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Summary 

Genetical genomics is an interdisciplinary field concerned with the consequences of 

natural genetic variation on multiple molecular traits (mRNA expression levels, or 

protein and metabolite abundance). The goal of genetical genomics is to contribute 

to the establishment of informative molecular models explaining how DNA varia-

tion leads to observable phenotypic differences such as the emergence of a disease. 

Genetical genomics aims to become a genetic approach to systems biology and can 

therefore be referred to as a ‘systems genetics’ approach.  

In this thesis, we introduce the principles of genetical genomics for a general 

readership (Chapter 1). The applicability of genetical genomics is illustrated with a 

screen of gene expression in hematopoietic cells from a population of inbred mice 

(Chapter 2). The results of this experiment demonstrate that the genetic variants 

controlling gene expression levels are highly sensitive to the differentiation state of 

the cells.  

A computational protocol for mapping of genetic variants underlying varia-

tion in gene expression traits in inbred populations is fully developed in Chapter 3, 

addressing both theoretical and practical aspects of the implementation of the 

genetical genomics approach. 

Such genetic variants are referred to as eQTL (expression quantitative trait 

loci). Chapter 4 is concerned with a particularly controversial issue in genetical 

genomics: the relevance of eQTL hotspots on the genome. Those hotspot regions 

harbor genetic variation that seems to affect the expression of a (very) large number 

of genes (sometimes thousands). They could therefore reveal the presence of major 

biological regulators. However, because of limitations of the statistical methods 

commonly used, some studies have questioned the biological significance of hots-

pots. Here, we propose a permutation strategy that allows us to discard numerous 

hotspots due to statistical artifacts induced by widespread coexpression.  

In Chapter 5 we present DifCoEx a new bioinformatics method for differen-

tial coexpression analysis. We illustrate the use of DiffCoEx by applying it to the 

analysis of a publicly available microarray study of the effect of carcinogenic 

products on mutant tumor-prone rats. We show that the method is able to reveal 

meaningful groups of genes which do not show differential expression patterns, but 

are differentially correlated.  

Chapter 6 and Chapter 7 are concerned with statistical inference of causal 

relationships between phenotypes using genetic data. This topic has great signific-

ance for the of field biomedical research because it has been presented as a way to 

identify drug targets for the treatment of diseases and metabolic conditions with 

complex genetic inheritance. In Chapter 6, we review the different methods that 

have been used in genetics studies to try to connect phenotypes in functional net-

works. Subsequently, in Chapter 7 we focus more specifically on a popular method 
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based on co-mapping of phenotypes and we delineate the critical conditions required 

for its proper use. In particular, we show that this method cannot produce reliable 

results within the settings of most current genetic experiments (including genetical 

genomics) because of the limited population sizes, the limited effect size of most 

genetic variants and the omnipresence of noise in high-throughput biological tech-

nologies.  

The last part of this thesis is devoted to a discussion of when and how genet-

ical genomics can successfully contribute to a systems genetics approach of biology 

(Chapter 8). 
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Genetical genomics is a computational biology strategy that applies concepts 

of quantitative genetics to the analysis of high-throughput data from modern mole-

cular profiling technologies such as microarrays, mass spectrometers or next 

generation sequencers. The principle of genetical genomics is to exploit the genome-

wide genetic perturbation arising from natural variation in a population or induced 

by experimental crosses to study the phenotypic response at all intermediate mole-

cular levels such as in mRNA expression, or protein and metabolite abundance. 

Using this strategy, one is able to perturb (and expose) virtually any molecular 

pathway while keeping the organism under study in a functioning natural state (as 

opposed to the more radical disruptions induced by gene knock-out or knock-down 

experiments for example). This property places genetical genomics at the forefront 

of systems genetics: systems genetics aims at constructing a holistic view of biologi-

cal processes by integrating data from multiple molecular levels and from different 

tissues into explanatory models. In this chapter, we introduce the basic principles of 

genetics and how they are applied in genetical genomics. In the end, we outline the 

contents of this thesis. 
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1.1 Introduction to classical genetics principles and QTL mapping 

Genetics is the science concerned with the mechanisms that underlie heredity. The 

origin of genetics is often traced back to the middle of the 19
th

 century and Abbott 

Gregor Mendel’s careful observations on the transmission of certain traits in pea 

plants from parents to offspring, from which he derived the fundamental principles 

nowadays known as Mendel’s Laws [1]. In one of his experiments, Mendel for 

example crossed two self-pollinating plants: one with yellow seeds and one with 

green seeds. He then observed that all the first generation offspring plants had 

yellow seeds, while when those offspring plants were self-pollinated, one out of four 

plants had green seeds. Mendel deduced that the seed color trait was carried by 

discrete units that are transmitted from parents to offspring unchanged, and that 

every offspring individual received one such unit from each parent. He also con-

cluded that the unit responsible for the yellow color was dominant in that, when a 

plant inherited the units for both colors, the seeds were yellow. He additionally 

observed that the traits he studied were inherited independently and therefore 

concluded that the units behind different traits are passed independently. Those 

observations are known as Mendel’s Laws and describe patterns of inheritance for 

some traits controlled by single loci (known as Mendelian traits). Mendel’s observa-

tions would later be biologically explained by the biological process of meiosis, in 

which gametes receive one copy of each chromosome, and the units Mendel de-

scribed became known as genes.  Different versions of the genes coding for different 

values of the corresponding trait later became known as alleles.  

At first, Mendel’s visionary work did not receive the attention it deserved, and it 

was only at the dawn of the 20
th

 century that Hugo de Vries, William Bateson and 

others pursued his profound insights further [2-4]. The theoretical and statistical 

basis of quantitative genetics was then laid down: the focus of genetics was ex-

panded from the study of traits with discrete observable properties (for example seed 

color) to the study of quantitative traits with continuous measurable values (for 

example plant height) [5].  

When Thomas Hunt Morgan discovered that some of the traits (eye color and 

wing size) that he observed on his mutant Drosophila melanogaster flies tended to 

be inherited jointly, he proposed the concept of linkage and hypothesized that this 

joint inheritance was related to the proximity of genes on chromosomes [6]. These 

fundamental insights opened the way to the establishment of genetic maps that 

positioned the genes coding for studied traits onto linear chromosomes. The first 

genetic map was proposed by Sturtevant, one of Morgan’s students [7]. Until the 

middle of the 20
th

 century, the molecular nature of chromosomes (and genes) was 

unknown and it was therefore impossible to observe the actual differences that 

encoded different phenotypes. For that reason, geneticists had to rely on indirect 

manifestations of genetic information in the form of morphological markers: new 
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traits were mapped relatively to other previously studied traits that were easy to 

observe and used as markers.  

After DNA was revealed as the molecular incarnation of genes [8], and after 

Watson and Crick resolved its molecular structure [9], the discovery of the first 

restriction enzyme in 1968 [10] opened the way to the first genotyping technologies. 

In those pioneering technologies, genetic differences in the lengths of different 

sequence repeats at specific DNA markers were visualized as bands in electrophore-

sis gels. As those technologies gradually matured, molecular markers replaced 

morphological markers and denser genetic maps became available. Nowadays many 

different cost-efficient genotyping solutions (including sequencing and Single 

Nucleotide Polymorphisms arrays) have opened the way to systematic genome-wide 

fine mapping of quantitative traits (Quantitative Trait Locus or QTL mapping).  

The process of QTL mapping (Figure 1) consists in searching for genome re-

gions that influence the value of a given trait. For example, identifying a QTL for 

plant height means finding a DNA region at which the plants that carry a certain 

allele tend to be significantly higher or lower than those carrying another allele. This 

can be done by simply comparing for each available genotyped marker along the 

genome, the distribution of trait values associated with different alleles.  

 

Figure 1 - Explanatory schema of QTL mapping of plant size. In the lower part of the figure, 

schematic representations of individual plant genotypes are shown. We assume the mapping is done 

in recombinant inbred lines which are therefore homozygous mosaic of two possible parental 

genotypes (represented in dark grey and in white). The genotypes have been sorted from bottom to 

top by increasing size of the corresponding plant. QTL mapping scans the genome for a location at 

which the genotype distribution explains the difference in plant sizes. In this example, the dotted line 

is one such position as all plants with white genotypes are smaller than those with grey genotypes. 

This is reflected in the schematic QTL profile plot on top of the figure by a significant peak. 



14                                                                                                         Introduction 

ANOVA (Analysis of Variance) is a suitable statistical framework for such an 

analysis but suffers from missing data in sparse genetic maps. In 1989, Lander and 

Botstein proposed Interval Mapping [11]: a novel QTL mapping methodology 

offering solutions to these two shortcomings and pinpointing more precisely the 

actual QTL positions. 

While Mendel’s laws can explain inheritance patterns for traits controlled by 

single loci, most phenotypes including diseases tend to be controlled by multiple 

genes and fall into the category of “complex traits”. Such complex traits necessitate 

more complicated models that include more QTL as co-factors. Multiple QTL 

Mapping and Composite Interval Mapping were therefore proposed to uncover the 

complex genetic makeup behind complex phenotypes [12, 13]. 

QTL mapping experiments are often divided in two major classes: linkage map-

ping studies and association mapping studies. Linkage mapping studies track the 

joint inheritance of certain phenotypes and chromosomal regions amongst related 

individuals (families or experimental crosses such as backcrosses, F2 or Recombi-

nant Inbred Lines) to infer close physical proximity (linkage) between those 

phenotypes and those regions. Association mapping on the other hand, studies the 

correlation between marker genotypes and phenotypes in a population of mostly 

unrelated individuals. 

1.2 Molecular phenotyping 

New high throughput profiling technologies have revolutionized modern bi-

ology and at the same time changed the way genetics is performed. They have 

greatly expanded the collection of phenotypes that can be studied; adding to the 

classical and directly observable classical phenotypes such as weight or color, the 

abundances and states of a very wide variety of bio-molecules (for example, mRNA 

transcripts, proteins and metabolites). These new molecular traits can inform us on 

the inner mechanisms that underlie biological processes. A list of molecular profil-

ing technologies that can be used to study the genetics of molecular traits is given in 

Table 1. 

In this thesis, the data that are analyzed are primarily from gene expression 

microarrays, therefore in this introduction we will present in more details this 

technology. Microarrays are chips of glass or silicon on to which short DNA se-

quences known as probes are bound at spots that are spread along the surface. These 

probes are designed so that they are complementary to specific gene sequences. 

During a microarray experiment, RNA is extracted, and then complementary DNA 

(cDNA) is produced and amplified through the Polymerase Chain Reaction [14]. 

Following these steps, the amplified cDNA is applied onto the chip where it can 

hybridize to the complementary probes. The amount of cDNA that has bound to a 

specific probe is then read using a scanner which quantifies the intensity of a fluo-

rescent tag that has been incorporated to the cDNA. The scan of a microarray 
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provides a simultaneous measurement of thousands of RNA signals, for example 

mRNAs which can be used to infer the activity of genes. 

 

Molecular level Technologies References 

Genome 
SNP microarray 

DNA-Seq 

[15] 

[16] 

Epigenome 
ChIP-on-chip 

ChIP-Seq 

[17] 

[18] 

Transcriptome 
Microarray 

RNA-Seq 

[19] 

[20] 

Proteome 

2D gel electrophoresis 

Mass Spectrometry 

Antibody-based protein chip 

[21] 

[22] 

[23] 

Metabolome 
Mass spectrometry 

NMR 

[24] 

[25] 

Table 1 – Technologies for profiling of different molecular levels.  

Similar technologies have been added to the collection of tools available to 

biologists. Beadarrays, commercialized by Illumina, work in a similar fashion as 

microarrays, except the probes are attached onto beads rather than on a chip. More 

recently, Next Generation Sequencing (NGS) technologies allow to sequence and 

count a growing fraction of all of the RNA or DNA sequences present in a sample. 

Microarrays are not restricted to mRNA measurements. In particular, tiling arrays 

have been developed to survey the entire genome and discover any transcribed 

region, including those with non-coding RNAs. SNP arrays on the other hand are 

used to assay DNA, and identify sequence variants, which has made genotyping fast 

and cost-efficient. Other application of microarrays include Comparative Genome 

Hybridization which is used to identify copy number variation and ChIP-on-chip 

(Chromatin Immuno-precipitation on chip) that allows one to identify the binding 

sites of given proteins. 

In combination, all those technologies allow biologists to gain insights into 

the molecular networks that drive physiological processes with an unprecedented 

level of details. 

1.3 From the mapping of molecular traits to Systems Genetics 

Nowadays genome-wide association studies or linkage studies allow pinpointing 

with relative precision the location of genes which play even relatively minor role in 

the development of complex phenotypes such as many human diseases. In addition 

to identifying the genes in which the exact mutations are located that are responsible 

for a specific phenotype, the challenge is to identify the processes through which 
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variation in these genes leads to disease. Answering this question requires delving 

deeper into the biology and therefore studying more intrinsic traits such as choles-

terol levels, or the abundance of proteins within relevant organs, the level of 

expression of genes, or the activity of metabolic reactions. As we have discussed in 

the previous section, the technologies allowing an exploration of such molecular 

traits have matured in recent years, making the prospect of simultaneously mapping 

virtually all traits from a molecular level realistic [26]. A new global strategy was 

therefore envisioned for the study of complex traits: systems genetics [27], as it 

became known, would allow researchers to track the biological flow of information 

from the original DNA mutation to the observable phenotypic variation, by exposing 

the molecular mechanisms involved such as transcriptional networks and metabolic 

pathways (Figure 2).  

The first studies in model organisms focused on large-scale mapping of traits 

from a single molecular level. These studies revealed that molecular traits such as 

gene expression levels, protein and metabolite abundances are highly heritable and 

therefore confirmed the relevance of applying genetics approaches to their study 

[28]. Furthermore, for gene expression traits, a large part of the underlying genetic 

variation could be tracked back to the chromosomal proximity of the genes them-

selves, forming what became known as local or cis-eQTLs, in contrast with distant 

or trans-eQTLs. Another striking finding has been the revelation of the existence of 

genome regions to which variation in large number of traits can be mapped [29]; 

such regions have been designated as “QTL hotspots”. This genetic information was 

then used to try to infer biological relationships between those traits and to connect 

them into networks [30] (for example transcriptional networks). In more recent 

studies, efforts have been devoted to the integration of phenotypes from different 

levels, jointly studying gene expression, proteome, metabolome and sometimes 

classical traits such as diseases [31, 32]. Moreover a complete understanding of 

physiological processes requires studying different molecular levels across different 

types of organs, tissues, cell-types, developmental time points, and perhaps even in 

different populations. Because variation in traits is the result of a complex interplay 

between genetic and environmental factors, much can be learned by extending 

genetical genomics experiments with the addition of environmental perturbation to 

the natural genetic variation [33]. Combining all those dimensions into single 

explanatory biological models is the aim of systems genetics.  

Because systems genetics is changing the scale of biological experiments, it 

is accompanied by a set of new challenges. The first of these challenges is computa-

tional: the simultaneous mapping of tens of thousands of traits and the integration of 

multiple data types requires adapted hardware and software infrastructures. Next 

there are methodological challenges: systems genetics calls for new approaches to 

extract meaningful information from the ever-increasing amounts of data produced. 

Properly controlling the multiple testing problems, dealing with the systematic noise 

and artifacts that come with high-throughput data, combining evidence from differ-
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ent data and from the scientific literature, connecting molecular traits into relevant 

biological networks can only be achieved within sound statistical frameworks.  This 

thesis is devoted to those methodological issues. 

1.4 Outline of thesis contribution 

In addition to the present introductory chapter, this thesis comprises seven chapters 

(see also Figure 2). 

Chapter 2 presents a genetical genomics analysis of hematopoietic differentiation in 

a mouse cross. From a recombinant inbred line panel of about 24 strains, samples 

from four hematopoietic cell-types were collected and expression profiled using 

Illumina bead arrays. The chapter presents a report of the eQTLs (expression 

Quantitative Trait Loci) that were identified and argues that those are highly sensi-

tive to the cellular differentiation state. This finding highlights the importance of 

targeting relevant tissues and cell-types in systems genetics experiments. 

In Chapter 3, all the steps involved in an eQTL mapping experiment are detailed in 

a computational protocol that includes R scripts. The focus is primarily on linkage 

analysis in mouse or rat experimental crosses such as recombinant inbred lines. A 

number of technical issues (and some solutions to them) are discussed. 

Chapter 4 addresses the puzzling discrepancy in the reporting of eQTL hotspots in 

the literature and argues that many hotspots are actually caused by confounding 

correlation. An appropriate permutation procedure that allows to discard many 

spurious eQTL hotspots is advocated. 

Chapter 5 introduces and showcases a new method for Differential Coexpression 

analysis called DiffCoEx. DiffCoEx is a simple and sensitive method that can 

identify groups of genes that are differentially correlated between different condi-

tions. Such a method may potentially identify molecular pathways that are active 

specifically in one condition. The method is applied to a published cancer-related rat 

dataset, and it is shown that the differential coexpression analysis identifies genes 

that would not otherwise have been picked up by classical differential expression 

methods. 

The sixth and seventh chapters address emerging methods in causal inference with 

genetic data which are shifting the paradigm of network inferences by providing 

statistical evidence to support directed links between genes, proteins, metabolites or 

diseases. In Chapter 6, different approaches using genetic data for gene network 

inference that have been proposed are reviewed. Chapter 7 examines the statistical 

potential of such methods under different realistic settings: varying population sizes 

and in the presence or absence of hidden factor variation and suggests ways to 

overcome some of the limitations.   

Finally, Chapter 8 discusses current issues that will benefit from future research in 

genetical genomics.  
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Figure 2 - Systems genetics: an integrative strategy. 
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Chapter 2 

Expression quantitative trait loci are highly 

sensitive to cellular differentiation state 

 

 

 

 

 

 

 

 

 

 

 

 

Genetical genomics is a strategy for mapping gene expression variation to ex-

pression quantitative trait loci (eQTLs). We performed a genetical genomics 

experiment in four functionally distinct but developmentally closely related hemato-

poietic cell populations isolated from the BXD panel of recombinant inbred mouse 

strains. This study allowed us to analyze eQTL robustness/sensitivity across differ-

ent cellular differentiation states. Although we have identified a large number (365) 

of “static” eQTLs that were consistently active in all four cell types, we found a 

much larger number (1283) of “dynamic” eQTLs showing cell-type-dependence, 

and out of which 140, 45, 531, and 295 eQTLs were preferentially active in stem, 

progenitor, erythroid and myeloid cells, respectively. A detailed investigation of 

those dynamic eQTLs showed that in many cases the eQTL specificity was asso-

ciated with expression changes in the target gene. We found no evidence for target 

genes that were regulated by distinct eQTLs in different cell types, suggesting that 

large-scale changes within functional regulatory networks are uncommon. Our 

results demonstrate that heritable differences in gene expression are highly sensitive 

to the developmental stage of the cell population under study. Therefore, future 

genetical genomics studies should aim at studying multiple well-defined and highly-

purified cell types in order to construct as comprehensive a picture of the changing 

functional regulatory relationships as possible. 
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2.1 Introduction 

Genetical genomics uses quantitative genetics on a panel of densely genotyped 

individuals to map genomic loci that modulate gene expression [1]. The quantitative 

trait loci identified in this manner are referred to as expression quantitative trait loci, 

or eQTLs [2]. Most genetical genomics studies that have thus far been reported have 

analyzed single cell types or compared developmentally unrelated and distant cell 

types [3-8]. Here, we report the first application of genetical genomics to study 

eQTL dynamics across closely related cell types during cellular development. We 

show results that discriminate between eQTLs that are consistently active or “static” 

and those that are cell-type-dependent or “dynamic”.  

We used the hematopoietic system as a model to analyze how the genome of a 

single stem cell is able to generate a large variety of morphologically and functional-

ly distinct differentiated cells. Differentiation of hematopoietic stem cells towards 

mature, lineage-committed blood cells is associated with profound changes in gene 

expression patterns. The search for differentially expressed genes, most notably for 

those transcripts exclusively present in stem cells and not in their more differentiated 

offspring, has been successful and has provided valuable insight into the molecular 

nature of stem cell self-renewal [9-12]. Yet, complementary approaches were 

needed to elucidate the dynamic regulatory pathways that are underlying the robust 

differentiation program leading to blood cell production.  

We describe a genetic analysis of variation in gene expression across four func-

tionally distinct, but developmentally related hematopoietic cell populations. Our 

data reveal complex cell-stage specific patterns of heritable variation in transcript 

abundance, demonstrating the plasticity of gene regulation during hematopoietic cell 

differentiation.  

2.2 Results 

2.2.1 Genetic regulation of gene expression 

We evaluated genome-wide RNA transcript expression levels in purified Lin
-
Sca-

1
+
c-Kit

+
 multi-lineage cells, committed Lin

-
Sca-1

-
c-Kit

+
 progenitor cells, erythroid 

TER-119
+
 cells, and myeloid Gr-1

+
 cells, isolated from the bone marrow of ~25 

genetically related and fully genotyped BXD – C57BL/6 (B6) X DBA/2 (D2) – 

recombinant inbred mouse strains [13]. In this study, we exploit the fact that the 

purified cell populations are closely related, sometimes just a few cell divisions 

apart on the hematopoietic trajectory. The Lin
-
Sca-1

+
c-Kit

+
 cell population contains 

all stem cells with long-term repopulating ability, but also includes multipotent 

progenitors that still have lymphoid potential. Although long-term repopulating stem 

cells are known to only make up a fraction of the Lin
-
Sca-1

+
c-Kit

+
 population, for 
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simplicity we will refer to this population as stem cells. The Lin
-
Sca-1

-
c-Kit

+
 cell 

population does not contain stem cells and lymphoid precursors, but does include 

common progenitors of the myeloid and erythroid lineages [14]. Finally, TER-119
+
 

cells and Gr-1
+
 cells are fully committed to the erythroid and myeloid lineages, 

respectively. Unsupervised clustering of the most varying transcripts demonstrated 

that each of the four cell populations could easily be recognized based on expression 

patterns across all four cell types (Figure 1 and Table S1).  

 

 

Figure 1 - Mean expression levels for all probes in the four cell types. Unsupervised clustering 

including all probes for the 96 RNA samples follows cell-type (top hierarchical tree), while clustering 

of the 876 most varying probes reveals distinct categories of genes that show cell-type-specific 

expression (left hierarchical tree). The heat map shows the expression patterns of those probes and 

selected enriched gene categories in each major cluster. Discriminatory genes are enriched in various 

functional classes, including SH2/SH3 domain containing transcription factors for stem cells, 

mitochondrial genes for progenitor cells, genes involved in DNA replication and zinc fingers for 

erythroid cells, and immunoglobulin type genes for myeloid cells (all p-values < 0.05). For genes that 

belong to each of these clusters, see Table S1.  
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We observed strong and biologically significant variation in gene expression 

during hematopoietic differentiation, independent of mouse strain. However, the 

genetical genomics strategy, in which we focus on inter-strain gene expression 

differences, allows for a far more comprehensive understanding of the genetic 

regulatory links underlying this variation. QTL mapping of gene expression traits 

allows us to identify eQTLs; genomic regions that have a regulatory effect on those 

expression traits. Two types of eQTLs can be distinguished, i.e., those that map near 

(less than 10 Mb from) the gene which encodes the transcript (local) and those that 

map elsewhere in the genome (distant) [15]. Together, local and distant eQTLs 

constitute a genome-wide overview of the gene regulatory networks that are active 

in the cell type under study. The strongest eQTLs were found for genes that were 

expressed only in mouse strains carrying one specific parental allele, suggesting that 

local regulatory elements are distinct between the two alleles. Cases of such allele-

specific expression included H2-Ob and Apobec3. These transcripts were only 

detectable in strains that carried the B6 allele of the gene (see Figures S1A–B). A 

global view of heritable variation in gene expression indicated that the strongest 

eQTLs are not associated with the most highly expressed genes, and that for most 

probes the expression difference between the B6 and D2 alleles is small (see Fig-

ures S1C–D). 

