparison of the
individual miRNA levels in NHL as compared to their normal counterparts
showed that miR-19b is the most significantly induced miR-17~92 cluster
member. This suggests that either the processing efficiency or the stability of
miR-19b is increased in NHL. The observed miR-19b induction is consistent with

the known oncogenic role of miR-19b in lymphomagenesis.

Identification of microRNA-155 target genes

Studying the cellular function of specific miRNAs often includes their inhibition or
overexpression in the cell type of interest. Transfection of small precursor-like
molecules or anti-sense oligo’s is effective only for short-term experiments. To
achieve long-term induction or inhibition of specific miRNAs, viral vectors are
commonly used. For overexpression of miRNAs, cloning of the stem-loop region
with the 100-150nt 3’ and 5’ flanking region is generally effective to induce the
miRNA of interest. Effective strategies for inhibition of highly abundant miRNAs
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or all members of a specific seed family are technically more challenging. In
chapter 5, we describe a straightforward and rapid method to generate
constructs with antisense miRNA sequences against single miRNAs, multiple
miRNAs or seed families. These so-called miRNA sponges were generated
starting from short oligo’s that were ligated to concatamers of variable sizes and
cloned in a selected vector. We demonstrate that these miRNA sponges
efficiently sequester miRNAs, inhibit their function and, as such, can be used for
in vitro or in vivo loss-of-function studies.

To study the role of miR-155 and identify its target genes, we
overexpressed miR-155 in two Burkitt lymphoma cell lines, ST486 and Ramos
(chapter 6). Both cell lines have very low endogenous miR-155 levels compared
to the levels in germinal center B cells. Interestingly, we observed an enhanced
growth of ST486 cells upon miR-155 overexpression, but not of Ramos cells.
Using Ago2-RIP-Chip we identified 54 and 15 miR-155 target genes in ST486
and Ramos cells, respectively. The lower number of target genes and the lower
fold enrichment of the miR-155 targets in the Ago2-IP fraction observed for miR-
155-transduced Ramos cells suggest a differential targeting efficiency in these
two cell lines. We selected four ST486-specific miR-155 targets, TBRG1, TRIM32,
HOMEZ, JARID2, and two common targets, DET1 and PSIP1, for further
validation. All six genes were confirmed as miR-155 targets in a luciferase
reporter assay. Next, we investigated whether these miR-155 targets were also
targeted in Hodgkin lymphoma cells with high endogenous miR-155 levels. Five
of the six selected target genes showed diminished abundance in the miRNA
targetome of cells transduced with miR-155 sponge compared to cells
transduced with empty vector. This suggests that these five genes are also
targeted by endogenous miR-155 in Hodgkin lymphoma cells. To determine if we
can copy the growth promoting phenotype observed in ST486 cells upon miR-
155 overexpression, we inhibited TBRG1, TRIM32, HOMEZ, JARID2, DET1 and
PSIP1 using shRNA constructs. Inhibition of TBRG1 resulted in growth
enhancement suggesting that TBRG1 is involved in growth promoting phenotype

observed upon miR-155 overexpression in ST486 cells.
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In conclusion, in this thesis we investigated mechanisms involved in
regulation of miRNA processing and proposed a novel mechanism to regulate
processing of exonic miRNAs by nuclear export of spliced pri-miRNA transcripts.
We also showed differential processing of miR-17~92 cluster members and
specific upregulation of miR-19b in NHL. In the second part, we investigated the
effect of miRNA modulation on B-cell lymphoma cells and we described method
to inhibit miRNAs by miRNA sponges. Finally, we identified novel miR-155
targets in B-cell lymphoma and showed that miR-155 induced cell growth by
targeting the TBRG1 gene.

FUTURE PERSPECTIVES

In the past 10 years, the miRNA research field has greatly expanded and
knowledge regarding miRNA processing, target gene recognition and functioning
has been gained. Despite these developments it is also clear that there are still

many questions that need to be answered to fully understand miRNA biology.

Identification of miRNAs with (de)regulated processing

In this thesis we discussed miRNAs that undergo regulated processing.
Specifically, we investigated processing of miR-155 and the miR-17~92 cluster.
The group of miRNAs regulated at the processing level is likely to be much larger
than currently described in the literature. An indication for regulated processing
is an inconsistency between primary and mature miRNA levels. We started
analysis of pri-miRNAs and mature miRNAs levels in 12 samples of normal B
cells and B-cell lymphoma to gain a global insight in the number of miRNAs that
are potentially regulated at the processing level.