Since the focus of this project is to study the influence of cellular differentia-

tion state on regulatory links, we used ANOVA to distinguish between “static” 

eQTLs that show consistent genetic effects across the four cell types and “dynamic” 

eQTLs that are sensitive to cellular state (i.e., eQTLs that have a statistically signifi-

cant genotype-by-cell-type interaction). We further partitioned dynamic eQTLs into 

different categories on the basis of their dynamics along the differentiation trajecto-

ry.  

2.2.2 Cell-type independent static eQTLs 

The first eQTL category comprises genes that have static eQTLs across all four cell 

types under study. Variation in Lxn expression is shown as a representative example 

(Figure 2A, left panel). Lxn expression has previously been shown to be higher in 

B6 stem cells compared to D2 stem cells, and to be negatively correlated with stem 

cell numbers [16]. In our dataset Lxn showed clear expression dynamics (it was most 

highly expressed in stem cells), and was indeed more strongly expressed in cells 

carrying the B6 allele, but the expression difference between mice carrying the B6 

or D2 allele remained constant across all cell types.  

In total, we identified 365 probes that displayed a static eQTL at threshold  

p < 10
-6

 (FDR = 0.02). Among the 268 locally-regulated probes in this category was 

H2-D1. The histocompatibility gene H2-D1 is known to be polymorphic between B6 

and D2 mice, and would therefore be expected to be in the static eQTL category. 

The remaining 97 probes mapped to distant eQTLs, i.e., their heritable expression 
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variation was affected by the same distant locus in all four cell types (Table 1).  

All probes that belonged to the static eQTL category are graphically depicted in 

an eQTL dot plot displaying the genomic positions of the eQTLs compared to the 

genomic positions of the genes by which the variably expressed transcripts were 

encoded (Figure 2A, right panel). Whereas in this plot local eQTLs appear on the 

diagonal, distant eQTLs appear elsewhere. In general, as has been reported before in 

eQTL studies, transcripts that were locally regulated showed strong linkage statis-

tics. Not surprisingly, the statistical association between genotype and variation in 

transcript abundance for those transcripts that were controlled by distant loci was 

weaker. These genes are likely to be controlled by multiple loci, each contributing 

only partially to the phenotype, thereby limiting their detection and validation in the 

current experimental sample size. A list of all transcripts with significant static 

eQTLs is provided in Table S2.  

2.2.3 Cell-type dependent dynamic eQTLs 

The second eQTL category comprises genes that have dynamic eQTLs across all 

four cell types under study. In total, we identified 1283 eQTLs (p < 10
-6

, FDR = 

0.021) that showed different genetic effects in different cell types, indicating that 

eQTLs are highly sensitive to cellular differentiation state (Table 1). Within this 

dynamic eQTL category, the first four subcategories are composed of eQTLs that 

were preferentially active in only one of the four cell types we analyzed (Figures 

2B–E).  

For example, Slit2 mapped to a strong eQTL that was active only in stem cells. 

Slit2 mRNA was only detected in the most primitive hematopoietic cell compart-

ment in those BXD strains that carried the D2 allele at rs13478235, a SNP that 

mapped 629 kb away from the Slit2 gene (Figure 2B, left panel). Slit2 encodes an 

excreted chemorepellent molecule that is known to be expressed in embryonic stem 

cells [17], to be involved in neurogenesis [18] and angiogenesis [19], and to inhibit 

leukocyte chemotaxis [20]. We found a total of 140 genes that have eQTLs that are 

preferentially/selectively active in stem cells (Figure 2B, right panel, largest sym-

bols, Table 1). These 140 genes included well-known candidate stem cell genes 

such as Angpt1, Ephb2, Ephb4, Foxa3, Fzd6, and Hoxb5. Interestingly, many 

transcripts with as yet unknown (stem cell) function were transcriptionally affected 

by stem-cell-specific eQTLs. Candidate novel stem cell genes include Msh5, and 

Trim47, in addition to a large collection of completely unannotated transcripts. 

A total of 45, 531, and 295 eQTLs were found to be preferentially/selectively 

active in progenitors, erythroid cells, and myeloid cells, respectively (Table 1). Very 

distinct patterns of cell-type-specific gene regulation emerged when these eQTLs 

were visualized in genome-wide dot plots (Figures 2C–E). Using genome-wide p-

value thresholds of p < 10
-6

, we identified 53 distantly-regulated transcripts in stem 

cells, 13 in progenitor cells, 400 in erythroid cells, and 132 in myeloid cells.  
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Figure 2 - Identification of static and dynamic eQTLs. (A) Genome-wide identification of cell-

type-independent static eQTLs. (Left panel) Lxn mRNA levels were analyzed in all 4 cell types. Each 

circle represents an individual sample (strain). The yellow line shows mean expression levels across 

all strains. The red and blue lines indicate mean Lxn expression levels in strains that carry the B6 or 

D2 Lxn allele, respectively. The genetic effect of parental alleles on Lxn expression levels was 

consistent in all cell types. (Right panel) Individual probes that detected a transcript that was 

consistently controlled by the same eQTL in all 4 cell types. The y-axis indicates the physical 

position of the encoding gene, the x-axis provides the genomic position of the marker with strongest 

linkage statistics. Vertical gray and white bandings indicate different chromosomes, ranging from 

chromosome 1 to X. The size of each symbol reflects the strength of the genetic association: eQTLs 

with p-values < 10
-8

 are represented by the largest crosses, p-values between 10
-6

 and 10
-8

 are shown 

with medium crosses, while small crosses refer to eQTLs with p-values between 10
-4

 and 10
-6

. The 

color coding (red and blue) indicates the parental allele of the eQTL that caused a higher gene 

expression (B6 is red and D2 is blue). (B–E) Genome-wide identification of transcripts that are 

controlled by cell-type-specific eQTLs. (Left panels) Expression data for some transcripts that were 

affected by cell-type-specific eQTLs (B: Slit2 in stem cells, C: Snrpn in progenitor cells, D: Hbb-bh1 

in erythroid cells and E: Foxd4 in myeloid cells). (Right panels) Genome-wide distribution of eQTLs 

that were preferentially/uniquely detected in each of the four cell populations. (F) Transcripts that 

were controlled by eQTLs in both stem and progenitor cells. An example is Rpo1-2. Full lists of all 

genes belonging to the eQTL (sub)categories shown here are provided in Table S2. 
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In erythroid and myeloid cells most of these transcripts mapped to relatively 

few genomic loci; these trans-bands are statistically significant, as assessed by a 

permutation approach taking expression correlation into account (see Methods) [21]. 

Typically, transcripts mapping to a common marker showed a directional bias 

towards either B6 or D2 expression patterns. 

In addition to the relatively simple eQTL dynamics that we have thus far illu-

strated, more complex eQTL dynamics were also detected using this approach. For 

example, Rpo1-2 is a transcript that shows a strong local eQTL in the two non-

committed lineages included in our study, but shows a much weaker genetic effect 

in erythroid and myeloid cells (Figure 2F). Whereas in mice carrying the B6 allele 

of Rpo1-2 the overall expression of the gene decreased substantially during differen-

tiation of progenitor to erythroid cells, in mice carrying the D2 allele expression 

slightly increased. This observation hints at complex regulatory mechanisms under-

lying the expression of this gene. Full lists of genes in each dynamic eQTL 

subcategory described thus far are supplied in Table S2. Additional subcategories 

and their exact definitions are explained more extensively in the Methods section, 

and complete results of all dynamic eQTLs are available in Table S3.  

 

 
eQTL 

subcategory 
 # probes # markers 

# probes / 

 # marker 

Static  Local 268 161 1.66 

  Distant 97 76 1.28 

  Total 365 213 1.71 

Dynamic All Local 642 282 2.28 

  Distant 641 276 2.32 

  Total 1283 445 2.88 

 Stem cells Local 87 66 1.32 

  Distant 53 42 1.26 

  Total 140 105 1.33 

 Progenitor Local 32 27 1.19 

  Distant 13 12 1.08 

  Total 45 39 1.15 

 Erythroid Local 131 90 1.46 

  Distant 400 164 2.44 

  Total 531 223 2.38 

 Myeloid Local 163 121 1.35 

  Distant 132 72 1.83 

  Total 295 179 1.65 

Table 1 - Number of probes with eQTLs (p < 10
-6

) and the number of associated markers. 
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2.2.4 Detailed analysis of static and dynamic eQTLs 

eQTL dynamics can be caused by transcription factors being switched on/off upon 

cellular differentiation, or by a transcription factor showing changed specificity due 

to variations in regulatory input. We found that most (>75%) of the dynamic eQTLs 

are active in only one of the four cell types under study (Figure 3A). A more 

detailed analysis revealed that in the majority of cases the genes with a cell-type-

specific eQTL were also most highly expressed in that particular cell type (Figure 

3B). Next, we explored whether we could find transcripts that were regulated by 

distinct eQTLs in different cell types (see Methods). Such eQTL “swapping” would 

indicate major changes in transcriptional regulation networks. We could find no 

evidence for such cases. However, given our limited population size we have a low 

power to detect multiple eQTLs, so swapping eQTLs may still exist but remain 

undetected in our experimental setting. 

It has been described that not all local eQTLs in genetical genomics experi-

ments reflect actual expression differences between mouse strains, but rather 

indicate differential hybridization caused by polymorphisms in the sequences 

recognized by the probes [22]. For this reason, we divided both the static and 

dynamic eQTL categories in local and distant eQTLs, and indicated the number of 

probes that hybridized to sequences that are known to contain polymorphisms 

(Figure 3C). As expected, the static eQTL category contained a higher number of 

such potential false local eQTLs. If these false positive eQTLs could be removed, 

the relative abundance of dynamic eQTLs would be higher, indicating that our study 

may even conservatively underestimate the level of eQTL dynamics.  
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Figure 3 - Quantitative overview of static and dynamic eQTLs. (A) Pie charts presenting all 365 

static and 1283 dynamic eQTLs that were detected with p < 10
-6

. Dynamic eQTLs are subdivided in 

all 14 categories of interaction eQTLs. (B) Matrix showing the four cell-type-dependent dynamic 

eQTL categories and the cell type in which the gene was expressed most highly. (C) All static and 

dynamic eQTLs are subdivided in local and distant eQTLs. Shown is which number of eQTLs was 

detected by Illumina probes that hybridize to sequences that are known to contain polymorphisms 

(SNPs) between the two parental strains.  
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2.3 Discussion 

We found that many eQTLs are highly sensitive to the developmental state of the 

cell population under study. Even when the purified cells were only separated by a 

few cell divisions, eQTLs demonstrated a remarkable plasticity. Furthermore, we 

provide evidence that the cell-stage-sensitivity of eQTLs is often intertwined with 

gene expression variation during development. We did not identify target genes that 

were regulated by distinct eQTLs in different cell types, suggesting that large-scale 

changes within transcriptional regulation networks are not common.  

The fact that eQTLs appear to be highly cell-type-dependent highlights the 

importance of using well-characterized purified cell types in eQTL studies. In 

particular, eQTL studies of physiological or disease processes [23-26] should target 

the relevant cell type as precisely as possible, i.e. they should use cells or tissues 

directly involved in the patho-physiological process. This could even mean that 

several different cell types need to be separately studied, in particular if develop-

mental trajectories are affected [27]. Using unfractionated bone marrow cells, we 

would have missed many of the diverse and dynamic patterns that we uncovered 

here, both at the expression level and at the genetic regulatory level. Even so, the 

four cell populations that we studied are still heterogeneous and further subfractio-

nation of these populations based on different sets of markers would have resulted in 

even more precise regulatory maps. 

Many genetical genomics experiments have used highly heterogeneous sam-

ples, in which mRNA from a variety of different cell types was pooled [4, 5, 28-31]. 

In such mixed samples it is usually impossible to ensure that the contribution of 

individual cell types to the mixture is the same across samples. As a result, impor-

tant parts of the variation in gene expression could arise from different sample 

compositions. For example, if in whole brain samples a heritable morphological or 

developmental trait leads to an increased size of some brain regions, this can cause 

apparent hotspots for transcripts that are specific for those particular regions. Our 

data provide a valuable tool for studying the exact consequences of sample hetero-

geneity on eQTL mapping: a further study could simulate a collection of samples 

made of computed mixtures of different hematopoietic cells in defined proportions. 

Clearly, cell purification strategies are essential to identify those cell-type-specific 

eQTLs that would otherwise be “masked” in heterogeneous cell populations. There-

fore, future genetical genomics studies should be realized on as many cell types or 

cellular differentiation states as possible, and ideally even on the scale of individual 

cells.  

All data presented in this paper were deposited in the online database Gene-

Network (www.genenetwork.org), an open web resource that contains genotypic, 

gene expression, and phenotypic data from several genetic reference populations of 

multiple species (e.g. mouse, rat and human) and various cell types and tissues [32, 

33]. It provides a valuable tool to integrate gene networks and phenotypic traits, and 
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also allows cross-cell type and cross-species comparative gene expression and eQTL 

analyses. Our data can aid in the identification of candidate modulators of gene 

expression and/or phenotypic traits [34], and as such can serve as a starting point for 

hypothesis-driven research in the fields of stem cell biology and hematology. 

2.4 Methods 

2.4.1 Recombinant inbred mice  

Female BXD recombinant inbred mice were originally purchased from The Jackson 

Laboratory and housed under clean conventional conditions. Mice were used 

between 3 and 4 months of age. All animal experiments were approved by the 

Groningen University Animal Care Committee. 

2.4.2 Cell purification 

Bone marrow cells were flushed from the femurs and tibias of three mice and 

pooled. After standard erythrocyte lysis, nucleated cells were stained with either a 

panel of biotin-conjugated lineage-specific antibodies (containing antibodies to 

CD3e, CD11b (Mac1), CD45R/ B220, Gr-1 (Ly-6G and Ly-6C) and TER-119 (Ly-

76)), fluorescein isothiocyanate (FITC)-conjugated antibody to Sca-1 and allophy-

cocyanin (APC)-conjugated antibody to c-Kit, or with biotin-conjugated TER-119 

antibody and FITC-conjugated antibody to Gr-1. After being washed, cells were 

incubated with streptavidin-phycoerythrin (PE) (all antibodies were purchased from 

Pharmingen). Cells were purified using a MoFlo flowcytometer (BeckmanCoulter) 

and were immediately collected in RNA lysis buffer. Lineage-depleted (Lin
-
) bone 

marrow cells were defined as the 5% of cells showing the least PE intensity.  

2.4.3 RNA isolation and Illumina microarrays 

Total RNA was isolated using the RNeasy Mini kit (Qiagen) in accordance with the 

manufacturer’s protocol. RNA concentration was measured using a Nanodrop ND-

1000 spectrophotometer (Nanodrop Technologies). The RNA quality and integrity 

was determined using Lab-on-Chip analysis on an Agilent 2100 Bioanalyzer (Agi-

lent Technologies). Biotinylated cRNA was prepared using the Illumina TotalPrep 

RNA Amplification Kit (Ambion) according to the manufacturer’s specifications 

starting with 100 ng total RNA. Per sample, 1.5 µg of cRNA was used to hybridize 

to Sentrix Mouse-6 BeadChips (Illumina). Hybridization and washing were per-

formed by ServiceXS according to the Illumina standard assay procedures. Scanning 

was carried out on the Illumina BeadStation 500. Image analysis and extraction of 

raw expression data were performed with Illumina Beadstudio v2.3 Gene Expres-

sion software with default settings and no normalization. The raw expression data 



 34                                      eQTLs are highly sensitive to cell differentiation state 

from all four cell types were first log2 transformed and then quantile normalized as a 

single group. 

2.4.4 Clustering of genes 

For cluster analysis we retained only genes having a minimal fold change of 2 

(difference of 1 in log2 scale) in either direction in mean expression on the transition 

from Lin
-
Sca-1

+
c-Kit

+
 to Lin

-
Sca-1

-
c-Kit

+ 
and on the transition from Lin

-
Sca-1

-
c-

Kit
+
 to TER-119

+
 or to Gr-1

+
. This filter reduced the dataset to 876 probes. We then 

computed the distance matrix for this group of probes, using the absolute Pearson 

correlation. Using this distance matrix, we applied the hierarchical clustering 

algorithm. From the resulting tree, 8 different clusters emerged from a manually 

chosen threshold. We then submitted each of these clusters to DAVID to identify 

enriched functional annotations [35]. 

2.4.5 Full ANOVA model for eQTL mapping 

The expression data of the four cell types were firstly corrected for batch effect and 

then analyzed separately by the following ANOVA model: 

yi = µ + Qi + ei 

where yi is the gene’s log intensity on the ith microarray; µ is the mean; Qi is the 

genotype effect under study; and ei is the residual error. 

Next, expression data of the four cell types were combined and analyzed by a full 

ANOVA model including the cell type effect (CT) and the eQTL×CT interaction 

effect: 

yij = µ + CTj + Qi + (Q×CT)ij + eij 

where yij is the gene’s log intensity at the ith microarray (i = 1,…n) and jth cell type;  

CTj  is the jth cell type effect; (Q×CT)ij is the interaction effect between the ith 

eQTL genotype and  jth cell type, and eij is the residual error. The batch effect was 

included as one of the factors. For each probe, we performed a genome-wide linkage 

analysis to identify the two markers that showed the most significant main QTL 

effect and interaction effect, respectively.  

2.4.6 Local and distant eQTLs 

We defined an eQTL as local if it was located within less than 10 Mb from the gene. 

All other eQTLs were considered distant. 

2.4.7 Classification of eQTLs 

The ANOVA yields significance p-values for the main QTL effect Qi and the 



Chapter 2                                                                                                       35 

     

interaction effect (Q×CT)ij  for each probe at each marker. A small p-value for the 

interaction effect indicates that the eQTL effect is different between the cell types. 

This significant difference can be due to very diverse patterns, with different biolog-

ical interpretations. It is therefore necessary to classify interaction eQTLs based on 

these patterns. To achieve this classification, for every interaction eQTL we eva-

luated the strength of the effect in each cell type by calculating the difference 

between the mean expression of both genotypes. The cell type for which the effect 

was the strongest was labeled “High”. The cell type whose effect was most different 

from the strongest effect was labeled “Low”. The remaining two cell types were 

assigned to the group they resembled most closely. This classification allowed us to 

define 14 categories of interaction eQTLs. Additionally, we identified eQTLs that 

have a consistent effect across all four cell types. This category of consistent eQTLs 

includes all probes satisfying the following three conditions: the gene has a signifi-

cant main effect Qi at marker m; for the same marker m, the interaction  (Q×CT)ij is 

not significant; the mean eQTL effect across cell types has a coefficient of variation 

smaller than 0.3. 

2.4.8 Estimating the FDR for the main QTL effect 

We permuted the strain labels in the genotype data 100 times, maintaining the 

correlation of expression traits while destroying any genetic association. Then we 

applied the full ANOVA model and stored the genome-wide minimum p-value for 

each transcript. Based on the resulting empirical distribution of p-values, we esti-

mated that a threshold of –log10p = 6 corresponds to a false discovery rate [36] of 

0.02 for the main QTL effect. The 99.9th percentile of the number of significant 

eQTLs per marker (i.e., the minimum size of statistically significant “eQTL hots-

pots”) is 28.   

2.4.9 Estimating the FDR for interaction QTL effect 

We estimated the residuals of the full ANOVA model after fitting all factors up to 

the main QTL effect at each marker for each transcript [37]. Then we permuted the 

strain labels and applied the ANOVA model y = Q + CT + Q×CT + e to the per-

muted residuals at each marker for each transcript and stored the genome-wide 

minimum p-value. Based on 100 permutations and the resulting empirical distribu-

tion of p-values, we estimated that a threshold of –log10p = 6 corresponds to a false 

discovery rate of 0.021 for interacting QTL effect. The 99.9th percentile of the 

number of significant eQTLs per marker (i.e., the minimum size of statistically 

significant “interaction hotspots”) is 8.   
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2.4.10 Detection of swapping eQTLs 

Swapping eQTLs are those transcripts that show one eQTL in one cell type, but 

another eQTL in another cell type. From the full model mapping described above, 

we obtained 1283 transcripts with a significant interaction effect between genotype 

(first marker) and cell type. After taking into account the genetic and interaction 

effects of the first marker, we scanned the genome excluding the region of the first 

marker (window size = 30cM) and tested if there was a significant interaction effect 

between genotype and cell type and whether this new interaction effect was classi-

fied in a different cell type category (see above Classification of eQTLs), which 

would indicate a swapping eQTL. 

This means, for each transcript, a two-marker full model mapping was ap-

plied using the following model: 

yij = µ + CTj + Q
*
i + (Q

*×CT) ij + Qi + (Q×CT)ij +  Qi
*
Qi + eij 

where yij is the gene’s log intensity at the ith microarray (i = 1,…n) and jth cell type;  

CTj  is the jth cell type effect; Q
*
 and (Q

*×CT)ij are the main genotype effect at first 

marker and interaction effect between cell type and the genotype effect at this 

marker, where the first marker is defined as the marker with maximal interaction 

effect from previous one-marker full model mapping; Qi is the genotype effect of the 

second marker; (Q×CT)ij is the interaction effect between the ith genotype and  jth 

cell type, Qi
*
Qi  is the epistasis effect and eij is the residual error.  

 

URLs 

All raw data were deposited at GEO (http://www.ncbi.nlm.nih.gov/geo/). All 

processed data presented in this paper were deposited at GeneNetwork 

(www.genenetwork.org) [32, 33]. Additional files are available at: 

http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000

692  
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Chapter 3 

eQTL analysis in mice and rats 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the introduction of Genetical Genomics in 2001, many studies have been 

published on various organisms, including mouse and rat. Genetical genomics 

makes use of the latest microarray profiling technologies and combines vast 

amounts of genotype and gene expression information, a strategy that has proven 

very successful in inbred line crosses. The data are analyzed using standard tools 

for linkage analysis to map the genetic determinants of gene expression variation. 

Typically, studies have singled out hundreds of genomic loci regulating the expres-

sion of nearby and distant genes (called local and distant expression quantitative 

trait loci, respectively; eQTLs). In this chapter, we provide a step-by-step guide to 

performing genome-wide linkage analysis in an eQTL mapping experiment by using 

the R statistical software framework. 

 

 

 

Originally published as: 

eQTL analysis in mice and rats.  

Tesson BM, Jansen RC 

Methods in Molecular Biology 2009;573:285-309. 
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3.1 Introduction 

A genetical genomics [1] study involves the perturbation of thousands of genes at 

the same time through genetic mechanisms of recombination and segregation to 

create genome-wide “mosaics” of naturally occurring gene variants. Genetical 

genomics experiments then correlate gene expression variation with DNA variation 

for tens of thousands of genes, performing tens of thousands times an analysis 

similar to traditional QTL analysis of a classical phenotypic trait. The analysis of 

variance (ANOVA) methods offer a framework well suited for such QTL analyses. 

 Over the past few years, a large number of mouse recombinant inbred popu-

lations (RILs, e.g. the BXD or BXA panels) and tissues have been studied in eQTL 

screens [2-9]. The field is now expanding with the study of outbred mice [10]. Many 

of these data have been uploaded to the GeneNetwork database [11], which have 

made this the central repository for mouse and rat eQTL data. While eQTL publica-

tions on rats have been scarcer, there have been a few studies, for example using the 

BXH/HXB panel of recombinant inbred strains [12, 13]. 

This chapter provides a computational protocol for eQTL analysis on RIL 

crosses in mice and rats. The protocol can easily be adapted to suit other genetic 

populations, such as backcrosses or intercrosses [14]. 

 

  

Figure 1 - Flowchart of eQTL mapping protocol 
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3.2 Materials 

3.2.1 Hardware and software requirements 

The protocol requires: 

- R (www.r-project.org): R is a programming environment for statistical computing 

and graphics. It is available under the GNU General Public License on Windows, 

Linux/Unix and Mac systems. R has a command line-based interface and is widely 

used in the field of biostatistics thanks to the availability of multiple add-on pack-

ages designed to address specific biological analyses. All the code lines and 

functions presented in  courier font are written in R language. Detailed knowledge of 

R programming is not required but the interested reader can go to the R tutorial: 

http://cran.r-project.org/doc/manuals/R-intro.pdf.  

- CPU/memory requirements: this protocol is illustrated with a sample dataset of 100 

genes, so that the protocol will run well on a regular desktop computer. For a real 

genome-wide experiment, you are strongly advised to use multiple-core machines 

(see Note 1 on parallel computation). 

3.2.2 Dataset 

The methods we describe here are showcased on Illumina BeadArray data. Illumina 

is an increasingly popular technology for gene expression profiling and uses arrays 

containing multiple beads with 50-mer probes attached. Illumina bead arrays have 

been developed for a number of species including humans, mice, and rats. The 

protocol described in this chapter is not however specific to Illumina data and can be 

applied to virtually any technology. Some adjustments will need to be made in the 

particular case of Affymetrix arrays (see Note 2) due to specificities of this technol-

ogy (i.e. multiple probes per gene). 

 For this protocol, we use a small sample dataset of 100 expression traits for 

efficiency purposes. This dataset was extracted from a survey of hematopoietic stem 

cells in a population of 24 mouse recombinant inbred strains (BXD). This dataset 

and an electronic version of the code presented in this chapter are available at the 

following URL http://gbic.biol.rug.nl/supplementary/2008/linkageGG.  

Genotype data 

The genotype data should be prepared as a tab-delimited file: each column 

represents one individual, each row a different marker (see Table 1). Values are 

either 1 for the first parental strain, 2 for the second parental strain, or 1.5 in the case 

of heterozygote individuals (these should be rare in the case of RILs). The markers 

are ordered by genomic location as in the marker map file (see below). 
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Genetical genomics screens can be very expensive; the costs of sample prepara-

tion, microarrays and genotyping must be multiplied by the population size. 

Selective genotyping is usually not a realistic option to reduce the costs in this 

context because the samples with the most informative genotypes depend on which 

gene is being considered. We therefore assume here that the genotype data is com-

plete as is usually the case in genome-wide eQTL studies on recombinant inbred 

lines. The interested reader may want to refer to Note 3 for software to handle 

missing information or sparse marker maps. 

 
 BXD6 BXD28 BXD19 BXD15 BXD40 BXD12 BXD31 

rs6376963 2 2 2 2 1 2 1 

rs6298633 2 2 2 2 1 2 1 

D1Mit1 2 2 2 2 1 2 1 

rs3654866 2 1 2 2 1 2 1 

rs3088964 2 1 2 2 1 2 1 

Table 1 - Example of genotype data in tab-delimited format. The columns represent the different 

recombinant inbred lines (here from the BXD cross). The rows are different markers. RILS are 

homozygous 1 for the B6 allele or homozygous 2 for the DBA2 allele. 

Expression data 

BeadStudio, the standard Illumina software, produces probe data from bead level 

intensities. The output of BeadStudio contains several columns per sample. In this 

chapter, we use the raw bead summary data as output by BeadStudio. From the 

BeadStudio output files, we extract the AVG_SIGNAL columns per sample. These 

columns contain raw averaged bead intensities for each probe. The expression data 

are stored in a tab-delimited file, where each column refers to one individual and 

each row to a probe, as shown in Table 2. 

 Some authors have suggested alternative pre-processing methods for Illumi-

na data (see Note 4 for references). 

 
 BXD6 BXD28 BXD19 BXD15 BXD40 

GI_84579826-I 341.668 349.7453 509.0667 495.4675 591.0002 

GI_84579830-A 105.3439 113.3545 117.8497 111.6411 109.7728 

GI_84579883-I 121.9119 126.5275 126.1814 132.6144 119.5611 

GI_84579884-A 138.155 138.7963 158.4077 150.2157 133.7268 

GI_84579905-A 189.2942 180.8074 274.7991 367.868 204.4543 

GI_84662726-I 148.5721 147.1926 153.2858 145.0625 135.5658 

GI_84662775-S 132.148 125.3375 139.3298 136.605 130.0435 

Table 2 - Example of raw expression data in tab-delimited format. The first column shows the 

unique probe IDs, the other columns refer to the samples denoted here by their RIL numbers. 
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Marker map 

We also need a genetic map with the genomic positions of the markers in the 

genotype file. These positions can be specified in centimorgans (cM) or in mega 

base pairs (as one or both present). The marker map should be a text file in tab-

delimited format.  

 
 Marker_Chr Marker_cM Marker_Mb 

rs6376963 1 0.895 5.008089 

rs6298633 1 2.367 6.820241 

D1Mit1 1 3.549 11.50072 

rs3654866 1 5.797 13.69223 

rs3088964 1 6.962 15.19202 

Table 3 - Example of marker data in tab-delimited format. The first column contains marker IDs, 

the second column contains chromosome numbers, the third column contains centimorgan positions, 

and the last column base pair positions. 

Probe and gene annotation data 

We finally need a file containing all the relevant probe information, including the 

genes targeted by the probes and genomic positions of the probes. This file should 

also be in tab-delimited format. Annotations provided by microarray manufacturers 

are often not complete or up-to-date. It is sometimes necessary to re-annotate the 

probes based on a BLAT search of probe to genome sequence. See Note 5 for some 

tools which enable such re-annotation. 

 
 Probe_Chr Probe_Mb Gene_Symbol Gene_Description Gene_ID 

GI_84579826-I 10 87.87682 Gnptab 
N-acetylglucosamine-1-phosphate 

transferase, alpha and beta subunits 
432486 

GI_84579830-A 12 8.560399 Slc7a15 

solute carrier family 7 (cationic 

amino acid transporter, y+ system), 

member 15 

328059 

GI_84579883-I 11 120.7646 Slc16a3 
solute carrier family 16 (monocar-

boxylic acid transporters), member 3 
80879 

Table 4 - Probe annotations. The first column contains the probe IDs, the second column contains 

chromosome numbers, the third column base pair positions and the last columns give gene informa-

tion. 

3.3 Methods 

3.3.1 Experimental design 

When profiling many samples with microarrays, it is often necessary to divide the 
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samples into batches, which may then be profiled at different times or even dates. 

Attention should be paid to the random assignment of samples to batches in order to 

minimize the influence of confounding factors. The number of batches should be 

small (so that it won’t take too many degrees of freedom in the analysis) and the 

batches should preferably be of equal size. Obviously, you should keep track of this 

batch organization and of any relevant information possibly associated with the 

profiling process. The eQTL analysis procedure can be adapted to take into account 

batch effects as described in Note 6. 

 Special considerations apply to sex, treatment, or environmental factors. If 

sex is not a factor of interest in the study, it is safer to limit the experiment to males 

or females only. Alternatively, if individuals of different sexes or different treat-

ments or conditions are used, the model used for the eQTL analysis should account 

for these as additional factors (see Section 3.3.6). Strategies have been developed to 

optimize the power of the eQTL study with multiple conditions (e.g. see [15]). 

 The population size is obviously a critical choice. While more is always bet-

ter in terms of statistical power, you must find the right balance between the costs 

incurred by microarray screens and the numbers of degrees of freedom necessary to 

fit the models you are using in your study. The relationship between population size 

and power in classical QTL analysis is discussed and illustrated in [16]. 

3.3.2 Loading the data into R 

The following commands will import the data into the R workspace: 
> rawExpr <- 

as.matrix(read.csv(file="raw_data.txt",row.names=1,header=TRUE,sep="\t")) 

> genotypes <- 

as.matrix(read.csv(file="genotypes.txt",row.names=1,header=TRUE,sep="\t")) 

> markerMap <- 

as.matrix(read.csv(file="markerMap.txt",row.names=1,header=TRUE,sep="\t")) 

> geneMap <- 

as.matrix(read.csv(file="geneMap.txt",row.names=1,header=TRUE,sep="\t")) 

We convert the data to logarithmic scale with: 
> log2expr <- log2(rawExpr); 

3.3.3 Useful checks on the data 

Clustering of the expression data 

A rapid clustering of the samples can detect major correlation structure such as 

caused by batch effects (see Note 6 on how to deal with these artifacts).  
>sample_clustering <- hclust(dist(t(log2expr))); 

>plot(sample_clustering); 
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Figure 2 - Hierarchical clustering of samples using the raw expression data. From this plot, the 

samples may appear to be divided into three separate clusters. If these correspond to experimental 

batches, it would be wise to include them in the model (see Note 6). 

At this stage, it is advisable to go back to the information collected during the 

wet lab process (see Section 3.3.1) to try to match that information with possible 

clusters. 

Genotype imbalance 

It may happen that one of the parental genotypes is very poorly represented at some 

markers, especially with a small population size. Such imbalance may be caused at 

random or by segregation distortion, and can lead to an acute sensitivity to outliers; 

it should therefore be watched carefully. Figure 3 illustrates the genotype distribu-

tion across the markers. The code for plotting the genotypes diagnosis graph is: 
#The following vector contains all the chromosome lengths 

#in Mb for plotting purposes 

> chr.lengths<-c(198,182,160,156,152,150,146,133,125,130, 

122,121,121,124,104,99,96,91,62,166); 

> names(chr.lengths)<- c("1","2","3","4","5","6","7","8", 

"9","10","11","12","13","14","15","16","17","18","19","X"); 
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#Check of segregation distortion 

> plotGenotypeBalance <- function(genotypes,markerMap,chr.lengths) 

{ 

  op <- par() 

  mk_pos<-as.numeric(markerMap[,"Marker_Mb"]) + 

       diffinv(chr.lengths)[match(markerMap[,"Marker_Chr"],names(chr.lengths))]; 

  breaks<- c(0, 

 apply(cbind(mk_pos[1:length(mk_pos)-1],mk_pos[2:length(mk_pos)]),1,mean), 

 mk_pos[length(mk_pos)]) 

  pos<-rep(mk_pos,ncol(genotypes)) 

  geno_fac<-factor(c(as.numeric(genotypes))) 

  par(fig=c(0.001, 0.999, 0.28, 1),mai=c(0,0,1,0))  

  spineplot(pos,geno_fac,breaks=breaks,xaxlabels='', 

            border=NA,col=c("white","black","grey"), 

            yaxlabels='',main="Genotype balance") 

  chr_col<-

c("GREY","WHITE")[match(markerMap[,"Marker_Chr"],names(chr.lengths))%%2+1] 

  par(new=T, fig=c(0.001, 0.999, 0.1, 0.28),mai=c(1,0,0,0)) 

  spineplot(mk_pos,factor(chr_col),breaks=breaks, 

            border=NA,xaxlabels="",yaxlabels='', 

            ylab="Chr",xlab="Marker Positions") 

  par(op) 

} 

> plotGenotypeBalance(genotypes,markerMap,chr.lengths)  

 

If this “information content” plot reveals a region with such imbalance, 

QTLs mapped in this region should be carefully scrutinized, since the minor geno-

type group will be extremely sensitive to outlier samples. The superimposition of the 

information content on the QTL profiles can provide additional insight into local 

variations in the statistical power available to detect eQTLs: the regions with the 

best power being those where the genotypes are perfectly balanced (50% for both 

parental genotypes). 

 

 

Figure 3 - Genotype balance plot. This plot represents the proportions of individuals with either 

genotype: white and grey denote the two parental genotypes; heterozygotes appear in black in the 

middle. 
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3.3.4 Normalization of the expression data 

Microarray data of multiple samples need to be normalized (i.e. converted to the 

same scale) to allow them to be compared across samples. Normalization removes 

some of the between-array technical variation. A robust, simple, and efficient 

method is quantile normalization [17], which is widely used and has been shown to 

be one of the most appropriate methods in the context of eQTL mapping [18]. 

Quantile normalization orders intensities per sample and then replaces the intensity 

by the mean of the measurement at that rank in all the samples. An implementation 

of this normalization method is available in the Bioconductor Affy package [19]. 

Our sample dataset has already been normalized, and should therefore not be re-

normalized. 

The commands to normalize a complete microarray dataset are given below. 

Installing and loading Affy R library: 
> source("http://bioconductor.org/biocLite.R"); 

> biocLite(“affy”); 

> library(affy); 

These are the commands that apply to quantile normalization: 
>normExpr <- normalize.quantiles(log2expr); 

>dimnames(normExpr)<-dimnames(rawExpr); 

 

It is advisable to perform similar checks to those described in Section 3.3.3 on the 

normalized data to control how the normalization procedure affects the data struc-

ture. 
#Our sample dataset was extracted from a complete dataset which was already norma-

lized. 

> normExpr<-log2expr;  

3.3.5 Mapping 

Definition of the model 

The first step of the actual eQTL analysis is to define the relevant model to use. In 

the simplest case, namely single-marker mapping without batches and without 

different environments, the model only includes the genotype effect: 

Yi = mi + Gj + eij 

where Yi is the expression measurement for probe i, mi is the mean intensity of 

probe i over all samples, Gj is a factor containing the genotypes at marker j, and eij is 

the error term. 

Fitting the model 

The following commands are used to first fit the model using the lm() function and 

then retrieve significances (p-values) at each marker along the genome. It is as-
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sumed that the order of the columns (samples) in the normExpr matrix matches the 

order of the columns in the genotypes matrix. 

Single Marker Mapping function: 
> singleMarkerMapping<-function(traits,genotypes) 

{ 

  qtl_profiles <- NULL; 

  for (i in 1:nrow(traits)) 

  { 

    current_profile<-NULL; 

    for (j in 1:nrow(genotypes)) 

    { 

      model <- traits[i,] ~ genotypes[j,]; 

      anova_table<-anova(lm(model)); 

      current_profile<-c(current_profile, -log10(anova_table[1,5])); 

    } 

    qtl_profiles<-rbind(qtl_profiles,current_profile); 

  } 

  rownames(qtl_profiles) <- rownames(traits); 

  colnames(qtl_profiles) <- rownames(genotypes); 

  qtl_profiles ; 

} 

Then applying the single-marker mapping function to the expression values and the 

genotypes:  
 

> qtlProfiles<-singleMarkerMapping( 

     traits = normExpr, genotypes = genotypes); 

 

Warning: this step can be computationally very intensive (see Note 1). 

Processing and visualizing the results 

Using this single-marker mapping approach, we obtain p-values for linkage for each 

gene with each of the markers on our genetic map. The p-value distribution across 

the genome for a given gene is termed the QTL profile of that gene and can be 

plotted as shown on Figure 4 using the following function: 

 
> plotQTLProfile<- 

function(qtl_profile,markerMap,chr.lengths) 

{ 

  chrStrips<-seq(0,0,length=sum(chr.lengths)) 

  for(i in 2*0:as.integer((length(chr.lengths)-1)/2)+1) 

  { 

    for (j in 

  (diffinv(chr.lengths)[i]:diffinv(chr.lengths)[i+1])) 

    { 

      chrStrips[j]<-1; 

    } 

  } 

  plot(chrStrips,type='h',col="#ECECEC",xlab='', 

       ylab='',axes=F,ylim=c(0,1)); 

  par(new=TRUE); 

  marker_x_positions <-  

    as.numeric(markerMap[,"Marker_Mb"]) + 

    diffinv(chr.lengths)[ 

  match(markerMap[,"Marker_Chr"],names(chr.lengths)) 

]; 
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  plot( 

        y=qtl_profile,x=marker_x_positions, 

        xlim=c(0,sum(chr.lengths)), 

        ylim=c(0,max(max(qtl_profile)+1,6)), 

        type='l',xlab="Marker Position", ylab="-log(p)" 

      ); 

} 

 

We use this function to plot the QTL profile of our first probe, which targets the 

Gnptab gene. 
 

> plotQTLProfile(qtlProfiles[1,],markerMap,chr.lengths) 

 

 

Figure 4 - Example of a QTL profile plot. This profile shows a QTL peak for the Gnptab gene on 

chromosome 10. 

 

Here we set the significance threshold for detection of an eQTL to –log10(p-value) 

> 6 (see Section 3.3.7 on how to set significance thresholds). The following function 

extracts primary QTL peaks from the QTL profiles: 
 

> getQTLMaxPeaks <- function(qtl_profiles,threshold) 

{ 

  max_index <- function(v) 

  { 

    which(v == max(v,na.rm=T))[1]; 

  } 

  maxQTLs <- cbind( 

   rownames(qtl_profiles), 

   colnames(qtl_profiles)[ 

apply(qtl_profiles,1,max_index)], 

   apply(qtl_profiles,1,max,na.rm=T)); 

  maxQTLsThreshold <-  

  matrix( 

maxQTLs[which(as.numeric(maxQTLs[,3])>=threshold),], 

ncol=3); 

  colnames(maxQTLsThreshold) <- c("Probe","Marker","p"); 

  maxQTLsThreshold; 

} 

 

> QTLPeaksThresh3 <- 

getQTLMaxPeaks(qtlProfiles,threshold=3) 
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We now have a list of all the significant primary eQTLs, reported in triplets 

containing: the probe, the marker with the smallest linkage p-value, and the largest 

“minus log p-value” of that linkage. It is sometimes useful to report a confidence 

interval too. Two approaches are commonly employed: bootstrap and 1-lod-score 

drop off [20, 21]. We can now generate an eQTL dot plot, which provides an 

informative summary of the mapping results. 

 
> qtlDotPlot <- function(QTLPeaks,markerMap,geneMap,chr.lengths) 

{ 

 chrStrips <- seq(0,0,length=sum(chr.lengths)); 

 for(i in 2*0:as.integer((length(chr.lengths)-1)/2)+1) 

 { 

  for (j in  (diffinv(chr.lengths)[i]:diffinv(chr.lengths)[i+1]))       

  { 

   chrStrips[j] <- 1; 

  } 

 } 

 plot(chrStrips, type='h', col="#ECECEC", xlab='', ylab='', axes=F,ylim=c(0,1)); 

 par(new=TRUE); 

 QTL_Positions <- as.numeric( markerMap[QTLPeaks[,"Marker"],"Marker_Mb"]) +    

   diffinv(chr.lengths)[match(markerMap[QTLPeaks[,"Marker"],"Marker_Chr"], 

                              names(chr.lengths))]; 

 Gene_Positions <- as.numeric(geneMap[QTLPeaks[, "Probe"],"Probe_Mb"]) +   

  diffinv(chr.lengths)[match(geneMap[QTLPeaks[,"Probe"],"Probe_Chr"], 

                             names(chr.lengths))]; 

plot(x=QTL_Positions, y=Gene_Positions, xlim=c(0,sum(chr.lengths)), 

  ylim=c(0,sum(chr.lengths)), pch=19, xlab="QTL position", ylab="Gene Position"); 

} 

> qtlDotPlot( QTLPeaksThresh3,markerMap,geneMap,chr.lengths); 

 

 

Figure 5 - An example of an eQTL dot plot. Each dot represents a significant eQTL, with the gene 

position on the Y axis and the QTL position on the X axis. (This plot was obtained using the 

complete dataset, not just the 100 probe subset we are using as a sample for this chapter.) 
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Locally acting eQTLs appear on the diagonal and are often over-represented. 

You can also sometimes see the presence of vertical bands (typically between 0-8), 

which have been suggested to reflect the presence of regulation hotspots: a distant 

eQTL controlling or regulating many genes [22]. 

3.3.6 More elaborate models 

Multiple QTL mapping 

To potentially improve statistical power for eQTL detection, it can be worthwhile 

fitting multiple QTL models, for example, by a stepwise procedure: correct for the 

first (most significant) eQTL effect found, and then map the corrected data to detect 

a second eQTL. The two-eQTL model is as follows: 

 

Yi = mi + Gk + Gj +eij 

 

where Gk is the genotype vector at the first QTL position. 

  

In this code example, we look for secondary eQTLs for the probes, for which 

a primary QTL has already been identified in Section 3.3.5: we use maxQTLPeaks-

Thresh3. 
> secondaryMarkerMapping <- function(traits,genotypes,primaryQTLs) 

{ 

 if (paste(rownames(traits),collapse='') != 

paste(primaryQTLs[,"Probe"],collapse='')) 

 { 

  print("Error: Traits submitted do not match traits with primary eQTLs."); 

  return; 

 } 

 qtl_profiles <- NULL; 

 for (i in 1:nrow(traits)) 

 { 

   current_profile <- NULL; 

   for (j in 1:nrow(genotypes)) 

   { 

    model <- traits[i,] ~ genotypes[primaryQTLs[i,"Marker"],]+ genotypes[j,]; 

    anova_table <- anova(lm(model)); 

    current_profile <- c(current_profile, -log10(anova_table[2,5])); 

   } 

   qtl_profiles <- rbind(qtl_profiles,current_profile); 

  } 

  rownames(qtl_profiles) <- rownames(traits); 

  colnames(qtl_profiles) <- rownames(genotypes); 

  qtl_profiles 

} 

 

> secondaryQTLProfiles <- secondaryMarkerMapping( 

normExpr[QTLPeaksThresh3[,"Probe"],], 

genotypes,QTLPeaksThresh3 ); 

 

Using the function defined in Section 3.3.5 to extract QTL peaks, we can 
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now create a list of the significant secondary eQTLs for a given threshold:  
 

> secondaryQTLPeaksThresh3 <- getQTLMaxPeaks(secondaryQTLProfiles, threshold=3); 

 

It is, of course, possible to include three or more QTLs per gene by extend-

ing the model. However, you should be cautious because of overfitting issues. This 

sequential way of defining the co-factors to include in the model may not be optim-

al, and there are a number of more advanced strategies which address the problem of 

model selection (see Note 7). 

Epistasis 

In the previous step we have presented how to detect multiple QTLs per gene. 

However, we have not tested for interaction between the eQTLs (i.e. if the effect of 

one eQTL is modulated by the effect of the second one). Such complex mechanisms 

are common in gene regulation and are termed epistasis. Our eQTL analysis model 

can again be extended to take such epistasis effects into account. 