The incomplete characterization of a significant subset of the primary
miRNA transcripts makes it challenging to reliably analyze their expression
levels. Many miRNAs are localized in introns of protein coding genes and
commercially available probes that mostly detect spliced transcripts are not
suitable for detection of such pri-miRNAs. Potential problems that may affect
detection of primary miRNA transcripts of miRNAs are that (1) the exact length

154



Summary, Discussion & Future perspectives

and transcriptional start site of intergenic pri-miRNAs transcripts is frequently
unknown; (2) it is unknown if the spliced or unspliced transcripts serve as
templates for the biogenesis of exonic miRNA; (3) many intronic miRNAs are
transcribed from a promoter that is different from the promoter used by the
protein-coding host gene and this might lead to different transcript sizes; (4)
some mature miRNAs can be transcribed from multiple loci on the genome. All
these aspects complicate the design of a good platform to determine the
expression levels of pri-miRNA transcripts. To address these putative
complicating factors we designed a custom gene expression array containing
probes that cover the stem-loop region and sequences flanking the stem-loop
regions of all pri-miRNA transcripts (Fig. 1A). For data analysis we selected the
probe that showed the highest signal for each stem-loop region. Probes
corresponding to 974 miRNAs were present on both the mature and the pri-
miRNA arrays and were detectable for the pri-miRNA and/or mature miRNA in at
least 1 of the 12 samples. Comparison of the levels of pri-miRNAs and mature
miRNAs revealed a significant positive correlation for only 39 miRNAs, whereas a
significant inversed correlation was observed for 35 miRNAs (Table 1).

The group of miRNAs with a positive correlation contained all six
members of the miR-17~92 cluster with a Pearson correlation coefficient that
ranged from 0.77 to 0.92 (p< 0.01). This was consistent with the positive
correlation observed for these six miRNAs and the C130RF25 transcript levels in

TABLE 1. Correlation between pri-miRNA and mature miRNA.

#miRNAs Pearson correlation p-value
Significant positive correlation 39 0.57- 0.92 <0.05
Positive correlation 121 0-0.56 >0.05
Significant negative correlation 35 -0.94- -0.58 <0.05
Negative correlation 99 -0.57-0 >0.05
Only pri-miRNA detected* 629 - -
Only mature miRNA detected* 51 - -
Total 974

*Detected at least in 1 of 12 samples
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NHL cases and cell lines (chapter 4). MiR-155 levels were also positively
correlated with BIC transcript levels and showed a Pearson correlation coefficient
of 0.56 (p=0.055). This is in accordance with the positive miR-155 - BIC
correlation observed in B-cell lymphoma cell lines (chapter 3). For the vast
majority of the analyzed miRNAs, i.e. 629 (65%), we only detected the pri-
miRNA transcripts and not the mature miRNAs. This suggests that most of the
primary transcripts are expressed, but not processed to mature miRNAs in B
cells or B-cell lymphoma. Another explanation might be that the mature miRNAs
are unstable or actively degraded.

DGCR8 is an essential component of the Microprocessor complex and
therefore required for miRNA processing (Han et al., 2006; Landthaler et al.,
2004). Inhibition of DGCR8 should prevent miRNA biogenesis and thus result in
an increase of pri-miRNA levels. In our initial experiment with an shRNA against
DGCR8 in HL cell line we observed enhanced levels for only a small fraction
(n=53) of the pri-miRNA transcripts (Fig. 1B). The lack of enhanced pri-miRNA
levels for the vast majority of the transcripts is not caused by a global shift in
pri-miRNA levels during normalization procedures, since we observed no
difference for the protein-coding transcript levels that were also present on the
array. The efficiency of DGCRS8 inhibition was shown by 2.4 fold decrease in
DGCRS8 transcript levels (Fig. 1C) and 3 fold decrease in miR-155 levels (Fig.
1D).