 

Yi = mi + Gk + Gj + Gj * Gk + eij 

The code below tests for epistasis between two eQTLs that we identified for 

the gene in Section 3.3.6: 

 
> my_probe<-secondaryQTLPeaksThresh3[1,1];  

#Probe of the gene we will test for epistasis 

> G1 <-genotypes[QTLPeaksThresh3[ 

 which(QTLPeaksThresh3[,"Probe"]==my_probe), "Marker"],]; 

> G2 <- genotypes[secondaryQTLPeaksThresh3[1, "Marker"],]; 

> model_epistasis<- normExpr[my_probe,] ~ G1 + G2 + G1:G2; 

> anova_table <- anova(lm(model_epistasis)); 

> interaction_p_value <- anova_table[3,5]; 

        

In this example, the p-value is insignificant and there is no evidence for epi-

stasis. Interactions also occur between two loci whose main effects (terms G1 and 

G2 in the model) may not be significant on their own. It can therefore be relevant to 

screen for interactions for any possible pairs of loci, but this can sometimes be 

computationally unrealistic (a two-dimensional genome scan leads to a huge mul-

tiple-testing problem). For more guidance on strategies for epistasis testing, see 

Note 7. 

Adding environments / treatments 

Genetical genomics studies can provide insights into the way different environments 

or treatments affect the regulation of gene expression. When combining the genetic 

perturbation naturally present in inbred populations with the effect of different 

environments, the study of the interaction between those two causes of variation can 

teach us about the plasticity of eQTLs [15, 23]. We can illustrate this with the 
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example of the study of gene expression regulation across several cell types. In the 

example below, expression profiles were collected from four distinct cell types. The 

following model can be used: 

 

Yi = mi + CT + Gj + CT * Gj + eij where CT is the cell type factor.  
 

For this example, we need to load new data files: 

 
>genotypes4CT <- as.matrix(read.csv(file="genotypes4ct.txt",sep="\t",row.names=1)); 

>expr4CT <-as.matrix(read.csv(file="expr4ct.txt", sep="\t", row.names=1)); 

#the cell types are coded as “1”, “2”, “3”and “4” 

>CT.factor <- factor(c(rep(1,24), rep(2,25), rep(3,22), rep(4,25))); 

 

The mapping function therefore becomes: 
 

>singleMarkerMappingWithEnv <-  

function (traits, genotypes, env.factor) 

{ 

  P1 <- P2 <- P3 <- P4 <- NULL; 

  for (i in 1:nrow(traits)) 

 { 

   p1 <- p2 <- p3 <- NULL; 

   for (j in 1:nrow(genotypes)) 

   { 

     model_environment<- traits[i,] ~ factor(env.factor)+ 

         genotypes[j,] + factor(env.factor):genotypes[j,];  

     anova_table <- anova(lm(model_environment)); 

     p1 <- c(p1,-log10(anova_table[[5]][1])); 

     p2 <- c(p2,-log10(anova_table[[5]][2])); 

     p3 <- c(p3,-log10(anova_table[[5]][3])); 

   } 

   P1 <- rbind(P1,p1);     # Env 

   P2 <- rbind(P2,p2);     #qtl 

   P3 <- rbind(P3,p3);     #qtlxEnv 

  } 

  dimnames(P1) <- list(rownames(traits),rownames(genotypes)); 

  dimnames(P2) <- list(rownames(traits),rownames(genotypes)); 

  dimnames(P3) <- list(rownames(traits),rownames(genotypes)); 

  results<-list(); 

  results$Profiles_Environment <- P1; 

  results$Profiles_QTL <- P2; 

  results$Profiles_QTLxEnvironment <- P3; 

  results; 

} 

 

This function outputs three p-values for each trait-marker pair: the first p-

value indicates the significance level of the environment term (a low p-value indi-

cates a clear overall influence of the environment on the trait; this p-value is not 

valid if the environment has not been randomly allocated to samples). The second p-

value is the significance of the main genotype effect at that marker, while the third 

p-value reflects the significance of the genotype by environment interaction term. 

 
>results4CT <-singleMarkerMappingWithEnv(expr4CT,genotypes4CT,env.factor=CT.factor); 

>interactionQTLsThresh3<-

getQTLMaxPeaks(results4CT$Profiles_QTLxEnvironment,threshold=3); 
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A norm of reaction plot (Figure 6) can show how the eQTL effect is mod-

ulated by the environment. It can be obtained using the following function: 

 
>plotNormOfReaction<-function(trait,genotype,env.factor) 

{ 

 env.factor <- as.numeric(env.factor); 

 plottingColors <- c("black","black","lightgrey","grey"); 

 yrange <- range(trait) + c((range(trait)[1] - range(trait)[2])/5, 

   (range(trait)[2] - range(trait)[1])/5); 

 plot(y=trait,x=env.factor,xlim=range(env.factor), ylim=yrange, 

   col=plottingColors[2*genotype], xaxt='n', pch=19, xlab="Environment", 

   ylab="expression for individuals"); 

 meanGroupValues <- matrix(nrow=2,ncol=length(unique(env.factor))) ; 

 for (env in 1:length(unique(env.factor))) 

 { 

  meanGroupValues[1,env] <- 

     mean(trait[intersect(which(genotype == 1), which(env.factor == env))]); 

  meanGroupValues[2,env] <-  

 mean(trait[intersect(which(genotype == 2), which(env.factor == env))]); 

  text(env,yrange[1],env,cex=1.5,col="black"); 

 } 

 par(new=T); 

 matplot( y=t(meanGroupValues),xlim=range(env.factor), ylim=yrange, xlab='', 

   ylab='', xaxt='n',yaxt='n', type='l',lty=1,lwd=4,col=c("black","grey")); 

} 

>plotNormOfReaction( expr4CT[interactionQTLsThresh3[1,"Probe"],], 

  genotypes4CT[interactionQTLsThresh3[1,"Marker"],], CT.factor); 

 

 

Figure 6 - Norm of reaction plot: eQTL by environment interaction, with the cell types on the X 

axis and the gene expression on the Y axis. Each dot is an individual sample measurement 

(black = B6, grey = DBA2). The lines represent mean values. The effect of the QTL is here 

reversed in cell type 4 compared with the other three cell types. 
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3.3.7 Determining the significance threshold 

In eQTL analysis, the determination of the threshold for statistical significance is a 

critical aspect since multiple testing issues arise from both the high number of genes 

studied and the high number of genomic loci at which linkage is tested. The p-values 

yielded by the ANOVA must be adjusted to take into account these multiple testing 

issues. Bonferroni correction is somewhat too drastic here since the tests are not 

independent: firstly, the markers tested are intrinsically linked and thus correlated to 

their neighbors on each chromosome; and, secondly, large families of genes are 

known to be co-regulated, so there is also a correlation structure in that dimension. 

 A more appropriate approach is to estimate a False Discovery Rate (FDR) 

based on a permutation strategy [24]. A carefully designed permutation procedure 

will make it possible to estimate the null distribution. The principle is to apply the 

exact same analysis protocol to permuted datasets, calculate the average number of 

rejected null hypotheses for a certain p-value threshold in those permuted datasets, 

and then derive an FDR estimate, at that p-value threshold, as the average number of 

rejected hypotheses in the permuted datasets divided by the number of rejected 

hypotheses at the same threshold in the true data.  

 Different permutation strategies are possible: we advise permuting only the 

genotypes of the individuals, while conserving trait values (gene expression mea-

surements). This ensures that the permutation procedure does not break the internal 

correlation structure of the data (within markers and within genes), but that any 

linkage detected between a marker and gene expression in a permuted dataset is a 

false-positive [25]. 

 The following function here estimates the number of false-positives obtained 

with a permuted dataset for a range of p-value thresholds in the single-marker 

mapping case discussed in Section 3.3.5. 

 
>estimateFalsePositives <- function(traits,genotypes,threshold_range,nperm) 

{  

  permuteGenotypes <- function(geno) 

  { 

   geno[,sample(1:ncol(geno),ncol(geno),replace=F)]; 

  } 

  Counters <- NULL 

  for (i in 1:nperm) 

  { 

    permGenotypes <- permuteGenotypes(genotypes); 

    current_profiles <- singleMarkerMapping(traits,permGenotypes); 

    current_counters <- NULL; 

    for (thresh in threshold_range) 

    { 

      current_counters <- c(current_counters, 

         length(which(apply(current_profiles,1,max)>=thresh))); 

    } 

    Counters <- rbind(counters,current_counters); 

  } 

  colnames(counters) <- apply(matrix(threshold_range),1,as.character); 
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for (j in 1:nrow(counters))  

  { 

   rownames(counters)[j] <- paste("permutation round",j); 

  } 

  Counters; 

} 

> false_positive_estimates <-  

estimateFalsePositives(normExpr, genotypes, threshold_range=c(3,4,5,6,7), nperm=10); 

#In this example, for efficiency purpose we run only 10 permutations round. For a 

#reliable estimation, 100 permutations would be a minimum. 

 

We can derive an estimate of the FDR, e.g. for a p-value threshold of 3: 
 

#number of rejected null hypothesis: 

positives_thresh3 <- nrow(QTLPeaksThresh3) 

#number of false positives 

false_positives_thresh3 <- mean(false_positive_estimates[,"3"]) 

#FDR 

FDR_thresh3 <- false_positives_thresh3/positives_thresh3; 

 

The result here gives a very high FDR (>50%) which means we need to use a 

more stringent threshold than –logp> 3. This code can easily be adapted to estimate 

the FDRs for other mapping procedures, the principle being that the permuted data 

should be analyzed with the same model and the same procedure as the real data. 

The cases of complex models for stratified data or interacting factors require adapted 

permutation procedures  [26]. 

 Another advantage of this permutation procedure is that it allows an un-

biased estimation of the significance of the number and size of eQTL hotspots. 

There is some speculation that some hotspots may be the result of false-positive 

linkage of groups of correlated genes to random genome positions (with no regulato-

ry connection) [27, 28]. Calculating the size and the number of the hotspots obtained 

with permuted datasets that have retained the correlation between genes is a 

straightforward manner of testing the significance of hotspots [25]. 

 Some authors have suggested using different thresholds for local and distant 

eQTLs: detecting local effects does not involve genome-wide testing of loci and can 

therefore be controlled with relaxed thresholds [29]. Finally, it is important to take 

into account the fact that sex chromosomes have specific properties which require 

different thresholds for sex and autosomal chromosomes (see Note 8). 

3.3.8 Interpretation of the results 

A typical eQTL analysis will yield hundreds or thousands of genetic linkages. 

Extracting meaningful biological information from the results can prove challeng-

ing.  

 Local eQTLs typically offer insights into possible cis-regulatory differences 

between the two alleles. Inspection of the polymorphisms in the regulatory regions 

of the gene can provide insight into the possible molecular mechanism (e.g. a SNP 

located in a transcription factor binding site located in the promoter region of the 
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gene). Polymorphisms located within the probe target regions can also create a 

technically false-positive eQTL (see Note 9) 

 A distant eQTL indicates the presence of a distant regulator (e.g. a transcrip-

tion factor or a miRNA gene) at the QTL location. This regulator may either be 

locally regulated or contain a non-synonymous polymorphism affecting its function. 

It is, however, usually difficult to directly pinpoint the regulator because of the 

relatively poor mapping resolution (a QTL typically spans several Mb and contains 

tens to hundreds of candidate genes). 

  

 

Figure 7 - Multiple possible candidate regulators: on the top panel the QTL profiles of 16 genes 

show a common peak. A large number of genes, illustrated by a UCSC genome browser screenshot 

(lower panel), lie within the confidence interval of that eQTL. 
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Hotspots, which are large groups of genes having co-localizing eQTLs, may 

reveal the action of master regulators (i.e. genes controlling many others). It is 

possible to design strategies to reduce the large number of candidate regulators 

(typically hundreds) that fall into the hotspot QTL region. We present here one small 

sample hotspot, illustrated in Figure 7. Sixteen genes were found to share a QTL. 

We investigate the possibility of a common regulator located in that QTL region. 

Different candidates (genes physically located within the QTL) are ranked according 

to their correlation with each of the hotspot genes. Using RankProduct [30] it is then 

possible to prioritize the candidates (Table 5). 

Hotspot elucidation, and more generally QTL gene candidate search are da-

ta-driven research processes which integrate heterogeneous types of information 

[31]: we have illustrated the use of correlation measurements. Other data types can 

include Transcription Factor Binding Site (TFBS) modules investigation, gene 

annotations, and databases of known protein-protein interactions [32]. Methods such 

as the Rank Product can be used to prioritize candidates based on these criteria. 

 
Candidate  

Regulators 

Rank Product of Correlation 

with Hotspot Genes 

p-Value 

Mxi1 2.412555 <0.00001 

Add3 2.641117 <0.00001 

Smndc1 3.808562 0.0012 

Shoc2 3.883223 0.00135 

Gpam 4.179971 0.0027 

Sorcs1 4.571672 0.00825 

5830416P10Rik 5.282127 0.03055 

Adra2a 7.849839 0.38 

1700001K23Rik 9.409524 0.69665 

Pdcd4 10.60708 0.8643 

Gucy2g 10.74565 0.878475 

Dusp5 11.54332 0.93845 

Tcf7l2 11.95649 0.9578 

Tectb 13.5352 0.99195 

Zdhhc6 14.56703 0.99825 

Ins1 15.25569 0.99965 

Vti1a 15.5439 0.99975 

Rbm20 16.02744 0.99995 

Acsl5 16.25449 0.99995 

Xpnpep1 18.07143 1 

Table 5 - Prioritization of candidate regulators based on Rank Product of correlation with 

hotspot genes. The genes with the lowest p-values are those that correlate best with the hotspot genes 

and are therefore given top priority. Mxi1 and Add3 are the most likely candidates according to this 

correlation criterion. 
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3.4 Notes 

1. Computational capacity issues 

Some of the protocol steps (mapping, permutation procedure) can be computational-

ly very intensive. If available, it is advisable to use a multi-core machine or a cluster 

of computers to perform these steps. The jobs can easily be separated by groups of 

probes, since every probe is here mapped separately. R/Parallel [33] is a useful R 

package, which allows R to run iterative tasks in parallel on multiple processors. 

Another trick that can be used to reduce the computing time is to  drop redundant 

markers (neighboring markers with identical genotypes for all samples) at the start 

of the analysis. 

Memory issues can also arise when huge matrices are created within R. The 

amount of memory used by R is, for example, limited to 1 GB in the default win-

dows setup of the program. This memory limit can be extended using the command 

memory.limit(size_MB). However, the maximum memory cannot exceed the 

physical memory available in the computer. A possible workaround is to divide the 

traits into smaller entities and to write intermediary results to files.  

 

2. Affymetrix-related issues  

Affymetrix arrays differ from alternative expression profiling technologies by their 

use of probe sets made of multiple (10-16) probes targeting one gene. While a 

number of studies have focused on probe set summarized data to perform eQTL 

mapping, we suggest using a more subtle approach taking into account probe level 

intensities. This approach has been extensively described in [34].  

 

3. Alternative software solutions 

R/QTL [35] is an R package which includes many functions for mapping, including 

an algorithm to infer missing genotype data using Hidden Markov Models. Gene-

Network (www.genenetwork.org [11]) also offers eQTL analysis for user uploaded 

data, one trait at a time, and genome-wide analysis tools for a number of published 

datasets. 

 

4. Alternative Illumina data pre-processing 

Compared with Affymetrix for example, Illumina is a relatively new technology and 

standard analysis guidelines have yet to emerge. While in this chapter we illustrate 

our eQTL analysis with raw probe summarized data as output by BeadStudio, there 

are alternative possibilities which make use of bead level intensity data. See, for 

example, work by Dunning et al. [36, 37] for some methods and software. 

 

5. Probe (re-)annotations 

The correct annotation of probes is a critical aspect of any microarray analysis. It is 

especially crucial in the case of eQTL studies since the presence of subtle differenc-
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es in the probe target sequences (SNPs) between parental lines can produce technical 

false-positive eQTLs  (see Note 9). Annotation files provided by array manufactur-

ers tend to be incomplete and outdated and do not include genetic variation 

information across different strains. 

The strategy of probe re-annotation should therefore comprise a systematic 

BLAT search of each of the probe sequences against the latest genome assembly 

build, combined with a mining of polymorphism databases. This is obviously a 

gruesome task for which there are a few software tools available [38-40]. 

 

6. Batches and hidden factors 

Microarray data are known to be very sensitive to the effect of batches, which can 

create artificial correlation. In the context of eQTL mapping, these effects can act as 

confounding factors and cause multiple spurious genetic linkages, often forming 

apparent hotspots: if the confounding factor influences many genes (as is the case 

with microarray batches) and if there is, by chance, correlation of that factor with the 

genotypes at a certain genomic locus, then all genes will artificially map to that 

region, misleadingly suggesting the presence of a master regulator [34]. If the 

confounding factor is known, it is possible to correct for its effect by adapting the 

mapping model. In the single marker mapping case: 

 

Yi = mi + B + Gj + eij  where B is the batch factor. 

Caution: if multiple environments are used, it is usually required to account 

for the batch effects in an environment specific fashion. In this case, an appropriate 

model would be: 

 

Yi = mi + B + T + B*T + Gj + G *T + eij 

The B * T allows for a more careful batch effect correction: for example if 

one gene was only expressed in one of the environments (in our example one tissue), 

then the batch effect could affect only the gene in that tissue, and should not be 

corrected in the samples belonging to the other environments. 

 

7. Advanced model selection procedures 

The selection of relevant co-factors and interaction terms in generalized models, and 

particularly in the context of QTL mapping, has been widely discussed in the 

scientific literature. Mapping of multiple QTLs and epistasis testing can be seen as 

model selection problems. For examples, see [41, 42]. 

 

8. The case of sex chromosomes 

While most of the Y chromosome does not undergo recombination, the recombina-

tion rate of the X chromosome is slower than that of the autosomes. This has 

important consequences on the detection of significant QTLs. For a comprehensive 

view of these issues, see [43]. 
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9. Probe hybridization artifacts 

When several probes are available for the same gene, it is not uncommon to observe 

a difference in the mapping results of those probes: “the probes tell different stories” 

or statistically there is eQTL by probe interaction [34]. This can be explained either 

by biological mechanisms (alternative splicing) or by technical artifacts. Such 

technical artifacts may arise when a polymorphism is present in the sequence 

targeted by a probe [44]. If the probe was designed specifically based on the genome 

sequence of one of the parental strains, it is possible that some polymorphism causes 

the other genotype mRNA products to have a weaker binding affinity and thus a 

lower signal. Such effects will yield spurious local eQTL linkages. If the probes 

have been designed specifically based on the sequence of one of the two parental 

strains (say, strain A, and not strain B), it is possible to estimate roughly the number 

of local eQTLs affected by this issue. For example, if 65% of local eQTLs are linked 

with a higher expression of the gene for the A allele, while for the other 35% local 

eQTLs the B allele is more highly expressed. This contrasts with the 50%-50% 

expected without hybridization effect. In this case, we would expect 65-35 = 30% of 

eQTLs to be caused by this hybridization difference rather than by a real differential 

expression effect. 
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Chapter 4 

Genetical genomics: 

Spotlight on QTL hotspots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QTL hotspots are regions of the genome that harbor genetic variation that 

seems to affect the expression of a large to very large number of genes (sometimes 

thousands). QTL hotspots could therefore reveal the presence of major biological 

regulators. However, striking discrepancy among the results reported in scientific 

literature has caused concern over their significance. In this chapter, we review 

published reports about eQTL hotspots and we propose a permutation strategy that 

allows us to discard numerous hotspots as statistical artifacts. 
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4.1 Introduction 

Genetical genomics aims at identifying quantitative trait loci (QTL) for molecular 

traits such as gene expression or protein levels (eQTL and pQTL, respectively). One 

of the central concepts in genetical genomics is the existence of hotspots [1], where 

a single polymorphism leads to widespread downstream changes in the expression 

of distant genes, which are all mapping to the same genomic locus. Several groups 

have hypothesized that many genetic polymorphisms, e.g. in major regulators or 

transcription factors, would lead to large and consistent biological effects that would 

be visible as eQTL hotspots. 

4.2 Results and Discussion 

Rather surprisingly, however, there have been only very few verified hotspots in 

published genetical genomics studies to date. In contrast to local eQTLs, which 

coincide with the position of the gene and are presumably acting in cis, for example 

by polymorphisms in the promoter region, distant eQTLs have been found to be 

more elusive. They seem to show smaller effect sizes and are less consistent, per-

haps due to the indirect regulation mechanism, resulting in lower power to detect 

them and, consequently, an inability to reliably delimit hotspots [2]. While there are 

typically hundreds to thousands of strong local eQTLs per study, the number of 

associated hotspots is much lower. For example, a recent very large association 

study in about 1,000 humans did not find a single significant hotspot [3]. Other 

studies have reported up to about 30 hotspots, far less than the number of significant 

local eQTLs (Table 1). The molecular basis is known for less than a handful of 

cases. An example is the Arabidopsis ERECTA locus, which leads to a drastic 

phenotypic change in the plant and has broad pleiotropic effects on many molecular 

(and morphological) traits [4].  

Recently, Wu et al. [5] reported the large-scale identification of hotspots. They 

studied gene expression in adipose tissue of 28 inbred mouse strains and performed 

eQTL analysis by genome-wide association analysis. The paper reports the identifi-

cation of over 1600 candidate hotspots, each with a minimum hotspot size of 50 

target genes. Furthermore, they demonstrate that these hotspots are biologically 

coherent, by showing that in about 25% of cases the hotspot targets are enriched for 

functional gene sets derived from Gene Ontology, the KEGG pathways database, 

and the Ingenuity Pathways Knowledge Base. These findings suggested that genetic 

polymorphisms can indeed lead to large and consistent biological effects that are 

visible as eQTL hotspots.  

However, the authors chose a relatively permissive threshold of P=0.003 for 

QTL detection, uncorrected for multiple testing. In total, 886,440 eQTLs were 

identified at this threshold, i.e. 134 per gene. A permutation test (Wu & Su, unpub-
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lished) shows that this results in a false discovery rate of 83%, largely resulting from 

multiple testing across 157,000 SNPs and 6601 probe sets. This relatively permis-

sive threshold was chosen since the focus of the analysis was on patterns of eQTL 

hotspots, and not on individual eQTL associations. Analysis of eQTL patterns is 

relatively robust to individual false positives, and a permissive threshold allows for 

relatively greater sensitivity in detecting signal [6]. The authors observed an enrich-

ment of specific biological functions among the genes in the reported hotspots. The 

study also reported that enriched categories tended to match the annotation of 

candidate regulators.  Moreover, one predicted regulator was experimentally vali-

dated. In sum, these data seem to support the hypothesis that hotspots are 

downstream of a common master regulator linked to the eQTL. 

However, we suggest here that these observations may also be explained by 

clusters of genes with highly correlated expression. If one gene shows a spurious 

eQTL, many correlated genes will show the same spurious eQTL, in particular if the 

false discovery rate for individual eQTLs is very high [2, 7-9]. There are many non-

genetic mechanisms which can create strongly correlated clusters of functionally 

related genes. On the one hand, such clusters may be a result of a concerted response 

to some uncontrolled environmental factor. On the other hand, dissected tissue 

samples can contain slightly varying fractions of individual cell types, leading to 

cell-type specific gene clusters which vary in a correlated manner. The resulting 

correlation patterns represent potentially confounding effects, both for the correct 

determination of a significance threshold and for the biological interpretation of the 

resulting hotspots.  

Consequently, a key consideration in eQTL analysis is in the effective design of 

a permutation strategy to assess statistical significance. The approach used in [5] 

permuted the observed eQTLs among genes (Figure 1B). However, this approach 

has the disadvantage of ignoring the expression correlation between genes so that 

their spurious eQTLs no longer cluster along the genome. This leads to a potentially 

severe underestimate of the null distribution of the size of hotspots, when there are 

correlated clusters as described above.  

An alternative strategy would have been to permute the strain labels as shown in 

Figure 1A, maintaining the correlation of the expression traits while destroying any 

genetic association [2, 10]. As discussed above, it is expected that this would result 

in a more realistic significance threshold and a much smaller number of significant 

hotspots. Reanalysis of the data from [5] confirmed this idea: when permuting the 

strain labels (i.e. randomly swapping the genotypes between animals), the average 

maximum size of hotspots in the permuted data increases from less than 50 to 986. 

Consequently, even the largest hotspot in the real data only has a multiple-testing 

corrected p-value of 0.23. This reanalysis demonstrates that expression correlation 

can indeed explain a large part of the co-mapping between genes. Such effects may 

also underlie some of the higher numbers of hotspots reported by some earlier 

studies (Table 1), especially where no appropriate permutation tests were applied to 
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determine the statistical significance of hotspots [2].  

Of course, this does not imply that all hotspots are necessarily false positives. 

As described above, about 5% of the co-mapping clusters in [5] are not only func-

tionally coherent but also map to a locus that contains a gene of the same functional 

class. This number is not statistically significant, but it is still suggestive of an 

enrichment of functional associations (p-value < 0.16, FDR = 67%; Wu & Su, 

unpublished). Some of these prioritized hotspots could correspond to true hotspots, 

and indeed one of them has been verified experimentally: cyclin H was validated as 

a new upstream regulator of cellular oxidative phosphorylation, as well as a tran-

scriptional regulator of genes comprising a hotspot [5].  

 

 

Figure 1 - Alternative Permutation Strategies for Determining the Significance of eQTL 

Hotspots in Linkage and Association Studies. (A) The top panel shows the original data. The 

genotype matrix contains information about the genotype of each strain (S1…Sn) at each marker 

position along the genome (M1…Mn). For each strain, the expression of genes G1…Gn is measured. 

Linkage or association mapping combines these two sources of information to yield the eQTL matrix, 

where each purple entry indicates a significant linkage or association for a gene at a particular locus. 

The bottom panel illustrates the permutation strategy advocated here, where the strain labels are 

permuted, so that each strain is assigned the genotype vector of another random strain, while the 

expression matrix is unchanged. When the mapping is repeated on these permuted data, the correla-

tion structure of gene expression is maintained, leading to an accurate estimate of the clustered 

distribution of false eQTLs along the genome. (B) shows the permutation strategy used in [5], where 

the original eQTL matrix is permuted by assigning the same number of eQTLs to genes randomly. 

The correlation of gene expression is lost, leading to an underestimate of the clustered pattern of 

spurious eQTLs. 
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Other studies, which used much stricter thresholds for defining their hotspots, 

also demonstrated the potential of interpreting putative hotspots by a closer study of 

the associated genetic locus [11, 12]. An example is the recent work of Zhu et al. 

[12]: by combining eQTL information, transcription factor binding sites and protein-

protein interaction data in a Bayesian network approach, they were able to predict 

causal regulators for 9 out of 13 hotspots (69%) originally reported in [13]. With 

integrated methods like these, it should be possible to identify those hotspots that are 

more than just clusters of co-expressed genes. As a result the number of identified, 

functionally relevant hotspots could ultimately increase beyond the small numbers 

reported in Table 1. This would create new opportunities for gene regulatory 

network reconstruction. 

In any case, for the time being it seems that distant eQTLs and their hotspots are 

still scarce and hard to find and that those that are reported should be interpreted 

with caution. This rarity of convincing hotspots in genetical genomics studies is 

intriguing. It could be due to the limited power of the initial studies, but it could also 

have a more profound reason. For example, it might well be that biological systems 

are so robust against subtle genetic perturbations that the majority of heritable gene 

expression variation is effectively “buffered” and does not lead to downstream 

effects on other genes, protein, metabolites or phenotypes [14-17]. Experimental 

evidence for phenotypic buffering of protein coding polymorphisms is well estab-

lished [18, 19].  

In fact, it has been shown that phenotypic buffering is a general property of 

complex gene-regulatory networks [20]. Also, if small heritable changes in tran-

script levels were transmitted unbuffered throughout the system, there would be a 

grave danger that genetic recombination would lead to unhealthy combinations of 

alleles and, consequently, to systems failure. Hotspots with large pleiotropic effects 

are thus more likely to be removed by purifying selection. If, as thus expected, 

common alleles are predominantly buffered by the robust properties of the system 

and hence largely inconsequential for the rest of the molecules in the system, this 

will have profound consequences for the design and interpretation of genetical 

genomics studies of complex diseases. Most importantly, it could turn out that even 

so-called common diseases, like diabetes, asthma, or rheumatoid arthritis, are not 

necessarily the result of common, small-effect variants in a large number of genes, 

but are rather caused by changes at a few crucial fragile points of the system (‘hots-

pots’), which cause large system-wide disturbances [21, 22]. Future studies in 

genetical genomics should aim at further elucidating the striking rarity of eQTL 

hotspots. 
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Table 1. eQTL hotspots reported in selected genetical genomics studies*.  

 

Paper Organism  
Population 

size 

Number of 

local eQTLs 

Number of 

distant eQTLs 

Threshold 

for eQTLs 

Number of 

hotspots 

Brem et al., Science, 

2002[23] 
yeast 40 185 385 p<5x10-5 8 

Yvert et al., Nat 

Genet, 2003[13] 
yeast 86 578 1716 p<3.4x10-5 13 

Schadt et al., Nature, 

2003[1] 
mouse 111 1022 1985 LOD>4.3 7 

Kirst et al., Plant 

Physiol, 2004[24] 
eucalyptus 91 1 8 

experiment-

wise α=0.10 
2 

Monks et al., AJHG, 

2004[25] 
human 

15 CEPH 

families (167) 
13 20 p<5x10-5 0 

Morley et al., 

Nature, 2004[26] 
human 

14 CEPH 

families 
29 118 p<4.3x10-7 2 

Cheung et al., 

Nature, 2005[27] 
human 57 65 0 p<0.001 0 

Stranger et al., PLoS 

Genet, 2005[28] 
human 60 10–40 3 

corrected p-

value 0.05 
0 

Chesler et al., Nat 

Genet, 2005[29] 
mouse 35 83 5 FDR=0.05 7 

Bystrykh et al., Nat 

Genet, 2005[30] 
mouse 30 478 136 

genome-wide 

p<0.005 
“multiple” 

Hubner et al., Nat 

Genet, 2005[31] 
rat 259 622 1211 p<0.05 2 

Mehrabian et al., 

Nat Genet, 2005[32] 
mouse 111 20107 total LOD>2 1 

DeCook et al., 

Genetics, 2006[33] 
Arabidopsis 30 3525 total FDR=2.3% 5 

Lan et al., PLoS 

Genet, 2006[34] 
mouse 60 723 5293 LOD>3.4 15 

Wang et al., PLoS 

Genet, 2006[35] 
mouse 312 2118 4556 P<5x10−5 7 

Li et al., PLoS 

Genetics, 2006[36]  
C. elegans 80 414 308 

p<0.001 

FDR=0.04 
1 

Keurentjes et al., 

PNAS, 2007[4] 
Arabidopsis 160 1875 1958 FDR=0.05 ~29 

McClurg et al., 

Genetics, 2007[37] 
mouse 32 N.A. N.A. N.A. 25 

Emilsson et al., 

Nature, 2008[3] 
human 470 1970 52 FDR=0.05 0 

Schadt et al., PLoS 

Biol, 2008[38] 
human 427 3210 242 p<1.6x10-12 23 

Ghazalpour et al., 

PLoS Genet, 

2008[39] 

mouse 110 471 701 FDR=0.1 4 

Wu et al., PLoS 

Genet, 2008[5] 
mouse 28 600 

885,840 (Wu  & 

Su, unpub-

lished) 

p<0.003 1659 

* The numbers are based on the statistical procedure and threshold used in the original publication, 

which can vary widely between papers. Where results based on multiple thresholds were reported, we 

included the most conservative one in the table. (N.A. not reported in the original paper. 
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Chapter 5 

DiffCoEx: a simple and sensitive method 

to find differentially coexpressed gene modules 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Large microarray datasets have enabled gene regulation to be studied 

through coexpression analysis. While numerous methods have been developed for 

identifying differentially expressed genes between two conditions, the field of 

differential coexpression analysis is still relatively new. More specifically, there is 

so far no sensitive and untargeted method to identify gene modules (also known as 

gene sets or clusters) that are differentially coexpressed between two conditions. 

Here, sensitive and untargeted means that the method should be able to construct de 

novo modules by grouping genes based on shared, but subtle, differential correla-

tion patterns. We present DiffCoEx, a novel method for identifying correlation 

pattern changes, which builds on the commonly used Weighted Gene Coexpression 

Network Analysis (WGCNA) framework for coexpression analysis. We demonstrate 

its usefulness by identifying biologically relevant, differentially coexpressed modules 

in a rat cancer dataset. DiffCoEx is a simple and sensitive method to identify gene 

coexpression differences between multiple conditions. 

 

 

 

Originally published as: 
Tesson BM, Breitling R, Jansen RC.  

DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. 

 BMC Bioinformatics. 2010 Oct 6;11:497 
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5.1 Background 

There are two major classes of approach to the analysis of gene expression data 

collected in microarray studies: either one can identify genes that are differentially 

expressed in different conditions, or the patterns of correlated gene expression 

(coexpression). Coexpression analysis identifies sets of genes that are expressed in a 

coordinated fashion, i.e. respond in a similar fashion to the controlled or uncon-

trolled perturbation present in the experiment. Such coexpression is considered as 

evidence for possible co-regulation and for membership to common biological 

processes under the principle of guilt–by-association [1]. When comparing the 

transcriptome between two conditions, it is a natural step to identify differential 

coexpression to get an even more informative picture of the dynamic changes in the 

gene regulatory networks. Changes in the differential coexpression structure of the 

genes are, for example, a group of genes strongly correlated in one condition but not 

in the other, or one module correlating to another module in one condition, whereas 

they are no longer correlated in the other condition. Differential coexpression may 

indicate rewiring of transcriptional networks in response to disease or adaptation to 

different environments.  

Differential coexpression has been reported in diverse organisms and across 

various conditions. For example, Fuller et al. [2] reported a differentially coex-

pressed module in obese mice compared to lean mice; Van Nas et al. [3] found 

gender-specific coexpression modules; Oldham et al. [4] identified gene modules 

that were differentially coexpressed between humans and chimpanzees; and South-

worth et al. [5] found that aging in mice was associated with a general decrease in 

coexpression. Differential coexpression patterns associated with diseases have been 

an important focus of research, see review by De la Fuente et al. [6]. 

Differential coexpression methods can be divided into two categories that serve 

distinct purposes: on the one hand, targeted approaches study gene modules that are 

defined a priori, while, on the other hand, untargeted approaches aim at grouping 

genes into modules on the basis of their differential coexpression status.  

A suitable untargeted method for differential coexpression analysis should satis-

fy the following criteria: 

(i) Sensitively detect groups of genes in which the correlation of gene pairs 

within the group is significantly different between conditions.  

(ii) Sensitively detect changes in correlations between two groups of genes even 

when the within-group correlation is conserved across conditions. 

(iii) Allow for simple comparison of more than two conditions. 

Criteria (i) and (ii) are illustrated in Figure 1, which schematically depicts bio-

logical scenarios that can give rise to differential coexpression. 
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Figure 3 - Illustration of differential coexpression scenarios.  

Panel A: A gene network is in a coexpressed state in condition 1 as shown by the red background. In 

condition 2 an important regulator of that network is now inactive and the module is no longer 

coexpressed. This scenario is an example of the differential coexpression type described by criterion 

(i). Panel B: Two pathways are coordinated in condition 1 via an important hub gene (shown in blue) 

whose inactivity in condition 2 means the two pathways are no longer coexpressed. This exemplifies 

the module-to-module differential coexpression described by criterion (ii). 

 

 Multiple methods have been proposed to identify such large-scale correlation 

patterns [5, 7-12]. However, this early work provided only partial solutions to the 

problem of differential coexpression since, with one recent exception [5], none of 

the proposed methods were entirely untargeted. Instead, existing methods can be 

divided into two categories: targeted and “semi-targeted” approaches. In targeted 

approaches, pre-defined modules are surveyed for correlation changes between two 

conditions. For example, Choi et al. [9] proposed a method that focuses on the 

analysis of modules based on known gene annotations, such as GO categories, and 

tests the significance of the coexpression changes using a statistical measure known 

as dispersion. This has the advantage of not requiring the gene sets to be highly 

correlated in one of the two conditions. However, this method is targeted in that it 

relies on the study of known functional gene sets and is not able to identify novel, 

non-annotated modules or modules that would only partially match annotated 

categories. “Semi-targeted” approaches use classical coexpression methods in one of 

the conditions to define modules and study whether these modules are also coex-

pressed in the second condition. DCA (differential clustering analysis) [10] is an 

example of a method using one of the two conditions as reference, meaning the 

clusters under consideration are obtained from one condition and then studied in the 

other condition. In order to avoid bias towards one of the conditions, Ihmels et al. 
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suggested doing a reciprocal analysis, switching the reference and target conditions, 

while Southworth et al. used a third dataset as reference [5]. A drawback of such 

“semi-targeted” methods is that the analysis will only focus on groups of genes that 

emerge as clusters in at least one of the conditions, and will therefore potentially 

miss more subtle cases. As an example, a weak but significant condition-dependent 

correlation structure between a group of genes that otherwise belong to distinct, 

strongly coexpressed and conserved clusters would not be detected by this approach. 

A first attempt at an untargeted approach was introduced by Southworth et al. [5], 

who proposed applying hierarchical clustering using the difference in pairwise 

correlations between both conditions as a similarity metric for two genes. This 

approach is therefore suited to identifying groups in which the within-group correla-

tion changes (first criterion), but it cannot be applied to the detection of module-to-

module correlation differences (second criterion). The field of differential coexpres-

sion analysis would therefore benefit from a new, truly untargeted and sensitive 

method for identifying differentially correlated modules that would satisfy all three 

criteria. 

Here we present a solution to this problem in the form of the DiffCoEx ap-

proach for untargeted differential coexpression analysis: a method which applies the 

powerful tools of Weighted Gene Coexpression Network Analysis (WGCNA) to 

differential network analysis. We first describe the five steps involved in DiffCoEx 

and then, to illustrate the method’s effectiveness, we present the results of an 

analysis performed on a publicly available dataset generated by Stemmer et al. [13]. 

 

5.2 Algorithm 

Our method builds on WGCNA [14, 15], which is a framework for coexpression 

analysis. Identification of coexpression modules with WGCNA follows three steps: 

first an adjacency matrix is defined between all the genes under consideration based 

on pair-wise correlations. Then the generalized topological overlap measure [16] is 

computed from the adjacency matrix and converted into a dissimilarity measure. 

Finally, using this dissimilarity measure, hierarchical clustering is applied, followed 

by tree cutting using either a static or a dynamic height cut. The resulting clusters 

form modules of genes in which all members are strongly inter-correlated.  

 

The principle of DiffCoEx is to apply WGCNA to an adjacency matrix 

representing the correlation changes between conditions. DiffCoEx clusters genes 

using a novel dissimilarity measure computed from the topological overlap [16] of 

the correlation changes between conditions. Intuitively, the method groups two 

genes together when their correlations to the same sets of genes change between the 

different conditions. The complete process of our differential coexpression analysis 

comprises five steps, described below. The notation X designates a square matrix 
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with the dimension of the number of genes considered and xij is used to define the 

element of X at row i and column j. 

 

Step 1: Build adjacency matrix C
[k]

 within each condition k as the correlation for all 

pair of genes (i,j):  

),cor(: ][][

ji

k

ij

k
genegenecC =

 
In this step, different correlation measures can be used, such as the Pearson 

or Spearman coefficient. 

 

Step 2: Compute matrix of adjacency difference:   
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In this matrix, high values of dij indicate that the coexpression status of genei 

and genej changes significantly between the two conditions. The correlation change 

is quantified as the difference between signed squared correlation coefficients so 

that changes in correlation which are identical in terms of explained variance (r
2
) are 

given the same weight. This adjacency matrix is defined such that it only takes 

values between 0 and 1. The soft threshold parameter β is taken as a positive integer 

and is used to transform the correlation values so that the weight of large correlation 

differences is emphasized compared to lower, less meaningful, differences. β should 

be regarded as a tuning parameter, and in practice it is advisable to try different 

values of β. In WGCNA, it is recommended to choose β so that the resulting coex-

pression network follows an approximate scale-free topology [14]. However the 

“scale-free” topology nature of biological networks has been disputed [17], and 

another way is to consider the soft threshold parameter as a stringency parameter: 

using high values of β means putting less emphasis on smaller changes in correla-

tion, and therefore being more statistically stringent. Accordingly, since larger 

sample sizes come with higher statistical significance of small correlation changes, 

smaller values of the soft threshold can be used as the sample size increases. In 

practice, we view the soft threshold parameter as a tuning parameter, and we always 

check the significance of the result afterwards, both statistically and using biological 

criteria relevant in each specific study.  

 

Step 3: Derive the Topological Overlap [16] based dissimilarity matrix T from the 

adjacency change matrix D. 
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The use of the topological overlap measure to construct a dissimilarity metrics  

allows the identification of genes that share the same neighbors in the graph formed 

by the differential correlation network as defined by the adjacency matrix created in 

Step 2. Intuitively, a low value of tij (high similarity) means that genei and genej both 

have significant correlation changes with the same large group of genes. This group 

of genes constitutes their “topological overlap” in the differential correlation net-

work and may, or may not, include genei and genej. This property allows DiffCoEx 

to satisfy both criteria (i) and (ii) as stated earlier. On the one hand, if genei and 

genej are part of a module of genes coexpressed in only one condition (criterion (i), 

illustrated in Figure 1A), then the topological overlap between genei and genej in 

the difference network consists of all the genes within that module. On the other 

hand, if genei and genej are equally inter-correlated in both conditions but correlate 

with the genes in a distinct module in only one condition (criterion (ii), illustrated in 

Figure 1B), then the topological overlap between genei and genej in the difference 

network consists of the genes in that other module. In both cases genei and genej will 

therefore be grouped together: in the first case forming a differentially correlated 

module, and in the second case forming a module with differential module-to-

module correlation with another group of genes. 

We note that since the adjacency matrix takes values between 0 and 1, the dissimi-

larity matrix computed here also takes values between 0 and 1, as shown in [14].  

 

Step 4: The dissimilarity matrix T is used as input for clustering and modules are 

identified. 

The clustering can be done using standard hierarchical clustering with average 

linkage, followed by module extraction from the resulting dendrogram, either using 

a fixed cut height or with more elaborate algorithms such as the dynamicTreeCut 

[18]. Alternative clustering techniques, such as Partitioning Around Medoids (PAM) 

[19], may be used in this step. 

 

Step 5: Assess the statistical significance of coexpression changes. 

This is necessary because DiffCoEx uses user-defined parameters: the soft threshold 

β used to transform the adjacency matrix in Step 2 and the clustering parameters in 

Step 4 (tree cutting settings, for example). Unsuitable settings may lead to the 

detection of clusters with non-significant differential coexpression. 

The statistical significance of differential coexpression can be assessed using 

a measure of the module-wise correlation changes such as the dispersion statistic 

[9], the t-statistic [12], or the average absolute correlation. Permutations or simula-

tions of the data can be used to generate a null distribution of those statistics by 

providing estimates of the extent of differential correlation that can be expected to 

occur by chance. An example of implementing a permutation procedure to assess the 

significance of differential coexpression using the dispersion statistics is presented 

in Additional file 1. 



Chapter 5                                                                                                       85 

 

( )∑=
k

k

ij

k

ijij cc
n

c
2][][]0[ )(*)sign(

1

Variants 

Extending the DiffCoEx method to multiple conditions 

This method can easily be extended to the study of differential coexpression over 

more than two conditions. The only required change is in Step 2, where the matrix 

of adjacency differences should be replaced with the following: supposing we have 

calculated C
[1]
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 the correlation matrices for gene pairs in each of the n 

different conditions: 
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where  

 

For two conditions, one can verify that this formulation is equivalent to that 

proposed earlier in Step 2. 

 

A less sensitive variant to detect more striking patterns 
If one is interested in picking up only coexpression changes that affect genes form-

ing highly coexpressed modules in at least one of the conditions, the formula in Step 

2 can be adapted so that the method uses the difference between the two transformed 

correlation matrices (with the soft threshold parameter β) as shown below: 
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This will make the method less sensitive to subtle coexpression changes, but 

may help in extracting more strikingly differentially coexpressed modules. 

 

Variant without the topological overlap 
As with WGCNA, the use of a topological overlap-based metrics makes the ap-

proach very sensitive, since it considers the correlation changes to all other genes to 

determine the similarity between two genes. The method can be simplified by 

replacing the dissimilarity matrix T of Step 4 by a dissimilarity measure derived 

directly from the adjacency matrix D: 

 

Talt = 1 – D 

 

This will make DiffCoEx focus only on within-module differential coexpres-

sion (criteria (i)) and not on module-to-module differential coexpression (criteria 

(ii)). This variant is computationally more efficient since the topological overlap 

computation is omitted. 
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5.3 Results 

We present here the results of our method as used on a previously published dataset. 

We identify modules of genes that are differentially coexpressed and, by using gene 

set enrichment analysis, we provide evidence for their biological relevance. 

5.3.1 Dataset 

Our dataset (Gene Expression Omnibus GEO GSE5923) contains Affymetrix gene 

expression profiles of renal cortex outer medulla in wild-type- and Eker rats treated 

with carcinogens. The dataset is a time course as the rats were treated with Aristo-

lochic Acid (AA) or Ochratoxin A (OTA), respectively, for 1, 3, 7 or 14 days. In 

total, the dataset consists of 84 arrays measuring 15,923 probe sets. Details about the 

experimental settings are available in the original paper [13]. 

Eker rats are predisposed to renal tumor because they are heterozygous for a 

loss-of-function mutation in the
 
tuberous sclerosis 2 (Tsc2) tumor suppressor gene. 

Stemmer et al. [13] compared the transcriptional responses of the rats to the carcino-

gens and found that the expression levels of genes belonging to a number of cancer-

related pathways were affected differently in the mutant compared to the wild-type 

rats. In our re-analysis of the data, we switched the focus from differential expres-

sion to differential coexpression in an attempt to identify functional modules 

responding to carcinogen treatment with a different coexpression signature in mutant 

Eker rats compared to wild type rats. 