There was a striking overlap, i.e. 33 of the 53 (62%), between the
miRNAs that showed enhanced pri-miRNA levels upon DGCRS8 inhibition and the
miRNAs that showed a positive correlation between the mature and primary
transcript levels. Probes for all six members of the miR-17~92 cluster as well as
miR-155 showed 15 to 65 fold higher transcript levels upon shDGCR8 and were
among the top ten most affected probes.

At present, we cannot explain why the correlation between primary and
mature miRNA levels is so poor and why the levels of most pri-miRNA transcripts
are not enhanced upon DGCRS8 inhibition. This poor correlation might represent
a mechanism for the cells to achieve tissue-specific miRNA expression patterns.

This would mean that pri-miRNAs are abundantly expressed, but need auxiliary
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FIGURE 1. Inhibition of DGCR8 affect only fraction of pri-miRNAs. (A) Up to 6
probes were designed for each miRNA stem-loop (indicated in red), i.e. 2 probes that
cover stem-loop region, 2 probes located within 100nt stem-loop flanking sequence and 2
probes located in the region 100-200nt from stem-loop structure. (B) Comparison of levels
of pri-miRNAs (indicated in black) in L1236 cells transduced with lentiviral vector
containing shDGCR8 versus scrambled control. Correlation of protein-coding gene levels
was indicated in color. All transcripts were detected by Agilent custom gene expression
array. Levels of DGCR8 (C) and miR-155 (D) were decresed upon DGCRS8 inhibition
measured by gRT-PCR relative to HPRT and RNU48 levels, respectively.

tissue-specific proteins to regulate processing by the Microprocessor complex. To
identify the proteins that are bound to specific pri-miRNAs, immunoprecipitation
of the Microprocessor complex and the subsequent identification of the proteins
in different cell types need to be performed. On the other hand, it might be that
a 2.4 fold inhibition of DGCRS8 is not sufficient to effectively inhibit biogenesis of
pri-miRNA transcripts. It would be interesting to investigate whether the same
set of pri-miRNAs is affected in different tissue types and whether the correlation

between specific pri-miRNAs and mature miRNAs is tissue-specific. Based on
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these preliminary findings it is tempting to speculate that only a minority of the
actively transcribed pri-miRNAs is processed to mature miRNAs. This implies
that regulation of miRNA biogenesis might be a much more general phenomenon

than currently anticipated.

Identification of miRNA target genes in B-cell lymphoma

In the studies described in this thesis, a clear phenotype of enhanced miR-155
levels was observed in one of two BL cell lines. One of the identified miR-155
targets, TBRG1, phenocopied this effect. To further study the relevance of
TBRG1 in the pathogenesis of B-cell lymphoma it would be interesting to
determine TBRG1 protein expression patterns in B-cell lymphoma cases with
high and low miR-155 levels. In addition, it would be of interest to study the
effect of enhanced TBRG1 expression in HL cell lines and study the effect of
TBRG1 shRNA constructs in the Ramos BL cell line that did not show a
phenotype upon miR-155 induction. It is clear that miR-155 modulation may
have different effects in various subtypes of B-cell malignancies. To unravel
these cell type-specific miR-155 functions the miR-155 targetomes should be
studied in different stages of B-cell development and in different B-cell
lymphoma subtypes. It is intriguing, why some genes are very efficiently
targeted by specific miRNAs in one cell type, whereas they are not regulated by
the same miRNAs in other cell types despite being expressed at high levels.
Comparison of the miRNA targetomes of normal B cells to that of malignant B
cells will allow indentification of the target genes that are related to the
malignant transformation. However, it is challenging to obtain enough normal
GC B cells for efficient immunoprecipitation of endogenous Ago2. Analogous to
miR-155 and the previously analyzed miR-17 family target genes, several other
miRNAs that are important for lymphomagenesis, such as miR-150, miR-21 and
miR181b (Kotani et al., 2010), should be modulated in B-cell lymphoma cells
and subjected to Ago2-RIP-Chip.

In this thesis we used anti-Ago2 antibody for immunoprecipitation of the
RISC and the subsequent identification of miRNA target genes. However, Agol,

3 and 4 can also be a part of the RISC complex and the four isoforms are
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generally redundant (Azuma-Mukai et al., 2008; Liu et al., 2004; Meister et al.,
2004). In B-cell lymphoma, we showed that Agol and Ago2 are expressed at
high levels, whereas Ago3 and Ago4 are much less abundant (Tan et al., 2009).
Nevertheless, it would be of interest to investigate the miRNA targetome using
antibodies for all Ago isoforms separately or use a pan-Ago antibody for the RIP-
Chip.