5.3.2 Analysis 

We applied the DiffCoEx method to the quantile normalized data [20]. A duplicate 

set of 12 controls present only for Eker rats was discarded in order to have a symme-

tric experimental setting among wild-type- and Eker rats. We used the Spearman 

rank correlation in order to reduce sensitivity to outliers, and the hierarchical cluster-

ing and module assignment was performed using dynamicTreeCut [18]. The detailed 

algorithm and R code used in this analysis are given in Additional file 1. 

5.3.3 Findings 

The results of the analysis are summarized in Figure 2A. We identified a total of 8 

differentially coexpressed modules comprising a total of close to 1800 genes (1887 

probe sets, 1796 unique genes). The modules were given color names as indicated in 

Figure 2A. Four of these modules (totaling 1361 genes) were significantly more 

highly correlated in the mutant Eker rats than in the wild-type rats, while only the 

red module (36 genes) and, to a lesser extent, the green module (116 genes) follow 

the opposite pattern. This striking asymmetry might reflect the greater fragility of 
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the Eker rats to carcinogens: in Eker rats, treatment with carcinogens leads to much 

more coordinated perturbation of the transcriptome than in wild-type rats.  

The cases of the black, orange and green modules illustrate an interesting 

characteristic of DiffCoEx: the method is able to identify module-to-module correla-

tion changes. Interestingly, the black module is not differentially correlated in the 

wild-type rats compared to the Eker rats. Instead, what qualifies the black module as 

a differentially coexpressed module is its very significant drop in correlation with 

the genes in the blue and purple modules in the wild-type rats compared to the Eker 

mutants (see Figure 2A). Similar patterns can be observed for the orange and green 

modules. This property makes DiffCoEx a sensitive approach for detecting any type 

of large-scale correlation change. 

Following Choi et al. [9], significance of the coexpression differences was 

assessed by comparing the dispersion index values of each module in the data with 

the null distribution obtained from permuted (scaled) data (see Additional file 1 for 

details and Additional file 2: Figure S1 for an overview of the permutation results). 

In 1000 permutations, none of the blue, brown, purple, red or yellow modules 

obtained as high a dispersion value as that obtained from the non-permuted data, 

indicating a significance p-value < 0.001. Module-to-module coexpression changes 

were tested by assessing the significance of the correlation changes between the 

genes from each possible module pair, using a similar “module-to-module” disper-

sion measure and generating null distributions from the same permutation approach. 

Additional file 2: Figure S1 shows that the coexpression change between the black 

and blue modules, for example, is highly significant since no permutation yielded as 

high a dispersion value. 

In the next step, the biological significance of the modules was surveyed using 

gene-set enrichment analysis. We submitted each of the modules to GeneTrail [21] 

and identified many significantly over-represented GO or KEGG terms among the 

gene annotations. A subset of some of the most interesting findings is presented in 

Table 1, while complete lists are available as Additional file 3. In Figure 2B, the 

expression data for the 13 genes of the yellow module, which were associated with 

the “pancreatic cancer” KEGG annotation, illustrate what differential coexpression 

is: a difference in the coordination of the variation of a group of genes between two 

conditions. In the Eker rats, these cancer genes show coordinated variation, whereas 

in the wild-type rats this coordination is absent. 
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Figure 2 - Differentially coexpressed modules between carcinogen-treated Eker rats and wild-

type rats 

Panel A: Comparative correlation heat map. The upper diagonal of the main matrix shows a 

correlation between pairs of genes among the Eker mutant rats (the red color corresponds to positive 

correlations, blue to negative correlations). The lower diagonal of the heat map shows a correlation 

between the same gene pairs in the wild-type controls. Modules are identified in the heat map by 

black squares and on the right side of the heat map by a color bar. The brown bands on the right side 

indicate the mean expression of the modules in the Eker rats (first column) and the wild-type rats 

(second column); darker colors indicate higher mean expression levels.  

Panel B: Expression variation (scaled) in the Eker mutants (left) and the wild-type rats (right) of the 

genes in the yellow module which are annotated in KEGG with “pancreatic cancer”. In the Eker rats 

the variation of these genes is tightly correlated, whereas for the wild-type rats it is much more 

random. 
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Module Category Subcategory Expected Observed Fdr 

Black 

KEGG 
Metabolism of xenobiotics by 

cytochrome P450 
1.367 12 <0.001 

KEGG Metabolic pathways 22.494 40 <0.001 

GO Glutathione transferase activity 0.364 9 <0.001 

Blue 

KEGG Lysosome 3.373 12 0.008 

KEGG Metabolic pathways 31.541 48 0.026 

GO Mitochondrion 35.764 67 <0.001 

Brown GO Intracellular transport 8.481 22 0.038 

Green 
GO Mitochondrion 10.234 26 0.003 

GO Oxidation reduction 4.015 15 0.003 

Orange GO Xenobiotic metabolic process 0.079 5 <0.001 

Purple No significant enrichment 

Red KEGG Endometrial cancer 0.201 3 0.015 

Yellow 

KEGG Pancreatic cancer 3.344 14 <0.001 

KEGG Renal cell carcinoma 3.702 10 0.043 

KEGG Pathways in cancer 14.75 27 0.022 

GO Protein localization 33.676 64 <0.001 

GO Melanosome 2.995 11 0.009 

GO Cell projection 33.886 59 0.002 

GO 
Small GTPase mediated signal 

transduction 
14.342 31 0.003 

Table 1 - Annotations enriched in differentially coexpressed modules. Selected annotations 

enriched among the genes of each differentially coexpressed modules and associated false discovery 

rates (fdr). The over-representation analysis was conducted using GeneTrail. The complete results are 

available in Additional file 1. Interestingly, the black module was enriched for genes involved in 

“response to xenobiotics”, while the blue module contained many genes associated with “metabolic 

processes”. Finally, the yellow module was strongly enriched for genes known to be involved in 

cancer pathogenesis. 
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5.3.4 Implementation 

This analysis was carried out using the R statistical package with the WGCNA [15] 

library, on a Linux computer with 128 GB physical memory. Large memory (around 

10 GB) is required to compute correlation matrices for over 10,000 genes. For 

module definition, hierarchical clustering was combined with dynamicTreeCut [18] 

using a minimum size of 20 genes. Details of the process and code can be found in 

Additional file 1. 

 

5.4 Discussion and conclusions 

The method we present here has the advantage of comparing two (or more) datasets 

in a global, unbiased and unsupervised manner. It represents a major improvement 

over earlier two-way comparisons, in which clustering was first performed in one 

condition and the coexpression of the genes in the resulting clusters was then 

assessed in the other condition. Moreover, DiffCoEx is very sensitive because (i) it 

does not require differentially coexpressed modules to be detected as coherent, 

coexpressed modules in one of the two conditions; instead, only the difference in 

coexpression is considered to define the module; and (ii) it can identify all types of 

large-scale correlation changes, including module-to-module correlation changes. 

Using a simulation study (see Additional file 4), we demonstrate examples of 

differential coexpression patterns that can be uncovered using DiffCoEx but that 

were missed by existing approaches. 

Differential coexpression provides information that would be missed using 

classical methods focusing on the identification of differentially expressed genes. 

For example, as Figure 2A shows, many of the differentially coexpressed clusters 

display few differences between the two conditions in terms of mean overall expres-

sion. This indicates that the changes in correlation that we observed cannot be 

explained by the genes being not expressed, and therefore not correlated in one of 

the two conditions. 

Differential coexpression may be caused by different biological mechanisms. 

For example, a group of genes may be under the control of a common regulator (e.g. 

a transcription factor or epigenetic modification) that is active in one condition, but 

absent in the other condition. In such a case, the correlation structure induced by 

variation in the common regulator would only be present in the first condition. 

Another possible interpretation relates to the presence or absence of variation in 

some factors driving a gene module. To observe correlation of a group of genes 

responding to a common factor, this factor needs to vary. In the absence of variation 

of the driving factor, no correlation can be observed, even though the actual biologi-

cal links that form the network are not altered. It is therefore important to ensure that 

the perturbations which give rise to variation within each condition are: (i) biologi-
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cally relevant (as opposed to batch effects, for example) and (ii) comparable in 

nature and amplitude. 

DiffCoEx provides a simple and efficient approach to study how different 

sample groups respond to the same perturbations. These perturbations can be either 

well characterized and controlled, or stochastic and unknown. In our example 

analysis, on top of random physiological fluctuations present in any dataset, there 

was a controlled perturbation induced by the time-course treatment with different 

carcinogens present. Since the carcinogen treatment is a controlled experimental 

factor, it is possible to use classical methods to study the transcriptomic changes it 

induces rather than using DiffCoEx. However, a fundamental advantage of using 

DiffCoEx in such a case is that it requires no model assumptions and is a quick and 

efficient approach. Differential coexpression approaches are even more useful when 

the variation among the samples in one condition is caused by uncontrolled factors, 

whose effects cannot easily be dissected. A typical example would be genetic 

variation present in a natural population or an experimental cross. DiffCoEx consti-

tutes a valuable tool of broad applicability now that such genetic studies are 

becoming increasingly important for studying gene regulatory networks [22-24]. 
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5.6 Additional files 

Additional files are available online at: 

http://www.biomedcentral.com/1471-2105/11/497 

 

Additional file 1. Step-by-step R analysis for applying DiffCoEx. This file contains 

the documented R source code used to perform the analysis described in the main 

text as well as the simulation study described in Additional file 4. 

 

Additional file 2. Significance assessment of module-to-module coexpression 

changes using permutations. This figure summarizes the results of the significance 

analysis. 1000 permutations of the samples between the two conditions were per-

formed, and for each of the permuted datasets, the dispersion value (a measure of 

correlation change for groups of genes) was computed for each module, and for 

every possible module pair. The number of permutations yielding a higher disper-
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sion value than that of the original data was recorded and is displayed in this figure. 

The figure, for example, indicates that the within-module dispersion value for the 

black module reached a higher value with permuted data than with original data 249 

times. The within-module coexpression change was therefore not significant (p = 

0.249) for the black module and this is indicated with a light grey shading. Similar-

ly, the figure shows that no permutations reached as high a value as the original data 

for the purple to black dispersion, meaning that the black module was significantly 

differentially coexpressed with the purple module, and this is indicated with dark 

grey shading. 

 

Additional file 3. Differentially coexpressed modules and enrichment analysis 

results. This Excel file has separate sheets for the gene lists for each of the differen-

tially coexpressed modules and the results of the enrichment analysis conducted 

using GeneTrail. 

 

Additional file 4. Simulation study showing the sensitivity of DiffCoEx. This file 

details the result of a simulation study performed to illustrate a scenario in which 

DiffCoEx will outperform other, less sensitive, methods. 
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Defining gene and QTL networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Current technologies for high-throughput molecular profiling of large numbers 

of genetically different individuals offer great potential for elucidating the genotype-

to-phenotype relationship. Variation in molecular and phenotypic traits can be 

correlated to DNA sequence variation using the methods of quantitative trait locus 

(QTL) mapping. In addition, the correlation structure in the molecular and pheno-

typic traits can be informative for inferring the underlying molecular networks. For 

this, new methods are emerging to distinguish among causality, reactivity or inde-

pendence of traits based upon logic involving underlying quantitative trait loci 

(QTL). These methods are becoming increasingly popular in plant genetic studies as 

well as in studies on many other organisms. 
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6.1 Introduction 

Since the rediscovery of Georg Mendel’s pioneering work on pea crosses, segregat-

ing populations have been used to explore the underlying genetic architecture. 

Quantitative traits were deconstructed into additive, dominant and epistatic effects, 

without consideration for the underlying molecular components. Technological 

advances in the 1980s made comprehensive genotyping affordable and mapping the 

rough location of the underlying genetic contribution for a quantitative trait (QTL) 

became feasible [1, 2]. To date, more than 1200 studies in plants have been pub-

lished on mapping phenotypic QTL (phQTL).  A new wave of technological 

advances makes it possible to profile segregating populations for thousands of gene 

expression phenotypes and map expression QTL (eQTL)[3]. New technology can be 

used for the parallel measurement of the abundance of 1000s of proteins and meta-

bolites to map protein QTL (pQTL) and metabolite QTL (mQTL). Deep sequencing, 

chromatin and methyl-DNA immunoprecipitation are just a few of the newest 

technologies that add to the impressive arsenal of tools available for the study of the 

genetic variation underlying quantitative phenotypes[4, 5]. Mapping phenotypes for 

thousands of traits, ‘genetical genomics’ [6, 7], is the first step in attempting to 

reconstruct gene networks. Methods for network reconstruction can be used within a 

particular level (intra level analysis, i.e transcript data only), to explain the relation-

ship among traits[8] at that level. Alternatively, the focus can be on understanding 

relationships across levels (inter level analysis, integrating transcript, protein, 

metabolite and morphological phenotypic data). Prior knowledge from other expe-

riments can also be incorporated to further develop the picture of the network. 

Figure 1 illustrates the challenges that can be encountered with real data.  

6.2 Causal, reactive or independent? 

The examination of pairwise correlation between traits, or principal components 

summaries of these traits, can lead to the hypothesis of a functional relationship if 

that correlation is high [8-13]. Incorporating QTL information, allows the inference 

of a functional relationship if two traits share multiple QTL, something that it is 

unlikely to happen at random. Going beyond the detected QTL, the correlation 

between residuals among traits, after accounting for QTL effects, or correlations 

between traits conditional on other traits, is further evidence for a network connec-

tion. To infer directional effects, it is necessary to analyze the correlations among 

pairs of traits in detail. If trait T1 maps to a subset of the QTL of trait T2, then the 

common QTL can be taken as evidence for their network connection, while the 

distinct QTL can be used to infer the direction [6, 8]. If traits T1 and T2 have com-

mon QTL, without QTL that are distinct, then the inference is complicated and 

further analysis is needed to discriminate pleiotropy from any of the possible order-
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ings among traits (Box 1 highlights approaches from [8, 10, 12]). Although these 

problems are ‘modern’ the groundwork for such analyses are evident in the earliest 

days of quantitative analysis [14]. 

 

 

Figure 1 - System-wide QTL analysis for aliphatic glucosinolates. 

Data in this example are taken from [41] and demonstrate important network features that reconstruc-

tion methods should take into account. The colors in the QTL likelihood graphs (upper panel) and in 

the pathway (lower panel) correspond. The sign of the QTL effect is shown by plotting the QTL 

likelihood above the x-axis if the Cvi allele has higher average trait value or below the x-axis if the 

Ler allele has higher average trait value. The vertical dashed lines indicate the chromosome borders 

and the physical gene positions are shown as stars and grey vertical bars.(continued) 
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Figure 1 (continued) - Glucosinolates are important secondary metabolites in plants and are well-

known for their toxic effect on insects. The aliphatic glucosinolate biosynthesis pathway is summa-

rized in the lower panel. The MAM genes are involved in side chain elongation process: MAM1 

mainly synthesizes C3-glucosinolates (in purple box) and MAM2 mainly synthesizes C4-

glucosinolates (in green box). The parents Cvi and Ler carry different MAM genes. Cvi contains two 

MAM1 genes and Ler contains a functional MAM2 in addition to a truncated, non-functional MAM1 

gene. The AOP genes are involved in the side-chain modification process: AOP2 and AOP3 generate 

different types of glucosinolates as described. Both AOP2 and AOP3 are present in Ler and Cvi. But 

AOP2 is only expressed in Cvi and AOP3 is only expressed in Ler. The top panel shows the QTL 

profiles at different levels (transcripts, proteins, metabolites, disease trait) from a Cvi x Ler recombi-

nant inbred line population. To clearly demonstrate the QTL effects at different levels and along the 

pathway, the components are divided into two parts: the left part relates to the MAM1 gene and the 

metabolites produced by MAM synthesis (MAM2 is not measured); the right part refers to the AOP 

genes and the metabolites produced by the AOP synthesis. Cis-eQTL are detected for AOP2 and 

AOP3, cis-pQTL for MAM1, AOP2 and AOP3, and mQTL for the various aliphatic glucosinolates. 

These QTL have the same or opposite sign of QTL effect. To demonstrate whether QTL at molecular 

levels can propagate to phenotypic level, molecular QTL (eQTL, pQTL and mQTL) are also 

compared to the QTL of insect susceptibility (phQTL). The disease trait maps to ERECTA, a gene 

well known for its widespread pleiotropic effect, to AOP, and to third gene, but it does not map to 

MAM. This can be explained by the fact that the total glucosinolate content maps to AOP only. 

 

6.3 Intra level analysis 

In reference organisms, such as Arabidopsis, and in a growing list of plants, the 

location of the genes producing the transcript or protein studied is known. This 

added information provides a layer of interpretation for eQTL and pQTL. In Arabi-

dopsis,  eQTL and pQTL networks have been defined [15-21]; in barley, eucalyptus 

and maize eQTL networks have been defined [22-27]. When the eQTL or pQTL co-

localize with the gene, this effect may be due to cis regulatory effects (Fig 1). The 

caveat is that the detection of cis effects may be an artifact of differential probe 

hybridization due to sequence polymorphism [28, 29]. If gene expression at a 

particular locus is regulated by that locus (cis effect), and the abundance of the 

transcript in turn regulates additional loci (trans effect) then these expression traits 

should all map to the same locus. If the number of trans loci regulated by a single 

locus is large, as would be expected from a master regulator, or switch, a trans band 

will be observed at this location. All genes in the QTL are candidate regulators; their 

partial correlations with the regulated genes can be used to prioritize them [30, 31]. 

Importantly, genes without cis-eQTL can be regulators, manifesting only at the 

protein level [32]. If the number of transcript or protein traits mapping to a single 

location exceeds the number expected by chance, then a hotspot has been identified 

[33, 34].The hotspot can be inferred to represent a possible master regulator or 

switch. However, as a cautionary note hotspots can be an artifact of improper 

permutation [34].  
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Box 1: Advanced causal reasoning 

For two traits T1 and T2, denote T1>T2 if T1 affects T2; denote T1<T2 if T2 affects T1, 

and T1–T2 if there is a correlation but the direction is unknown. If traits T1 and T2 

have one common QTL, without QTL that are distinct, then the inference of causali-

ty is complicated and further analysis needed to discriminate pleiotropy from any of 

the possible orderings among traits . In this case there are at least three possible 

models: QTL>T1>T2; QTL>T2>T1; QTL>T1 and QTL>T2. If we write the simple 

regression models T2=α2+β2QTL+ε2  and T1=α1+β1QTL+ε1 and if ε1 and ε2 are 

uncorrelated, the QTL may be considered to have pleiotropic effects on the two 

traits, i.e. with no direct link between T1 and T2. Alternatively, if there is no evi-

dence for pleiotropy, then the following models can be considered T2=α3+β3T1+ε3  

and T1=α4+β4T2+ε4. The residuals from these models can be used to infer the correct 

model. If QTL>T1>T2 is the true relation, then ε3 will not map to the QTL. In 

contrast, ε4 should have a residual signature of the QTL. In cases where ε3 and ε4 

both map to the QTL, no direction can be given and T1–T2, while if neither of the 

two models maps to the QTL, the results are inconclusive [12]. In addition, there are 

other competitive models such as QTL>T1>T2 and QTL>T2; or a loop QTL>T1>T2 

and T2>T1 that prevent clear (conclusive) inferences about the true network direc-

tions [8, 10]. As an important cautionary note, the above conditional models are 

based on various assumptions, and violation of these assumptions may lead to an 

increase in error rates for inferences about network structure.  

 

At the metabolite level, mQTL for traits connected in a network may show 

complex patterns of correlation. For example, the mQTL for the precursor and 

product of an enzymatic step with differential activity should have opposite signs – 

indicating that the sign of the mQTL effect also conveys valuable information [35-

37]. The effect of an mQTL may be visible on the precursor, the corresponding 

product and downstream products [Fig 1]. As the number of steps grows, the com-

plexity of the network increases, and network reconstruction based purely on 

correlation coefficients is challenging. Epistatic interactions among enzymes may 

further complicate the effort to map and deconstruct their unique patterns, as in the 
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cases where some allelic combinations can be found in offspring which will then 

produce metabolites not found in either parent. Although such epistasis may be a 

rare phenomenon of complex traits [38], it is potentially abundant in secondary 

metabolism [36, 37].  

 

6.4 Inter level analysis 

Inter-level inferences have been made between eQTL and mQTL in Arabidopsis 

[39] and between mQTL and phenotypic traits in tomato [40], and between eQTL, 

pQTL, mQTL and phenotypic traits in Arabidopsis [41].  A system-wide analysis 

can reveal the impact of DNA sequence variation across multiple levels, i.e. eQTL at 

the gene expression level, pQTL for protein abundance or activity traits, mQTL for 

metabolite abundances and/or  phQTL for morphological traits (Fig 1). Some DNA 

sequence variation will induce strong effects to be detected as hotspots or master 

regulators of many molecular and phenotypic traits, while others induce effects that 

are more subtle or are buffered in the network to ensure robustness of the system 

[41].  Correlations among traits from different levels can be used to generate hypo-

theses about network connections in inter level analyses. Principal components may 

be used to summarize a network on one level and the regressed on traits on another 

level [42]. The complexity of the system is such that two adjacent levels (i.e. tran-

script and protein) may not be linearly related. For example: DNA sequence 

variation may not affect expression level (no eQTL) while it does affect protein 

abundance or activity (pQTL). The “higher” level traits (phQTL) may also be a 

function of multiple underlying (perhaps interacting) sub networks (see the disease 

trait in Fig 1). Added complexity may  be observed when DNA sequence variation 

directly affect higher level traits that – through feedback loops – affect other traits at 

the same or lower levels [39]. These examples indicate that caution is warranted 

given the intrinsic complexity in real networks.  

Correlation analyses will only reveal the linear relationships among levels. In-

terpreting the correlation structure “beyond” the common and shared QTL, using 

methods such as those described in Box 1, may generate hypotheses about system-

wide networks. However, extreme caution is advisable in these interpretations in 

intra level analyses due to the potential impact of correlated measurement error 

(leading to false positive connections), and in inter level analyses due to the seeming 

lack of correlation of between levels (leading to false negative connections) [43]. 

 

6.5 Using a priori knowledge 

Structural and functional data (gene sequence, gene localization, transcription factor 
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binding sites (TFBS), Gene Ontology (GO), metabolic pathway, protein-protein 

interaction (PPI)) as well as independent experimental data gleaned from secondary 

sources  (i.e. Gene Expression Omnibus (GEO)), can be used post-hoc to verify the 

defined gene and QTL networks. For example, if a disease maps to multiple QTL, 

then the candidate genes in each of the QTL can be analyzed and prioritized using 

known functional interactions [44]. As another example, particular eQTL trans 

bands may be identified as significantly enriched for a functional GO category [45] 

or as more likely to represent binding sites for transcription factors [46]. Prior 

knowledge can also be integrated in analysis. For example, a set of pathway-related 

genes may not show significant eQTL in gene-by-gene tests, while the set of genes 

can show such significance in a group-wise test [18]. 

 

6.6 Future directions 

Genetic variation at multiple loci in combination with environmental factors can 

induce molecular or phenotypic variation. Variation may manifest itself as linear 

patterns among traits at different levels that can be deconstructed. Correlations can 

be attributed to detectable QTL and a logical framework based on common and 

distinct QTL can be used to infer network causality, reactivity or independence. 

Unexplained variation can be used to infer direction between traits that share a 

common QTL and have no distinct QTL. Unexplained variation originates from 

other minor or modifier QTL, epigenetic factors, and biological, environmental and 

unfortunately, technical factors. Correlation structure present in the molecular data 

may reflect technical artifacts, in which case the models used to infer causality are 

potentially invalid and the inference is potentially erroneous. Additional studies are 

needed to understand and quantify the level of sensitivity of these network recon-

struction methods to technical errors. Further research is also needed to develop and 

evaluate experimental designs other than the current biparental line crosses: for 

example, multiple line crosses [46-48], advanced intercrosses [47, 48], or popula-

tions of natural ecotypes [49-54]. Prior knowledge and complementary experiments 

such as deletion mapping followed by independent gene expression studies between 

parental lines may validate or disprove implicated network connections [55].  

 The trend of genetic studies to go deeper (more levels) and broader (larger 

scale and more factors including environmental factors), brings challenges to 

develop methodology that can reconstruct networks more efficiently and more 

accurately. Despite the obvious limitations of gene and QTL network reconstruction 

methods, these and other future developments in biotechnology and genetics hold 

for sure great promise for the field of quantitative genetics. 
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Genome-wide linkage and association studies of tens of thousands of clinical 

and molecular traits are currently under way, offering rich data for inferring 

causality between traits and genetic variation. However, the inference process is 

based on discovering subtle patterns in the correlation between traits and is there-

fore challenging and could create a flood of untrustworthy causal inferences. Here 

we introduce the concerns and show that they are already valid in simple scenarios 

of two traits linked to or associated with the same genomic region. We argue that 

more comprehensive analysis and Bayesian reasoning are needed and that these can 

overcome some of these pitfalls, although not in every conceivable case. We con-

clude that causal inference methods can still be of use in the iterative process of 

mathematical modeling and biological validation. 
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7.1 Causal inference from genetic data 

Understanding how genes, proteins, metabolites and phenotypes connect in net-

works is a key objective in biology. Genes are transcribed and translated into 

proteins that can act as enzymes to convert precursor metabolites into product 

metabolites. These relationships are often depicted informally using graphs with 

arrows pointing in the assumed direction of causality, for example, from genes to 

proteins to metabolites to classical phenotypes.  These diagrams reflect our assump-

tions about causality in biological systems and in many cases have been 

painstakingly validated in controlled experimental settings. Today, more than ever 

before, we are faced with large-scale “post-genomics” data that have the potential to 

reveal a multitude of as yet unknown but potentially causal relationships.  

Methods for causal inference have been introduced as early as the 1920s[3] and 

have been further developed and applied since then in genetic epidemiology and 

other fields [2, 5, 6]). Causal inference is a formal statistical procedure that aims to 

establish predictive models. For example, if a reduction in the level of a crucial 

metabolite is the cause of a disease, then an intervention that increases the metabo-

lite level should alleviate the disease. By contrast, if the reduced metabolite is a 

consequence of the disease, then intervention will not have the desired effect. Causal 

reasoning is thus crucial to the process of target discovery in pharmaceutical re-

search. 

Recent genome-wide linkage studies (GWLS) on model organisms [8-10] and 

genome-wide association studies (GWAS) on humans [11] have successfully 

connected molecular and classical traits into networks with arrows indicating 

inferred causal relationships [4, 12-19]. Causality cannot be established from data 

alone.  Some assumptions about the causal relationships among the variables being 

modeled are needed.  Once these are established, causal inference can be propagated 

to additional variables. In GWLS and GWAS settings it is typical to assume that 

genomic variation (quantitative trait locus/loci, QTL; Glossary) acts as a causal 

anchor from which all arrows are directed outward. Although this assumption seems 

quite natural, caution is warranted when the sample is not random, as in case-control 

studies.   

There are many possible causal networks even in a simple system consisting of 

a genomic locus (QTL) and two traits, T1 and T2 (Figure 1). Causal inference in 

GWLS and GWAS involves, in its simplest form, the identification of pairs of traits 

with a common QTL (QTL-trait-trait triads) and determining whether the QTL 

directly affects each of two traits (independent), or if the QTL affects only one trait 

which in turn affects the other trait (causal or reactive). If none of these situations 

apply we assume that the causation is more complex (undecided).  
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Figure 1 - Triad models. Many different causal relationships are possible within a triad of two traits 

(T1 and T2) and a QTL (Q). The simplest case (red box) to the left shows no causality, in which case 

the QTL and the two traits do not influence each other. In the next set of models (yellow), at least one 

trait is not associated with the QTL. All these models are excluded from consideration based on the 

assumption that the QTL mapping step has correctly inferred the QTL-trait associations. The models 

that remain to be discriminated are highlighted in blue and green: the procedure to decide in favor of 

one of the blue causal topologies is outlined in the text. The three models furthest to the right (green) 

are extensions of the causal model that include additional interaction terms, for example the QTL 

could modulate the causal effect of T1 on T2. Equivalently, these models could be seen as relaxing 

the assumption of equal covariance across genotype classes. An extreme scenario is the Simpson’s 

paradox model in which the traits show opposite correlations for different genotypes at the QTL. 

Such complexities are usually not considered, but could form an important part of actual biological 

networks. The brown arrows indicate which of the models are nested and can thus be compared 

directly by statistical testing. 

 

Biological variation in the two traits beyond that induced by the common 

QTL is the key for distinguishing between the independent and causal scenarios. If 

there is a causal link, the biological and QTL variation from T1 will propagate to 

T2. If the variation propagates in an approximately linear fashion, we can, with 

simple linear regression (Box 1), subtract the biological and QTL variation in T1 

from T2 and we are left with the additional or ‘residual’ variation in T2 that is 

unrelated to the QTL. If we attempt the reciprocal analysis, the additional variation 

in T2 could make the linear regression fail to subtract all of the QTL variation from 

T1. As a result the residual variation in T1 will still relate to the QTL.  
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This reasoning suggests a simple approach for distinguishing among the in-

dependent and causal models on the basis of the outcome of two reciprocal 

statistical tests: does the residual variation in T1 still relate to the QTL, and does the 

residual variation in T2 still relate to the QTL. Traits are declared independent (yes, 

yes), causal (yes, no), reactive (no, yes), or more complex (no, no) in which case no 

decision is made (see Box 1 and Table 1 for the statistical details). Although the 

apparent simplicity of this approach is seductive, here we highlight some possible 

pitfalls illustrated by three simple but realistic scenarios, and discuss avenues to 

restoring the potential of causal inference. 

 

 
 

 

Box 1 - Causal inference with triads. 

(A) Decision procedure 
The triad analysis is a statistical decision procedure consisting of the following steps:  

Step 1: establish that two traits are linked to the same locus. This rules out the red and yellow 

models (Figure 1). We are ignoring the green models. So we are now reduced to the four blue 

models (independent, causal, reactive, undecided). 

Step 2:  regress T2 on T1 and T1 on T2 to obtain residuals of each trait adjusted for the other. 

Denote residuals by R2 and R1, respectively.  

Step 3:  compute a bivariate t-test for association between the residuals (R1 and R2) and the 

QTL. Note that R2 is 100% adjusted for both QTL effect under the causal model only (zero 

expected value; Table I). We note that in other implementations of triad analysis one would 

compute univariate t-tests of R1 against QTL and R2 against QTL. This ignores the correlation 

between these two tests and we have amended it here.   

Step 4: choose a model based on outcomes of the bivariate t-tests using a p-value of, e.g., 

10%: independent if (yes, yes), causal if (yes, no), reactive if (no, yes). If none of these apply 

we default to the "undecided" case.  

 

(B) Properties of procedure 

We describe two statistical measures and derive implications for population size:   

Sensitivity: the sensitivity of the method is the probability of correctly detecting a true causal 

relationship. This probability is obtained from the non-central bivariate 

t-distribution (QTL effect of residuals determine the non-centrality; Table 1). 

Positive predictive value: the positive predictive value is probability of a declared causal 

connection being true. We incorporate prior knowledge (Box 2 and Glossary): P1 is the 

product of the prior probability of a link to be causal times the probability to correctly identify 

a causal link as such; P2 is the product of the prior probability of a link to be independent 

times the probability to incorrectly identify an independent link as causal. The positive 

predictive value is then P1 / (P1+P2). 

Required population size: the above process is repeated for all combinations of QTL 

variance in the two traits, and for sample size ranging from 200 to 51,200. The minimum 

sample size to achieve both 50% sensitivity and 90% positive predictive value is plotted 

(Figure 2). 
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  Independent  model Causal model 

  T1 = QTL + e1 

T2 = QTL + e2 

T1 = QTL + e1 

T2 = T1 + e2 

Regress T1 on T2 Slope 1 − v2/vt2 1 − v2/vt2
 
 

Regress residual R1 on QTL QTL effect 2v2/vt2 2v2/vt2  

 
Variance

 c 
v1 + v2(v2/vt2–1)

2
 

v2(v2/vt2 – 1)
2
 + 

v1(v2/vt2)
2
 

Regress T2 on T1 Slope 1 − v1/vt1 1
 
 

Regress residual R2 on QTL QTL effect 2v1/vt1 0 

 Variance
 

v2 + v1(v1/vt1–1)
2
 v2 

Covariation of QTL effects Covariance v1 (v1/vt1 − 1) + v2(v2/vt2 − 1) v2(v2/vt2 − 1) 

Table 1 - Equations for regression parameters in the basic independent and causal model (first 

scenario in the main text). T1 and T2 have mean zero and equal QTL effect; this can always be 

achieved by subtracting the means and re-scaling.
 
Here, e1 and e2 represent variance in the biological 

process, not measurement errors; v1 and v2 denote the variances of e1 and e2; and vt1 and vt2 denote 

the total variance which is sum of the QTL and the biological variances. The ratio v1/vt1 is the 

proportion of total variance that is not explained by the QTL. For variance and covariance equations, 

multiply by 1/nA+1/nB in case of two genotypes where nA (nB) is the number of samples with 

genotype A (B); multiply by 4n/(n(nA + nB) − (nA − nB)
2
) in case of three genotypes where n = nA + nH 

+ nB is the total number of samples. Note that 4n/(n(nA + nB) − (nA − nB)
2
) = 1/nA + 1/nB if nH=0. 

 

7.2 Concerns about causal inference 

It is compelling to explore how this causal inference method for QTL-trait-

trait triads performs, particularly in GWAS where the majority of QTL identified 

explain much less than 5% of the total variance [20]. The method will declare 

particular triads to be independent and others to be causal, but such inferences are 

not without error. Of all triads that are truly causal, what proportion can be correctly 

identified as such? This proportion is referred in statistics as the ‘sensitivity’ of the 

method. It is good for a method to be sensitive, but not sufficient to make it of 

practical use. Triads with truly independent traits can in some cases be incorrectly 

identified as causal by the method. As a consequence, the potential number of false 

causal links arising from, say, 80% of independent trait-trait pairs can overwhelm 

the number of true causal links arising from the 20% of causal trait-trait pairs. The 

proportion of true causal links amongst those identified as causal is referred to in 
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statistics as the ‘positive predictive value’. A good method combines a high positive 

predictive value, say 90%, with an acceptable sensitivity, say 10% or higher (see 

Box 1 for the statistical details). A QTL is a genomic region that can contain mul-

tiple candidate genes and polymorphisms. Without prior knowledge that two traits 

sharing a common QTL are biologically or biochemically related, they are more 

likely to be regulated by different genes or polymorphisms within the QTL region. 

In which case we would say the traits are independent and that their apparent 

relationship is explained by linkage disequilibrium and not by a shared biological 

pathway. Different types of prior knowledge about the (unknown) number of true 

causal and true independent relationships can be incorporated into the causal infe-

rence (Box 2). 

We present three different scenarios to illustrate the properties of the method. 

In the first scenario T1 is causal for T2, all QTL and biological variation in T1 is 

propagated to T2 and, on top of this variation, T2 shows additional variation. This 

additional variation can originate from an independent perturbation such as another 

QTL affecting T2 but not T1, or from an environmental perturbation affecting T2 

but not T1. The correlation between T1 and T2 results fully from the causal relation-

ship between the two traits. Exact analytical equations can be used to compute the 

population size required to attain the desired levels of sensitivity and positive 

predictive value (Box 1). This requires specifying the size of the QTL effect, the 

frequency in the population of the major QTL allele, and the prior belief that the 

triad is causal rather than independent. A population size of approximately 200-

6,000 (GWLS) to 800-25,000 (GWAS) provides 50% sensitivity and 90% positive 

predictive value for causal inference with QTL explaining from 30% down to 0.5% 

of total variance (Figure 2, with parameters as specified in the legend). Lowering 

the sensitivity to 10% would reduce the required population size, but this effect is 

visible only in the area close to the diagonal (Figure 2). In this area traits are too 

tightly correlated and there is little additional variation in T2, making it difficult to 

infer the correct causal direction, in other words sensitivity is low. 

In the second scenario one or more shared hidden factors cause additional 

correlation between the traits. One can think of undetected QTL with pleiotropic 

effects on the traits, such as structural chromosomal variation leading to co-

expression of genes in a particular region, physiological variation related to daily 

circadian rhythms, or environmental variation due to features of the experimental 

implementation. In a causal model, the effect of the hidden factor acts on T2 in two 

ways: indirectly through T1, but also directly. For increasing values of hidden factor 

correlation (while keeping QTL and total variance constant), the linear regression 

will tend to subtract the effect of the hidden factor and not that of the QTL. As a 

consequence the causal links can appear to be independent (yes, yes); increasing 

sample size will not help to attain the desired levels of sensitivity and positive 

predictive value. In an independent model, the effect of the hidden factor acts on T1 

and T2 directly, and not indirectly. As with the causal model, for increasing values 
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of hidden factor correlation (while keeping QTL and total variance constant), the 

linear regression will typically tend to subtract the effect of the hidden factor and not 

that of the QTL. However, in the special case of equal slopes for hidden factor and 

QTL, the linear regression will be able to subtract hidden factor and QTL effects. A 

truly independent model then tends to change from correct identification (yes, yes) 

via either causal (yes, no) or reactive (no, yes) to undecided (no, no). Increasing 

sample size will help only when slopes are still slightly different, not if they are 

equal. Note that equal slopes cannot occur in the causal model, because the hidden 

factor acts directly and indirectly on T2. Sample size shown in Figure 2 is still 

approximately adequate if the hidden factor variance is small, in other words equals 

at most the QTL variance. 

 

 

Figure 2 - Population sizes required for reliable causal inference. Here we show the required 

population size in (a) genome-wide linkage studies (GWLS) and (b) genome-wide association 

studies. Each color represents a different population size; the scale is shown in the right panel. These 

numbers have been calculated from the equations in Box 1 by using a 10% significance threshold for 

the t-tests, 90% positive predictive value and 50% sensitivity. We assume that there is only biological 

variation and no measurement error. The x (or y) axis indicates the percentage of variance explained 

by a QTL in trait T1 or T2, respectively on a logarithmic scale ranging from 0.5% to 30%. Allele 

frequencies of the biallelic QTL are set equal in GWLS, and at 10% and 90% in GWAS. Furthermore 

we use Bayesian reasoning (Box 2): we assume a priori that only 1% (20%) of the QTL-trait-trait 

connections is truly causal in GWLS (GWAS). 

 

In the third scenario, measurement error comes into play, which is realistic for 

most technologies for scoring molecular and classical traits. Note that the use of 

surrogate variables, such as RNA expression as a proxy for the causal protein levels, 

can also introduce a kind of measurement error. Measurement variation is never 

‘biologically’ propagated from one trait to another trait, but it will change (reduce or 

increase) the correlation between the two traits, and thus the causal inference will be 
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affected. Correlated measurement errors are analogous to the hidden factor scenario 

described above with one exception. The special case of equal slopes for hidden 

factor and QTL can now occur also in the causal model: slopes for correlated 

measurement error and QTL can be equal. In this case, a true causal model can 

change from correct identification (yes, no) to undecided (no, no). Independent 

measurement errors will cause the linear regression to fail to subtract the QTL 

variation in both reciprocal analyses; therefore the causal model will tend to appear 

to be independent (yes, yes) if the measurement variance increases. However, an 

actual causal link from one trait measured with large measurement error to a down-

stream trait measured with small measurement error can be reported as reactive [16]. 

Again, increasing sample size will not be helpful to attain the desired levels of 

sensitivity and positive predictive value.  

 

7.3 Restoring the potential of causal inference 

We have explored causal inference in the simple context of QTL-trait-trait triads 

using a statistical decision procedure (Box 1) to potentially reject the undecided 

model in favor of one of the nested causal, reactive and independent models. This 

procedure is similar to other implementations of triad analysis [8, 10, 12] which, 

although not identical, lead to comparable results [14]. Other computational methods 

for causal inference such as structural equation modeling [21, 22] or Bayesian 

network analysis [23] can operate on larger numbers of traits and QTL. These 

methods also rely on the correlation structure in the data and will therefore suffer 

from some of the same problems as triad analysis: they require large population 

sizes, and can be confounded by hidden factors or measurement noise. This calls for 

several recommendations to restore the potential of causal inference. 

Our first recommendation is to use Bayesian reasoning in the causal infe-

rence procedure. Prior belief or knowledge about the number of true causal and true 

independent links that might be expected in a typical QTL, depending on the study 

design, should be considered to safeguard against high false-positive rates (low 

positive predictive values). In studies that involve mapping gene expression (eQTL), 

protein (pQTL) or metabolite (mQTL) traits, information about co-localization of 

QTL and genes that are functionally linked to the trait provides information about 

the likelihood of causal links. Lastly, biological annotations such as Gene Ontology 

[24] or Kyoto Encyclopedia of Genes and Genomes (KEGG) [25] pathways should 

also be considered when weighing evidence for causal links. The use of more 

informative priors (Box 2) provides better prioritizing and filtering of the large 

numbers of possible triads, and could reduce the population sizes required for 

reliable causal inference to more realistic numbers.  

Our second recommendation is to identify and eliminate or account for expe-

rimental factors that can induce spurious correlation. It is not usually possible to 
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measure all relevant factors, but even some of the most obvious factors such as age 

or sex of study subjects are often not taken into account. Any variation in diet, time 

since last feeding or time of sample collection, the size of plant seeds or the size of 

litter, temperature and light cycles, location in the greenhouse or field, can have 

profound effects. Such factors can be easily included in the model, but only when 

they are recorded [26, 27]. Although it might not be necessary in inbred line cross 

studies, it is crucial to consider the impact of population structure in almost every 

other setting where genetic variation is present. Methods are available to estimate 

kinship and the corresponding structure of the correlation. Combining these methods 

with causal inference can minimize the effects of spurious genetic correlation [28]. 

The effects of hidden factors affecting larger numbers of traits can be detected and 

corrected for by dimension-reduction methods ([28-32]). Causal inference can then 

be applied to the residual data. However, these multivariate analysis methods also 

have the potential to remove from the data signals that are relevant for causal 

inference from data and their application should be considered carefully. 

Our third and final recommendation is to consider a richer set of possible 

models than the four blue models in Figure 1. For example, fitting a model such as 

the top-right yellow model in Figure 1 could provide a powerful case for the causal 

signal in the data [19, 21, 22]. The green models in Figure 1 with more complex 

correlation structure can also be informative and have been explored [19]. If two 

traits have multiple QTL in common, then this can be taken as additional evidence 

that the two traits are connected in the network [7]. This allows for the possibility to 

generalize the triad analysis to a multiple QTL-trait-trait analysis. A test of the 

effects of all QTL that propagate from one trait to another can be obtained by 

modifying step 3 in the decision procedure (Box 1) to assess the combined effect 

[33]. 

7.4 Concluding remarks 

Many in the scientific community share a healthy skepticism of causal inference 

and, as we have shown, for good reasons. Nevertheless we conclude that causal 

inference in linkage or association analysis could soon become a feasible strategy 

given the rapidly growing prior knowledge of biological networks, the increasing 

population sizes, the advent of cheaper and more accurate measurement techniques, 

and the possibility of coupling causal inference methods with Bayesian reasoning. 

Further development of methods that consider the simultaneous effects of multiple 

traits and multiple QTL is needed, as well as the development of techniques that 

address the effects of experimental factors, study design and population structure. 

Reasonable caution is still warranted and statistical methods of causal inference 

should be viewed as a necessary step in an era of high-throughput data generation 

and discovery.   
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Box 2. Bayesian Reasoning. 

 

Bayes rule [1] is a probability property that allows one to combine evidence from data with existing 

knowledge and expertise through the inclusion of priors in an inference process. The definition of the 

prior in a causal inference on a QTL-trait-trait triad is the result of a partly subjective process that can 

be guided by the following considerations:  

• QTL confidence interval size: the larger the confidence intervals of the QTL are, the more likely 

it is that distinct polymorphisms control the traits. In GWLS, linkage disequilibrium is pervasive 

leading to large confidence intervals. 

• SNP density in the QTL region within the population: the more polymorphic the QTL region 

is, the more likely it is that the traits are actually controlled by distinct polymorphisms. In GWAS, 

populations are heterogeneous leading to a lot of allelic diversity along the genome. 

• Gene density within the confidence interval. Polymorphisms that lie within gene coding regions 

are more likely to propagate variation at phenotypic level than polymorphisms in non-coding 

regions. The fewer the number of genes within the QTL confidence interval, the more likely that 

the two traits are affected by the same polymorphism. 

• Local or distant eQTL: if a gene expression trait is locally regulated by an eQTL and the other 

trait is distantly regulated by the eQTL, then the gene with the local eQTL is more likely to be 

causal for the other trait than the other way around[4]. 

• Additional shared QTL: the sharing of multiple additional QTL between the two traits may be 

taken as additional evidence that they are connected in the network[7]. It is more likely that these 

QTL affect the traits through the same polymorphisms than it is that locations of multiple distinct 

polymorphisms coincide by chance. 

• QTL hotspot: regions of the genome, known as QTL hotspots, have been reported that harbor 

QTL for large numbers of traits. These could be the result of a single major polymorphism or of 

many polymorphisms in linkage disequilibrium and each affecting different traits independently. 

Further investigation and experience in understanding this phenomenon is needed to determine 

which is more likely.  

• Independent biological knowledge: biological knowledge about the two traits (for example if 

the two genes belong to a same KEGG pathway) can be used as a priori evidence that the traits 

are related. 
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Glossary 

 

Allele frequencies 

At a given polymorphic locus, the different alleles can differ in prevalence within the population 

studied. In GWLS using a cross originating from two inbred founders, the QTL has two alleles at 

equal frequencies in the population under study. By contrast, due to a combination of random 

segregation, drift and selection, allele frequencies in GWAS can be markedly different from equal. 

Imbalanced allele frequencies are less optimal for QTL detection 

 

Causal anchor 

Causal anchors are causal relationships that are provided by knowledge external to the data. Because 

meiotic recombination is a random process that predates the establishment of phenotypes, correla-

tion between DNA variation (QTL) and a trait implies causation of the DNA variation on the trait 

variation in experimental populations: QTL can therefore be used as causal anchors. The assumption 

should be carefully evaluated in natural populations, which can have hidden structure, or in case-

control studies where sampling could indirectly alter allelic associations.   

 

Causal inference 

A process of determining whether variation observed in a trait is a cause or a consequence of 

variation observed in another trait.  Here we adopt the definition used in [2] that causality is defined 

by the effects of intervention in a system.  If X is a cause of Y, then we can predict that an interven-

tion that alters the level of X will result in a change in Y.    