Studies described in this thesis have been performed with miRNA and
gene expression microarray analysis using the Agilent platform. In future
studies, it would be advisable to use RNA-sequencing instead of gene expression
arrays. For identification of miRNA target sequence by Ago2-RIP-Chip, RNA-seq
analysis will allow specific identification of alternative splice isoforms that may
be differentially regulated by miRNAs as shown for targeting of TBRG1 by miR-
155. Targeting of specific transcript isoforms by a miRNA has been suggested to
represent a more common phenomenon (Deng et al., 2011). Also for miRNA
profiling studies small-RNA-seq should be implemented to allow identification of
novel miRNAs that are important for B-cell lymphoma. In addition, this will
provide specific information concerning sequence variations of the miRNAs.
Moreover, small-RNA-seq of the RIP-Chip fraction, also allows to specifically
identify the miRNAs that are indeed loaded into the RISC and this may facilitate
discrimination of true novel miRNAs from RNA degradation products. Recent
technical developments such as HITS-CLIP, PAR-CLIP and CLASH attempt to
improve methods to experimentally link miRNAs to their cellular target genes
(Chi et al., 2009; Hafner et al., 2010; Kudla et al., 2011). This will facilitate
identification of cell type-specific miRNA-target gene combinations, without
modulation of miRNA levels.

At present, the only antisense miRNA-based therapy which is a subject of
clinical trials is directed against miR-122 and aims to block hepatitis C virus
replication and viremia (Elmen et al., 2008; Jopling et al., 2005; Sarasin-
Filipowicz et al., 2009). Modulation of miRNA levels also has a great potential in
anti-cancer therapy. Mice overexpressing miR-155 and miR-21 develop miRNA-
dependent lymphomas, and removal or inhibition of these miRNAs leads to

reduced tumor sizes indicating that the tumor cells are “addicted” to these
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oncogenic miRNAs (Babar et al., 2012; Medina et al., 2010). Therefore, these
miRNAs present promising candidates for antisense therapy to treat B-cell
lymphoma patients. In this respect, it would be valuable to study the potential of
miRNA sponges described in chapter 5 to inhibit miRNAs in vivo. Tightly
controlled modulation of miRNA levels in combination with predictable outcome
of such modulations, i.e. the affected miRNA target genes, will enable the

application of miRNA modulating agents in anti-cancer therapy in future studies.
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NEDERLANDSE SAMENVATTING

MicroRNAs (miRNAs) zijn korte, ~22 nucleotiden (nt), RNA moleculen die
betrokken zijn bij de regulatie van genexpressie en daarmee een cruciale rol
spelen in een groot aantal cellulaire processen, zoals apoptose, proliferatie en
differentiatie. Veranderingen in het expressie patroon van miRNAs zijn
kenmerkend voor allerlei ziektebeelden en ook tumoren worden gekenmerkt
door een afwijkend miRNA expressiepatroon. Functionele in vitro en in vivo
studies hebben aangetoond dat deze afwijkende miRNA expressie patronen
causaal geassocieerd zijn met het ontstaan van kanker. Echter, de mechanismen
die betrokken zijn bij de veranderingen in het miRNA expressie patroon en de
genen die daardoor worden gereguleerd zijn vaak nog niet bekend. Het doel van
deze promotie studie was om factoren betrokken bij de regulatie van de miRNA
biogenese te onderzoeken (hoofdstuk 2-4) en om de effecten van een miRNA
dat frequent verhoogd tot expressie komt in B-cel lymfomen, miR-155, te
onderzoeken (hoofdstuk 5-6).

Regulatie van de miRNA biogenese

De expressie van miRNAs in de cel kan op transcriptioneel en post-
transcriptioneel niveau gereguleerd worden. Op het niveau van transcriptie zijn
de regulerende mechanismen gelijk aan de mechanismen die ook de expressie
van eiwit coderende genen reguleren, waarbij transcriptiefactoren en methylatie
een belangrijke rol spelen. Post-transcriptioneel wordt de expressie van miRNAs
in belangrijke mate gereguleerd door de biogenese van de functionele mature
miRNAs uit de langere primaire transcripten. In hoofdstuk 2 wordt een overzicht
gegeven van de factoren waarvan bekend is dat ze de biogenese van mature
miRNAs kunnen beinvlioeden. Deze factoren oefenen direct of indirect invloed uit
op de activiteit / specificiteit van de twee enzym complexen die betrokken zijn
bij de biogenese. Ook kunnen ze door binding aan de "stem" of aan de "loop"
van het primaire of precursor miRNA transcript de biogenese beinvioeden. Tot
op heden zijn er voor in totaal zo'n 30 verschillende miRNAs verschillende

weefsel specifieke factoren gepubliceerd.
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In hoofdstuk 3 hebben we de biogenese onderzocht van een relatief kleine groep
van miRNAs die in exonen van niet coderende genen liggen. Voor deze groep
van miRNAs kan het transcript met of zonder intronen dienen als template voor
de biogenese van de mature miRNAs. Voor miRNAs die in de intronen liggen van
coderende of niet coderende genen kunnen splicing en de eerste stappen van de
miRNA biogenese tegelijkertijd plaats vinden. We hebben ons onderzoek gericht
op drie miRNAs: miR-22, miR-146a en miR-155, die in exonen liggen van niet
coderende genen. We hebben eerst gekeken naar de intracellulaire locatie van
de primaire (pri-)miRNA transcripten met en zonder intronen. Hieruit bleek dat
de intron houdende pri-miRNA transcripten bijna exclusief in de kern
gelokaliseerd zijn, terwijl de pri-miRNA transcripten na splicing van de intronen
gedeeltelijk in de kern zitten en gedeeltelijk in het cytoplasma. Aangezien de le
stap voor de biogenese uitsluitend in de kern plaats vindt, is het aannemelijk dat
de intron-houdende pri-miRNA transcripten de belangrijkste bron voor de miRNA
biogenese zijn. De verhouding tussen de hoeveelheid transcript voor en na
splicing kan variéren onder invloed van stimulatie, wat er op kan duiden dat de
miRNA biogenese gereguleerd kan worden door het veranderen van de balans
tussen splicing in combinatie met het nucleair export of miRNA biogenese.
Overexpressie van een transcript zonder intronen resulteerde echter wel in een
duidelijk toename van de hoeveelheid mature miRNA. Dit betekent dat het
transcript zonder intronen wel degelijk gebruikt kan worden voor de miRNA

biogenese mits in voldoende mate aanwezig in de kern.

In hoofdstuk 4 hebben we een aantal karakteristiecken van het miR-17~92
transcript in B-cel lymfomen onderzocht. Dit oncogene miRNA cluster bevat de
“stem-loop” structuren voor 6 miRNAs, miR-17, miR-18a, miR-19a, miR-20a,
miR-19b and miR-92a. Er zijn twee iso-vormen van dit transcript, waarbij de
stem-loop structuren zich kunnen bevinden in het exon van de ene iso-vorm en
in het intron van de andere iso-vorm. Opmerkelijk is dat de expressie van de
mature miRNAs in de cel sterk kan verschillen, terwijl ze allen afkomstig zijn van
hetzelfde primaire transcript. We hebben de hoeveelheid van de zes miRNAs

bepaald in drie B cel maturatie stadia, 117 B cel lymfomen en in 21 B cel
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lymfoom cellijnen. In normale B cel subsets en drie B cel lymfoom subtypen was
de expressie van miR-92 10 tot 100x hoger dan de 5 andere miRNAs. Alleen bij
het diffuus groot cellig B cel lymfoom was de expressie van miR-19b het hoogst.
In vergelijking met de normale voorloper cellen lieten alle lymfoom subtypen
een sterke toename zien van met name miR-19b, terwijl geen toename werd
gezien van miR-92. Ook voor de andere vier miRNAs werden geen verhoogde
expressie niveaus gevonden ten opzichte van de normale B cellen. De sterke
inductie van miR-19b is consistent met de oncogene effecten van dit miRNA
zoals aangetoond in muis modellen. Onze data duiden erop dat er een sterke
regulatie is van de hoeveelheid mature miRNAs, dit kan bereikt worden door
verschillen in de processing efficiency van de zes precursor miRNAs en/of door

verschillen in de stabiliteit van de mature miRNAs.