 

Correlation  
Correlation is a statistical measure of how much two variables change together. Correlation best 

captures linear relationships between variables (on the original scale or after a transformation). 

 

Genome-wide association studies (GWAS) 

A genome wide association study is an experiment in which the genomes of unrelated individuals 

are screened for genetic markers (typically millions of single nucleotide polymorphisms, SNPs) at 

which allelic variation correlates with variation in studied traits.  

 

Genome-wide linkage studies (GWLS) 

A genome wide association study is an experiment in which the genomes of related individuals is 

screened for genetic markers (typically a few hundreds or thousands of SNPs) at which allelic 

variation correlates with variation in studied traits. Examples of GWLS include experimental crosses 

such as recombinant inbred panels, intercrosses and backcrosses. 

 

Prior 
A prior (or prior probability) reflects the initial belief in a given proposition (such as “Trait T1 is 

causal for trait T2”) before observing the data. The application of Bayes’ rule combines the evidence 

provided by observed data with the prior to provide a measure of evidence of the proposition that 

accounts for previous experience or external knowledge. 

 
QTL confidence interval 

QTL mapping identifies regions of the genome in which allelic variation is linked or associated with 

a certain trait. The sample size, the density of available genotyped markers and the extent of 

recombination in the QTL region within the studied population are among the factors that influence 

the size of the confidence interval. Confidence intervals can extend from only a few hundred kilo 

base pairs to several mega base pairs complicating the identification of the actual polymorphism 

behind the QTL. 
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Glossary (continued) 

 
Quantitative Trait Locus (QTL)  

A genomic region is said to be a Quantitative Trait Locus for a trait if allelic variation in this region 

correlates with trait variation. QTL can be mapped through GWAS or GWLS. 

 

• eQTL  

An expression Quantitative Trait Locus is a region in the genome at which allelic varia-

tion correlates with the mRNA expression level variation of a certain gene. 

• Distant eQTL 
A distant (or trans) eQTL is an eQTL which is located far from the gene it controls (for 

example on a different chromosome). 

• Local eQTL 

A local (or cis) eQTL is an eQTL which is located nearby the gene it controls in the ge-

nome. Often a local eQTL will be caused by allelic variation in the regulatory region of 

the gene or within the gene itself. 

• mQTL 
A metabolite Quantitative Trait Locus is a region in the genome at which allelic variation 

correlates with the abundance variation of a certain metabolite. 

• pQTL  
A protein Quantitative Trait Locus is a region in the genome at which allelic variation cor-

relates with the abundance variation of a certain protein. Just like eQTL, pQTL can be 

local or distant according to the genomic position of the gene encoding for the protein rel-

ative to the QTL. 

 

QTL-trait-trait triads 

A set constituted by a QTL and two traits mapping to that QTL. Since a QTL can affect directly a 

trait, or indirectly through another intermediary trait, multiple causal scenarios can explain this 

triad as illustrated in particular by the blue models in Figure 1. This article discusses our ability to 

discriminate between those different scenarios.  

 

Regression 

Regression is a statistical procedure which evaluates the dependence between a variable (e.g. a 

trait) and one or multiple other variables (e.g. another trait, or QTL genotypes). 

 

Residuals 

In a regression, residuals are the differences between the observed values and the values fitted by 

the regression.  

 

Variance 

Variance is a statistical parameter that quantifies the spread in the distribution of a variable.  For 

phenotypic traits variance originates from both genetic and non-genetic sources and we can 

estimate the proportion of trait variance that is contributed by a given QTL. 
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Chapter 8 

Scaling up classical genetics to thousands 

of molecular traits: promises and challenges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genetical genomics integrates data from multiple molecular levels such as the 

transcriptome, proteome and metabolome by mapping their variation in a popula-

tion to polymorphic genetic loci. This systems genetics approach is increasingly 

used to identify molecular traits involved in the pathology of diseases and to eluci-

date the networks underlying complex phenotypes. Recent studies have pushed the 

genetical genomics concept further towards data integration and interpretation 

within and across molecular levels, and have also revealed remaining challenges. 

The focus of this review is to discuss these challenges and their possible solutions in 

the following three following areas: (1) experimental design, (2) setting significance 

thresholds, and (3) defining gene and QTL networks. Finally, we explore how future 

genetical genomics studies might benefit from the advent of new methods that aim at 

removing large pervasive variation components that are caused by uncontrolled 

factors in omics datasets. 
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8.1 Introduction 

Genetical genomics [1, 2] uses classical genetics approaches of Quantitative Trait 

Locus (QTL) mapping to link or associate the variation in traits from multiple 

molecular levels (such as transcriptomics, proteomics and metabolomics) to genetic 

loci harboring genotypic polymorphisms. Genetical genomics has become a popular 

systems genetics strategy [3] for unraveling molecular regulatory networks: a 

PubMed search on relevant keywords currently yields 191 scientific publications 

[4], 39% of which were published in 2009/10. Pioneering experiments have demon-

strated the high heritability of an extensive range of molecular traits (mainly 

mRNAs but also protein and metabolite abundance as measured with mass spectro-

metry or nuclear magnetic resonance) in numerous model species (including yeasts, 

plants, worms, flies, mice, rats and humans)  [5-11], and they have exposed the 

plasticity of the eQTL that control those traits with respect to environmental condi-

tion, tissue type or cellular context [12-16]. Genetical genomics studies that 

integrate ‘classical’ phenotypes (such as height or disease susceptibility) with 

multiple traits from molecular levels have improved our understanding of how 

genetic variation propagates through biological systems [17] and have suggested 

molecular pathways through which some genetic variants can cause diseases [18-

20].  

While scaling up classical quantitative genetics approaches to the study of thou-

sands of omics traits opens new avenues for the dissection of molecular mechanisms 

that regulate biological systems, it is also accompanied by a whole new range of 

specific challenges. These challenges are intrinsic to the high-throughput nature of 

the measurements, to technical aspects of the profiling technologies used, to the 

statistical issues introduced by the untargeted multifactorial perturbation that under-

lies the approach, and to the complexity of the molecular networks under study.  

 

8.2 Designing a genetic experiment for thousands of phenotypes 

Many of the considerations that apply to the experimental design of a classical 

genetic study also apply to genetical genomics. However, because the number of 

traits studied in a genetical genomics experiments is of a much higher magnitude 

(tens of thousands typically), a few specific issues need to be taken into account 

when deciding the population type, the sample size, and the assignment of samples 

to different treatments or conditions. 

8.2.1 Population 

In genetical genomics studies, multiple testing caused by the mapping of large 



Chapter 8                                                                                                     125 

 

numbers of phenotypes reduces the available statistical power. Linkage mapping on 

recombinant inbred lines (RILs), F2 intercrosses, or backcrosses provides enough 

power to perform eQTL studies with relatively small sample sizes. Fully inbred 

populations (immortal lines) allow collecting different types of phenotypes on 

distinct but genetically identical individuals, which is a valuable advantage in 

systems biology experiments where invasive procedures are needed to collect 

various phenotypes. However, linkage genetical genomics studies in general provide 

a relatively poor resolution, i.e. the confidence intervals surrounding a QTL span 

large genome regions of typically several million base pairs. Other types of crosses, 

such as the mouse collaborative cross [21], the Arabidopsis thaliana Multiparent 

Advanced Generation Inter-Cross [22], or Heterogeneous Stock (HS) for rat [23], 

may offer improved resolution. 

Association studies performed on natural or outbred populations on the other 

hand, have less power because a much larger number of smaller genomic regions are 

tested for QTL, leading to a drop in statistical significance caused by increased 

multiple testing and because of the large imbalance of the allele frequencies of 

genotypes. Since association studies allow for a much finer mapping of the QTL 

than that obtained with linkage analysis, there is a trade-off to consider between 

power and resolution when choosing the mapping strategy. Genome-wide associa-

tion studies (GWAS) have naturally been used to perform genetical genomics 

studies in humans [18, 24-27] and are emerging in model organisms studies using 

outbred populations [28].  

8.2.2 Combining studies 

Combining information from different studies can further increase the power and 

resolution in eQTL mapping. Meta-analysis of multiple datasets is a strategy widely 

used in GWAS of classical traits but is only starting to be explored in the context of 

genetical genomics [24, 25]. Meta-analyses use statistical methods for combining p-

values [29], because combining directly data from different experiments is ham-

pered by heterogeneity issues (e.g. different microarray platforms). As a result the 

power increases: combining their own peripheral blood dataset with the HapMap B-

cell dataset, Heap et al. report close to 40% additional eQTLs that were not detected 

in the individual eQTL scans. Also, the combination of association and linkage 

mapping, a procedure commonly used in classical genetics studies, has recently been 

applied to eQTL studies [30]. A linkage study is first performed to identify eQTL 

regions with satisfactory power; an association study is then performed to refine the 

eQTL found by the linkage study. This association step can be performed using a 

relaxed statistical significance threshold since only the regions identified in the 

linkage step are tested.  
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8.2.3 Sample assignment for molecular profiling. 

Random assignment of experimental units is a fundamental principle of experimen-

tal design which ensures that a treatment of interest is not confounded with other 

factors [31, 32]. While the genotypes are naturally randomized in the process of 

meiotic recombination and segregation, randomization must be enforced for other 

relevant factors during the design of genetical genomics experiments. In order to 

optimize the design for statistical power, the best way is to increase the sample size; 

but a smart assignment of samples to experimental units can further maximize the 

information that can be extracted from the data without any additional costs. For 

example, it was suggested to pair the most genetically distant individuals on two-

color microarrays so as to maximize the number of informative genetic contrasts 

[33, 34]. Two-color arrays are no longer widely used, but the basic idea can be 

elegantly generalized: in genetical genomics experiments studying environmental 

perturbation, one aims at achieving the most accurate estimate of the QTL effects 

and QTL-by-environment interaction effects of interest. In this case, genotyped 

individuals can be ‘intelligently’ selected and distributed across multiple environ-

ments using an optimization algorithm to minimize the sum of variance of the 

parameter estimates of interest [34-36].  

8.3 Significance thresholds for eQTL detection 

The large number of molecular traits (tens of thousands) and markers (from 100s to 

millions) that are tested in a genetical genomics study requires the significance level 

for linkage or association to be rigorously adjusted to control the number of false 

positive results. Bonferroni correction in this context tends to be too conservative , 

and in genetical genomics studies, it is more appropriate to control false discovery 

rate (FDR) [37]. In practice, the approaches for calculating the significance thre-

sholds accounting for multiple testing used in genetical genomics are mostly relying 

on permutations [38, 39], since standard approaches [40] work under the assumption 

that there is relatively mild dependence of the tests, which is not the case in geneti-

cal genomics where important correlations exist between traits and between 

neighboring markers. Permuting aims at breaking the biological relationship be-

tween genotypes and traits so that any QTL detected in the permuted dataset is a 

false positive, which allows estimating the FDR by providing an estimate of the 

number of false positives to be expected in the original data. By permuting only the 

sample labels in the genotype data, both the correlation structure between traits and 

the correlation structure between markers is conserved, which makes this empirical 

procedure perfectly suited to a non-biased estimation of the significance under the 

multiple dependences present in the data. If a major correlation structure is causing 

large groups of genes to be associated with the genotypes at random genomic loci, 

forming spurious hotspots of eQTLs, such permutations would also be likely to lead 
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to hotspots being mapped by chance and therefore identify the hotspots as not 

significant [39]. Thousands of permutations are  usually required to ensure accuracy 

of the FDR estimates, but methods approximating the tail of the distribution may 

allow for extrapolation from a smaller number of permutations and reduce the 

computational burden [41]. When the statistical models used for mapping contain 

genetic, environmental and interacting factors, the appropriate permutation strategy 

may be difficult to determine as certain situations require different permutation 

procedures to be used for individual terms in the ANOVA model, including re-

stricted permutation, permutation of whole groups of units, permutation of some 

forms of residuals or some combination of these [42].  

Special situations require some additional adjustments to the significance thre-

shold used. Firstly, testing for a local eQTL effect (a QTL affecting a gene lying in a 

nearby locus on the same chromosome) involves testing the genotypes at only one 

restricted genome region as opposed to the whole genome when scanning for distant 

genetic effects. Therefore detection of local eQTLs is affected to a much lesser 

extent to multiple testing and it is advisable to use a relaxed threshold for the 

detection of local QTLs. Secondly, in the presence of imbalanced allele frequencies 

(occurring randomly or caused by segregation distortion) in an experimental popula-

tion, one of the genotype group may have a very limited size yielding unreliable 

estimate of mean within that group, which in turn may influence the accuracy of the 

p-value estimates. The same issue is usually avoided in association studies where 

SNPs with very low minor allele frequency (e.g. below 5%) are simply excluded, at 

the risk of missing important biological phenomena [43].  

 

8.4 Defining gene and QTL networks 

In addition to the genetic dissection of phenotypic variation using QTL mapping 

techniques, systems geneticists are interested in reconstructing the biological net-

works that connect genes, proteins and other traits based on their observed genetic 

(co-)variation. In this context, biological networks are often defined by graphical 

models that are composed of nodes representing traits such as gene expression levels 

and edges representing (causal, correlational or mechanistic) relationships between 

these nodes. In current genetical genomics studies, there are two main types of 

approaches for the inference of such networks (i) methods for identifying coexpres-

sion networks on the basis of (partial) correlations between traits; (ii) methods for 

identifying QTL networks on the basis of QTL underlying variation and coexpres-

sion. 

8.4.1 Correlation based networks  

Coexpression networks are undirected networks in which edges connect genes that 
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have correlated expression behaviors over a set of samples (see e.g. [44, 45]. In the 

genetical genomics context, these samples come from genetically diverse individu-

als, possibly observed over multiple conditions. Under the principle of “guilt by 

association”, coexpression can be used to predict similar gene functions and is 

indicative of possible co-regulation.  

From the network, modules of coexpressed genes can be obtained, i.e. com-

munities of highly interconnected nodes within the graph. Such coexpressed 

modules can then be studied as putative functional units, thereby considerably 

reducing the dimensionality of the data. Different approaches have been proposed, 

many of which are inspired by social network research. Chesler et al. choose to 

focus on sets of genes in which all nodes are interconnected; such sets are termed 

“cliques” [8]. Searching for cliques in a network containing thousands of nodes 

poses a serious computational burden and several algorithms have been designed to 

alleviate it [46]. An alternative is the use of the topological overlap measure (TOM): 

this metric allows grouping together genes that share the same neighbors in the 

correlation graph [47, 48], but without the strong constraint imposed by cliqueness.  

Connectivity (also known as degree) represents the amount of edges reaching 

a gene in the coexpression network. Genes with high connectivity, termed “hubs”, 

have been claimed to be enriched for essential genes [45]. Connectivity is therefore 

used to prioritize between genes belonging to modules of interest.  

Similar correlation-based approaches can be used to study metabolites [49]. 

Steuer discussed the important differences existing in the correlation structure of 

metabolites compared to that of genes because of the specific biochemical characte-

ristics of metabolic networks, in which molecules rather than information is flowing 

along pathways [50]. A promising perspective is the profiling of multiple classes of 

macromolecules in the same samples in order to form correlation networks integrat-

ing genes, metabolites, and possibly proteins [17].  

By using partial correlations, i.e. conditioning on selected other nodes in the 

network, it is possible to remove indirect edges from the network [51-53]. Since 

large scale changes in coexpression may indicate rewiring of the transcriptional 

network, recent work has focused on the identification of such changes between 

different conditions in what is known as differential coexpression analysis [54, 55]. 

One limitation of correlation-based networks is that they are undirected and do not 

use explicitly the genotypic variation, therefore lacking the causal information that is 

needed to identify the drivers of biological processes. 

8.4.2 QTL-based networks 

The interest of using multiple QTL co-localization information for the reconstruc-

tion of trait networks has been noted early on [1]. The basic idea is that QTLs from 

upstream regulators should also be QTLs of the associated downstream traits, 

providing a simple means to order traits from causal to reactive. Moreover, when 
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two genes map to the same eQTL, one locally and one distantly, the gene with the 

local eQTL is likely to regulate the gene with a distant eQTL [2]. In practice, the 

application of these ideas has been hampered by two limitations of most available 

datasets. Firstly, the lack of power of current genetical genomics experiments does 

not allow for deconvolution of traits into multiple QTL (one or two QTL per trait are 

detected at best, and discrimination between a weak but existing QTL and absence 

of any QTL effect is difficult). Secondly, in experiments with low mapping resolu-

tion, it is often impossible to discriminate between two distinct neighbouring QTLs, 

and one shared QTL (statistical methods provide ‘parsimonious’ models, but this 

does not exclude that reality is more complex). 

Building on the aforementioned fundamental principles, Bayesian modeling 

concepts for causal inference have been adapted to assist in the extraction of regula-

tory evidence from genetical genomics data. If a trait T1 regulates a trait T2, then 

variation in T1 will be propagated to T2. When some of T1’s variation can be 

accounted for by a QTL, this QTL will also explain some of the variation in T2. The 

regression of T2 on T1 corrects T2 for the variation propagated from T1, including 

the QTL variation: this independence of T2 and the QTL conditional on T1 is used 

as evidence for the fact that T1 is causal for (regulates) T2. Different statistical 

testing frameworks have been proposed to use this conditional independence proper-

ty. For example, model selection approaches have been used to identify the causal 

relationship among traits that is best supported by the data [56, 57]. Chen et al. 

provided a method to quantify the likelihood of each causal link [58]. Recently, 

Millstein et al. further formularize a similar idea into a hypothesis test which results 

in a quantitative estimation of significance in terms of p-value [59]. Chaibub Neto et 

al. propose a likelihood-based method to compare graph configurations in which the 

non-propagated variation present in the downstream trait is explicitly modeled by 

non-shared QTL(s)[60]. The performances of those methods in terms of power, false 

positive and false negative rates are strongly dependent on sample size, QTL effect 

sizes, genotype frequencies and measurement errors [61]. 

Some attempts have been made to combine co-expression networks with 

QTL-based causal inference: either by orienting undirected edges of coexpression 

networks [60, 62] or by inferring causal relationships between entire modules and 

clinical traits by studying the eigengenes representing those modules or selected 

genes from those modules [63, 64]. 

8.4.3 Hotspots 

A particular case of QTL-based networks is that of QTL hotspots: specific loci that 

control a large number of genes distantly. Hotspots may be the consequence of one 

single polymorphism with major direct effects: for example, a polymorphic tran-

scription factor affecting multiple targets. Hotspots could also be the result of the 

indirect downstream effects of a single polymorphism. A handful of such eQTL 
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hotspots have been biologically validated. For example, a variant in the ERECTA 

gene was found to cause variation in a number of molecular traits (transcripts, 

proteins and metabolites) as well as classical phenotypes [17]. If the hotspot is the 

result of a single polymorphism, one might expect that genes whose expression is 

affected by this polymorphism should belong to a common biological pathway or 

process, at least if the effect is reasonably direct. For that reason, one of the first 

tests performed on the genes affected by a hotspot is often a gene annotation 

enrichment analysis such as GSEA [65, 66] or iGA [67]. The search for a “master 

regulator” within the hotspot QTL interval is challenging since typically many 

candidate genes lie in the QTL confidence interval due to the lack of resolution in 

most genetical genomics linkage studies (see also the earlier section). Interestingly, 

loci harboring eQTL hotspots were not found to be enriched for transcription factors 

in a yeast study [68], and the majority of hotspots turns out to be due to very indirect 

effects on gene expression. In order to prioritize genes within the list of candidate 

regulators, multiple independent sources of information can be utilized [69]. Statis-

tical evidence such as correlation of the hotspot genes with the candidate regulator 

or the presence of a local eQTL for the regulator can be integrated with biological 

evidence such as the relevance of the functional annotations associated with the 

candidate gene. Sequence information can also be used. Is the candidate gene 

polymorphic between the two parental strains? Is there evidence of enrichment of 

certain transcription factor binding sites within the hotspot target genes that would 

provide clues on the involvement of a certain regulator? Finally, it is important to 

remember that the regulators underlying the QTL may not be protein-coding genes 

but could also be miRNAs, or structural or epigenetic mechanisms. For integrating 

these different pieces of information, the rank product method can be applied to 

prioritize the candidate regulators by multiplication across the ranks positions of 

candidate genes in each prioritization step [67, 70]. 

 

8.5 Conclusion 

The adaptation of old concepts from classical genetics and epidemiology to the new 

postgenomic fields is establishing itself as a major research area with the potential to 

elucidate the biological processes leading to complex phenotypes. As standard good 

practices are adopted by the community for the design, statistical analysis and 

biological interpretation of genetical genomics experiments, the trend of these 

genetic studies will be to go deeper (integrating more molecular levels [17, 71, 72] 

and broader (larger sample sizes, combining genetic perturbation with other factors 

such as environmental factors) [35, 73]. The pervasive correlation structure stem-

ming from (mainly poorly understood) physiological and technical factors within 

genomics datasets is appearing as the main challenge slowing down the path towards 

new discovery. Promising new approaches that tackle this confounding variation 
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[24, 74, 75] are emerging and already proving to be beneficial as they improve the 

power to detect QTL while eliminating spurious findings. The application of these 

new approaches to network reconstruction [48, 56, 58, 60] promises to be accompa-

nied by new breakthroughs by removing one of the major obstacles on the way 

towards reliable network inference [61]. 
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Variatie in DNA sequencies staat aan de oorsprong van phenotypische 

variatie. Het begrijpen van de mechanismes hoe deze variatie doorwerkt in weefsel, 

organen en organismes is het doel van systeem genetica. Genetical genomics 

gebruikt quantitatieve methoden om de in de natuur aanwezige DNA varianten te 

identificeren die ten grondslag liggen aan de variatie in mRNAs, eiwitten en 

metabolieten. Deze thesis onderzoekt het vermogen van Genetical Genomics om de 

moleculaire interacties te ontraffelen die zorgen voor complexe phenotypes (zoals 

ziekte) en hoopt bij te dragen aan de grotere ambities binnen de systeem genetica. 

De verschillende stappen in een genetical genomics onderzoek worden onder 

de loep genomen (Hoofdstuk 3), maar eerst passen we deze methode toe in 

bloedcellen van muizen (Hoofdstuk 2). De resultaten tonen dat effecten van DNA 

variatie op gen expressie sterk beinvloed worden door de huidige cellulaire 

ontwikkelingsfase, wat de noodzaak aantoond om rekening te houden met cellulaire 

ontwikkelingfases.  In Hoofdstuk 4 wordt een nieuwe permutatie strategie 

gepresenteerd, die bescherming bied tegen het foutief interpreteren van eQTL 

hotspots. 

Verder wordt methodiek geintroduceerd voor het analyseren van differentiele 

coexpressie, complementair aan klassieke differentiele expressie analyse. 

(Hoofdstuk 5) 

 Het ontraffelen van de rol van genen, eiwitten of metabolieten bij een 

specifiek phenotype kan niet zonder de causale verbindingen daartussen. De kracht 

en onmacht van huidige analyse methoden voor causale inferentie binnen Genetical 

Genomics wordt onderzocht (Hoofdstukken 6 en 7). 

 Tot slot, een discussie over de huidige en toekomstige uitdagingen binnen de 

systeem genetica zoals experimenteel ontwerp, statistische significantie en 

genetische netwerken.  
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