miRNA-155 target genen

In hoofdstuk 5 beschrijven we een methode waarmee we op een efficiénte
manier de functie van miRNAs kunnen remmen door productie van antisense
transcripten met meerdere bindingsplaatsen voor de miRNA(s) van interesse. De
antisense transcripten worden op een zodanige manier ontwikkeld dat ze een
variabel aantal bindingsplaatsen gericht tegen een of meerdere miRNAs kunnen
bevatten. De antisense transcripten worden tot overexpressie gebracht door
klonering in een virale vector en infectie in het celtype van interesse. We laten
op verschillende manieren, waaronder reporter testen en functionele testen, zien
dat deze zogenaamde spons vectoren effectief zijn in B cel lymfoom cellijnen. De
methode is gebaseerd op concatemerisatie van dubbelstrengs oligo’s die twee
miRNA bindingsplaatsen bevatten met daar tussen een korte willekeurige
sequentie. De 1-staps ligatie reactie met een oligo-vector ratio variérend van
1:10 tot 1:1000 resulteert in constructen met een variabel aantal oligo’s en dus
ook een variabel aantal miRNA bindingsplaatsen. De spons vectoren kunnen op
deze manier efficiént gemaakt worden gebruikt worden om het effect van miRNA

inhibitie in een specifiek celtype te bestuderen.
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Om de oncogene rol van miR-155 verder te bestuderen hebben we in hoofdstuk
6 dit miRNA tot overexpressie gebracht in twee Burkitt lymfoom cellijnen, ST486
and Ramos. Deze twee cellijnen hebben een lage endogene miR-155 expressie
in vergelijking met de normale voorloper cellen. In een cel proliferatie test
toonden we aan dat in ST486 cellen miR-155 een groei voordeel opleverde,
terwijl in Ramos cellen geen effect werd gezien op de groei snelheid. Door
immuunprecipitatie van het RNA-induced silencing complex in cellen met
overexpressie van miR-155, en de daarop volgende gen expressie profiling
konden we 54 miR-155 target genen in ST485 en 15 in Ramos aan tonen. Voor
zes genen hebben we vervolgens aanvullende functionele studies uitgevoerd om
te kijken of een van deze genen betrokken was bij het miR-155 fenotype in
ST486. TBRG1, TRIM32, HOMEZ en JARID2 werden alleen in ST486 gevonden
als zijnde miR-155 targets, terwijl DET1 en PSIP1, in zowel ST486 als ook in
Ramos als target genen voor miR-155 werden geidentificeerd. Voor zes
geselecteerde genen hebben we middels een luciferase test binding door miR-
155 bevestigd. Voor DET1 konden we ook op eiwit niveau aantonen dat er
regulatie door miR-155 plaats vond. Remming van miR-155 in een Hodgkin
lymfoom cellijn met hoge endogene miR-155 niveaus, bevestigde binding van
miR-155 voor vijf van de zes genen. Cel proliferatie testen met shRNAs tegen
alle zes genen in ST486 lieten voor vijf genen geen effect of geen groei remming
zien. Voor TBRG1 zagen we groei stimulerend effect, vergelijkbaar met het
effect zoals gevonden voor miR-155. Dit onderzoek toont aan dat het groei
stimulerende effect van miR-155 op zijn minst gedeeltelijk kan worden

toegeschreven aan het remmen van TBRG1 in ST486 cellen.

Samenvattend, laten we in dit proefschrift zien hoe de miRNA biogenese
gereguleerd kan worden voor een specifieke groep van miRNAs die gelokaliseerd
zijn in exonen van niet voor eiwit coderende genen. Verder laten we zien dat er
in B cel lymfomen een sterke regulatie is van de miRNA expressie niveaus van
miRNAs die afkomstig zijn van hetzelfde primaire miR-17~92 miRNA transcript.
in alle B cel lymfoom subtypen werd overexpressie van het oncogene miR-19b

gevonden. In het tweede deel van dit proefschrift hebben we een methode
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ontwikkeld om op een effectieve manier miRNAs te kunnen remmen. Daarnaast
hebben we de rol van miR-155 onderzocht in B cel lymfomen en aangetoond dat
TBRG1 een belangrijk target gen is voor de oncogene rol van miR-155.

Translated by Anke van den Berg
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